Cyclic diaryliodonium salts: applications and overview

Owing to the recent renewed interest and groundbreaking advances in hypervalent chemistry, cyclic diaryliodonium salts have had a myriad of unique applications in the past decade. Their numerous properties, such as an efficient dual arylation mechanism, straightforward one-pot synthesis compatibilit...

Full description

Saved in:
Bibliographic Details
Published inOrganic & biomolecular chemistry Vol. 21; no. 21; pp. 4358 - 4378
Main Authors Singhal, Rakshanda, Choudhary, Satya Prakash, Malik, Babita, Pilania, Meenakshi
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 31.05.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Owing to the recent renewed interest and groundbreaking advances in hypervalent chemistry, cyclic diaryliodonium salts have had a myriad of unique applications in the past decade. Their numerous properties, such as an efficient dual arylation mechanism, straightforward one-pot synthesis compatibility, wide substrate scope, and functionalization tolerance, have made them appropriate starting materials for many bioactive compounds. Fluorenes, thiophenes, carbazoles, phenanthrenes, and many other useful cyclic bioactive molecules that are essential for pharmaceutical synthesis can be readily accessed from cyclic diaryliodonium salts. Particular focus has been given to the high optical activity and good enantiomeric excess of the products that facilitate the easy formation of many difficult-to-obtain optical isomers, such as atropisomers. This review aims to compile and summarize all the recent advances in synthesizing methodologies to prepare the important compounds where cyclic diaryliodonium salt is an integral part of the methodologies and would hopefully provide a good foundation for further research on this topic. This review highlights the advancement in the synthesis and applications of cyclic diaryliodonium salts as well as provides new areas for future research in this subject.
AbstractList Owing to the recent renewed interest and groundbreaking advances in hypervalent chemistry, cyclic diaryliodonium salts have had a myriad of unique applications in the past decade. Their numerous properties, such as an efficient dual arylation mechanism, straightforward one-pot synthesis compatibility, wide substrate scope, and functionalization tolerance, have made them appropriate starting materials for many bioactive compounds. Fluorenes, thiophenes, carbazoles, phenanthrenes, and many other useful cyclic bioactive molecules that are essential for pharmaceutical synthesis can be readily accessed from cyclic diaryliodonium salts. Particular focus has been given to the high optical activity and good enantiomeric excess of the products that facilitate the easy formation of many difficult-to-obtain optical isomers, such as atropisomers. This review aims to compile and summarize all the recent advances in synthesizing methodologies to prepare the important compounds where cyclic diaryliodonium salt is an integral part of the methodologies and would hopefully provide a good foundation for further research on this topic. This review highlights the advancement in the synthesis and applications of cyclic diaryliodonium salts as well as provides new areas for future research in this subject.
Owing to the recent renewed interest and groundbreaking advances in hypervalent chemistry, cyclic diaryliodonium salts have had a myriad of unique applications in the past decade. Their numerous properties, such as an efficient dual arylation mechanism, straightforward one-pot synthesis compatibility, wide substrate scope, and functionalization tolerance, have made them appropriate starting materials for many bioactive compounds. Fluorenes, thiophenes, carbazoles, phenanthrenes, and many other useful cyclic bioactive molecules that are essential for pharmaceutical synthesis can be readily accessed from cyclic diaryliodonium salts. Particular focus has been given to the high optical activity and good enantiomeric excess of the products that facilitate the easy formation of many difficult-to-obtain optical isomers, such as atropisomers. This review aims to compile and summarize all the recent advances in synthesizing methodologies to prepare the important compounds where cyclic diaryliodonium salt is an integral part of the methodologies and would hopefully provide a good foundation for further research on this topic.
Owing to the recent renewed interest and groundbreaking advances in hypervalent chemistry, cyclic diaryliodonium salts have had a myriad of unique applications in the past decade. Their numerous properties, such as an efficient dual arylation mechanism, straightforward one-pot synthesis compatibility, wide substrate scope, and functionalization tolerance, have made them appropriate starting materials for many bioactive compounds. Fluorenes, thiophenes, carbazoles, phenanthrenes, and many other useful cyclic bioactive molecules that are essential for pharmaceutical synthesis can be readily accessed from cyclic diaryliodonium salts. Particular focus has been given to the high optical activity and good enantiomeric excess of the products that facilitate the easy formation of many difficult-to-obtain optical isomers, such as atropisomers. This review aims to compile and summarize all the recent advances in synthesizing methodologies to prepare the important compounds where cyclic diaryliodonium salt is an integral part of the methodologies and would hopefully provide a good foundation for further research on this topic.Owing to the recent renewed interest and groundbreaking advances in hypervalent chemistry, cyclic diaryliodonium salts have had a myriad of unique applications in the past decade. Their numerous properties, such as an efficient dual arylation mechanism, straightforward one-pot synthesis compatibility, wide substrate scope, and functionalization tolerance, have made them appropriate starting materials for many bioactive compounds. Fluorenes, thiophenes, carbazoles, phenanthrenes, and many other useful cyclic bioactive molecules that are essential for pharmaceutical synthesis can be readily accessed from cyclic diaryliodonium salts. Particular focus has been given to the high optical activity and good enantiomeric excess of the products that facilitate the easy formation of many difficult-to-obtain optical isomers, such as atropisomers. This review aims to compile and summarize all the recent advances in synthesizing methodologies to prepare the important compounds where cyclic diaryliodonium salt is an integral part of the methodologies and would hopefully provide a good foundation for further research on this topic.
Author Choudhary, Satya Prakash
Singhal, Rakshanda
Pilania, Meenakshi
Malik, Babita
AuthorAffiliation Department of Chemistry
Jaipur
Manipal University Jaipur
AuthorAffiliation_xml – sequence: 0
  name: Jaipur
– sequence: 0
  name: Department of Chemistry
– sequence: 0
  name: Manipal University Jaipur
Author_xml – sequence: 1
  givenname: Rakshanda
  surname: Singhal
  fullname: Singhal, Rakshanda
– sequence: 2
  givenname: Satya Prakash
  surname: Choudhary
  fullname: Choudhary, Satya Prakash
– sequence: 3
  givenname: Babita
  surname: Malik
  fullname: Malik, Babita
– sequence: 4
  givenname: Meenakshi
  surname: Pilania
  fullname: Pilania, Meenakshi
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37161758$$D View this record in MEDLINE/PubMed
BookMark eNpt0UtLxDAQB_AgK-76uHhXCl5EqCaZtmm86foEwYueS5oHRNqmJu3KfnujqyssnhKS3wyTf3bRpHOdRuiQ4HOCgV8ocDXGBLJ6C81IxliKc-CT9Z7iKdoN4S0azopsB02BkYKwvJyhYr6UjZWJssIvG-uU6-zYJkE0Q7hMRN_HSzFY14VEdCpxC-0XVn_so20jmqAPftY99Hp3-zJ_SJ-e7x_nV0-pBGBDyqEuawoZUbSU2kiem6IEo0wRTwB0brgARRjUteTUMI1zplltpKLUSIxhD52u-vbevY86DFVrg9RNIzrtxlDRkhAOJaM00pMN-uZG38XpoqKYEwJlFtXxjxrrVquq97aNL69-E4ngbAWkdyF4bdaE4Oor7uoGnq-_476OGG9gaYfvuAYvbPN_ydGqxAe5bv33g_AJvNeKHw
CitedBy_id crossref_primary_10_1021_acscatal_4c07880
crossref_primary_10_1039_D4CC05763E
crossref_primary_10_1021_acs_joc_4c02094
crossref_primary_10_1039_D3QO01712E
crossref_primary_10_1021_acs_orglett_4c00381
crossref_primary_10_1039_D3OB01200J
crossref_primary_10_1021_acs_chemrev_4c00808
crossref_primary_10_59761_RCR5125
crossref_primary_10_1021_acs_chemrev_4c00303
crossref_primary_10_1039_D3RA08685B
Cites_doi 10.1002/anie.200501745
10.1021/acscatal.9b03454
10.1016/S0040-4020(01)92003-4
10.1021/acs.orglett.0c03833
10.1021/acs.joc.7b00513
10.1016/S0040-4020(96)00970-2
10.3762/bjoc.14.154
10.1021/acs.orglett.9b02267
10.1002/9781118909911
10.1002/aoc.3810
10.1021/acs.orglett.7b02388
10.1021/acs.chemrev.9b00033
10.1016/j.chempr.2018.01.017
10.1002/asia.201901284
10.1007/3-540-46114-0
10.1039/C8CC00300A
10.1002/ejoc.201501544
10.1039/b823399c
10.1002/anie.201912023
10.1002/anie.200904689
10.1021/acs.joc.0c01125
10.1039/D0GC04183A
10.1021/acs.orglett.9b03106
10.1002/adsc.201800637
10.1021/acs.orglett.6b03078
10.1021/acs.orglett.0c02353
10.1021/acs.orglett.9b04046
10.1002/chem.201703238
10.1002/chem.200400358
10.1002/adsc.201300271
10.1002/adsc.201901460
10.1021/acs.orglett.0c01829
10.1021/acs.orglett.8b00071
10.1002/ajoc.201800058
10.1021/acs.orglett.9b03775
10.1021/acs.orglett.6b03631
10.1002/adsc.201601260
10.1007/128_2015_639
10.1021/jo980113p
10.1039/C5OB00337G
10.1021/acs.orglett.9b02583
10.1021/acs.joc.5b00741
10.1021/cr940424+
10.1039/C8SC01763H
10.1021/acs.orglett.0c02830
10.1021/acs.orglett.9b04555
10.1039/C2CS35134J
10.1007/s10535-009-0090-3
10.1021/cr800332c
10.1021/acs.joc.1c00483
10.1039/D1CC00171J
10.1021/acs.orglett.8b02477
10.1021/acs.orglett.7b00933
10.1021/acs.orglett.0c03614
10.1021/acs.orglett.9b04269
10.1002/hlca.202000221
10.1002/aoc.3817
10.1002/anie.200500115
10.1021/ol502654a
10.1021/acs.chemrev.9b00338
10.1002/asia.201800073
10.1021/ol5006714
10.1021/jacs.8b05743
10.1039/a909041j
10.1039/D1OB00457C
10.1021/acscatal.9b00695
10.1002/anie.202008431
10.1021/ja01596a070
10.1002/chem.201301449
10.1021/acs.joc.6b00671
10.1002/anie.201007640
10.1002/adsc.201600780
10.1021/ja906935c
10.1002/anie.201700405
10.1021/acs.orglett.7b03564
10.1039/D0QO00942C
10.1016/j.bmcl.2013.10.027
10.1002/adsc.202201326
10.1021/acs.orglett.9b01062
10.1021/acs.orglett.0c02256
10.1002/ejoc.201601651
10.1021/jo01296a050
10.1002/adsc.201100808
10.1021/acs.orglett.9b02429
10.1021/cr200087r
10.1021/cr60241a001
10.1021/acs.chemrev.5b00547
10.1021/acsomega.8b02345
10.1039/C2CS35154D
10.1002/slct.202200134
10.1021/ja904116k
10.1021/cr500223h
10.1039/C2CS35111K
10.1002/asia.201800102
10.1055/s-2007-990906
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2023
Copyright_xml – notice: Copyright Royal Society of Chemistry 2023
DBID AAYXX
CITATION
NPM
7QO
7T7
7TM
8FD
C1K
FR3
P64
7X8
DOI 10.1039/d3ob00134b
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Biotechnology Research Abstracts
Technology Research Database
Nucleic Acids Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
Biotechnology Research Abstracts
PubMed
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1477-0539
EndPage 4378
ExternalDocumentID 37161758
10_1039_D3OB00134B
d3ob00134b
Genre Journal Article
Review
GroupedDBID ---
-DZ
-JG
-~X
0-7
0R~
123
29N
4.4
705
70~
7~J
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ACNCT
ACPRK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFVBQ
AGEGJ
AGKEF
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CS3
D0L
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3I
M4U
N9A
O9-
OK1
P2P
R7B
R7C
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UCJ
VH6
VQA
WH7
XSW
YNT
YZZ
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
R56
NPM
7QO
7T7
7TM
8FD
C1K
FR3
P64
7X8
ID FETCH-LOGICAL-c337t-93b8b2341d28cefc95f683fdf61d233e5f9a3d173bbc92f7e057e7bfcd22fc003
ISSN 1477-0520
1477-0539
IngestDate Thu Jul 10 23:43:11 EDT 2025
Mon Jun 30 11:59:48 EDT 2025
Mon Jul 21 06:00:58 EDT 2025
Tue Jul 01 01:52:28 EDT 2025
Thu Apr 24 23:04:20 EDT 2025
Tue Dec 17 20:58:26 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c337t-93b8b2341d28cefc95f683fdf61d233e5f9a3d173bbc92f7e057e7bfcd22fc003
Notes tosylhydrazone as a coupling partner.
Dr Meenakshi Pilania is Assistant Professor of Chemistry at Manipal University Jaipur, Rajasthan, India. Dr Pilania received her Master's degree from the Department of Chemistry, University of Rajasthan. She obtained her Ph.D. degree from the Birla Institute of Technology and Science Pilani, Pilani campus, Rajasthan in 2017. She is working in the field of
Ms Rakshanda Singhal did her Master's in organic chemistry from the Department of Chemistry, University of Rajasthan in 2018. Presently, she is pursuing her Ph.D. from Manipal University Jaipur, Rajasthan under the supervision of Dr Babita Malik and Dr Meenakshi Pilania. Her research interest includes the construction of bioactive azaheterocycles utilizing
Dr Babita Malik is Professor of Organic Chemistry at Manipal University Jaipur, Rajasthan, India. Dr Malik received her Master's degree from University of Rajasthan in 1992. She obtained her Ph.D. degree from University of Rajasthan, Jaipur, in 2000. Her broad research area includes the construction and biological activity of benzo-fused heterocycles.
tosylhydrazone and hypervalent iodine chemistry for the development of new and efficient reaction methodologies related to azaheterocycles.
Mr Satya Prakash Choudhary did his Master's in organic chemistry from the Department of Chemistry, University of Rajasthan in 2011. He is currently working as Assistant Professor in College Education Department, Government of Rajasthan. He is pursuing his Ph.D. under the supervision of Dr Meenakshi Pilania from the Department of Chemistry, Manipal University Jaipur. His core research area is to develop new and efficient protocols for the synthesis of bioactive heterocycles utilizing
tosylhydrazone.
N
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-2211-2444
PMID 37161758
PQID 2820911384
PQPubID 2047497
PageCount 21
ParticipantIDs crossref_primary_10_1039_D3OB00134B
rsc_primary_d3ob00134b
proquest_miscellaneous_2811938722
crossref_citationtrail_10_1039_D3OB00134B
proquest_journals_2820911384
pubmed_primary_37161758
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-31
PublicationDateYYYYMMDD 2023-05-31
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-31
  day: 31
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Organic & biomolecular chemistry
PublicationTitleAlternate Org Biomol Chem
PublicationYear 2023
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References (D3OB00134B/cit13/1) 1983
Li (D3OB00134B/cit67/1) 2018; 13
Stang (D3OB00134B/cit15/1) 1996; 96
Chatterjee (D3OB00134B/cit24/1) 2015; 13
Parra (D3OB00134B/cit103/1) 2019; 119
Gingras (D3OB00134B/cit65/1) 2013; 42
Gingras (D3OB00134B/cit66/1) 2013; 42
Wang (D3OB00134B/cit43/1) 2018; 9
Zhu (D3OB00134B/cit4/1) 2021; 23
Gingras (D3OB00134B/cit64/1) 2013; 42
Uyanik (D3OB00134B/cit101/1) 2009
Xue (D3OB00134B/cit84/1) 2019; 21
Hamamoto (D3OB00134B/cit40/1) 2004; 10
Wang (D3OB00134B/cit85/1) 2019; 14
Zhao (D3OB00134B/cit87/1) 2018; 4
Liu (D3OB00134B/cit56/1) 2016
Companys (D3OB00134B/cit102/1) 2017; 23
Caspers (D3OB00134B/cit50/1) 2020; 85
Li (D3OB00134B/cit89/1) 2019; 21
Gelis (D3OB00134B/cit45/1) 2017; 19
Shen (D3OB00134B/cit7/1) 2012; 112
Varvoglis (D3OB00134B/cit21/1) 1996
Vaddula (D3OB00134B/cit93/1) 2012; 354
Ding (D3OB00134B/cit106/1) 2020; 22
Wirth (D3OB00134B/cit25/1) 2005; 44
Xie (D3OB00134B/cit79/1) 2017; 19
Liu (D3OB00134B/cit70/1) 2017; 31
Murphy (D3OB00134B/cit39/1) 2018; 7
Mathew (D3OB00134B/cit9/1) 2017; 56
Peng (D3OB00134B/cit75/1) 2020; 362
Wang (D3OB00134B/cit77/1) 2016; 18
Li (D3OB00134B/cit38/1) 2018; 14
Hou (D3OB00134B/cit96/1) 2018; 20
Guo (D3OB00134B/cit94/1) 2020; 22
Powers (D3OB00134B/cit61/1) 2009; 131
Zhdankin (D3OB00134B/cit2/1) 2008; 108
Yoshimura (D3OB00134B/cit28/1) 2016; 116
Li (D3OB00134B/cit72/1) 2018; 3
Chatterjee (D3OB00134B/cit26/1) 2016; 81
Kantarod (D3OB00134B/cit69/1) 2021; 8
Wang (D3OB00134B/cit73/1) 2018; 20
Duan (D3OB00134B/cit86/1) 2019; 9
Zhu (D3OB00134B/cit83/1) 2019; 9
Charpentier (D3OB00134B/cit37/1) 2015; 115
Ciufolini (D3OB00134B/cit41/1) 2007
Dhbaibi (D3OB00134B/cit6/1) 2019; 119
Hu (D3OB00134B/cit68/1) 2020; 22
Liu (D3OB00134B/cit48/1) 2014; 16
Sairam (D3OB00134B/cit31/1) 2009; 53
Banerjee (D3OB00134B/cit78/1) 2013; 23
Xie (D3OB00134B/cit80/1) 2017; 82
Merritt (D3OB00134B/cit27/1) 2009; 48
Deng (D3OB00134B/cit104/1) 2011
Kaiho (D3OB00134B/cit20/1) 2014
Chatterjee (D3OB00134B/cit30/1) 2017
Ke (D3OB00134B/cit105/1) 2021; 23
Xu (D3OB00134B/cit88/1) 2018; 360
Grushin (D3OB00134B/cit1/1) 2000; 29
Zhu (D3OB00134B/cit97/1) 2020; 22
Geahigan (D3OB00134B/cit34/1) 1998; 63
Vaishya (D3OB00134B/cit53/1) 2022
Peng (D3OB00134B/cit54/1) 2017; 359
Singhal (D3OB00134B/cit52/1) 2022; 7
Dohi (D3OB00134B/cit100/1) 2011; 50
Zhdankin (D3OB00134B/cit23/1) 2014
Aggarwal (D3OB00134B/cit82/1) 2005; 44
Koser (D3OB00134B/cit35/1) 1980; 45
Elsherbini (D3OB00134B/cit17/1) 2021; 19
Aradi (D3OB00134B/cit46/1) 2016
Baralle (D3OB00134B/cit42/1) 2013; 19
Yang (D3OB00134B/cit58/1) 2018; 54
Peng (D3OB00134B/cit90/1) 2020; 22
Jiang (D3OB00134B/cit74/1) 2019; 21
Zhang (D3OB00134B/cit91/1) 2020; 59
Caspers (D3OB00134B/cit36/1) 2018; 13
Cheng (D3OB00134B/cit5/1) 2023; 365
Wang (D3OB00134B/cit8/1) 2019; 22
Li (D3OB00134B/cit92/1) 2020
Wang (D3OB00134B/cit71/1) 2017; 19
Antonkin (D3OB00134B/cit76/1) 2021; 86
Mascarelli (D3OB00134B/cit16/1) 1909; 38
Heaney (D3OB00134B/cit32/1) 1968; 24
Wang (D3OB00134B/cit63/1) 2020; 22
Zhdankin (D3OB00134B/cit51/1) 2014
Liu (D3OB00134B/cit55/1) 2017; 31
Chao (D3OB00134B/cit95/1) 2020; 22
Wirth (D3OB00134B/cit19/1) 2003
Abazid (D3OB00134B/cit44/1) 2020; 59
Zhu (D3OB00134B/cit57/1) 2014; 16
Yang (D3OB00134B/cit10/1) 2018; 20
Postnikov (D3OB00134B/cit49/1) 2015; 80
Varvoglis (D3OB00134B/cit14/1) 1992
Zhu (D3OB00134B/cit47/1) 2013; 355
Deprez (D3OB00134B/cit62/1) 2009; 131
Li (D3OB00134B/cit81/1) 2018; 140
Duan (D3OB00134B/cit98/1) 2021; 57
Collette (D3OB00134B/cit33/1) 1956; 78
Reinhard (D3OB00134B/cit3/1) 2021; 104
Ye (D3OB00134B/cit59/1) 2019; 21
Lee (D3OB00134B/cit11/1) 2019; 21
Hu (D3OB00134B/cit60/1) 2019; 21
Banks (D3OB00134B/cit12/1) 1966; 66
Varvoglis (D3OB00134B/cit18/1) 1997; 53
Kumar (D3OB00134B/cit29/1) 2015
Zhu (D3OB00134B/cit99/1) 2020; 22
Chatterjee (D3OB00134B/cit22/1) 2017; 359
References_xml – issn: 1992
  publication-title: Organic chemistry of polycoordinated iodine
  doi: Varvoglis
– issn: 1996
  publication-title: Hypervalent iodine in organic synthesis
  doi: Varvoglis
– issn: 2003
  end-page: 1-4
  publication-title: Hypervalent Iodine Chemistry
  doi: Wirth
– issn: 2014
  publication-title: Hypervalent Iodine Chemistry: Preparation, Structure, and Synthetic Applications of Polyvalent Iodine Compounds
  doi: Zhdankin
– issn: 1983
  end-page: 721
  publication-title: The Chemistry of Halides, Pseudo-halides, and Azides
– issn: 2015
  end-page: 243-261
  publication-title: Hypervalent Iodine Chemistry
  doi: Kumar Wirth
– issn: 2014
  publication-title: Iodine chemistry and applications
  doi: Kaiho
– issn: 2014
  publication-title: Preparation, Structure and Synthetic Applications of Polyvalent Iodine Compounds
  doi: Zhdankin
– volume: 44
  start-page: 5516
  year: 2005
  ident: D3OB00134B/cit82/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200501745
– volume-title: Preparation, Structure and Synthetic Applications of Polyvalent Iodine Compounds
  year: 2014
  ident: D3OB00134B/cit51/1
– volume: 9
  start-page: 9852
  year: 2019
  ident: D3OB00134B/cit86/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b03454
– volume: 24
  start-page: 3717
  year: 1968
  ident: D3OB00134B/cit32/1
  publication-title: Tetrahedron
  doi: 10.1016/S0040-4020(01)92003-4
– volume: 23
  start-page: 329
  year: 2021
  ident: D3OB00134B/cit105/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.0c03833
– volume: 82
  start-page: 5250
  year: 2017
  ident: D3OB00134B/cit80/1
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.7b00513
– volume: 53
  start-page: 1179
  year: 1997
  ident: D3OB00134B/cit18/1
  publication-title: Tetrahedron
  doi: 10.1016/S0040-4020(96)00970-2
– volume: 14
  start-page: 1813
  year: 2018
  ident: D3OB00134B/cit38/1
  publication-title: Beilstein J. Org. Chem.
  doi: 10.3762/bjoc.14.154
– volume: 21
  start-page: 6374
  year: 2019
  ident: D3OB00134B/cit89/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.9b02267
– volume-title: Iodine chemistry and applications
  year: 2014
  ident: D3OB00134B/cit20/1
  doi: 10.1002/9781118909911
– volume: 31
  start-page: e3810
  issue: 11
  year: 2017
  ident: D3OB00134B/cit70/1
  publication-title: Appl. Organomet. Chem.
  doi: 10.1002/aoc.3810
– volume: 19
  start-page: 4916
  year: 2017
  ident: D3OB00134B/cit71/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.7b02388
– volume-title: Hypervalent iodine in organic synthesis
  year: 1996
  ident: D3OB00134B/cit21/1
– volume: 119
  start-page: 8846
  year: 2019
  ident: D3OB00134B/cit6/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00033
– volume: 4
  start-page: 599
  year: 2018
  ident: D3OB00134B/cit87/1
  publication-title: Chem
  doi: 10.1016/j.chempr.2018.01.017
– volume: 14
  start-page: 4365
  year: 2019
  ident: D3OB00134B/cit85/1
  publication-title: Chem. – Asian J.
  doi: 10.1002/asia.201901284
– start-page: 1
  volume-title: Hypervalent Iodine Chemistry
  year: 2003
  ident: D3OB00134B/cit19/1
  doi: 10.1007/3-540-46114-0
– volume: 54
  start-page: 3239
  year: 2018
  ident: D3OB00134B/cit58/1
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC00300A
– start-page: 1110
  year: 2016
  ident: D3OB00134B/cit56/1
  publication-title: Eur. J. Org. Chem.
  doi: 10.1002/ejoc.201501544
– start-page: 2086
  year: 2009
  ident: D3OB00134B/cit101/1
  publication-title: Chem. Commun.
  doi: 10.1039/b823399c
– volume: 59
  start-page: 1479
  year: 2020
  ident: D3OB00134B/cit44/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201912023
– volume: 48
  start-page: 9052
  year: 2009
  ident: D3OB00134B/cit27/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200904689
– volume: 85
  start-page: 9161
  year: 2020
  ident: D3OB00134B/cit50/1
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.0c01125
– start-page: 721
  volume-title: The Chemistry of Halides, Pseudo-halides, and Azides
  year: 1983
  ident: D3OB00134B/cit13/1
– volume: 23
  start-page: 1972
  year: 2021
  ident: D3OB00134B/cit4/1
  publication-title: Green Chem.
  doi: 10.1039/D0GC04183A
– start-page: 1456
  year: 2016
  ident: D3OB00134B/cit46/1
  publication-title: Synlett
– volume: 21
  start-page: 8328
  year: 2019
  ident: D3OB00134B/cit74/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.9b03106
– volume: 360
  start-page: 3877
  year: 2018
  ident: D3OB00134B/cit88/1
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.201800637
– volume: 18
  start-page: 5756
  year: 2016
  ident: D3OB00134B/cit77/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.6b03078
– volume: 38
  start-page: 619
  year: 1909
  ident: D3OB00134B/cit16/1
  publication-title: Gazz. Chim. Ital.
– volume: 22
  start-page: 7419
  year: 2020
  ident: D3OB00134B/cit106/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.0c02353
– volume: 22
  start-page: 135
  year: 2019
  ident: D3OB00134B/cit8/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.9b04046
– volume: 23
  start-page: 13309
  year: 2017
  ident: D3OB00134B/cit102/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201703238
– volume: 10
  start-page: 4977
  year: 2004
  ident: D3OB00134B/cit40/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.200400358
– volume: 355
  start-page: 2172
  year: 2013
  ident: D3OB00134B/cit47/1
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.201300271
– volume: 362
  start-page: 2030
  year: 2020
  ident: D3OB00134B/cit75/1
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.201901460
– volume: 22
  start-page: 5789
  year: 2020
  ident: D3OB00134B/cit90/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.0c01829
– volume: 20
  start-page: 1491
  year: 2018
  ident: D3OB00134B/cit10/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.8b00071
– volume: 7
  start-page: 837
  year: 2018
  ident: D3OB00134B/cit39/1
  publication-title: Asian J. Org. Chem.
  doi: 10.1002/ajoc.201800058
– volume: 21
  start-page: 9869
  year: 2019
  ident: D3OB00134B/cit59/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.9b03775
– volume: 19
  start-page: 278
  year: 2017
  ident: D3OB00134B/cit45/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.6b03631
– start-page: 3941
  year: 2022
  ident: D3OB00134B/cit53/1
  publication-title: Synthesis
– volume: 359
  start-page: 1152
  year: 2017
  ident: D3OB00134B/cit54/1
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.201601260
– start-page: 243
  volume-title: Hypervalent Iodine Chemistry
  year: 2015
  ident: D3OB00134B/cit29/1
  doi: 10.1007/128_2015_639
– volume: 63
  start-page: 6141
  year: 1998
  ident: D3OB00134B/cit34/1
  publication-title: J. Org. Chem.
  doi: 10.1021/jo980113p
– volume: 13
  start-page: 4828
  year: 2015
  ident: D3OB00134B/cit24/1
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/C5OB00337G
– volume: 21
  start-page: 7004
  year: 2019
  ident: D3OB00134B/cit11/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.9b02583
– volume: 80
  start-page: 5783
  year: 2015
  ident: D3OB00134B/cit49/1
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.5b00741
– volume: 96
  start-page: 1123
  year: 1996
  ident: D3OB00134B/cit15/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr940424+
– volume: 9
  start-page: 5805
  year: 2018
  ident: D3OB00134B/cit43/1
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC01763H
– volume: 22
  start-page: 7622
  year: 2020
  ident: D3OB00134B/cit94/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.0c02830
– volume: 22
  start-page: 1709
  year: 2020
  ident: D3OB00134B/cit97/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.9b04555
– volume: 42
  start-page: 1051
  year: 2013
  ident: D3OB00134B/cit66/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C2CS35134J
– volume: 53
  start-page: 493
  year: 2009
  ident: D3OB00134B/cit31/1
  publication-title: Biol. Plant.
  doi: 10.1007/s10535-009-0090-3
– volume: 108
  start-page: 5299
  year: 2008
  ident: D3OB00134B/cit2/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr800332c
– volume: 86
  start-page: 7163
  year: 2021
  ident: D3OB00134B/cit76/1
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.1c00483
– volume: 57
  start-page: 3881
  year: 2021
  ident: D3OB00134B/cit98/1
  publication-title: Chem. Commun.
  doi: 10.1039/D1CC00171J
– volume: 20
  start-page: 5779
  year: 2018
  ident: D3OB00134B/cit96/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.8b02477
– volume: 19
  start-page: 2600
  year: 2017
  ident: D3OB00134B/cit79/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.7b00933
– volume: 22
  start-page: 9356
  year: 2020
  ident: D3OB00134B/cit99/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.0c03614
– volume: 22
  start-page: 505
  year: 2020
  ident: D3OB00134B/cit68/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.9b04269
– volume: 104
  start-page: e2000221
  issue: 2
  year: 2021
  ident: D3OB00134B/cit3/1
  publication-title: Helv. Chim. Acta
  doi: 10.1002/hlca.202000221
– volume: 31
  start-page: e3817
  issue: 12
  year: 2017
  ident: D3OB00134B/cit55/1
  publication-title: Appl. Organomet. Chem.
  doi: 10.1002/aoc.3817
– volume-title: Hypervalent Iodine Chemistry: Preparation, Structure, and Synthetic Applications of Polyvalent Iodine Compounds
  year: 2014
  ident: D3OB00134B/cit23/1
– volume: 44
  start-page: 3656
  year: 2005
  ident: D3OB00134B/cit25/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200500115
– volume: 16
  start-page: 5600
  year: 2014
  ident: D3OB00134B/cit48/1
  publication-title: Org. Lett.
  doi: 10.1021/ol502654a
– start-page: 2959
  year: 2011
  ident: D3OB00134B/cit104/1
  publication-title: Synthesis
– volume: 119
  start-page: 12033
  year: 2019
  ident: D3OB00134B/cit103/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00338
– volume: 13
  start-page: 884
  year: 2018
  ident: D3OB00134B/cit67/1
  publication-title: Chem. – Asian J.
  doi: 10.1002/asia.201800073
– start-page: 1077
  year: 2020
  ident: D3OB00134B/cit92/1
  publication-title: Synlett
– volume: 16
  start-page: 2350
  year: 2014
  ident: D3OB00134B/cit57/1
  publication-title: Org. Lett.
  doi: 10.1021/ol5006714
– volume: 140
  start-page: 9400
  year: 2018
  ident: D3OB00134B/cit81/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b05743
– volume: 29
  start-page: 315
  year: 2000
  ident: D3OB00134B/cit1/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/a909041j
– volume: 19
  start-page: 4706
  year: 2021
  ident: D3OB00134B/cit17/1
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/D1OB00457C
– volume: 9
  start-page: 4951
  year: 2019
  ident: D3OB00134B/cit83/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b00695
– volume: 59
  start-page: 19899
  year: 2020
  ident: D3OB00134B/cit91/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202008431
– volume: 78
  start-page: 3819
  year: 1956
  ident: D3OB00134B/cit33/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01596a070
– volume: 19
  start-page: 10809
  year: 2013
  ident: D3OB00134B/cit42/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201301449
– volume: 81
  start-page: 5120
  year: 2016
  ident: D3OB00134B/cit26/1
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.6b00671
– volume: 50
  start-page: 3784
  year: 2011
  ident: D3OB00134B/cit100/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201007640
– volume: 359
  start-page: 358
  year: 2017
  ident: D3OB00134B/cit22/1
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.201600780
– volume: 131
  start-page: 17050
  year: 2009
  ident: D3OB00134B/cit61/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja906935c
– volume: 56
  start-page: 5007
  year: 2017
  ident: D3OB00134B/cit9/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201700405
– volume: 20
  start-page: 216
  year: 2018
  ident: D3OB00134B/cit73/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.7b03564
– volume: 8
  start-page: 522
  year: 2021
  ident: D3OB00134B/cit69/1
  publication-title: Org. Chem. Front.
  doi: 10.1039/D0QO00942C
– volume: 23
  start-page: 6747
  year: 2013
  ident: D3OB00134B/cit78/1
  publication-title: Bioorg. Med. Chem. Lett.
  doi: 10.1016/j.bmcl.2013.10.027
– volume: 365
  start-page: 1112
  issue: 8
  year: 2023
  ident: D3OB00134B/cit5/1
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.202201326
– volume: 22
  start-page: 135
  year: 2020
  ident: D3OB00134B/cit63/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.9b04046
– volume: 21
  start-page: 3942
  year: 2019
  ident: D3OB00134B/cit84/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.9b01062
– volume-title: Organic chemistry of polycoordinated iodine
  year: 1992
  ident: D3OB00134B/cit14/1
– volume: 22
  start-page: 6441
  year: 2020
  ident: D3OB00134B/cit95/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.0c02256
– start-page: 3023
  year: 2017
  ident: D3OB00134B/cit30/1
  publication-title: Eur. J. Org. Chem.
  doi: 10.1002/ejoc.201601651
– volume: 45
  start-page: 1543
  year: 1980
  ident: D3OB00134B/cit35/1
  publication-title: J. Org. Chem.
  doi: 10.1021/jo01296a050
– volume: 354
  start-page: 986
  year: 2012
  ident: D3OB00134B/cit93/1
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.201100808
– volume: 21
  start-page: 7233
  year: 2019
  ident: D3OB00134B/cit60/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.9b02429
– volume: 112
  start-page: 1463
  year: 2012
  ident: D3OB00134B/cit7/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr200087r
– volume: 66
  start-page: 243
  year: 1966
  ident: D3OB00134B/cit12/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr60241a001
– volume: 116
  start-page: 3328
  year: 2016
  ident: D3OB00134B/cit28/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00547
– volume: 3
  start-page: 12923
  year: 2018
  ident: D3OB00134B/cit72/1
  publication-title: ACS Omega
  doi: 10.1021/acsomega.8b02345
– volume: 42
  start-page: 968
  year: 2013
  ident: D3OB00134B/cit64/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C2CS35154D
– volume: 7
  start-page: e202200134
  year: 2022
  ident: D3OB00134B/cit52/1
  publication-title: ChemistrySelect
  doi: 10.1002/slct.202200134
– volume: 131
  start-page: 11234
  year: 2009
  ident: D3OB00134B/cit62/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja904116k
– volume: 115
  start-page: 650
  year: 2015
  ident: D3OB00134B/cit37/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr500223h
– volume: 42
  start-page: 1007
  year: 2013
  ident: D3OB00134B/cit65/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C2CS35111K
– volume: 13
  start-page: 1231
  year: 2018
  ident: D3OB00134B/cit36/1
  publication-title: Chem. – Asian J.
  doi: 10.1002/asia.201800102
– start-page: 3759
  year: 2007
  ident: D3OB00134B/cit41/1
  publication-title: Synthesis
  doi: 10.1055/s-2007-990906
SSID ssj0019764
Score 2.4656897
SecondaryResourceType review_article
Snippet Owing to the recent renewed interest and groundbreaking advances in hypervalent chemistry, cyclic diaryliodonium salts have had a myriad of unique applications...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4358
SubjectTerms Bioactive compounds
Biocompatibility
Biological activity
Carbazoles
Chemical synthesis
Isomers
Optical activity
Optical isomers
Salts
Substrates
Thiophenes
Title Cyclic diaryliodonium salts: applications and overview
URI https://www.ncbi.nlm.nih.gov/pubmed/37161758
https://www.proquest.com/docview/2820911384
https://www.proquest.com/docview/2811938722
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLage4AXxG0sMFAQvKAqsNi5mbetDA1EAUEn7S3yLWrUkqI2fSi_nmM7djJtSMBL1Nq5yd-J_R2fG0IvYyllokQSgTpBowQ0lIhVMXxXmVAp5yTNmI5Gnn7Ozs6TjxfpRe-na6JLWv5a_Lo2ruR_UIU2wFVHyf4Dsv6m0AC_AV84AsJw_CuMJzuhc1QDxOvdsgYFs6m3P8YbtmyNo9vQOG2MBNpd05sCOkZqgzGFEQEdi-_K5Y6FKwXnN2FglZub-gDjb2yx0VvuvZvPfLWVc2Zt8t9Zu2M6E9KCbfxu8xQI_8JaOHjd-gu_1kt4vGGwU1Cp9X3r4U4EJs6I7ifPJM8j7Vdj15Zhm01Y5GZcHA8kq_tj508gb8VgLU6Ire9zZZ4_IjpNqiQrTfpIwvvVzPsY9p030R4GJQKP0N7x6ezDJ29lAipmvA7ce7v0tYS-6a--TFiuaCHASdauVozhJLO76E6nTITHVjLuoRuquY9uTRxwD1BmJSS8LCGhkZC34VA-QkAzdPLxEJ2_P51NzqKuUkYkCMnbiBJecAyEROJCqErQtMoKUskqgxZCVFpRRmScE84FxVWugKWrnFdCYlwJmNj30ahZNeoAhSmNKZdHMsUVTjLFmWRUglYhqE6CJViAXrnhKEWXRl5XM1mWxp2B0PId-XJihu4kQC_8uT9t8pRrzzp0o1p2H9emxMBMYR0mRRKg574bRk_bs1ijVlt9TgzqRwHIBuiRRcM_huRacU-LAO0DPL65h_XxnzqeoNu9cB-iUbveqqdAPFv-rJOf3_kfhDk
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cyclic+diaryliodonium+salts%3A+applications+and+overview&rft.jtitle=Organic+%26+biomolecular+chemistry&rft.au=Singhal%2C+Rakshanda&rft.au=Choudhary%2C+Satya+Prakash&rft.au=Malik%2C+Babita&rft.au=Pilania%2C+Meenakshi&rft.date=2023-05-31&rft.issn=1477-0520&rft.eissn=1477-0539&rft.volume=21&rft.issue=21&rft.spage=4358&rft.epage=4378&rft_id=info:doi/10.1039%2Fd3ob00134b&rft.externalDocID=d3ob00134b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-0520&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-0520&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-0520&client=summon