Cyclic diaryliodonium salts: applications and overview
Owing to the recent renewed interest and groundbreaking advances in hypervalent chemistry, cyclic diaryliodonium salts have had a myriad of unique applications in the past decade. Their numerous properties, such as an efficient dual arylation mechanism, straightforward one-pot synthesis compatibilit...
Saved in:
Published in | Organic & biomolecular chemistry Vol. 21; no. 21; pp. 4358 - 4378 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
31.05.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Owing to the recent renewed interest and groundbreaking advances in hypervalent chemistry, cyclic diaryliodonium salts have had a myriad of unique applications in the past decade. Their numerous properties, such as an efficient dual arylation mechanism, straightforward one-pot synthesis compatibility, wide substrate scope, and functionalization tolerance, have made them appropriate starting materials for many bioactive compounds. Fluorenes, thiophenes, carbazoles, phenanthrenes, and many other useful cyclic bioactive molecules that are essential for pharmaceutical synthesis can be readily accessed from cyclic diaryliodonium salts. Particular focus has been given to the high optical activity and good enantiomeric excess of the products that facilitate the easy formation of many difficult-to-obtain optical isomers, such as atropisomers. This review aims to compile and summarize all the recent advances in synthesizing methodologies to prepare the important compounds where cyclic diaryliodonium salt is an integral part of the methodologies and would hopefully provide a good foundation for further research on this topic.
This review highlights the advancement in the synthesis and applications of cyclic diaryliodonium salts as well as provides new areas for future research in this subject. |
---|---|
AbstractList | Owing to the recent renewed interest and groundbreaking advances in hypervalent chemistry, cyclic diaryliodonium salts have had a myriad of unique applications in the past decade. Their numerous properties, such as an efficient dual arylation mechanism, straightforward one-pot synthesis compatibility, wide substrate scope, and functionalization tolerance, have made them appropriate starting materials for many bioactive compounds. Fluorenes, thiophenes, carbazoles, phenanthrenes, and many other useful cyclic bioactive molecules that are essential for pharmaceutical synthesis can be readily accessed from cyclic diaryliodonium salts. Particular focus has been given to the high optical activity and good enantiomeric excess of the products that facilitate the easy formation of many difficult-to-obtain optical isomers, such as atropisomers. This review aims to compile and summarize all the recent advances in synthesizing methodologies to prepare the important compounds where cyclic diaryliodonium salt is an integral part of the methodologies and would hopefully provide a good foundation for further research on this topic.
This review highlights the advancement in the synthesis and applications of cyclic diaryliodonium salts as well as provides new areas for future research in this subject. Owing to the recent renewed interest and groundbreaking advances in hypervalent chemistry, cyclic diaryliodonium salts have had a myriad of unique applications in the past decade. Their numerous properties, such as an efficient dual arylation mechanism, straightforward one-pot synthesis compatibility, wide substrate scope, and functionalization tolerance, have made them appropriate starting materials for many bioactive compounds. Fluorenes, thiophenes, carbazoles, phenanthrenes, and many other useful cyclic bioactive molecules that are essential for pharmaceutical synthesis can be readily accessed from cyclic diaryliodonium salts. Particular focus has been given to the high optical activity and good enantiomeric excess of the products that facilitate the easy formation of many difficult-to-obtain optical isomers, such as atropisomers. This review aims to compile and summarize all the recent advances in synthesizing methodologies to prepare the important compounds where cyclic diaryliodonium salt is an integral part of the methodologies and would hopefully provide a good foundation for further research on this topic. Owing to the recent renewed interest and groundbreaking advances in hypervalent chemistry, cyclic diaryliodonium salts have had a myriad of unique applications in the past decade. Their numerous properties, such as an efficient dual arylation mechanism, straightforward one-pot synthesis compatibility, wide substrate scope, and functionalization tolerance, have made them appropriate starting materials for many bioactive compounds. Fluorenes, thiophenes, carbazoles, phenanthrenes, and many other useful cyclic bioactive molecules that are essential for pharmaceutical synthesis can be readily accessed from cyclic diaryliodonium salts. Particular focus has been given to the high optical activity and good enantiomeric excess of the products that facilitate the easy formation of many difficult-to-obtain optical isomers, such as atropisomers. This review aims to compile and summarize all the recent advances in synthesizing methodologies to prepare the important compounds where cyclic diaryliodonium salt is an integral part of the methodologies and would hopefully provide a good foundation for further research on this topic.Owing to the recent renewed interest and groundbreaking advances in hypervalent chemistry, cyclic diaryliodonium salts have had a myriad of unique applications in the past decade. Their numerous properties, such as an efficient dual arylation mechanism, straightforward one-pot synthesis compatibility, wide substrate scope, and functionalization tolerance, have made them appropriate starting materials for many bioactive compounds. Fluorenes, thiophenes, carbazoles, phenanthrenes, and many other useful cyclic bioactive molecules that are essential for pharmaceutical synthesis can be readily accessed from cyclic diaryliodonium salts. Particular focus has been given to the high optical activity and good enantiomeric excess of the products that facilitate the easy formation of many difficult-to-obtain optical isomers, such as atropisomers. This review aims to compile and summarize all the recent advances in synthesizing methodologies to prepare the important compounds where cyclic diaryliodonium salt is an integral part of the methodologies and would hopefully provide a good foundation for further research on this topic. |
Author | Choudhary, Satya Prakash Singhal, Rakshanda Pilania, Meenakshi Malik, Babita |
AuthorAffiliation | Department of Chemistry Jaipur Manipal University Jaipur |
AuthorAffiliation_xml | – sequence: 0 name: Jaipur – sequence: 0 name: Department of Chemistry – sequence: 0 name: Manipal University Jaipur |
Author_xml | – sequence: 1 givenname: Rakshanda surname: Singhal fullname: Singhal, Rakshanda – sequence: 2 givenname: Satya Prakash surname: Choudhary fullname: Choudhary, Satya Prakash – sequence: 3 givenname: Babita surname: Malik fullname: Malik, Babita – sequence: 4 givenname: Meenakshi surname: Pilania fullname: Pilania, Meenakshi |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37161758$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0UtLxDAQB_AgK-76uHhXCl5EqCaZtmm86foEwYueS5oHRNqmJu3KfnujqyssnhKS3wyTf3bRpHOdRuiQ4HOCgV8ocDXGBLJ6C81IxliKc-CT9Z7iKdoN4S0azopsB02BkYKwvJyhYr6UjZWJssIvG-uU6-zYJkE0Q7hMRN_HSzFY14VEdCpxC-0XVn_so20jmqAPftY99Hp3-zJ_SJ-e7x_nV0-pBGBDyqEuawoZUbSU2kiem6IEo0wRTwB0brgARRjUteTUMI1zplltpKLUSIxhD52u-vbevY86DFVrg9RNIzrtxlDRkhAOJaM00pMN-uZG38XpoqKYEwJlFtXxjxrrVquq97aNL69-E4ngbAWkdyF4bdaE4Oor7uoGnq-_476OGG9gaYfvuAYvbPN_ydGqxAe5bv33g_AJvNeKHw |
CitedBy_id | crossref_primary_10_1021_acscatal_4c07880 crossref_primary_10_1039_D4CC05763E crossref_primary_10_1021_acs_joc_4c02094 crossref_primary_10_1039_D3QO01712E crossref_primary_10_1021_acs_orglett_4c00381 crossref_primary_10_1039_D3OB01200J crossref_primary_10_1021_acs_chemrev_4c00808 crossref_primary_10_59761_RCR5125 crossref_primary_10_1021_acs_chemrev_4c00303 crossref_primary_10_1039_D3RA08685B |
Cites_doi | 10.1002/anie.200501745 10.1021/acscatal.9b03454 10.1016/S0040-4020(01)92003-4 10.1021/acs.orglett.0c03833 10.1021/acs.joc.7b00513 10.1016/S0040-4020(96)00970-2 10.3762/bjoc.14.154 10.1021/acs.orglett.9b02267 10.1002/9781118909911 10.1002/aoc.3810 10.1021/acs.orglett.7b02388 10.1021/acs.chemrev.9b00033 10.1016/j.chempr.2018.01.017 10.1002/asia.201901284 10.1007/3-540-46114-0 10.1039/C8CC00300A 10.1002/ejoc.201501544 10.1039/b823399c 10.1002/anie.201912023 10.1002/anie.200904689 10.1021/acs.joc.0c01125 10.1039/D0GC04183A 10.1021/acs.orglett.9b03106 10.1002/adsc.201800637 10.1021/acs.orglett.6b03078 10.1021/acs.orglett.0c02353 10.1021/acs.orglett.9b04046 10.1002/chem.201703238 10.1002/chem.200400358 10.1002/adsc.201300271 10.1002/adsc.201901460 10.1021/acs.orglett.0c01829 10.1021/acs.orglett.8b00071 10.1002/ajoc.201800058 10.1021/acs.orglett.9b03775 10.1021/acs.orglett.6b03631 10.1002/adsc.201601260 10.1007/128_2015_639 10.1021/jo980113p 10.1039/C5OB00337G 10.1021/acs.orglett.9b02583 10.1021/acs.joc.5b00741 10.1021/cr940424+ 10.1039/C8SC01763H 10.1021/acs.orglett.0c02830 10.1021/acs.orglett.9b04555 10.1039/C2CS35134J 10.1007/s10535-009-0090-3 10.1021/cr800332c 10.1021/acs.joc.1c00483 10.1039/D1CC00171J 10.1021/acs.orglett.8b02477 10.1021/acs.orglett.7b00933 10.1021/acs.orglett.0c03614 10.1021/acs.orglett.9b04269 10.1002/hlca.202000221 10.1002/aoc.3817 10.1002/anie.200500115 10.1021/ol502654a 10.1021/acs.chemrev.9b00338 10.1002/asia.201800073 10.1021/ol5006714 10.1021/jacs.8b05743 10.1039/a909041j 10.1039/D1OB00457C 10.1021/acscatal.9b00695 10.1002/anie.202008431 10.1021/ja01596a070 10.1002/chem.201301449 10.1021/acs.joc.6b00671 10.1002/anie.201007640 10.1002/adsc.201600780 10.1021/ja906935c 10.1002/anie.201700405 10.1021/acs.orglett.7b03564 10.1039/D0QO00942C 10.1016/j.bmcl.2013.10.027 10.1002/adsc.202201326 10.1021/acs.orglett.9b01062 10.1021/acs.orglett.0c02256 10.1002/ejoc.201601651 10.1021/jo01296a050 10.1002/adsc.201100808 10.1021/acs.orglett.9b02429 10.1021/cr200087r 10.1021/cr60241a001 10.1021/acs.chemrev.5b00547 10.1021/acsomega.8b02345 10.1039/C2CS35154D 10.1002/slct.202200134 10.1021/ja904116k 10.1021/cr500223h 10.1039/C2CS35111K 10.1002/asia.201800102 10.1055/s-2007-990906 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2023 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2023 |
DBID | AAYXX CITATION NPM 7QO 7T7 7TM 8FD C1K FR3 P64 7X8 |
DOI | 10.1039/d3ob00134b |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Biotechnology Research Abstracts Technology Research Database Nucleic Acids Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Biotechnology Research Abstracts PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1477-0539 |
EndPage | 4378 |
ExternalDocumentID | 37161758 10_1039_D3OB00134B d3ob00134b |
Genre | Journal Article Review |
GroupedDBID | --- -DZ -JG -~X 0-7 0R~ 123 29N 4.4 705 70~ 7~J AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ACNCT ACPRK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRDS AFVBQ AGEGJ AGKEF AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K CS3 D0L DU5 EBS ECGLT EE0 EF- F5P GGIMP GNO H13 HZ~ H~N IDZ J3I M4U N9A O9- OK1 P2P R7B R7C RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UCJ VH6 VQA WH7 XSW YNT YZZ AAYXX AFRZK AKMSF ALUYA CITATION R56 NPM 7QO 7T7 7TM 8FD C1K FR3 P64 7X8 |
ID | FETCH-LOGICAL-c337t-93b8b2341d28cefc95f683fdf61d233e5f9a3d173bbc92f7e057e7bfcd22fc003 |
ISSN | 1477-0520 1477-0539 |
IngestDate | Thu Jul 10 23:43:11 EDT 2025 Mon Jun 30 11:59:48 EDT 2025 Mon Jul 21 06:00:58 EDT 2025 Tue Jul 01 01:52:28 EDT 2025 Thu Apr 24 23:04:20 EDT 2025 Tue Dec 17 20:58:26 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c337t-93b8b2341d28cefc95f683fdf61d233e5f9a3d173bbc92f7e057e7bfcd22fc003 |
Notes | tosylhydrazone as a coupling partner. Dr Meenakshi Pilania is Assistant Professor of Chemistry at Manipal University Jaipur, Rajasthan, India. Dr Pilania received her Master's degree from the Department of Chemistry, University of Rajasthan. She obtained her Ph.D. degree from the Birla Institute of Technology and Science Pilani, Pilani campus, Rajasthan in 2017. She is working in the field of Ms Rakshanda Singhal did her Master's in organic chemistry from the Department of Chemistry, University of Rajasthan in 2018. Presently, she is pursuing her Ph.D. from Manipal University Jaipur, Rajasthan under the supervision of Dr Babita Malik and Dr Meenakshi Pilania. Her research interest includes the construction of bioactive azaheterocycles utilizing Dr Babita Malik is Professor of Organic Chemistry at Manipal University Jaipur, Rajasthan, India. Dr Malik received her Master's degree from University of Rajasthan in 1992. She obtained her Ph.D. degree from University of Rajasthan, Jaipur, in 2000. Her broad research area includes the construction and biological activity of benzo-fused heterocycles. tosylhydrazone and hypervalent iodine chemistry for the development of new and efficient reaction methodologies related to azaheterocycles. Mr Satya Prakash Choudhary did his Master's in organic chemistry from the Department of Chemistry, University of Rajasthan in 2011. He is currently working as Assistant Professor in College Education Department, Government of Rajasthan. He is pursuing his Ph.D. under the supervision of Dr Meenakshi Pilania from the Department of Chemistry, Manipal University Jaipur. His core research area is to develop new and efficient protocols for the synthesis of bioactive heterocycles utilizing tosylhydrazone. N ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-2211-2444 |
PMID | 37161758 |
PQID | 2820911384 |
PQPubID | 2047497 |
PageCount | 21 |
ParticipantIDs | crossref_primary_10_1039_D3OB00134B rsc_primary_d3ob00134b proquest_miscellaneous_2811938722 crossref_citationtrail_10_1039_D3OB00134B proquest_journals_2820911384 pubmed_primary_37161758 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-31 |
PublicationDateYYYYMMDD | 2023-05-31 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-31 day: 31 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Organic & biomolecular chemistry |
PublicationTitleAlternate | Org Biomol Chem |
PublicationYear | 2023 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | (D3OB00134B/cit13/1) 1983 Li (D3OB00134B/cit67/1) 2018; 13 Stang (D3OB00134B/cit15/1) 1996; 96 Chatterjee (D3OB00134B/cit24/1) 2015; 13 Parra (D3OB00134B/cit103/1) 2019; 119 Gingras (D3OB00134B/cit65/1) 2013; 42 Gingras (D3OB00134B/cit66/1) 2013; 42 Wang (D3OB00134B/cit43/1) 2018; 9 Zhu (D3OB00134B/cit4/1) 2021; 23 Gingras (D3OB00134B/cit64/1) 2013; 42 Uyanik (D3OB00134B/cit101/1) 2009 Xue (D3OB00134B/cit84/1) 2019; 21 Hamamoto (D3OB00134B/cit40/1) 2004; 10 Wang (D3OB00134B/cit85/1) 2019; 14 Zhao (D3OB00134B/cit87/1) 2018; 4 Liu (D3OB00134B/cit56/1) 2016 Companys (D3OB00134B/cit102/1) 2017; 23 Caspers (D3OB00134B/cit50/1) 2020; 85 Li (D3OB00134B/cit89/1) 2019; 21 Gelis (D3OB00134B/cit45/1) 2017; 19 Shen (D3OB00134B/cit7/1) 2012; 112 Varvoglis (D3OB00134B/cit21/1) 1996 Vaddula (D3OB00134B/cit93/1) 2012; 354 Ding (D3OB00134B/cit106/1) 2020; 22 Wirth (D3OB00134B/cit25/1) 2005; 44 Xie (D3OB00134B/cit79/1) 2017; 19 Liu (D3OB00134B/cit70/1) 2017; 31 Murphy (D3OB00134B/cit39/1) 2018; 7 Mathew (D3OB00134B/cit9/1) 2017; 56 Peng (D3OB00134B/cit75/1) 2020; 362 Wang (D3OB00134B/cit77/1) 2016; 18 Li (D3OB00134B/cit38/1) 2018; 14 Hou (D3OB00134B/cit96/1) 2018; 20 Guo (D3OB00134B/cit94/1) 2020; 22 Powers (D3OB00134B/cit61/1) 2009; 131 Zhdankin (D3OB00134B/cit2/1) 2008; 108 Yoshimura (D3OB00134B/cit28/1) 2016; 116 Li (D3OB00134B/cit72/1) 2018; 3 Chatterjee (D3OB00134B/cit26/1) 2016; 81 Kantarod (D3OB00134B/cit69/1) 2021; 8 Wang (D3OB00134B/cit73/1) 2018; 20 Duan (D3OB00134B/cit86/1) 2019; 9 Zhu (D3OB00134B/cit83/1) 2019; 9 Charpentier (D3OB00134B/cit37/1) 2015; 115 Ciufolini (D3OB00134B/cit41/1) 2007 Dhbaibi (D3OB00134B/cit6/1) 2019; 119 Hu (D3OB00134B/cit68/1) 2020; 22 Liu (D3OB00134B/cit48/1) 2014; 16 Sairam (D3OB00134B/cit31/1) 2009; 53 Banerjee (D3OB00134B/cit78/1) 2013; 23 Xie (D3OB00134B/cit80/1) 2017; 82 Merritt (D3OB00134B/cit27/1) 2009; 48 Deng (D3OB00134B/cit104/1) 2011 Kaiho (D3OB00134B/cit20/1) 2014 Chatterjee (D3OB00134B/cit30/1) 2017 Ke (D3OB00134B/cit105/1) 2021; 23 Xu (D3OB00134B/cit88/1) 2018; 360 Grushin (D3OB00134B/cit1/1) 2000; 29 Zhu (D3OB00134B/cit97/1) 2020; 22 Geahigan (D3OB00134B/cit34/1) 1998; 63 Vaishya (D3OB00134B/cit53/1) 2022 Peng (D3OB00134B/cit54/1) 2017; 359 Singhal (D3OB00134B/cit52/1) 2022; 7 Dohi (D3OB00134B/cit100/1) 2011; 50 Zhdankin (D3OB00134B/cit23/1) 2014 Aggarwal (D3OB00134B/cit82/1) 2005; 44 Koser (D3OB00134B/cit35/1) 1980; 45 Elsherbini (D3OB00134B/cit17/1) 2021; 19 Aradi (D3OB00134B/cit46/1) 2016 Baralle (D3OB00134B/cit42/1) 2013; 19 Yang (D3OB00134B/cit58/1) 2018; 54 Peng (D3OB00134B/cit90/1) 2020; 22 Jiang (D3OB00134B/cit74/1) 2019; 21 Zhang (D3OB00134B/cit91/1) 2020; 59 Caspers (D3OB00134B/cit36/1) 2018; 13 Cheng (D3OB00134B/cit5/1) 2023; 365 Wang (D3OB00134B/cit8/1) 2019; 22 Li (D3OB00134B/cit92/1) 2020 Wang (D3OB00134B/cit71/1) 2017; 19 Antonkin (D3OB00134B/cit76/1) 2021; 86 Mascarelli (D3OB00134B/cit16/1) 1909; 38 Heaney (D3OB00134B/cit32/1) 1968; 24 Wang (D3OB00134B/cit63/1) 2020; 22 Zhdankin (D3OB00134B/cit51/1) 2014 Liu (D3OB00134B/cit55/1) 2017; 31 Chao (D3OB00134B/cit95/1) 2020; 22 Wirth (D3OB00134B/cit19/1) 2003 Abazid (D3OB00134B/cit44/1) 2020; 59 Zhu (D3OB00134B/cit57/1) 2014; 16 Yang (D3OB00134B/cit10/1) 2018; 20 Postnikov (D3OB00134B/cit49/1) 2015; 80 Varvoglis (D3OB00134B/cit14/1) 1992 Zhu (D3OB00134B/cit47/1) 2013; 355 Deprez (D3OB00134B/cit62/1) 2009; 131 Li (D3OB00134B/cit81/1) 2018; 140 Duan (D3OB00134B/cit98/1) 2021; 57 Collette (D3OB00134B/cit33/1) 1956; 78 Reinhard (D3OB00134B/cit3/1) 2021; 104 Ye (D3OB00134B/cit59/1) 2019; 21 Lee (D3OB00134B/cit11/1) 2019; 21 Hu (D3OB00134B/cit60/1) 2019; 21 Banks (D3OB00134B/cit12/1) 1966; 66 Varvoglis (D3OB00134B/cit18/1) 1997; 53 Kumar (D3OB00134B/cit29/1) 2015 Zhu (D3OB00134B/cit99/1) 2020; 22 Chatterjee (D3OB00134B/cit22/1) 2017; 359 |
References_xml | – issn: 1992 publication-title: Organic chemistry of polycoordinated iodine doi: Varvoglis – issn: 1996 publication-title: Hypervalent iodine in organic synthesis doi: Varvoglis – issn: 2003 end-page: 1-4 publication-title: Hypervalent Iodine Chemistry doi: Wirth – issn: 2014 publication-title: Hypervalent Iodine Chemistry: Preparation, Structure, and Synthetic Applications of Polyvalent Iodine Compounds doi: Zhdankin – issn: 1983 end-page: 721 publication-title: The Chemistry of Halides, Pseudo-halides, and Azides – issn: 2015 end-page: 243-261 publication-title: Hypervalent Iodine Chemistry doi: Kumar Wirth – issn: 2014 publication-title: Iodine chemistry and applications doi: Kaiho – issn: 2014 publication-title: Preparation, Structure and Synthetic Applications of Polyvalent Iodine Compounds doi: Zhdankin – volume: 44 start-page: 5516 year: 2005 ident: D3OB00134B/cit82/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200501745 – volume-title: Preparation, Structure and Synthetic Applications of Polyvalent Iodine Compounds year: 2014 ident: D3OB00134B/cit51/1 – volume: 9 start-page: 9852 year: 2019 ident: D3OB00134B/cit86/1 publication-title: ACS Catal. doi: 10.1021/acscatal.9b03454 – volume: 24 start-page: 3717 year: 1968 ident: D3OB00134B/cit32/1 publication-title: Tetrahedron doi: 10.1016/S0040-4020(01)92003-4 – volume: 23 start-page: 329 year: 2021 ident: D3OB00134B/cit105/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.0c03833 – volume: 82 start-page: 5250 year: 2017 ident: D3OB00134B/cit80/1 publication-title: J. Org. Chem. doi: 10.1021/acs.joc.7b00513 – volume: 53 start-page: 1179 year: 1997 ident: D3OB00134B/cit18/1 publication-title: Tetrahedron doi: 10.1016/S0040-4020(96)00970-2 – volume: 14 start-page: 1813 year: 2018 ident: D3OB00134B/cit38/1 publication-title: Beilstein J. Org. Chem. doi: 10.3762/bjoc.14.154 – volume: 21 start-page: 6374 year: 2019 ident: D3OB00134B/cit89/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.9b02267 – volume-title: Iodine chemistry and applications year: 2014 ident: D3OB00134B/cit20/1 doi: 10.1002/9781118909911 – volume: 31 start-page: e3810 issue: 11 year: 2017 ident: D3OB00134B/cit70/1 publication-title: Appl. Organomet. Chem. doi: 10.1002/aoc.3810 – volume: 19 start-page: 4916 year: 2017 ident: D3OB00134B/cit71/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.7b02388 – volume-title: Hypervalent iodine in organic synthesis year: 1996 ident: D3OB00134B/cit21/1 – volume: 119 start-page: 8846 year: 2019 ident: D3OB00134B/cit6/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00033 – volume: 4 start-page: 599 year: 2018 ident: D3OB00134B/cit87/1 publication-title: Chem doi: 10.1016/j.chempr.2018.01.017 – volume: 14 start-page: 4365 year: 2019 ident: D3OB00134B/cit85/1 publication-title: Chem. – Asian J. doi: 10.1002/asia.201901284 – start-page: 1 volume-title: Hypervalent Iodine Chemistry year: 2003 ident: D3OB00134B/cit19/1 doi: 10.1007/3-540-46114-0 – volume: 54 start-page: 3239 year: 2018 ident: D3OB00134B/cit58/1 publication-title: Chem. Commun. doi: 10.1039/C8CC00300A – start-page: 1110 year: 2016 ident: D3OB00134B/cit56/1 publication-title: Eur. J. Org. Chem. doi: 10.1002/ejoc.201501544 – start-page: 2086 year: 2009 ident: D3OB00134B/cit101/1 publication-title: Chem. Commun. doi: 10.1039/b823399c – volume: 59 start-page: 1479 year: 2020 ident: D3OB00134B/cit44/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201912023 – volume: 48 start-page: 9052 year: 2009 ident: D3OB00134B/cit27/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200904689 – volume: 85 start-page: 9161 year: 2020 ident: D3OB00134B/cit50/1 publication-title: J. Org. Chem. doi: 10.1021/acs.joc.0c01125 – start-page: 721 volume-title: The Chemistry of Halides, Pseudo-halides, and Azides year: 1983 ident: D3OB00134B/cit13/1 – volume: 23 start-page: 1972 year: 2021 ident: D3OB00134B/cit4/1 publication-title: Green Chem. doi: 10.1039/D0GC04183A – start-page: 1456 year: 2016 ident: D3OB00134B/cit46/1 publication-title: Synlett – volume: 21 start-page: 8328 year: 2019 ident: D3OB00134B/cit74/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.9b03106 – volume: 360 start-page: 3877 year: 2018 ident: D3OB00134B/cit88/1 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.201800637 – volume: 18 start-page: 5756 year: 2016 ident: D3OB00134B/cit77/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.6b03078 – volume: 38 start-page: 619 year: 1909 ident: D3OB00134B/cit16/1 publication-title: Gazz. Chim. Ital. – volume: 22 start-page: 7419 year: 2020 ident: D3OB00134B/cit106/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.0c02353 – volume: 22 start-page: 135 year: 2019 ident: D3OB00134B/cit8/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.9b04046 – volume: 23 start-page: 13309 year: 2017 ident: D3OB00134B/cit102/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201703238 – volume: 10 start-page: 4977 year: 2004 ident: D3OB00134B/cit40/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.200400358 – volume: 355 start-page: 2172 year: 2013 ident: D3OB00134B/cit47/1 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.201300271 – volume: 362 start-page: 2030 year: 2020 ident: D3OB00134B/cit75/1 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.201901460 – volume: 22 start-page: 5789 year: 2020 ident: D3OB00134B/cit90/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.0c01829 – volume: 20 start-page: 1491 year: 2018 ident: D3OB00134B/cit10/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.8b00071 – volume: 7 start-page: 837 year: 2018 ident: D3OB00134B/cit39/1 publication-title: Asian J. Org. Chem. doi: 10.1002/ajoc.201800058 – volume: 21 start-page: 9869 year: 2019 ident: D3OB00134B/cit59/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.9b03775 – volume: 19 start-page: 278 year: 2017 ident: D3OB00134B/cit45/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.6b03631 – start-page: 3941 year: 2022 ident: D3OB00134B/cit53/1 publication-title: Synthesis – volume: 359 start-page: 1152 year: 2017 ident: D3OB00134B/cit54/1 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.201601260 – start-page: 243 volume-title: Hypervalent Iodine Chemistry year: 2015 ident: D3OB00134B/cit29/1 doi: 10.1007/128_2015_639 – volume: 63 start-page: 6141 year: 1998 ident: D3OB00134B/cit34/1 publication-title: J. Org. Chem. doi: 10.1021/jo980113p – volume: 13 start-page: 4828 year: 2015 ident: D3OB00134B/cit24/1 publication-title: Org. Biomol. Chem. doi: 10.1039/C5OB00337G – volume: 21 start-page: 7004 year: 2019 ident: D3OB00134B/cit11/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.9b02583 – volume: 80 start-page: 5783 year: 2015 ident: D3OB00134B/cit49/1 publication-title: J. Org. Chem. doi: 10.1021/acs.joc.5b00741 – volume: 96 start-page: 1123 year: 1996 ident: D3OB00134B/cit15/1 publication-title: Chem. Rev. doi: 10.1021/cr940424+ – volume: 9 start-page: 5805 year: 2018 ident: D3OB00134B/cit43/1 publication-title: Chem. Sci. doi: 10.1039/C8SC01763H – volume: 22 start-page: 7622 year: 2020 ident: D3OB00134B/cit94/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.0c02830 – volume: 22 start-page: 1709 year: 2020 ident: D3OB00134B/cit97/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.9b04555 – volume: 42 start-page: 1051 year: 2013 ident: D3OB00134B/cit66/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C2CS35134J – volume: 53 start-page: 493 year: 2009 ident: D3OB00134B/cit31/1 publication-title: Biol. Plant. doi: 10.1007/s10535-009-0090-3 – volume: 108 start-page: 5299 year: 2008 ident: D3OB00134B/cit2/1 publication-title: Chem. Rev. doi: 10.1021/cr800332c – volume: 86 start-page: 7163 year: 2021 ident: D3OB00134B/cit76/1 publication-title: J. Org. Chem. doi: 10.1021/acs.joc.1c00483 – volume: 57 start-page: 3881 year: 2021 ident: D3OB00134B/cit98/1 publication-title: Chem. Commun. doi: 10.1039/D1CC00171J – volume: 20 start-page: 5779 year: 2018 ident: D3OB00134B/cit96/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.8b02477 – volume: 19 start-page: 2600 year: 2017 ident: D3OB00134B/cit79/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.7b00933 – volume: 22 start-page: 9356 year: 2020 ident: D3OB00134B/cit99/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.0c03614 – volume: 22 start-page: 505 year: 2020 ident: D3OB00134B/cit68/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.9b04269 – volume: 104 start-page: e2000221 issue: 2 year: 2021 ident: D3OB00134B/cit3/1 publication-title: Helv. Chim. Acta doi: 10.1002/hlca.202000221 – volume: 31 start-page: e3817 issue: 12 year: 2017 ident: D3OB00134B/cit55/1 publication-title: Appl. Organomet. Chem. doi: 10.1002/aoc.3817 – volume-title: Hypervalent Iodine Chemistry: Preparation, Structure, and Synthetic Applications of Polyvalent Iodine Compounds year: 2014 ident: D3OB00134B/cit23/1 – volume: 44 start-page: 3656 year: 2005 ident: D3OB00134B/cit25/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200500115 – volume: 16 start-page: 5600 year: 2014 ident: D3OB00134B/cit48/1 publication-title: Org. Lett. doi: 10.1021/ol502654a – start-page: 2959 year: 2011 ident: D3OB00134B/cit104/1 publication-title: Synthesis – volume: 119 start-page: 12033 year: 2019 ident: D3OB00134B/cit103/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00338 – volume: 13 start-page: 884 year: 2018 ident: D3OB00134B/cit67/1 publication-title: Chem. – Asian J. doi: 10.1002/asia.201800073 – start-page: 1077 year: 2020 ident: D3OB00134B/cit92/1 publication-title: Synlett – volume: 16 start-page: 2350 year: 2014 ident: D3OB00134B/cit57/1 publication-title: Org. Lett. doi: 10.1021/ol5006714 – volume: 140 start-page: 9400 year: 2018 ident: D3OB00134B/cit81/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b05743 – volume: 29 start-page: 315 year: 2000 ident: D3OB00134B/cit1/1 publication-title: Chem. Soc. Rev. doi: 10.1039/a909041j – volume: 19 start-page: 4706 year: 2021 ident: D3OB00134B/cit17/1 publication-title: Org. Biomol. Chem. doi: 10.1039/D1OB00457C – volume: 9 start-page: 4951 year: 2019 ident: D3OB00134B/cit83/1 publication-title: ACS Catal. doi: 10.1021/acscatal.9b00695 – volume: 59 start-page: 19899 year: 2020 ident: D3OB00134B/cit91/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202008431 – volume: 78 start-page: 3819 year: 1956 ident: D3OB00134B/cit33/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01596a070 – volume: 19 start-page: 10809 year: 2013 ident: D3OB00134B/cit42/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201301449 – volume: 81 start-page: 5120 year: 2016 ident: D3OB00134B/cit26/1 publication-title: J. Org. Chem. doi: 10.1021/acs.joc.6b00671 – volume: 50 start-page: 3784 year: 2011 ident: D3OB00134B/cit100/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201007640 – volume: 359 start-page: 358 year: 2017 ident: D3OB00134B/cit22/1 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.201600780 – volume: 131 start-page: 17050 year: 2009 ident: D3OB00134B/cit61/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja906935c – volume: 56 start-page: 5007 year: 2017 ident: D3OB00134B/cit9/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201700405 – volume: 20 start-page: 216 year: 2018 ident: D3OB00134B/cit73/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.7b03564 – volume: 8 start-page: 522 year: 2021 ident: D3OB00134B/cit69/1 publication-title: Org. Chem. Front. doi: 10.1039/D0QO00942C – volume: 23 start-page: 6747 year: 2013 ident: D3OB00134B/cit78/1 publication-title: Bioorg. Med. Chem. Lett. doi: 10.1016/j.bmcl.2013.10.027 – volume: 365 start-page: 1112 issue: 8 year: 2023 ident: D3OB00134B/cit5/1 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.202201326 – volume: 22 start-page: 135 year: 2020 ident: D3OB00134B/cit63/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.9b04046 – volume: 21 start-page: 3942 year: 2019 ident: D3OB00134B/cit84/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.9b01062 – volume-title: Organic chemistry of polycoordinated iodine year: 1992 ident: D3OB00134B/cit14/1 – volume: 22 start-page: 6441 year: 2020 ident: D3OB00134B/cit95/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.0c02256 – start-page: 3023 year: 2017 ident: D3OB00134B/cit30/1 publication-title: Eur. J. Org. Chem. doi: 10.1002/ejoc.201601651 – volume: 45 start-page: 1543 year: 1980 ident: D3OB00134B/cit35/1 publication-title: J. Org. Chem. doi: 10.1021/jo01296a050 – volume: 354 start-page: 986 year: 2012 ident: D3OB00134B/cit93/1 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.201100808 – volume: 21 start-page: 7233 year: 2019 ident: D3OB00134B/cit60/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.9b02429 – volume: 112 start-page: 1463 year: 2012 ident: D3OB00134B/cit7/1 publication-title: Chem. Rev. doi: 10.1021/cr200087r – volume: 66 start-page: 243 year: 1966 ident: D3OB00134B/cit12/1 publication-title: Chem. Rev. doi: 10.1021/cr60241a001 – volume: 116 start-page: 3328 year: 2016 ident: D3OB00134B/cit28/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00547 – volume: 3 start-page: 12923 year: 2018 ident: D3OB00134B/cit72/1 publication-title: ACS Omega doi: 10.1021/acsomega.8b02345 – volume: 42 start-page: 968 year: 2013 ident: D3OB00134B/cit64/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C2CS35154D – volume: 7 start-page: e202200134 year: 2022 ident: D3OB00134B/cit52/1 publication-title: ChemistrySelect doi: 10.1002/slct.202200134 – volume: 131 start-page: 11234 year: 2009 ident: D3OB00134B/cit62/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja904116k – volume: 115 start-page: 650 year: 2015 ident: D3OB00134B/cit37/1 publication-title: Chem. Rev. doi: 10.1021/cr500223h – volume: 42 start-page: 1007 year: 2013 ident: D3OB00134B/cit65/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C2CS35111K – volume: 13 start-page: 1231 year: 2018 ident: D3OB00134B/cit36/1 publication-title: Chem. – Asian J. doi: 10.1002/asia.201800102 – start-page: 3759 year: 2007 ident: D3OB00134B/cit41/1 publication-title: Synthesis doi: 10.1055/s-2007-990906 |
SSID | ssj0019764 |
Score | 2.4656897 |
SecondaryResourceType | review_article |
Snippet | Owing to the recent renewed interest and groundbreaking advances in hypervalent chemistry, cyclic diaryliodonium salts have had a myriad of unique applications... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4358 |
SubjectTerms | Bioactive compounds Biocompatibility Biological activity Carbazoles Chemical synthesis Isomers Optical activity Optical isomers Salts Substrates Thiophenes |
Title | Cyclic diaryliodonium salts: applications and overview |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37161758 https://www.proquest.com/docview/2820911384 https://www.proquest.com/docview/2811938722 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLage4AXxG0sMFAQvKAqsNi5mbetDA1EAUEn7S3yLWrUkqI2fSi_nmM7djJtSMBL1Nq5yd-J_R2fG0IvYyllokQSgTpBowQ0lIhVMXxXmVAp5yTNmI5Gnn7Ozs6TjxfpRe-na6JLWv5a_Lo2ruR_UIU2wFVHyf4Dsv6m0AC_AV84AsJw_CuMJzuhc1QDxOvdsgYFs6m3P8YbtmyNo9vQOG2MBNpd05sCOkZqgzGFEQEdi-_K5Y6FKwXnN2FglZub-gDjb2yx0VvuvZvPfLWVc2Zt8t9Zu2M6E9KCbfxu8xQI_8JaOHjd-gu_1kt4vGGwU1Cp9X3r4U4EJs6I7ifPJM8j7Vdj15Zhm01Y5GZcHA8kq_tj508gb8VgLU6Ire9zZZ4_IjpNqiQrTfpIwvvVzPsY9p030R4GJQKP0N7x6ezDJ29lAipmvA7ce7v0tYS-6a--TFiuaCHASdauVozhJLO76E6nTITHVjLuoRuquY9uTRxwD1BmJSS8LCGhkZC34VA-QkAzdPLxEJ2_P51NzqKuUkYkCMnbiBJecAyEROJCqErQtMoKUskqgxZCVFpRRmScE84FxVWugKWrnFdCYlwJmNj30ahZNeoAhSmNKZdHMsUVTjLFmWRUglYhqE6CJViAXrnhKEWXRl5XM1mWxp2B0PId-XJihu4kQC_8uT9t8pRrzzp0o1p2H9emxMBMYR0mRRKg574bRk_bs1ijVlt9TgzqRwHIBuiRRcM_huRacU-LAO0DPL65h_XxnzqeoNu9cB-iUbveqqdAPFv-rJOf3_kfhDk |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cyclic+diaryliodonium+salts%3A+applications+and+overview&rft.jtitle=Organic+%26+biomolecular+chemistry&rft.au=Singhal%2C+Rakshanda&rft.au=Choudhary%2C+Satya+Prakash&rft.au=Malik%2C+Babita&rft.au=Pilania%2C+Meenakshi&rft.date=2023-05-31&rft.issn=1477-0520&rft.eissn=1477-0539&rft.volume=21&rft.issue=21&rft.spage=4358&rft.epage=4378&rft_id=info:doi/10.1039%2Fd3ob00134b&rft.externalDocID=d3ob00134b |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-0520&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-0520&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-0520&client=summon |