Branching pattern effect and co-assembly with lipids of amphiphilic Janus dendrimersomes

The influence of the branching patterns on the membrane properties of Janus dendrimers in water has been investigated by dissipative particle dynamics simulations. The hydrophobic fluorinated dendron (R F ) contains three types of branching patterns, including 3,4-, 3,5-, and 3,4,5-R F . Consistent...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 2; no. 43; pp. 2735 - 27313
Main Authors Yang, Yan-Ling, Sheng, Yu-Jane, Tsao, Heng-Kwong
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 07.11.2018
Subjects
Online AccessGet full text
ISSN1463-9076
1463-9084
1463-9084
DOI10.1039/c8cp05268a

Cover

Loading…
Abstract The influence of the branching patterns on the membrane properties of Janus dendrimers in water has been investigated by dissipative particle dynamics simulations. The hydrophobic fluorinated dendron (R F ) contains three types of branching patterns, including 3,4-, 3,5-, and 3,4,5-R F . Consistent with experimental results, the hydrophobic layer thickness ( H B ) follows the order: 3,5-R F < 3,4-R F < 3,4,5-R F , which can be explained by the extent of interdigitation (Δ h ): 3,5-R F > 3,4-R F > 3,4,5-R F . Moreover, the 3,4,5-R F membrane shows the highest stretching modulus ( K A ) and the lowest lateral diffusivity ( D ). The 3,5-R F membrane is similar to the 3,4-R F membrane but exhibits a higher K A and smaller D . For the nano-sized dendrimersome, its bilayer thickness is less than that of the planar membrane due to its larger extent of interdigitation. The co-assembly of dendrimersomes with lipids has been studied as well. The thickness and the extent of interdigitation of the lipid-rich domain for the hybrid membrane are significantly affected by the lipid concentration ( l ) and the branching patterns. As l increases, the thickness of the lipid-rich domain grows corresponding to the decrease of interdigitation of the lipid-rich domain. The influence of the branching patterns on the membrane properties of Janus dendrimers in water has been investigated by dissipative particle dynamics simulations.
AbstractList The influence of the branching patterns on the membrane properties of Janus dendrimers in water has been investigated by dissipative particle dynamics simulations. The hydrophobic fluorinated dendron (RF) contains three types of branching patterns, including 3,4-, 3,5-, and 3,4,5-RF. Consistent with experimental results, the hydrophobic layer thickness (HB) follows the order: 3,5-RF < 3,4-RF < 3,4,5-RF, which can be explained by the extent of interdigitation (Δh): 3,5-RF > 3,4-RF > 3,4,5-RF. Moreover, the 3,4,5-RF membrane shows the highest stretching modulus (KA) and the lowest lateral diffusivity (D). The 3,5-RF membrane is similar to the 3,4-RF membrane but exhibits a higher KA and smaller D. For the nano-sized dendrimersome, its bilayer thickness is less than that of the planar membrane due to its larger extent of interdigitation. The co-assembly of dendrimersomes with lipids has been studied as well. The thickness and the extent of interdigitation of the lipid-rich domain for the hybrid membrane are significantly affected by the lipid concentration (φl) and the branching patterns. As φl increases, the thickness of the lipid-rich domain grows corresponding to the decrease of interdigitation of the lipid-rich domain.
The influence of the branching patterns on the membrane properties of Janus dendrimers in water has been investigated by dissipative particle dynamics simulations. The hydrophobic fluorinated dendron (RF) contains three types of branching patterns, including 3,4-, 3,5-, and 3,4,5-RF. Consistent with experimental results, the hydrophobic layer thickness (HB) follows the order: 3,5-RF < 3,4-RF < 3,4,5-RF, which can be explained by the extent of interdigitation (Δh): 3,5-RF > 3,4-RF > 3,4,5-RF. Moreover, the 3,4,5-RF membrane shows the highest stretching modulus (KA) and the lowest lateral diffusivity (D). The 3,5-RF membrane is similar to the 3,4-RF membrane but exhibits a higher KA and smaller D. For the nano-sized dendrimersome, its bilayer thickness is less than that of the planar membrane due to its larger extent of interdigitation. The co-assembly of dendrimersomes with lipids has been studied as well. The thickness and the extent of interdigitation of the lipid-rich domain for the hybrid membrane are significantly affected by the lipid concentration (φl) and the branching patterns. As φl increases, the thickness of the lipid-rich domain grows corresponding to the decrease of interdigitation of the lipid-rich domain.The influence of the branching patterns on the membrane properties of Janus dendrimers in water has been investigated by dissipative particle dynamics simulations. The hydrophobic fluorinated dendron (RF) contains three types of branching patterns, including 3,4-, 3,5-, and 3,4,5-RF. Consistent with experimental results, the hydrophobic layer thickness (HB) follows the order: 3,5-RF < 3,4-RF < 3,4,5-RF, which can be explained by the extent of interdigitation (Δh): 3,5-RF > 3,4-RF > 3,4,5-RF. Moreover, the 3,4,5-RF membrane shows the highest stretching modulus (KA) and the lowest lateral diffusivity (D). The 3,5-RF membrane is similar to the 3,4-RF membrane but exhibits a higher KA and smaller D. For the nano-sized dendrimersome, its bilayer thickness is less than that of the planar membrane due to its larger extent of interdigitation. The co-assembly of dendrimersomes with lipids has been studied as well. The thickness and the extent of interdigitation of the lipid-rich domain for the hybrid membrane are significantly affected by the lipid concentration (φl) and the branching patterns. As φl increases, the thickness of the lipid-rich domain grows corresponding to the decrease of interdigitation of the lipid-rich domain.
The influence of the branching patterns on the membrane properties of Janus dendrimers in water has been investigated by dissipative particle dynamics simulations. The hydrophobic fluorinated dendron (R F ) contains three types of branching patterns, including 3,4-, 3,5-, and 3,4,5-R F . Consistent with experimental results, the hydrophobic layer thickness ( H B ) follows the order: 3,5-R F < 3,4-R F < 3,4,5-R F , which can be explained by the extent of interdigitation (Δ h ): 3,5-R F > 3,4-R F > 3,4,5-R F . Moreover, the 3,4,5-R F membrane shows the highest stretching modulus ( K A ) and the lowest lateral diffusivity ( D ). The 3,5-R F membrane is similar to the 3,4-R F membrane but exhibits a higher K A and smaller D . For the nano-sized dendrimersome, its bilayer thickness is less than that of the planar membrane due to its larger extent of interdigitation. The co-assembly of dendrimersomes with lipids has been studied as well. The thickness and the extent of interdigitation of the lipid-rich domain for the hybrid membrane are significantly affected by the lipid concentration ( ϕ l ) and the branching patterns. As ϕ l increases, the thickness of the lipid-rich domain grows corresponding to the decrease of interdigitation of the lipid-rich domain.
The influence of the branching patterns on the membrane properties of Janus dendrimers in water has been investigated by dissipative particle dynamics simulations. The hydrophobic fluorinated dendron (R F ) contains three types of branching patterns, including 3,4-, 3,5-, and 3,4,5-R F . Consistent with experimental results, the hydrophobic layer thickness ( H B ) follows the order: 3,5-R F < 3,4-R F < 3,4,5-R F , which can be explained by the extent of interdigitation (Δ h ): 3,5-R F > 3,4-R F > 3,4,5-R F . Moreover, the 3,4,5-R F membrane shows the highest stretching modulus ( K A ) and the lowest lateral diffusivity ( D ). The 3,5-R F membrane is similar to the 3,4-R F membrane but exhibits a higher K A and smaller D . For the nano-sized dendrimersome, its bilayer thickness is less than that of the planar membrane due to its larger extent of interdigitation. The co-assembly of dendrimersomes with lipids has been studied as well. The thickness and the extent of interdigitation of the lipid-rich domain for the hybrid membrane are significantly affected by the lipid concentration ( l ) and the branching patterns. As l increases, the thickness of the lipid-rich domain grows corresponding to the decrease of interdigitation of the lipid-rich domain. The influence of the branching patterns on the membrane properties of Janus dendrimers in water has been investigated by dissipative particle dynamics simulations.
Author Sheng, Yu-Jane
Tsao, Heng-Kwong
Yang, Yan-Ling
AuthorAffiliation Department of Chemical Engineering
Department of Chemical and Materials Engineering
National Taiwan University
National Central University
AuthorAffiliation_xml – sequence: 0
  name: National Central University
– sequence: 0
  name: Department of Chemical Engineering
– sequence: 0
  name: National Taiwan University
– sequence: 0
  name: Department of Chemical and Materials Engineering
Author_xml – sequence: 1
  givenname: Yan-Ling
  surname: Yang
  fullname: Yang, Yan-Ling
– sequence: 2
  givenname: Yu-Jane
  surname: Sheng
  fullname: Sheng, Yu-Jane
– sequence: 3
  givenname: Heng-Kwong
  surname: Tsao
  fullname: Tsao, Heng-Kwong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30357189$$D View this record in MEDLINE/PubMed
BookMark eNptkd9L5DAQx4N4qKu--K4EfBGhd0nTtMnjuvjrWDgfPLi3kqZTN9ImNUkR_3vjra4gwsDMwOc7zMx3hrats4DQESU_KWHylxZ6JDwvhdpCe7QoWSaJKLY3dVXuolkIj4QQyinbQbuMMF5RIffQvwuvrF4Z-4BHFSN4i6HrQEesbIu1y1QIMDT9C342cYV7M5o2YNdhNYwrk6I3Gv9Wdgq4Bdt6M4APboBwgH50qg9w-J730d-ry_vFTbb8c327mC8zzVgVM0ll3rKuEoqRhjS50EJwaApBmNIKaCMhLcqqFlLLadXIjhWF5CWViurU7KOz9dzRu6cJQqwHEzT0vbLgplDnNOe5TIoqoadf0Ec3eZu2SxQjecl5LhJ18k5NzQBtPaablH-pP36WgPM1oL0LwUO3QSip3wypF2Jx99-QeYLJF1ibqKJxNnpl-u8lx2uJD3oz-tNj9gpeIJYV
CitedBy_id crossref_primary_10_1016_j_molliq_2021_118396
crossref_primary_10_1021_acs_macromol_9b02621
crossref_primary_10_1016_j_colsurfb_2024_113807
crossref_primary_10_1016_j_jcis_2019_10_079
crossref_primary_10_1039_C9CP01635J
crossref_primary_10_1016_j_jcis_2019_02_071
crossref_primary_10_1016_j_jcis_2019_06_075
crossref_primary_10_3390_biom13091359
crossref_primary_10_3390_membranes11090655
crossref_primary_10_1039_D0CP04561F
crossref_primary_10_1021_acs_biomac_8b01405
crossref_primary_10_1039_D0RA03732J
crossref_primary_10_1021_acs_macromol_1c01030
crossref_primary_10_1039_D2SM01055K
Cites_doi 10.1073/pnas.1708380114
10.1529/biophysj.108.141630
10.1063/1.4947038
10.1021/acsnano.7b00753
10.1016/j.mvr.2006.02.006
10.1021/acs.langmuir.8b00275
10.1021/acscentsci.6b00284
10.1021/acssuschemeng.6b00171
10.1016/j.bpj.2009.06.054
10.1038/nmat1185
10.1021/la203755v
10.1063/1.470648
10.1063/1.4926938
10.1039/C6SM00741D
10.1063/1.3660209
10.1063/1.479313
10.1021/acs.biomac.6b01674
10.1126/science.1185547
10.1021/ja202906m
10.1021/jacs.6b08069
10.1021/acs.langmuir.6b03480
10.1063/1.1867374
10.1016/j.chemphyslip.2014.05.005
10.1039/C7CP08107C
10.1073/pnas.1525589113
10.1016/j.bpj.2011.03.010
10.1016/j.jconrel.2017.01.010
10.1021/acs.chemrev.7b00097
10.1063/1.474784
10.1063/1.2162885
10.1021/acs.jpcb.6b10192
10.1063/1.1498463
10.1038/s41467-018-03779-8
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2018
Copyright_xml – notice: Copyright Royal Society of Chemistry 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/c8cp05268a
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
CrossRef
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1463-9084
EndPage 27313
ExternalDocumentID 30357189
10_1039_C8CP05268A
c8cp05268a
Genre Journal Article
GroupedDBID ---
-DZ
-JG
-~X
0-7
0R~
123
29O
2WC
4.4
53G
705
70~
7~J
87K
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFVBQ
AGEGJ
AGKEF
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CS3
D0L
DU5
EBS
ECGLT
EE0
EF-
EJD
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3G
J3I
M4U
N9A
NHB
O9-
OK1
P2P
R7B
R7C
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UCJ
UHB
VH6
WH7
YNT
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
R56
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c337t-9192d3f78a30b0b28c885eb4803acae1b9e71837deaca517b9f34495619a1c9f3
ISSN 1463-9076
1463-9084
IngestDate Fri Jul 11 00:29:57 EDT 2025
Sun Jun 29 13:27:02 EDT 2025
Wed Feb 19 02:43:25 EST 2025
Tue Jul 01 01:55:28 EDT 2025
Thu Apr 24 22:52:21 EDT 2025
Tue Dec 17 21:00:27 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 43
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c337t-9192d3f78a30b0b28c885eb4803acae1b9e71837deaca517b9f34495619a1c9f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3031-8920
0000-0001-6415-8657
PMID 30357189
PQID 2130265528
PQPubID 2047499
PageCount 9
ParticipantIDs proquest_miscellaneous_2125294957
pubmed_primary_30357189
crossref_primary_10_1039_C8CP05268A
rsc_primary_c8cp05268a
proquest_journals_2130265528
crossref_citationtrail_10_1039_C8CP05268A
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20181107
PublicationDateYYYYMMDD 2018-11-07
PublicationDate_xml – month: 11
  year: 2018
  text: 20181107
  day: 7
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Physical chemistry chemical physics : PCCP
PublicationTitleAlternate Phys Chem Chem Phys
PublicationYear 2018
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Xiao (C8CP05268A-(cit5)/*[position()=1]) 2016; 113
Filippi (C8CP05268A-(cit12)/*[position()=1]) 2017; 248
Shigematsu (C8CP05268A-(cit35)/*[position()=1]) 2014; 183
Wu (C8CP05268A-(cit33)/*[position()=1]) 2016; 144
Percec (C8CP05268A-(cit1)/*[position()=1]) 2010; 328
Feller (C8CP05268A-(cit22)/*[position()=1]) 1995; 103
Sherman (C8CP05268A-(cit13)/*[position()=1]) 2017; 117
Guan (C8CP05268A-(cit15)/*[position()=1]) 2017; 18
Yang (C8CP05268A-(cit18)/*[position()=1]) 2018; 20
Brandt (C8CP05268A-(cit27)/*[position()=1]) 2011; 100
Xiao (C8CP05268A-(cit2)/*[position()=1]) 2016; 138
Xiao (C8CP05268A-(cit6)/*[position()=1]) 2016; 138
Jeong (C8CP05268A-(cit38)/*[position()=1]) 2006; 71
Fang (C8CP05268A-(cit28)/*[position()=1]) 1980
Liu (C8CP05268A-(cit9)/*[position()=1]) 2013; 135
Xiao (C8CP05268A-(cit11)/*[position()=1]) 2016; 2
Hartkamp (C8CP05268A-(cit30)/*[position()=1]) 2016; 120
Jakobsen (C8CP05268A-(cit21)/*[position()=1]) 2005; 122
Chacön (C8CP05268A-(cit26)/*[position()=1]) 2015; 143
Das (C8CP05268A-(cit29)/*[position()=1]) 2009; 97
Xiao (C8CP05268A-(cit7)/*[position()=1]) 2016; 114
Groot (C8CP05268A-(cit17)/*[position()=1]) 1997; 107
Chu (C8CP05268A-(cit37)/*[position()=1]) 2017; 11
Zhang (C8CP05268A-(cit3)/*[position()=1]) 2011; 133
Feller (C8CP05268A-(cit25)/*[position()=1]) 1999; 111
Pabst (C8CP05268A-(cit34)/*[position()=1]) 2008; 95
Zhang (C8CP05268A-(cit4)/*[position()=1]) 2017; 114
Özen (C8CP05268A-(cit24)/*[position()=1]) 2006; 124
Yu (C8CP05268A-(cit10)/*[position()=1]) 2017; 33
Zhang (C8CP05268A-(cit14)/*[position()=1]) 2018; 9
Lin (C8CP05268A-(cit36)/*[position()=1]) 2012; 28
Wilner (C8CP05268A-(cit8)/*[position()=1]) 2018; 34
Lísal (C8CP05268A-(cit23)/*[position()=1]) 2011; 135
Patinha (C8CP05268A-(cit16)/*[position()=1]) 2016; 4
Yang (C8CP05268A-(cit19)/*[position()=1]) 2016; 12
Shillcock (C8CP05268A-(cit20)/*[position()=1]) 2002; 117
Boal (C8CP05268A-(cit31)/*[position()=1]) 2002
Srinivas (C8CP05268A-(cit32)/*[position()=1]) 2004; 3
References_xml – issn: 2002
  publication-title: Mechanics of the Cell
  doi: Boal
– issn: 1980
  publication-title: Solid Physics
  doi: Fang Dong
– volume: 114
  start-page: 7045
  year: 2017
  ident: C8CP05268A-(cit4)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1708380114
– volume: 95
  start-page: 5779
  year: 2008
  ident: C8CP05268A-(cit34)/*[position()=1]
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.108.141630
– volume: 144
  start-page: 154904
  year: 2016
  ident: C8CP05268A-(cit33)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4947038
– volume: 11
  start-page: 6661
  year: 2017
  ident: C8CP05268A-(cit37)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b00753
– volume: 71
  start-page: 212
  year: 2006
  ident: C8CP05268A-(cit38)/*[position()=1]
  publication-title: Microvasc. Res.
  doi: 10.1016/j.mvr.2006.02.006
– volume: 34
  start-page: 5527
  year: 2018
  ident: C8CP05268A-(cit8)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.8b00275
– volume-title: Solid Physics
  year: 1980
  ident: C8CP05268A-(cit28)/*[position()=1]
– volume: 114
  start-page: E7045
  year: 2016
  ident: C8CP05268A-(cit7)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1708380114
– volume: 2
  start-page: 943
  year: 2016
  ident: C8CP05268A-(cit11)/*[position()=1]
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.6b00284
– volume: 4
  start-page: 2670
  year: 2016
  ident: C8CP05268A-(cit16)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.6b00171
– volume-title: Mechanics of the Cell
  year: 2002
  ident: C8CP05268A-(cit31)/*[position()=1]
– volume: 97
  start-page: 1941
  year: 2009
  ident: C8CP05268A-(cit29)/*[position()=1]
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2009.06.054
– volume: 3
  start-page: 638
  year: 2004
  ident: C8CP05268A-(cit32)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1185
– volume: 28
  start-page: 689
  year: 2012
  ident: C8CP05268A-(cit36)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la203755v
– volume: 103
  start-page: 4613
  year: 1995
  ident: C8CP05268A-(cit22)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.470648
– volume: 143
  start-page: 034706
  year: 2015
  ident: C8CP05268A-(cit26)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4926938
– volume: 12
  start-page: 6442
  year: 2016
  ident: C8CP05268A-(cit19)/*[position()=1]
  publication-title: Soft Matter
  doi: 10.1039/C6SM00741D
– volume: 135
  start-page: 204105
  year: 2011
  ident: C8CP05268A-(cit23)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3660209
– volume: 111
  start-page: 1281
  year: 1999
  ident: C8CP05268A-(cit25)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.479313
– volume: 18
  start-page: 797
  year: 2017
  ident: C8CP05268A-(cit15)/*[position()=1]
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.6b01674
– volume: 328
  start-page: 1009
  year: 2010
  ident: C8CP05268A-(cit1)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1185547
– volume: 133
  start-page: 10712
  year: 2011
  ident: C8CP05268A-(cit3)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja202906m
– volume: 135
  start-page: 12655
  year: 2013
  ident: C8CP05268A-(cit9)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
– volume: 138
  start-page: 12655
  year: 2016
  ident: C8CP05268A-(cit2)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b08069
– volume: 33
  start-page: 388
  year: 2017
  ident: C8CP05268A-(cit10)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.6b03480
– volume: 122
  start-page: 124901
  year: 2005
  ident: C8CP05268A-(cit21)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1867374
– volume: 183
  start-page: 43
  year: 2014
  ident: C8CP05268A-(cit35)/*[position()=1]
  publication-title: Chem. Phys. Lipids
  doi: 10.1016/j.chemphyslip.2014.05.005
– volume: 138
  start-page: 12655
  year: 2016
  ident: C8CP05268A-(cit6)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b08069
– volume: 20
  start-page: 6582
  year: 2018
  ident: C8CP05268A-(cit18)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C7CP08107C
– volume: 113
  start-page: E1134
  year: 2016
  ident: C8CP05268A-(cit5)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1525589113
– volume: 100
  start-page: 2104
  year: 2011
  ident: C8CP05268A-(cit27)/*[position()=1]
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2011.03.010
– volume: 248
  start-page: 45
  year: 2017
  ident: C8CP05268A-(cit12)/*[position()=1]
  publication-title: J. Controlled Release
  doi: 10.1016/j.jconrel.2017.01.010
– volume: 117
  start-page: 6538
  year: 2017
  ident: C8CP05268A-(cit13)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00097
– volume: 107
  start-page: 4423
  year: 1997
  ident: C8CP05268A-(cit17)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.474784
– volume: 124
  start-page: 064905
  year: 2006
  ident: C8CP05268A-(cit24)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2162885
– volume: 120
  start-page: 12863
  year: 2016
  ident: C8CP05268A-(cit30)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.6b10192
– volume: 117
  start-page: 5048
  year: 2002
  ident: C8CP05268A-(cit20)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1498463
– volume: 9
  start-page: 1377
  year: 2018
  ident: C8CP05268A-(cit14)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03779-8
SSID ssj0001513
Score 2.3491585
Snippet The influence of the branching patterns on the membrane properties of Janus dendrimers in water has been investigated by dissipative particle dynamics...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2735
SubjectTerms Assembly
Dendrimers
Dendrimers - chemistry
Fluorination
Hydrophobic and Hydrophilic Interactions
Lipid Bilayers - chemistry
Lipids
Lipids - chemistry
Molecular Dynamics Simulation
Nanoparticles
Thickness
Water - chemistry
Title Branching pattern effect and co-assembly with lipids of amphiphilic Janus dendrimersomes
URI https://www.ncbi.nlm.nih.gov/pubmed/30357189
https://www.proquest.com/docview/2130265528
https://www.proquest.com/docview/2125294957
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZge4AXxK9BYCAjeEFTIInj2n4s0dAYA_Whk8pTZDsOqlSSaG2F4K_nHDtuxoYEvKSNnTSNvy9354vvDqFXEyF5Wqc0Vllt4rxK4ZECoRgbzZmxVVGotvHOnz5PTs7z0wVd_BZdslFv9M9r40r-B1VoA1xtlOw_IBt-FBrgO-ALW0AYtn-F8TtbFaN3IXV9mszGL8_wwWoxGMbmm1r9cN7W1bJbVv3KDQkQLjvrStFHp7LZro9A-lQ20T-Y30NIiLdYZwOQeigN577ZJucWWfduhVlRhFCxL94JDZ_x2aAbXR5I37GN4bqBU_O1bJ0ObL7GH7-3_gzvjABgrYOVjeRnPiEANvPZrcdtrhLcIHSzEbdyMpagzKUv8doYdl2s6hVRnxCbKVVz3fUpa0YKLSwz3HXeRPsZzCNAcu9Pj-cfzoKyBoOHuAA097-HDLZEvN2dfdlmuTIRAbPkYigX05sl87vojp9P4Kkjxz10wzT30a1iwOoBWgSSYE8S7EiCgSR4RBJsSYIdSXBb4xFJcE8SfJkkD9H5--N5cRL7chqxJoRtQK2JrCI145IkKlEZ15xTo3KeEKmlSZUwYKgQVoEuljRlStQkt_PnVMhUw84B2mvaxjxG2MZD62qSwCkSrBsiKDzuLKkVp2DvJjJCr4cBK7XPNW9LnqzKfs0DEWXBi1k_uNMIvQzHdi7DyrVHHQ7jXvoncF1m9q37hNKMR-hF6IbxtS-9gMXt1h6T0UzAbbAIPXJ4hcuA-UbhlkWEDgDA0LwD_smfOp6i2zv6H6K9zcXWPAPrdKOee4b9AhULkCw
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Branching+pattern+effect+and+co-assembly+with+lipids+of+amphiphilic+Janus+dendrimersomes&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Yang%2C+Yan-Ling&rft.au=Sheng%2C+Yu-Jane&rft.au=Tsao%2C+Heng-Kwong&rft.date=2018-11-07&rft.issn=1463-9076&rft.eissn=1463-9084&rft.volume=2&rft.issue=43&rft.spage=2735&rft.epage=27313&rft_id=info:doi/10.1039%2Fc8cp05268a&rft.externalDocID=c8cp05268a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon