Branching pattern effect and co-assembly with lipids of amphiphilic Janus dendrimersomes
The influence of the branching patterns on the membrane properties of Janus dendrimers in water has been investigated by dissipative particle dynamics simulations. The hydrophobic fluorinated dendron (R F ) contains three types of branching patterns, including 3,4-, 3,5-, and 3,4,5-R F . Consistent...
Saved in:
Published in | Physical chemistry chemical physics : PCCP Vol. 2; no. 43; pp. 2735 - 27313 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
07.11.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1463-9076 1463-9084 1463-9084 |
DOI | 10.1039/c8cp05268a |
Cover
Loading…
Abstract | The influence of the branching patterns on the membrane properties of Janus dendrimers in water has been investigated by dissipative particle dynamics simulations. The hydrophobic fluorinated dendron (R
F
) contains three types of branching patterns, including 3,4-, 3,5-, and 3,4,5-R
F
. Consistent with experimental results, the hydrophobic layer thickness (
H
B
) follows the order: 3,5-R
F
< 3,4-R
F
< 3,4,5-R
F
, which can be explained by the extent of interdigitation (Δ
h
): 3,5-R
F
> 3,4-R
F
> 3,4,5-R
F
. Moreover, the 3,4,5-R
F
membrane shows the highest stretching modulus (
K
A
) and the lowest lateral diffusivity (
D
). The 3,5-R
F
membrane is similar to the 3,4-R
F
membrane but exhibits a higher
K
A
and smaller
D
. For the nano-sized dendrimersome, its bilayer thickness is less than that of the planar membrane due to its larger extent of interdigitation. The co-assembly of dendrimersomes with lipids has been studied as well. The thickness and the extent of interdigitation of the lipid-rich domain for the hybrid membrane are significantly affected by the lipid concentration (
l
) and the branching patterns. As
l
increases, the thickness of the lipid-rich domain grows corresponding to the decrease of interdigitation of the lipid-rich domain.
The influence of the branching patterns on the membrane properties of Janus dendrimers in water has been investigated by dissipative particle dynamics simulations. |
---|---|
AbstractList | The influence of the branching patterns on the membrane properties of Janus dendrimers in water has been investigated by dissipative particle dynamics simulations. The hydrophobic fluorinated dendron (RF) contains three types of branching patterns, including 3,4-, 3,5-, and 3,4,5-RF. Consistent with experimental results, the hydrophobic layer thickness (HB) follows the order: 3,5-RF < 3,4-RF < 3,4,5-RF, which can be explained by the extent of interdigitation (Δh): 3,5-RF > 3,4-RF > 3,4,5-RF. Moreover, the 3,4,5-RF membrane shows the highest stretching modulus (KA) and the lowest lateral diffusivity (D). The 3,5-RF membrane is similar to the 3,4-RF membrane but exhibits a higher KA and smaller D. For the nano-sized dendrimersome, its bilayer thickness is less than that of the planar membrane due to its larger extent of interdigitation. The co-assembly of dendrimersomes with lipids has been studied as well. The thickness and the extent of interdigitation of the lipid-rich domain for the hybrid membrane are significantly affected by the lipid concentration (φl) and the branching patterns. As φl increases, the thickness of the lipid-rich domain grows corresponding to the decrease of interdigitation of the lipid-rich domain. The influence of the branching patterns on the membrane properties of Janus dendrimers in water has been investigated by dissipative particle dynamics simulations. The hydrophobic fluorinated dendron (RF) contains three types of branching patterns, including 3,4-, 3,5-, and 3,4,5-RF. Consistent with experimental results, the hydrophobic layer thickness (HB) follows the order: 3,5-RF < 3,4-RF < 3,4,5-RF, which can be explained by the extent of interdigitation (Δh): 3,5-RF > 3,4-RF > 3,4,5-RF. Moreover, the 3,4,5-RF membrane shows the highest stretching modulus (KA) and the lowest lateral diffusivity (D). The 3,5-RF membrane is similar to the 3,4-RF membrane but exhibits a higher KA and smaller D. For the nano-sized dendrimersome, its bilayer thickness is less than that of the planar membrane due to its larger extent of interdigitation. The co-assembly of dendrimersomes with lipids has been studied as well. The thickness and the extent of interdigitation of the lipid-rich domain for the hybrid membrane are significantly affected by the lipid concentration (φl) and the branching patterns. As φl increases, the thickness of the lipid-rich domain grows corresponding to the decrease of interdigitation of the lipid-rich domain.The influence of the branching patterns on the membrane properties of Janus dendrimers in water has been investigated by dissipative particle dynamics simulations. The hydrophobic fluorinated dendron (RF) contains three types of branching patterns, including 3,4-, 3,5-, and 3,4,5-RF. Consistent with experimental results, the hydrophobic layer thickness (HB) follows the order: 3,5-RF < 3,4-RF < 3,4,5-RF, which can be explained by the extent of interdigitation (Δh): 3,5-RF > 3,4-RF > 3,4,5-RF. Moreover, the 3,4,5-RF membrane shows the highest stretching modulus (KA) and the lowest lateral diffusivity (D). The 3,5-RF membrane is similar to the 3,4-RF membrane but exhibits a higher KA and smaller D. For the nano-sized dendrimersome, its bilayer thickness is less than that of the planar membrane due to its larger extent of interdigitation. The co-assembly of dendrimersomes with lipids has been studied as well. The thickness and the extent of interdigitation of the lipid-rich domain for the hybrid membrane are significantly affected by the lipid concentration (φl) and the branching patterns. As φl increases, the thickness of the lipid-rich domain grows corresponding to the decrease of interdigitation of the lipid-rich domain. The influence of the branching patterns on the membrane properties of Janus dendrimers in water has been investigated by dissipative particle dynamics simulations. The hydrophobic fluorinated dendron (R F ) contains three types of branching patterns, including 3,4-, 3,5-, and 3,4,5-R F . Consistent with experimental results, the hydrophobic layer thickness ( H B ) follows the order: 3,5-R F < 3,4-R F < 3,4,5-R F , which can be explained by the extent of interdigitation (Δ h ): 3,5-R F > 3,4-R F > 3,4,5-R F . Moreover, the 3,4,5-R F membrane shows the highest stretching modulus ( K A ) and the lowest lateral diffusivity ( D ). The 3,5-R F membrane is similar to the 3,4-R F membrane but exhibits a higher K A and smaller D . For the nano-sized dendrimersome, its bilayer thickness is less than that of the planar membrane due to its larger extent of interdigitation. The co-assembly of dendrimersomes with lipids has been studied as well. The thickness and the extent of interdigitation of the lipid-rich domain for the hybrid membrane are significantly affected by the lipid concentration ( ϕ l ) and the branching patterns. As ϕ l increases, the thickness of the lipid-rich domain grows corresponding to the decrease of interdigitation of the lipid-rich domain. The influence of the branching patterns on the membrane properties of Janus dendrimers in water has been investigated by dissipative particle dynamics simulations. The hydrophobic fluorinated dendron (R F ) contains three types of branching patterns, including 3,4-, 3,5-, and 3,4,5-R F . Consistent with experimental results, the hydrophobic layer thickness ( H B ) follows the order: 3,5-R F < 3,4-R F < 3,4,5-R F , which can be explained by the extent of interdigitation (Δ h ): 3,5-R F > 3,4-R F > 3,4,5-R F . Moreover, the 3,4,5-R F membrane shows the highest stretching modulus ( K A ) and the lowest lateral diffusivity ( D ). The 3,5-R F membrane is similar to the 3,4-R F membrane but exhibits a higher K A and smaller D . For the nano-sized dendrimersome, its bilayer thickness is less than that of the planar membrane due to its larger extent of interdigitation. The co-assembly of dendrimersomes with lipids has been studied as well. The thickness and the extent of interdigitation of the lipid-rich domain for the hybrid membrane are significantly affected by the lipid concentration ( l ) and the branching patterns. As l increases, the thickness of the lipid-rich domain grows corresponding to the decrease of interdigitation of the lipid-rich domain. The influence of the branching patterns on the membrane properties of Janus dendrimers in water has been investigated by dissipative particle dynamics simulations. |
Author | Sheng, Yu-Jane Tsao, Heng-Kwong Yang, Yan-Ling |
AuthorAffiliation | Department of Chemical Engineering Department of Chemical and Materials Engineering National Taiwan University National Central University |
AuthorAffiliation_xml | – sequence: 0 name: National Central University – sequence: 0 name: Department of Chemical Engineering – sequence: 0 name: National Taiwan University – sequence: 0 name: Department of Chemical and Materials Engineering |
Author_xml | – sequence: 1 givenname: Yan-Ling surname: Yang fullname: Yang, Yan-Ling – sequence: 2 givenname: Yu-Jane surname: Sheng fullname: Sheng, Yu-Jane – sequence: 3 givenname: Heng-Kwong surname: Tsao fullname: Tsao, Heng-Kwong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30357189$$D View this record in MEDLINE/PubMed |
BookMark | eNptkd9L5DAQx4N4qKu--K4EfBGhd0nTtMnjuvjrWDgfPLi3kqZTN9ImNUkR_3vjra4gwsDMwOc7zMx3hrats4DQESU_KWHylxZ6JDwvhdpCe7QoWSaJKLY3dVXuolkIj4QQyinbQbuMMF5RIffQvwuvrF4Z-4BHFSN4i6HrQEesbIu1y1QIMDT9C342cYV7M5o2YNdhNYwrk6I3Gv9Wdgq4Bdt6M4APboBwgH50qg9w-J730d-ry_vFTbb8c327mC8zzVgVM0ll3rKuEoqRhjS50EJwaApBmNIKaCMhLcqqFlLLadXIjhWF5CWViurU7KOz9dzRu6cJQqwHEzT0vbLgplDnNOe5TIoqoadf0Ec3eZu2SxQjecl5LhJ18k5NzQBtPaablH-pP36WgPM1oL0LwUO3QSip3wypF2Jx99-QeYLJF1ibqKJxNnpl-u8lx2uJD3oz-tNj9gpeIJYV |
CitedBy_id | crossref_primary_10_1016_j_molliq_2021_118396 crossref_primary_10_1021_acs_macromol_9b02621 crossref_primary_10_1016_j_colsurfb_2024_113807 crossref_primary_10_1016_j_jcis_2019_10_079 crossref_primary_10_1039_C9CP01635J crossref_primary_10_1016_j_jcis_2019_02_071 crossref_primary_10_1016_j_jcis_2019_06_075 crossref_primary_10_3390_biom13091359 crossref_primary_10_3390_membranes11090655 crossref_primary_10_1039_D0CP04561F crossref_primary_10_1021_acs_biomac_8b01405 crossref_primary_10_1039_D0RA03732J crossref_primary_10_1021_acs_macromol_1c01030 crossref_primary_10_1039_D2SM01055K |
Cites_doi | 10.1073/pnas.1708380114 10.1529/biophysj.108.141630 10.1063/1.4947038 10.1021/acsnano.7b00753 10.1016/j.mvr.2006.02.006 10.1021/acs.langmuir.8b00275 10.1021/acscentsci.6b00284 10.1021/acssuschemeng.6b00171 10.1016/j.bpj.2009.06.054 10.1038/nmat1185 10.1021/la203755v 10.1063/1.470648 10.1063/1.4926938 10.1039/C6SM00741D 10.1063/1.3660209 10.1063/1.479313 10.1021/acs.biomac.6b01674 10.1126/science.1185547 10.1021/ja202906m 10.1021/jacs.6b08069 10.1021/acs.langmuir.6b03480 10.1063/1.1867374 10.1016/j.chemphyslip.2014.05.005 10.1039/C7CP08107C 10.1073/pnas.1525589113 10.1016/j.bpj.2011.03.010 10.1016/j.jconrel.2017.01.010 10.1021/acs.chemrev.7b00097 10.1063/1.474784 10.1063/1.2162885 10.1021/acs.jpcb.6b10192 10.1063/1.1498463 10.1038/s41467-018-03779-8 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2018 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2018 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1039/c8cp05268a |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1463-9084 |
EndPage | 27313 |
ExternalDocumentID | 30357189 10_1039_C8CP05268A c8cp05268a |
Genre | Journal Article |
GroupedDBID | --- -DZ -JG -~X 0-7 0R~ 123 29O 2WC 4.4 53G 705 70~ 7~J 87K AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFVBQ AGEGJ AGKEF AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CS3 D0L DU5 EBS ECGLT EE0 EF- EJD F5P GGIMP GNO H13 HZ~ H~N IDZ J3G J3I M4U N9A NHB O9- OK1 P2P R7B R7C RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UCJ UHB VH6 WH7 YNT AAYXX AFRZK AKMSF ALUYA CITATION R56 CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c337t-9192d3f78a30b0b28c885eb4803acae1b9e71837deaca517b9f34495619a1c9f3 |
ISSN | 1463-9076 1463-9084 |
IngestDate | Fri Jul 11 00:29:57 EDT 2025 Sun Jun 29 13:27:02 EDT 2025 Wed Feb 19 02:43:25 EST 2025 Tue Jul 01 01:55:28 EDT 2025 Thu Apr 24 22:52:21 EDT 2025 Tue Dec 17 21:00:27 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 43 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c337t-9192d3f78a30b0b28c885eb4803acae1b9e71837deaca517b9f34495619a1c9f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3031-8920 0000-0001-6415-8657 |
PMID | 30357189 |
PQID | 2130265528 |
PQPubID | 2047499 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2125294957 pubmed_primary_30357189 crossref_primary_10_1039_C8CP05268A rsc_primary_c8cp05268a proquest_journals_2130265528 crossref_citationtrail_10_1039_C8CP05268A |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20181107 |
PublicationDateYYYYMMDD | 2018-11-07 |
PublicationDate_xml | – month: 11 year: 2018 text: 20181107 day: 7 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Physical chemistry chemical physics : PCCP |
PublicationTitleAlternate | Phys Chem Chem Phys |
PublicationYear | 2018 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Xiao (C8CP05268A-(cit5)/*[position()=1]) 2016; 113 Filippi (C8CP05268A-(cit12)/*[position()=1]) 2017; 248 Shigematsu (C8CP05268A-(cit35)/*[position()=1]) 2014; 183 Wu (C8CP05268A-(cit33)/*[position()=1]) 2016; 144 Percec (C8CP05268A-(cit1)/*[position()=1]) 2010; 328 Feller (C8CP05268A-(cit22)/*[position()=1]) 1995; 103 Sherman (C8CP05268A-(cit13)/*[position()=1]) 2017; 117 Guan (C8CP05268A-(cit15)/*[position()=1]) 2017; 18 Yang (C8CP05268A-(cit18)/*[position()=1]) 2018; 20 Brandt (C8CP05268A-(cit27)/*[position()=1]) 2011; 100 Xiao (C8CP05268A-(cit2)/*[position()=1]) 2016; 138 Xiao (C8CP05268A-(cit6)/*[position()=1]) 2016; 138 Jeong (C8CP05268A-(cit38)/*[position()=1]) 2006; 71 Fang (C8CP05268A-(cit28)/*[position()=1]) 1980 Liu (C8CP05268A-(cit9)/*[position()=1]) 2013; 135 Xiao (C8CP05268A-(cit11)/*[position()=1]) 2016; 2 Hartkamp (C8CP05268A-(cit30)/*[position()=1]) 2016; 120 Jakobsen (C8CP05268A-(cit21)/*[position()=1]) 2005; 122 Chacön (C8CP05268A-(cit26)/*[position()=1]) 2015; 143 Das (C8CP05268A-(cit29)/*[position()=1]) 2009; 97 Xiao (C8CP05268A-(cit7)/*[position()=1]) 2016; 114 Groot (C8CP05268A-(cit17)/*[position()=1]) 1997; 107 Chu (C8CP05268A-(cit37)/*[position()=1]) 2017; 11 Zhang (C8CP05268A-(cit3)/*[position()=1]) 2011; 133 Feller (C8CP05268A-(cit25)/*[position()=1]) 1999; 111 Pabst (C8CP05268A-(cit34)/*[position()=1]) 2008; 95 Zhang (C8CP05268A-(cit4)/*[position()=1]) 2017; 114 Özen (C8CP05268A-(cit24)/*[position()=1]) 2006; 124 Yu (C8CP05268A-(cit10)/*[position()=1]) 2017; 33 Zhang (C8CP05268A-(cit14)/*[position()=1]) 2018; 9 Lin (C8CP05268A-(cit36)/*[position()=1]) 2012; 28 Wilner (C8CP05268A-(cit8)/*[position()=1]) 2018; 34 Lísal (C8CP05268A-(cit23)/*[position()=1]) 2011; 135 Patinha (C8CP05268A-(cit16)/*[position()=1]) 2016; 4 Yang (C8CP05268A-(cit19)/*[position()=1]) 2016; 12 Shillcock (C8CP05268A-(cit20)/*[position()=1]) 2002; 117 Boal (C8CP05268A-(cit31)/*[position()=1]) 2002 Srinivas (C8CP05268A-(cit32)/*[position()=1]) 2004; 3 |
References_xml | – issn: 2002 publication-title: Mechanics of the Cell doi: Boal – issn: 1980 publication-title: Solid Physics doi: Fang Dong – volume: 114 start-page: 7045 year: 2017 ident: C8CP05268A-(cit4)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1708380114 – volume: 95 start-page: 5779 year: 2008 ident: C8CP05268A-(cit34)/*[position()=1] publication-title: Biophys. J. doi: 10.1529/biophysj.108.141630 – volume: 144 start-page: 154904 year: 2016 ident: C8CP05268A-(cit33)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.4947038 – volume: 11 start-page: 6661 year: 2017 ident: C8CP05268A-(cit37)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.7b00753 – volume: 71 start-page: 212 year: 2006 ident: C8CP05268A-(cit38)/*[position()=1] publication-title: Microvasc. Res. doi: 10.1016/j.mvr.2006.02.006 – volume: 34 start-page: 5527 year: 2018 ident: C8CP05268A-(cit8)/*[position()=1] publication-title: Langmuir doi: 10.1021/acs.langmuir.8b00275 – volume-title: Solid Physics year: 1980 ident: C8CP05268A-(cit28)/*[position()=1] – volume: 114 start-page: E7045 year: 2016 ident: C8CP05268A-(cit7)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1708380114 – volume: 2 start-page: 943 year: 2016 ident: C8CP05268A-(cit11)/*[position()=1] publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.6b00284 – volume: 4 start-page: 2670 year: 2016 ident: C8CP05268A-(cit16)/*[position()=1] publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.6b00171 – volume-title: Mechanics of the Cell year: 2002 ident: C8CP05268A-(cit31)/*[position()=1] – volume: 97 start-page: 1941 year: 2009 ident: C8CP05268A-(cit29)/*[position()=1] publication-title: Biophys. J. doi: 10.1016/j.bpj.2009.06.054 – volume: 3 start-page: 638 year: 2004 ident: C8CP05268A-(cit32)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat1185 – volume: 28 start-page: 689 year: 2012 ident: C8CP05268A-(cit36)/*[position()=1] publication-title: Langmuir doi: 10.1021/la203755v – volume: 103 start-page: 4613 year: 1995 ident: C8CP05268A-(cit22)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.470648 – volume: 143 start-page: 034706 year: 2015 ident: C8CP05268A-(cit26)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.4926938 – volume: 12 start-page: 6442 year: 2016 ident: C8CP05268A-(cit19)/*[position()=1] publication-title: Soft Matter doi: 10.1039/C6SM00741D – volume: 135 start-page: 204105 year: 2011 ident: C8CP05268A-(cit23)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.3660209 – volume: 111 start-page: 1281 year: 1999 ident: C8CP05268A-(cit25)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.479313 – volume: 18 start-page: 797 year: 2017 ident: C8CP05268A-(cit15)/*[position()=1] publication-title: Biomacromolecules doi: 10.1021/acs.biomac.6b01674 – volume: 328 start-page: 1009 year: 2010 ident: C8CP05268A-(cit1)/*[position()=1] publication-title: Science doi: 10.1126/science.1185547 – volume: 133 start-page: 10712 year: 2011 ident: C8CP05268A-(cit3)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja202906m – volume: 135 start-page: 12655 year: 2013 ident: C8CP05268A-(cit9)/*[position()=1] publication-title: J. Am. Chem. Soc. – volume: 138 start-page: 12655 year: 2016 ident: C8CP05268A-(cit2)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b08069 – volume: 33 start-page: 388 year: 2017 ident: C8CP05268A-(cit10)/*[position()=1] publication-title: Langmuir doi: 10.1021/acs.langmuir.6b03480 – volume: 122 start-page: 124901 year: 2005 ident: C8CP05268A-(cit21)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1867374 – volume: 183 start-page: 43 year: 2014 ident: C8CP05268A-(cit35)/*[position()=1] publication-title: Chem. Phys. Lipids doi: 10.1016/j.chemphyslip.2014.05.005 – volume: 138 start-page: 12655 year: 2016 ident: C8CP05268A-(cit6)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b08069 – volume: 20 start-page: 6582 year: 2018 ident: C8CP05268A-(cit18)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP08107C – volume: 113 start-page: E1134 year: 2016 ident: C8CP05268A-(cit5)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1525589113 – volume: 100 start-page: 2104 year: 2011 ident: C8CP05268A-(cit27)/*[position()=1] publication-title: Biophys. J. doi: 10.1016/j.bpj.2011.03.010 – volume: 248 start-page: 45 year: 2017 ident: C8CP05268A-(cit12)/*[position()=1] publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2017.01.010 – volume: 117 start-page: 6538 year: 2017 ident: C8CP05268A-(cit13)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00097 – volume: 107 start-page: 4423 year: 1997 ident: C8CP05268A-(cit17)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.474784 – volume: 124 start-page: 064905 year: 2006 ident: C8CP05268A-(cit24)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.2162885 – volume: 120 start-page: 12863 year: 2016 ident: C8CP05268A-(cit30)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.6b10192 – volume: 117 start-page: 5048 year: 2002 ident: C8CP05268A-(cit20)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1498463 – volume: 9 start-page: 1377 year: 2018 ident: C8CP05268A-(cit14)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-018-03779-8 |
SSID | ssj0001513 |
Score | 2.3491585 |
Snippet | The influence of the branching patterns on the membrane properties of Janus dendrimers in water has been investigated by dissipative particle dynamics... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2735 |
SubjectTerms | Assembly Dendrimers Dendrimers - chemistry Fluorination Hydrophobic and Hydrophilic Interactions Lipid Bilayers - chemistry Lipids Lipids - chemistry Molecular Dynamics Simulation Nanoparticles Thickness Water - chemistry |
Title | Branching pattern effect and co-assembly with lipids of amphiphilic Janus dendrimersomes |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30357189 https://www.proquest.com/docview/2130265528 https://www.proquest.com/docview/2125294957 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZge4AXxK9BYCAjeEFTIInj2n4s0dAYA_Whk8pTZDsOqlSSaG2F4K_nHDtuxoYEvKSNnTSNvy9354vvDqFXEyF5Wqc0Vllt4rxK4ZECoRgbzZmxVVGotvHOnz5PTs7z0wVd_BZdslFv9M9r40r-B1VoA1xtlOw_IBt-FBrgO-ALW0AYtn-F8TtbFaN3IXV9mszGL8_wwWoxGMbmm1r9cN7W1bJbVv3KDQkQLjvrStFHp7LZro9A-lQ20T-Y30NIiLdYZwOQeigN577ZJucWWfduhVlRhFCxL94JDZ_x2aAbXR5I37GN4bqBU_O1bJ0ObL7GH7-3_gzvjABgrYOVjeRnPiEANvPZrcdtrhLcIHSzEbdyMpagzKUv8doYdl2s6hVRnxCbKVVz3fUpa0YKLSwz3HXeRPsZzCNAcu9Pj-cfzoKyBoOHuAA097-HDLZEvN2dfdlmuTIRAbPkYigX05sl87vojp9P4Kkjxz10wzT30a1iwOoBWgSSYE8S7EiCgSR4RBJsSYIdSXBb4xFJcE8SfJkkD9H5--N5cRL7chqxJoRtQK2JrCI145IkKlEZ15xTo3KeEKmlSZUwYKgQVoEuljRlStQkt_PnVMhUw84B2mvaxjxG2MZD62qSwCkSrBsiKDzuLKkVp2DvJjJCr4cBK7XPNW9LnqzKfs0DEWXBi1k_uNMIvQzHdi7DyrVHHQ7jXvoncF1m9q37hNKMR-hF6IbxtS-9gMXt1h6T0UzAbbAIPXJ4hcuA-UbhlkWEDgDA0LwD_smfOp6i2zv6H6K9zcXWPAPrdKOee4b9AhULkCw |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Branching+pattern+effect+and+co-assembly+with+lipids+of+amphiphilic+Janus+dendrimersomes&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Yang%2C+Yan-Ling&rft.au=Sheng%2C+Yu-Jane&rft.au=Tsao%2C+Heng-Kwong&rft.date=2018-11-07&rft.issn=1463-9076&rft.eissn=1463-9084&rft.volume=2&rft.issue=43&rft.spage=2735&rft.epage=27313&rft_id=info:doi/10.1039%2Fc8cp05268a&rft.externalDocID=c8cp05268a |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon |