One-step synthesis of amorphous NiCoP nanoparticles by electrodeposition as highly efficient electrocatalyst for hydrogen evolution reaction in alkaline solution
•NiCoP/CC with high catalytic performance was successfully synthesized via a one-step method.•The electrodeposition and phosphating reactions were carried out simultaneously.•Amorphous phosphates were constructed to obtain more active sites for exposure.•The synergistic effect between Ni and Co bime...
Saved in:
Published in | Journal of alloys and compounds Vol. 896; p. 163103 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
10.03.2022
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •NiCoP/CC with high catalytic performance was successfully synthesized via a one-step method.•The electrodeposition and phosphating reactions were carried out simultaneously.•Amorphous phosphates were constructed to obtain more active sites for exposure.•The synergistic effect between Ni and Co bimetals leads to high catalytic activity.
Exploring a simple, low-cost preparation method to synthesize excellent catalyst for hydrogen evolution reaction (HER) in alkaline solution is highly meaningful for large-scale electrolysis of water for hydrogen production. Herein, a one-step electrodeposition method with simultaneous electrodeposition and phosphation was proposed to synthesize the three-dimensional NiCoP/carbon cloth (NiCoP/CC) nanoparticles at room temperature on the conductive carbon cloth (CC). The results showed that the NiCoP nanoparticles covered by nanowires had an amorphous structure. The NiCoP/CC electrode exhibited a good catalytic activity in 1.0 M KOH solution. It required only 74, 101, 149 mV overpotential for HER in basic solution to obtain current densities of − 10, − 20, − 50 mA cm−2, respectively, with a corresponding Tafel slope of 89.5 mV dec−1. Furthermore, after 24 h constant voltage test, the current density of NiCoP/CC only showed 2% decay, indicating a good stability. The obtained excellent catalytic activity can be attributed to the amorphous structure, the synergetic effect of Ni and Co, the charge transfer among Ni/Co and P, and nanoparticles in situ grown on carbon cloth. The simple one-step electrodeposition method shows a very promising potential for the preparation of bimetallic phosphides. |
---|---|
AbstractList | •NiCoP/CC with high catalytic performance was successfully synthesized via a one-step method.•The electrodeposition and phosphating reactions were carried out simultaneously.•Amorphous phosphates were constructed to obtain more active sites for exposure.•The synergistic effect between Ni and Co bimetals leads to high catalytic activity.
Exploring a simple, low-cost preparation method to synthesize excellent catalyst for hydrogen evolution reaction (HER) in alkaline solution is highly meaningful for large-scale electrolysis of water for hydrogen production. Herein, a one-step electrodeposition method with simultaneous electrodeposition and phosphation was proposed to synthesize the three-dimensional NiCoP/carbon cloth (NiCoP/CC) nanoparticles at room temperature on the conductive carbon cloth (CC). The results showed that the NiCoP nanoparticles covered by nanowires had an amorphous structure. The NiCoP/CC electrode exhibited a good catalytic activity in 1.0 M KOH solution. It required only 74, 101, 149 mV overpotential for HER in basic solution to obtain current densities of − 10, − 20, − 50 mA cm−2, respectively, with a corresponding Tafel slope of 89.5 mV dec−1. Furthermore, after 24 h constant voltage test, the current density of NiCoP/CC only showed 2% decay, indicating a good stability. The obtained excellent catalytic activity can be attributed to the amorphous structure, the synergetic effect of Ni and Co, the charge transfer among Ni/Co and P, and nanoparticles in situ grown on carbon cloth. The simple one-step electrodeposition method shows a very promising potential for the preparation of bimetallic phosphides. Exploring a simple, low-cost preparation method to synthesize excellent catalyst for hydrogen evolution reaction (HER) in alkaline solution is highly meaningful for large-scale electrolysis of water for hydrogen production. Herein, a one-step electrodeposition method with simultaneous electrodeposition and phosphation was proposed to synthesize the three-dimensional NiCoP/carbon cloth (NiCoP/CC) nanoparticles at room temperature on the conductive carbon cloth (CC). The results showed that the NiCoP nanoparticles covered by nanowires had an amorphous structure. The NiCoP/CC electrode exhibited a good catalytic activity in 1.0 M KOH solution. It required only 74, 101, 149 mV overpotential for HER in basic solution to obtain current densities of − 10, − 20, − 50 mA cm−2, respectively, with a corresponding Tafel slope of 89.5 mV dec−1. Furthermore, after 24 h constant voltage test, the current density of NiCoP/CC only showed 2% decay, indicating a good stability. The obtained excellent catalytic activity can be attributed to the amorphous structure, the synergetic effect of Ni and Co, the charge transfer among Ni/Co and P, and nanoparticles in situ grown on carbon cloth. The simple one-step electrodeposition method shows a very promising potential for the preparation of bimetallic phosphides. |
ArticleNumber | 163103 |
Author | Yang, Yakun Cao, Yanpeng Chen, Zhichao Wang, Kaichen Xu, Chao Wang, Zhiming Yin, Likun Ye, Feng |
Author_xml | – sequence: 1 givenname: Yanpeng surname: Cao fullname: Cao, Yanpeng organization: School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China – sequence: 2 givenname: Zhichao surname: Chen fullname: Chen, Zhichao organization: Institute of Science and Technology, China Three Gorges Corporation, Beijing 100038, China – sequence: 3 givenname: Feng surname: Ye fullname: Ye, Feng email: fye@ncepu.edu.cn organization: School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China – sequence: 4 givenname: Yakun surname: Yang fullname: Yang, Yakun organization: School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China – sequence: 5 givenname: Kaichen surname: Wang fullname: Wang, Kaichen organization: School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China – sequence: 6 givenname: Zhiming surname: Wang fullname: Wang, Zhiming organization: School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China – sequence: 7 givenname: Likun surname: Yin fullname: Yin, Likun organization: Institute of Science and Technology, China Three Gorges Corporation, Beijing 100038, China – sequence: 8 givenname: Chao surname: Xu fullname: Xu, Chao email: mechxu@ncepu.edu.cn organization: School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China |
BookMark | eNqFkc1q3DAUhUVJoZOfRygIuvZUsmyNhy5KGfoHocmiWQtZvorlanRdSRPw4_RNq8lMN91kdQX3fEeXcy7JRcAAhLzlbM0Zl--n9aS9N7hf16zmay4FZ-IVWfFuI6pGyu0FWbFt3Vad6Lo35DKliTHGt4KvyJ-7AFXKMNO0hDxCcomipXqPcR7xkOgPt8N7GnTAWcfsjIdE-4WCB5MjDjBjctlhoDrR0T2OvuysdcZByP9URmftl5SpxUjHZYj4CIHCE_rDMxpBm-eHKzb-l_YuAE3n7TV5bbVPcHOeV-Thy-efu2_V7d3X77tPt5URYpOrLWdt01jRd1BSABgGkLIxACCboamlECUW2day63swvWxZD4O1ZWxM3fNWXJF3J9854u8DpKwmPMRQvlSF3kgp6pYX1YeTykRMKYJVxmV9vDNH7bziTB07UZM6d6KOnahTJ4Vu_6Pn6PY6Li9yH08clACeHESVjgEbGFwsCasB3QsOfwG0KbDJ |
CitedBy_id | crossref_primary_10_1016_j_jece_2024_112891 crossref_primary_10_1016_j_jssc_2022_123554 crossref_primary_10_1016_j_est_2022_106379 crossref_primary_10_1016_j_jece_2025_115544 crossref_primary_10_1016_j_fuel_2023_129087 crossref_primary_10_1016_j_ijhydene_2023_05_214 crossref_primary_10_1016_j_jallcom_2022_167678 crossref_primary_10_1021_acsaem_2c03286 crossref_primary_10_1016_j_jallcom_2022_165932 crossref_primary_10_1016_j_coelec_2024_101507 crossref_primary_10_1016_j_jpowsour_2024_235132 crossref_primary_10_1039_D4DT01118J crossref_primary_10_1016_j_electacta_2024_144676 crossref_primary_10_1016_j_jallcom_2022_167035 crossref_primary_10_1016_j_colsurfa_2024_133195 crossref_primary_10_1021_acs_langmuir_3c00268 crossref_primary_10_1002_asia_202401295 crossref_primary_10_1016_j_jallcom_2022_167031 crossref_primary_10_1016_j_fuel_2024_131605 crossref_primary_10_1021_acs_inorgchem_4c03089 crossref_primary_10_1016_j_ijhydene_2023_01_341 crossref_primary_10_3866_PKU_WHXB202306029 crossref_primary_10_1016_j_ijhydene_2024_09_346 crossref_primary_10_3390_ma16041529 crossref_primary_10_1016_j_mcat_2023_113670 crossref_primary_10_1149_1945_7111_ad2054 crossref_primary_10_1016_j_fuel_2023_130174 crossref_primary_10_1021_acsaem_4c01497 crossref_primary_10_1021_acs_chemrev_3c00459 crossref_primary_10_1016_j_jallcom_2022_163866 crossref_primary_10_1016_j_jallcom_2022_167229 crossref_primary_10_1007_s11244_022_01706_2 crossref_primary_10_1021_acssuschemeng_2c06444 crossref_primary_10_1021_acsanm_3c01221 crossref_primary_10_1016_j_jallcom_2024_173974 crossref_primary_10_1016_j_jcis_2024_09_058 crossref_primary_10_1016_j_seppur_2023_124155 crossref_primary_10_1016_j_ijhydene_2025_01_218 crossref_primary_10_1016_j_ijhydene_2022_08_087 crossref_primary_10_1016_j_jelechem_2022_116993 crossref_primary_10_1016_S1003_6326_23_66380_0 crossref_primary_10_1016_j_jallcom_2022_164848 crossref_primary_10_1016_j_jallcom_2025_178445 crossref_primary_10_1021_acsanm_4c06916 |
Cites_doi | 10.1002/smll.201905779 10.1016/j.ijepes.2017.03.004 10.1039/C7TA01716B 10.1016/j.apcatb.2021.120754 10.1016/j.ijhydene.2019.07.139 10.1016/j.jallcom.2021.160816 10.1186/s40580-021-00254-x 10.1126/science.aad4998 10.1016/j.ijhydene.2018.03.003 10.1016/j.nanoen.2018.08.025 10.1016/j.ijhydene.2020.06.249 10.1039/C8TA07197G 10.1016/j.jpowsour.2020.228165 10.1039/C8NR07472K 10.1002/sia.1309 10.1039/C4CS00448E 10.1016/j.electacta.2019.01.001 10.1016/j.jpowsour.2016.08.126 10.1007/s12274-020-2819-4 10.1039/C8NA00261D 10.1021/acssuschemeng.9b06929 10.1016/j.jallcom.2018.06.008 10.1016/j.electacta.2020.136114 10.1016/j.ijhydene.2020.05.021 10.1016/j.jallcom.2021.160749 10.1021/jacs.5b07924 10.1016/j.electacta.2017.08.047 10.1007/s12274-016-1112-z 10.1002/er.6204 10.1021/acs.inorgchem.6b02808 10.1016/j.electacta.2019.05.150 10.1039/C9DT04755G 10.1016/j.jechem.2020.03.046 10.1016/j.electacta.2019.134595 10.1002/smll.201905201 10.1039/C6NR07009D 10.1039/C8TA03163K 10.1002/anie.201909939 10.1021/acsami.6b07226 10.1021/acs.nanolett.6b03332 10.1039/C7TA03947F 10.1039/C7CC08340H 10.1021/acs.accounts.8b00002 10.1039/C6TA11188B 10.1021/acssuschemeng.8b02343 10.1016/j.apcatb.2016.03.032 10.1016/j.apsusc.2018.09.204 10.1016/j.apsusc.2019.07.156 10.1016/j.apcatb.2019.117953 10.1016/j.apsusc.2019.07.231 10.1002/adfm.201601420 10.1002/anie.201911617 10.1002/adfm.201807031 10.1007/s41918-018-0014-z |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. Copyright Elsevier BV Mar 10, 2022 |
Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright Elsevier BV Mar 10, 2022 |
DBID | AAYXX CITATION 8BQ 8FD JG9 |
DOI | 10.1016/j.jallcom.2021.163103 |
DatabaseName | CrossRef METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Physics |
EISSN | 1873-4669 |
ExternalDocumentID | 10_1016_j_jallcom_2021_163103 S0925838821045138 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNCT ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SPD SSM SSZ T5K TWZ XPP ZMT ~G- 29J AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SEW SMS SSH T9H WUQ 8BQ 8FD AFXIZ EFKBS JG9 |
ID | FETCH-LOGICAL-c337t-910544f3b8e202eedde664ceee64d4263363165268bbecb650bedff50b7c2b153 |
IEDL.DBID | .~1 |
ISSN | 0925-8388 |
IngestDate | Mon Jul 14 07:31:51 EDT 2025 Thu Apr 24 23:10:49 EDT 2025 Tue Jul 01 03:33:56 EDT 2025 Fri Feb 23 02:41:33 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Water electrolysis Alkaline solution NiCoP nanoparticles HER One-step electrodeposition |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c337t-910544f3b8e202eedde664ceee64d4263363165268bbecb650bedff50b7c2b153 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2637663251 |
PQPubID | 2045454 |
ParticipantIDs | proquest_journals_2637663251 crossref_citationtrail_10_1016_j_jallcom_2021_163103 crossref_primary_10_1016_j_jallcom_2021_163103 elsevier_sciencedirect_doi_10_1016_j_jallcom_2021_163103 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-10 |
PublicationDateYYYYMMDD | 2022-03-10 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Journal of alloys and compounds |
PublicationYear | 2022 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Zhang, Wang, Yu, Wen, Hu (bib23) 2016; 29 Kang, Guo, Wu, Sun, Zhang, Liao, Zhang, Si, Wu, Wang (bib14) 2019; 29 Wen, Shan, Liu, Mu, Jiang (bib30) 2020; 59 Ao, Dong, Fan, Wang, Cai, Li, Huang, Wei (bib57) 2018; 6 Li, Xu, Zhou, Li, Qiu, Jiang, Yuan (bib35) 2019; 299 Zhou, Zhou, Huang, Fan, Ju, Mi, Shen (bib36) 2018; 6 Wu, Dang, He, Li, Qu, Gao, Tan (bib15) 2019; 494 Cai, Li, Zhang, Zhang, Liu (bib9) 2021; 882 You, Sun (bib8) 2018; 51 Yi, He, Yin, Chen, Li, Yin (bib29) 2020; 49 Wu, Zhang, Wei, Feng, Yan, Tang (bib58) 2020; 13 Jiao, Hassan, Bo, Zhao (bib20) 2018; 764 Li, Wei, Zhu, Xi, Pan, Ji, Zatovsky, Han (bib48) 2017 Chen, Wei, Wei, Zhai, Liu, Gu, Yang, Zuo, Zhang, Gong (bib7) 2022; 301 Liang, Li, Han, Ye, Liu, Feng, Huang, Liu, Peng (bib4) 2021; 883 Peng, Pi, Zhang, Li, Huo, Chu (bib3) 2021; 883 Yu, Xu, Luo, Abbo, Yin (bib33) 2019; 317 Wen, Yang, Zhao, Ma, Liu (bib39) 2019; 258 Atuchin, Kesler, Meng, Lin (bib46) 2012; 24 Wang, Tong, Wang, Tao, Wang (bib55) 2016; 8 Seh, Kibsgaard, Dickens, Chorkendorff, Norskov, Jaramillo (bib11) 2017; 355 Sazali (bib1) 2020; 45 Wang, Ma, Qu, Asiri, Sun (bib26) 2017; 56 Zhang, Tan, Wang, Cao, Dong (bib27) 2020; 4 Yu, Mishra, Xie, Zhou, Sun, Zhou, Ni, Luo, Yu, Yu, Chen, Ren (bib18) 2018; 53 Yu, Duan, Yu, Hu, Gao (bib31) 2019; 58 Li, Zhang, Jiang, Kuang, Sun, Duan (bib42) 2016; 9 Wang, Wang, Zhu, Bao, Xiao, Su, Li, Wang (bib13) 2015; 137 Liu, He, Wang, Gao, Zhou, Li, Zhang, Yang, He, Jia, Dong, Liu (bib54) 2019; 44 Zou, Sun, Zhao, Li, Zhang (bib49) 2020; 345 Xu, Zhang, Ye, Liu, Cen, Yuan (bib16) 2019; 494 Yin, Zhu, Li, Zhang, Zhang, Chen (bib50) 2016; 8 Liu, Liu, Lv, Chen, Zhou, Wang, Zheng, Che, Chen (bib40) 2017; 53 Xu, Liang, Tang, Hong, Xie, Qi, Xu, Wang (bib19) 2019; 1 Ashraf, Li, Pham, Zhang (bib59) 2020; 45 Li, Gao, Wang, Xiong, Huang, Song, Bao, Liu (bib41) 2016; 330 Wang, Lu, Zhong (bib6) 2021; 8 Zhang, Chen, Wang, Yang, Jiang, Zhang, Duan, Daniel, Li, Sun (bib51) 2017; 5 Tang, Gan, Zhang, Lu, Jiang, Asiri, Sun, Wang, Chen (bib21) 2016; 16 Wang, She, Mu, Shi (bib32) 2020; 8 Atuchin, Kesler, Maklakova, Pokrovsky, Semenenko (bib45) 2010; 34 Gong, Xu, Pan, Lin, Yang, Wang (bib47) 2018; 6 Liu, Yang, Liu, Yang (bib38) 2020; 461 Wang, Liu, Cao, Ye, Xu, Du (bib10) 2020; 45 Li, Yan, Zhou, Huang, Xia, Chang, Ma, Qu (bib22) 2016; 26 Du, Jannatun, Yu, Ren, Huang, Lu (bib53) 2018; 10 Gupta, Patel, Fernandes, Kadrekar, Dashora, Yadav, Bhattacharyya, Jha, Miotello, Kothari (bib56) 2016; 192 Zotov, Razinkin, Atuchin (bib2) 2017; 91 Darband, Aliofkhazraei, Rouhaghdam, Kiani (bib12) 2018; 465 Anantharaj, Noda (bib28) 2020; 16 Wang, Chen, Xu, Liao, Chen, Rao, Kuang, Su (bib24) 2017; 5 Guo, Song, Zhang, Yan, Zhan, Yang, Zhao (bib25) 2017; 5 Khan, Zhao, Zou, Chen, Cao, Fang, Xu, Zhang, Zhang (bib5) 2018; 1 Zou, Zhang (bib52) 2015; 44 Ming, Liang, Shi, Mei, Xu, Wang (bib17) 2017; 250 Yao, Hu, Sun, Wang, Hu, Komarneni (bib43) 2019; 15 Yang, Lv, Huang, Zhang (bib44) 2018; 43 Zhang, Li, Zhou, Zheng, Xie, Lam, Lin (bib34) 2019; 323 Chen, Song, Liu, Xu, Qin, Lei, Tang (bib37) 2020; 50 Wang (10.1016/j.jallcom.2021.163103_bib13) 2015; 137 Gupta (10.1016/j.jallcom.2021.163103_bib56) 2016; 192 Xu (10.1016/j.jallcom.2021.163103_bib16) 2019; 494 Li (10.1016/j.jallcom.2021.163103_bib22) 2016; 26 Ashraf (10.1016/j.jallcom.2021.163103_bib59) 2020; 45 Khan (10.1016/j.jallcom.2021.163103_bib5) 2018; 1 Atuchin (10.1016/j.jallcom.2021.163103_bib45) 2010; 34 Zotov (10.1016/j.jallcom.2021.163103_bib2) 2017; 91 Seh (10.1016/j.jallcom.2021.163103_bib11) 2017; 355 Wang (10.1016/j.jallcom.2021.163103_bib10) 2020; 45 Darband (10.1016/j.jallcom.2021.163103_bib12) 2018; 465 Yi (10.1016/j.jallcom.2021.163103_bib29) 2020; 49 Cai (10.1016/j.jallcom.2021.163103_bib9) 2021; 882 Tang (10.1016/j.jallcom.2021.163103_bib21) 2016; 16 Wu (10.1016/j.jallcom.2021.163103_bib15) 2019; 494 Liu (10.1016/j.jallcom.2021.163103_bib38) 2020; 461 Anantharaj (10.1016/j.jallcom.2021.163103_bib28) 2020; 16 Wang (10.1016/j.jallcom.2021.163103_bib55) 2016; 8 Yang (10.1016/j.jallcom.2021.163103_bib44) 2018; 43 Zou (10.1016/j.jallcom.2021.163103_bib52) 2015; 44 Peng (10.1016/j.jallcom.2021.163103_bib3) 2021; 883 Kang (10.1016/j.jallcom.2021.163103_bib14) 2019; 29 Wu (10.1016/j.jallcom.2021.163103_bib58) 2020; 13 Wang (10.1016/j.jallcom.2021.163103_bib24) 2017; 5 Wen (10.1016/j.jallcom.2021.163103_bib39) 2019; 258 Ming (10.1016/j.jallcom.2021.163103_bib17) 2017; 250 Li (10.1016/j.jallcom.2021.163103_bib48) 2017 Yu (10.1016/j.jallcom.2021.163103_bib31) 2019; 58 Chen (10.1016/j.jallcom.2021.163103_bib37) 2020; 50 Yao (10.1016/j.jallcom.2021.163103_bib43) 2019; 15 Du (10.1016/j.jallcom.2021.163103_bib53) 2018; 10 Gong (10.1016/j.jallcom.2021.163103_bib47) 2018; 6 Chen (10.1016/j.jallcom.2021.163103_bib7) 2022; 301 You (10.1016/j.jallcom.2021.163103_bib8) 2018; 51 Li (10.1016/j.jallcom.2021.163103_bib35) 2019; 299 Li (10.1016/j.jallcom.2021.163103_bib42) 2016; 9 Liu (10.1016/j.jallcom.2021.163103_bib40) 2017; 53 Li (10.1016/j.jallcom.2021.163103_bib41) 2016; 330 Ao (10.1016/j.jallcom.2021.163103_bib57) 2018; 6 Wang (10.1016/j.jallcom.2021.163103_bib6) 2021; 8 Zhang (10.1016/j.jallcom.2021.163103_bib23) 2016; 29 Wang (10.1016/j.jallcom.2021.163103_bib26) 2017; 56 Zhou (10.1016/j.jallcom.2021.163103_bib36) 2018; 6 Zhang (10.1016/j.jallcom.2021.163103_bib34) 2019; 323 Zou (10.1016/j.jallcom.2021.163103_bib49) 2020; 345 Yu (10.1016/j.jallcom.2021.163103_bib18) 2018; 53 Yu (10.1016/j.jallcom.2021.163103_bib33) 2019; 317 Xu (10.1016/j.jallcom.2021.163103_bib19) 2019; 1 Zhang (10.1016/j.jallcom.2021.163103_bib51) 2017; 5 Atuchin (10.1016/j.jallcom.2021.163103_bib46) 2012; 24 Liang (10.1016/j.jallcom.2021.163103_bib4) 2021; 883 Sazali (10.1016/j.jallcom.2021.163103_bib1) 2020; 45 Yin (10.1016/j.jallcom.2021.163103_bib50) 2016; 8 Wang (10.1016/j.jallcom.2021.163103_bib32) 2020; 8 Guo (10.1016/j.jallcom.2021.163103_bib25) 2017; 5 Zhang (10.1016/j.jallcom.2021.163103_bib27) 2020; 4 Liu (10.1016/j.jallcom.2021.163103_bib54) 2019; 44 Jiao (10.1016/j.jallcom.2021.163103_bib20) 2018; 764 Wen (10.1016/j.jallcom.2021.163103_bib30) 2020; 59 |
References_xml | – volume: 44 start-page: 24140 year: 2019 end-page: 24150 ident: bib54 article-title: Facile one-step fabrication of bimetallic Co-Ni-P hollow nanospheres anchored on reduced graphene oxide as highly efficient electrocatalyst for hydrogen evolution reaction publication-title: Int. J. Hydrog. Energy – volume: 10 start-page: 23070 year: 2018 end-page: 23079 ident: bib53 article-title: C publication-title: Nanoscale – volume: 355 start-page: 1 year: 2017 end-page: 14 ident: bib11 article-title: Combining theory and experiment in electrocatalysis: insights into materials design publication-title: Science – volume: 301 year: 2022 ident: bib7 article-title: Synergistic effect in ultrafine PtNiP nanowires for highly efficient electrochemical hydrogen evolution in alkaline electrolyte publication-title: Appl. Catal. B: Environ. – volume: 29 year: 2019 ident: bib14 article-title: Engineering an earth-abundant element-based bifunctional electrocatalyst for highly efficient and durable overall water splitting publication-title: Adv. Funct. Mater. – volume: 8 start-page: 34270 year: 2016 end-page: 34279 ident: bib55 article-title: Surface roughening of nickel cobalt phosphide nanowire arrays/ni foam for enhanced hydrogen evolution activity publication-title: ACS Appl. Mater. Interfaces – volume: 44 start-page: 5148 year: 2015 end-page: 5180 ident: bib52 article-title: Noble metal-free hydrogen evolution catalysts for water splitting publication-title: Chem. Soc. Rev. – volume: 58 start-page: 15772 year: 2019 end-page: 15777 ident: bib31 article-title: Scaled‐up synthesis of amorphous NiFeMo oxides and their rapid surface reconstruction for superior oxygen evolution catalysis publication-title: Angew. Chem. Int. Ed. – volume: 13 start-page: 2130 year: 2020 end-page: 2135 ident: bib58 article-title: Facile synthesis of Co and Ce dual-doped Ni publication-title: Nano Res. – volume: 8 start-page: 19129 year: 2016 end-page: 19138 ident: bib50 article-title: Hierarchical nickel–cobalt phosphide yolk–shell spheres as highly active and stable bifunctional electrocatalysts for overall water splitting publication-title: Nanoscale – volume: 461 year: 2020 ident: bib38 article-title: Nickel foam supported cobalt phosphate electrocatalyst for alkaline oxygen evolution reaction publication-title: J. Power Sources – start-page: 14828 year: 2017 end-page: 14837 ident: bib48 article-title: Hierarchical NiCoP nanocone arrays supported on Ni foam as an efficient and stable bifunctional electrocatalyst for overall water splitting publication-title: J. Mater. Chem. A – volume: 345 year: 2020 ident: bib49 article-title: Surface reconstruction of NiCoP pre-catalysts for bifunctional water splitting in alkaline electrolyte publication-title: Electrochim. Acta – volume: 50 start-page: 395 year: 2020 end-page: 401 ident: bib37 article-title: NiCoP nanoleaves array for electrocatalytic alkaline H publication-title: J. Energy Chem. – volume: 137 start-page: 15753 year: 2015 end-page: 15759 ident: bib13 article-title: Molybdenum-carbide-modified nitrogen-doped carbon vesicle encapsulating nickel nanoparticles: a highly efficient, low-cost catalyst for hydrogen evolution reaction publication-title: J. Am. Chem. Soc. – volume: 43 start-page: 7872 year: 2018 end-page: 7880 ident: bib44 article-title: Amorphous film of ternary Ni-Co-P alloy on Ni foam for efficient hydrogen evolution by electroless deposition publication-title: Int. J. Hydrog. Energy – volume: 45 start-page: 5841 year: 2020 end-page: 5851 ident: bib10 article-title: Characterization and electrocatalytic properties of electrospun Pt-IrO publication-title: Int. J. Energy Res. – volume: 1 start-page: 177 year: 2019 end-page: 183 ident: bib19 article-title: Accelerating the water splitting kinetics of CoP microcubes anchored on a graphene electrocatalyst by Mn incorporation publication-title: Nanoscale Adv. – volume: 5 start-page: 7564 year: 2017 end-page: 7570 ident: bib51 article-title: Gas-templating of hierarchically structured Ni–Co–P for efficient electrocatalytic hydrogen evolution publication-title: J. Mater. Chem. A – volume: 882 year: 2021 ident: bib9 article-title: Hierarchical Cu@Co-decorated CuO@Co publication-title: J. Alloy. Compd. – volume: 26 start-page: 6785 year: 2016 end-page: 6796 ident: bib22 article-title: Mechanistic insights on ternary Ni publication-title: Adv. Funct. Mater. – volume: 258 year: 2019 ident: bib39 article-title: Ni-Co-Mo-O nanosheets decorated with NiCo nanoparticles as advanced electrocatalysts for highly efficient hydrogen evolution publication-title: Appl. Catal. B: Environ. – volume: 6 start-page: 12506 year: 2018 end-page: 12514 ident: bib47 article-title: A 3D well-matched electrode pair of Ni–Co–S//Ni–Co–P nanoarrays grown on nickel foam as a high-performance electrocatalyst for water splitting publication-title: J. Mater. Chem. A – volume: 16 year: 2020 ident: bib28 article-title: Amorphous catalysts and electrochemical water splitting: an untold story of harmony publication-title: Small – volume: 8 start-page: 1 year: 2021 end-page: 23 ident: bib6 article-title: Hydrogen production from water electrolysis: role of catalysts publication-title: Nano Converg. – volume: 56 start-page: 1041 year: 2017 end-page: 1044 ident: bib26 article-title: Fe-doped Ni publication-title: Inorg. Chem. – volume: 6 start-page: 20297 year: 2018 end-page: 20303 ident: bib36 article-title: A bifunctional and stable Ni-Co-S/Ni-Co-P bistratal electrocatalyst for 10.8%-efficient overall solar water splitting publication-title: J. Mater. Chem. A – volume: 5 start-page: 7191 year: 2017 end-page: 7199 ident: bib25 article-title: Fe-doped Ni-Co phosphide nanoplates with planar defects as an efficient bifunctional electrocatalyst for overall water splitting publication-title: J. Mater. Chem. A – volume: 883 year: 2021 ident: bib4 article-title: Hierarchical Cu/Cu publication-title: J. Alloy. Compd. – volume: 29 year: 2016 ident: bib23 article-title: Ternary NiCo publication-title: Adv. Mater. – volume: 8 start-page: 2835 year: 2020 end-page: 2842 ident: bib32 article-title: Amorphous Co-Mo-P-O bifunctional electrocatalyst via facile electrodeposition for overall water splitting publication-title: ACS Sustain. Chem. Eng. – volume: 53 start-page: 13153 year: 2017 end-page: 13156 ident: bib40 article-title: Ru decorated with NiCoP: an efficient and durable hydrogen evolution reaction electrocatalyst in both acidic and alkaline conditions publication-title: Chem. Commun. – volume: 250 start-page: 163 year: 2017 end-page: 173 ident: bib17 article-title: Hierarchical (Ni,Co)Se publication-title: Electrochim. Acta – volume: 317 start-page: 191 year: 2019 end-page: 198 ident: bib33 article-title: Bimetallic NiCo phosphide nanosheets self-supported on nickel foam as high-performance electrocatalyst for hydrogen evolution reaction publication-title: Electrochim. Acta – volume: 5 start-page: 7191 year: 2017 end-page: 7199 ident: bib24 article-title: Self-supported NiMoP publication-title: J. Mater. Chem. A – volume: 91 start-page: 117 year: 2017 end-page: 120 ident: bib2 article-title: Controllable electronic transformer based on the resonance structure with switching capacitor for low-rise buildings residential area power supply stabilization systems publication-title: Int. J. Electr. Power Energy Syst. – volume: 15 year: 2019 ident: bib43 article-title: Self‐supportive mesoporous Ni/Co/Fe phosphosulfide nanorods derived from novel hydrothermal electrodeposition as a highly efficient electrocatalyst for overall water splitting publication-title: Small – volume: 34 start-page: 320 year: 2010 end-page: 323 ident: bib45 article-title: Study of KTiOPO publication-title: Surf. Interface Anal. – volume: 51 start-page: 1571 year: 2018 end-page: 1580 ident: bib8 article-title: Innovative strategies for electrocatalytic water splitting publication-title: Acc. Chem. Res. – volume: 883 year: 2021 ident: bib3 article-title: Recent progress of transition metal carbides/nitrides for electrocatalytic water splitting publication-title: J. Alloy. Compd. – volume: 1 start-page: 483 year: 2018 end-page: 530 ident: bib5 article-title: Recent progresses in electrocatalysts for water electrolysis publication-title: Electrochem. Energy Rev. – volume: 764 start-page: 88 year: 2018 end-page: 95 ident: bib20 article-title: Co publication-title: J. Alloy. Compd. – volume: 323 year: 2019 ident: bib34 article-title: Ultrathin amorphous CoFeP nanosheets derived from CoFe LDHs by partial phosphating as excellent bifunctional catalysts for overall water splitting publication-title: Electrochim. Acta – volume: 4 start-page: 4704 year: 2020 end-page: 4712 ident: bib27 article-title: Iron-doped cobalt phosphate 1D amorphous ultrathin nanowires as highly efficient electrocatalyst for water oxidation, Sustainable publication-title: Energy Fuels – volume: 494 start-page: 749 year: 2019 end-page: 755 ident: bib16 article-title: Co doped Ni publication-title: Appl. Surf. Sci. – volume: 49 start-page: 6764 year: 2020 end-page: 6775 ident: bib29 article-title: Amorphous Ni–Fe–Se hollow nanospheres electrodeposited on nickel foam as a highly active and bifunctional catalyst for alkaline water splitting publication-title: Dalton Trans. – volume: 299 start-page: 152 year: 2019 end-page: 162 ident: bib35 article-title: Co publication-title: Electrochim. Acta – volume: 9 start-page: 2251 year: 2016 end-page: 2259 ident: bib42 article-title: Ternary NiCoP nanosheet arrays: an excellent bifunctional catalyst for alkaline overall water splitting publication-title: Nano Res. – volume: 53 start-page: 492 year: 2018 end-page: 500 ident: bib18 article-title: Ternary Ni publication-title: Nano Energy – volume: 59 start-page: 1659 year: 2020 end-page: 1665 ident: bib30 article-title: An engineered superhydrophilic/superaerophobic electrocatalyst composed of the supported CoMoSx chalcogel for overall water splitting publication-title: Angew. Chem. Int. Ed. – volume: 24 year: 2012 ident: bib46 article-title: The electronic structure of RbTiOPO publication-title: J. Phys. Condens. Matter Inst. Phys. J. – volume: 45 start-page: 24670 year: 2020 end-page: 24683 ident: bib59 article-title: Electrodeposition of Ni–Fe–Mn ternary nanosheets as affordable and efficient electrocatalyst for both hydrogen and oxygen evolution reactions publication-title: Int. J. Hydrog. Energy – volume: 16 start-page: 6617 year: 2016 ident: bib21 article-title: Ternary Fe publication-title: Nano Lett. – volume: 330 start-page: 156 year: 2016 end-page: 166 ident: bib41 article-title: From water reduction to oxidation: Janus Co-Ni-P nanowires as high-efficiency and ultrastable electrocatalysts for over 3000 h water splitting publication-title: J. Power Sources – volume: 6 start-page: 10952 year: 2018 end-page: 10959 ident: bib57 article-title: Formation of yolk-shelled nickel-cobalt selenide dodecahedral nanocages from metal-organic frameworks for efficient hydrogen and oxygen evolution publication-title: ACS Sustain. Chem. Eng. – volume: 192 start-page: 126 year: 2016 end-page: 133 ident: bib56 article-title: Co-Ni-B nanocatalyst for efficient hydrogen evolution reaction in wide pH range publication-title: Appl. Catal. B: Environ. – volume: 45 start-page: 18753 year: 2020 end-page: 18771 ident: bib1 article-title: Emerging technologies by hydrogen: a review publication-title: Int. J. Hydrog. Energy – volume: 465 start-page: 846 year: 2018 end-page: 862 ident: bib12 article-title: Three-dimensional Ni-Co alloy hierarchical nanostructure as efficient non-noble-metal electrocatalyst for hydrogen evolution reaction publication-title: Appl. Surf. Sci. – volume: 494 start-page: 179 year: 2019 end-page: 186 ident: bib15 article-title: Synthesis and mechanism investigation of three-dimensional porous CoP publication-title: Appl. Surf. Sci. – volume: 16 year: 2020 ident: 10.1016/j.jallcom.2021.163103_bib28 article-title: Amorphous catalysts and electrochemical water splitting: an untold story of harmony publication-title: Small doi: 10.1002/smll.201905779 – volume: 91 start-page: 117 year: 2017 ident: 10.1016/j.jallcom.2021.163103_bib2 article-title: Controllable electronic transformer based on the resonance structure with switching capacitor for low-rise buildings residential area power supply stabilization systems publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2017.03.004 – volume: 5 start-page: 7564 year: 2017 ident: 10.1016/j.jallcom.2021.163103_bib51 article-title: Gas-templating of hierarchically structured Ni–Co–P for efficient electrocatalytic hydrogen evolution publication-title: J. Mater. Chem. A doi: 10.1039/C7TA01716B – volume: 301 year: 2022 ident: 10.1016/j.jallcom.2021.163103_bib7 article-title: Synergistic effect in ultrafine PtNiP nanowires for highly efficient electrochemical hydrogen evolution in alkaline electrolyte publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2021.120754 – volume: 24 year: 2012 ident: 10.1016/j.jallcom.2021.163103_bib46 article-title: The electronic structure of RbTiOPO4 and the effects of the A-site cation substitution in KTiOPO4-family crystals publication-title: J. Phys. Condens. Matter Inst. Phys. J. – volume: 44 start-page: 24140 year: 2019 ident: 10.1016/j.jallcom.2021.163103_bib54 article-title: Facile one-step fabrication of bimetallic Co-Ni-P hollow nanospheres anchored on reduced graphene oxide as highly efficient electrocatalyst for hydrogen evolution reaction publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2019.07.139 – volume: 4 start-page: 4704 year: 2020 ident: 10.1016/j.jallcom.2021.163103_bib27 article-title: Iron-doped cobalt phosphate 1D amorphous ultrathin nanowires as highly efficient electrocatalyst for water oxidation, Sustainable publication-title: Energy Fuels – volume: 883 year: 2021 ident: 10.1016/j.jallcom.2021.163103_bib4 article-title: Hierarchical Cu/Cu2O structure derived from hexagonal Cu9S5 nanocrystal with enhanced electrocatalytic ability for hydrogen evolution reaction publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2021.160816 – volume: 8 start-page: 1 year: 2021 ident: 10.1016/j.jallcom.2021.163103_bib6 article-title: Hydrogen production from water electrolysis: role of catalysts publication-title: Nano Converg. doi: 10.1186/s40580-021-00254-x – volume: 355 start-page: 1 year: 2017 ident: 10.1016/j.jallcom.2021.163103_bib11 article-title: Combining theory and experiment in electrocatalysis: insights into materials design publication-title: Science doi: 10.1126/science.aad4998 – volume: 43 start-page: 7872 year: 2018 ident: 10.1016/j.jallcom.2021.163103_bib44 article-title: Amorphous film of ternary Ni-Co-P alloy on Ni foam for efficient hydrogen evolution by electroless deposition publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2018.03.003 – volume: 53 start-page: 492 year: 2018 ident: 10.1016/j.jallcom.2021.163103_bib18 article-title: Ternary Ni2(1−x)Mo2xP nanowire arrays toward efficient and stable hydrogen evolution electrocatalysis under large-current-density publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.08.025 – volume: 45 start-page: 24670 year: 2020 ident: 10.1016/j.jallcom.2021.163103_bib59 article-title: Electrodeposition of Ni–Fe–Mn ternary nanosheets as affordable and efficient electrocatalyst for both hydrogen and oxygen evolution reactions publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2020.06.249 – volume: 6 start-page: 20297 year: 2018 ident: 10.1016/j.jallcom.2021.163103_bib36 article-title: A bifunctional and stable Ni-Co-S/Ni-Co-P bistratal electrocatalyst for 10.8%-efficient overall solar water splitting publication-title: J. Mater. Chem. A doi: 10.1039/C8TA07197G – volume: 461 year: 2020 ident: 10.1016/j.jallcom.2021.163103_bib38 article-title: Nickel foam supported cobalt phosphate electrocatalyst for alkaline oxygen evolution reaction publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.228165 – volume: 10 start-page: 23070 year: 2018 ident: 10.1016/j.jallcom.2021.163103_bib53 article-title: C60-Decorated nickel–cobalt phosphide as an efficient and robust electrocatalyst for hydrogen evolution reaction publication-title: Nanoscale doi: 10.1039/C8NR07472K – volume: 34 start-page: 320 year: 2010 ident: 10.1016/j.jallcom.2021.163103_bib45 article-title: Study of KTiOPO4 surface by x-ray photoelectron spectroscopy and reflection high-energy electron diffraction publication-title: Surf. Interface Anal. doi: 10.1002/sia.1309 – volume: 44 start-page: 5148 year: 2015 ident: 10.1016/j.jallcom.2021.163103_bib52 article-title: Noble metal-free hydrogen evolution catalysts for water splitting publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00448E – volume: 299 start-page: 152 year: 2019 ident: 10.1016/j.jallcom.2021.163103_bib35 article-title: Co9S8–Ni3S2 heterointerfaced nanotubes on Ni foam as highly efficient and flexible bifunctional electrodes for water splitting publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.01.001 – volume: 330 start-page: 156 year: 2016 ident: 10.1016/j.jallcom.2021.163103_bib41 article-title: From water reduction to oxidation: Janus Co-Ni-P nanowires as high-efficiency and ultrastable electrocatalysts for over 3000 h water splitting publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.08.126 – volume: 13 start-page: 2130 year: 2020 ident: 10.1016/j.jallcom.2021.163103_bib58 article-title: Facile synthesis of Co and Ce dual-doped Ni3S2 nanosheets on Ni foam for enhanced oxygen evolution reaction publication-title: Nano Res. doi: 10.1007/s12274-020-2819-4 – volume: 1 start-page: 177 year: 2019 ident: 10.1016/j.jallcom.2021.163103_bib19 article-title: Accelerating the water splitting kinetics of CoP microcubes anchored on a graphene electrocatalyst by Mn incorporation publication-title: Nanoscale Adv. doi: 10.1039/C8NA00261D – volume: 8 start-page: 2835 year: 2020 ident: 10.1016/j.jallcom.2021.163103_bib32 article-title: Amorphous Co-Mo-P-O bifunctional electrocatalyst via facile electrodeposition for overall water splitting publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b06929 – volume: 764 start-page: 88 year: 2018 ident: 10.1016/j.jallcom.2021.163103_bib20 article-title: Co0.5Ni0.5P nanoparticles embedded in carbon layers for efficient electrochemical water splitting publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2018.06.008 – volume: 345 year: 2020 ident: 10.1016/j.jallcom.2021.163103_bib49 article-title: Surface reconstruction of NiCoP pre-catalysts for bifunctional water splitting in alkaline electrolyte publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2020.136114 – volume: 45 start-page: 18753 year: 2020 ident: 10.1016/j.jallcom.2021.163103_bib1 article-title: Emerging technologies by hydrogen: a review publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2020.05.021 – volume: 29 year: 2016 ident: 10.1016/j.jallcom.2021.163103_bib23 article-title: Ternary NiCo2Px nanowires as pH‐universal electrocatalysts for highly efficient hydrogen evolution reaction publication-title: Adv. Mater. – volume: 882 year: 2021 ident: 10.1016/j.jallcom.2021.163103_bib9 article-title: Hierarchical Cu@Co-decorated CuO@Co3O4 nanostructure on Cu foam as efficient self-supported catalyst for hydrogen evolution reaction publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2021.160749 – volume: 137 start-page: 15753 year: 2015 ident: 10.1016/j.jallcom.2021.163103_bib13 article-title: Molybdenum-carbide-modified nitrogen-doped carbon vesicle encapsulating nickel nanoparticles: a highly efficient, low-cost catalyst for hydrogen evolution reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b07924 – volume: 250 start-page: 163 year: 2017 ident: 10.1016/j.jallcom.2021.163103_bib17 article-title: Hierarchical (Ni,Co)Se2/carbon hollow rhombic dodecahedra derived from metal-organic frameworks for efficient water-splitting electrocatalysis publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.08.047 – volume: 9 start-page: 2251 year: 2016 ident: 10.1016/j.jallcom.2021.163103_bib42 article-title: Ternary NiCoP nanosheet arrays: an excellent bifunctional catalyst for alkaline overall water splitting publication-title: Nano Res. doi: 10.1007/s12274-016-1112-z – volume: 45 start-page: 5841 year: 2020 ident: 10.1016/j.jallcom.2021.163103_bib10 article-title: Characterization and electrocatalytic properties of electrospun Pt-IrO2 nanofiber catalysts for oxygen evolution reaction publication-title: Int. J. Energy Res. doi: 10.1002/er.6204 – volume: 56 start-page: 1041 year: 2017 ident: 10.1016/j.jallcom.2021.163103_bib26 article-title: Fe-doped Ni2P nanosheet array for high-efficiency electrochemical water oxidation publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.6b02808 – volume: 317 start-page: 191 year: 2019 ident: 10.1016/j.jallcom.2021.163103_bib33 article-title: Bimetallic NiCo phosphide nanosheets self-supported on nickel foam as high-performance electrocatalyst for hydrogen evolution reaction publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.05.150 – volume: 49 start-page: 6764 year: 2020 ident: 10.1016/j.jallcom.2021.163103_bib29 article-title: Amorphous Ni–Fe–Se hollow nanospheres electrodeposited on nickel foam as a highly active and bifunctional catalyst for alkaline water splitting publication-title: Dalton Trans. doi: 10.1039/C9DT04755G – volume: 50 start-page: 395 year: 2020 ident: 10.1016/j.jallcom.2021.163103_bib37 article-title: NiCoP nanoleaves array for electrocatalytic alkaline H2 evolution and overall water splitting publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.03.046 – volume: 323 year: 2019 ident: 10.1016/j.jallcom.2021.163103_bib34 article-title: Ultrathin amorphous CoFeP nanosheets derived from CoFe LDHs by partial phosphating as excellent bifunctional catalysts for overall water splitting publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.134595 – volume: 15 year: 2019 ident: 10.1016/j.jallcom.2021.163103_bib43 article-title: Self‐supportive mesoporous Ni/Co/Fe phosphosulfide nanorods derived from novel hydrothermal electrodeposition as a highly efficient electrocatalyst for overall water splitting publication-title: Small doi: 10.1002/smll.201905201 – volume: 5 start-page: 7191 year: 2017 ident: 10.1016/j.jallcom.2021.163103_bib25 article-title: Fe-doped Ni-Co phosphide nanoplates with planar defects as an efficient bifunctional electrocatalyst for overall water splitting publication-title: J. Mater. Chem. A – volume: 883 year: 2021 ident: 10.1016/j.jallcom.2021.163103_bib3 article-title: Recent progress of transition metal carbides/nitrides for electrocatalytic water splitting publication-title: J. Alloy. Compd. – volume: 8 start-page: 19129 year: 2016 ident: 10.1016/j.jallcom.2021.163103_bib50 article-title: Hierarchical nickel–cobalt phosphide yolk–shell spheres as highly active and stable bifunctional electrocatalysts for overall water splitting publication-title: Nanoscale doi: 10.1039/C6NR07009D – volume: 6 start-page: 12506 year: 2018 ident: 10.1016/j.jallcom.2021.163103_bib47 article-title: A 3D well-matched electrode pair of Ni–Co–S//Ni–Co–P nanoarrays grown on nickel foam as a high-performance electrocatalyst for water splitting publication-title: J. Mater. Chem. A doi: 10.1039/C8TA03163K – volume: 58 start-page: 15772 year: 2019 ident: 10.1016/j.jallcom.2021.163103_bib31 article-title: Scaled‐up synthesis of amorphous NiFeMo oxides and their rapid surface reconstruction for superior oxygen evolution catalysis publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201909939 – volume: 8 start-page: 34270 year: 2016 ident: 10.1016/j.jallcom.2021.163103_bib55 article-title: Surface roughening of nickel cobalt phosphide nanowire arrays/ni foam for enhanced hydrogen evolution activity publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b07226 – volume: 16 start-page: 6617 year: 2016 ident: 10.1016/j.jallcom.2021.163103_bib21 article-title: Ternary FexCo1–xP nanowire array as a robust hydrogen evolution reaction electrocatalyst with Pt-like activity: experimental and theoretical insight publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b03332 – start-page: 14828 year: 2017 ident: 10.1016/j.jallcom.2021.163103_bib48 article-title: Hierarchical NiCoP nanocone arrays supported on Ni foam as an efficient and stable bifunctional electrocatalyst for overall water splitting publication-title: J. Mater. Chem. A doi: 10.1039/C7TA03947F – volume: 53 start-page: 13153 year: 2017 ident: 10.1016/j.jallcom.2021.163103_bib40 article-title: Ru decorated with NiCoP: an efficient and durable hydrogen evolution reaction electrocatalyst in both acidic and alkaline conditions publication-title: Chem. Commun. doi: 10.1039/C7CC08340H – volume: 51 start-page: 1571 year: 2018 ident: 10.1016/j.jallcom.2021.163103_bib8 article-title: Innovative strategies for electrocatalytic water splitting publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00002 – volume: 5 start-page: 7191 year: 2017 ident: 10.1016/j.jallcom.2021.163103_bib24 article-title: Self-supported NiMoP2 nanowires on carbon cloth as an efficient and durable electrocatalyst for overall water splitting publication-title: J. Mater. Chem. A doi: 10.1039/C6TA11188B – volume: 6 start-page: 10952 year: 2018 ident: 10.1016/j.jallcom.2021.163103_bib57 article-title: Formation of yolk-shelled nickel-cobalt selenide dodecahedral nanocages from metal-organic frameworks for efficient hydrogen and oxygen evolution publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b02343 – volume: 192 start-page: 126 year: 2016 ident: 10.1016/j.jallcom.2021.163103_bib56 article-title: Co-Ni-B nanocatalyst for efficient hydrogen evolution reaction in wide pH range publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2016.03.032 – volume: 465 start-page: 846 year: 2018 ident: 10.1016/j.jallcom.2021.163103_bib12 article-title: Three-dimensional Ni-Co alloy hierarchical nanostructure as efficient non-noble-metal electrocatalyst for hydrogen evolution reaction publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.09.204 – volume: 494 start-page: 179 year: 2019 ident: 10.1016/j.jallcom.2021.163103_bib15 article-title: Synthesis and mechanism investigation of three-dimensional porous CoP3 nanoplate arrays as efficient hydrogen evolution reaction electrocatalyst publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.07.156 – volume: 258 year: 2019 ident: 10.1016/j.jallcom.2021.163103_bib39 article-title: Ni-Co-Mo-O nanosheets decorated with NiCo nanoparticles as advanced electrocatalysts for highly efficient hydrogen evolution publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2019.117953 – volume: 494 start-page: 749 year: 2019 ident: 10.1016/j.jallcom.2021.163103_bib16 article-title: Co doped Ni0.85Se nanoparticles on RGO as efficient electrocatalysts for hydrogen evolution reaction publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.07.231 – volume: 26 start-page: 6785 year: 2016 ident: 10.1016/j.jallcom.2021.163103_bib22 article-title: Mechanistic insights on ternary Ni2−xCoxP for hydrogen evolution and their hybrids with graphene as highly efficient and robust catalysts for overall water splitting publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201601420 – volume: 59 start-page: 1659 year: 2020 ident: 10.1016/j.jallcom.2021.163103_bib30 article-title: An engineered superhydrophilic/superaerophobic electrocatalyst composed of the supported CoMoSx chalcogel for overall water splitting publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201911617 – volume: 29 year: 2019 ident: 10.1016/j.jallcom.2021.163103_bib14 article-title: Engineering an earth-abundant element-based bifunctional electrocatalyst for highly efficient and durable overall water splitting publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201807031 – volume: 1 start-page: 483 year: 2018 ident: 10.1016/j.jallcom.2021.163103_bib5 article-title: Recent progresses in electrocatalysts for water electrolysis publication-title: Electrochem. Energy Rev. doi: 10.1007/s41918-018-0014-z |
SSID | ssj0001931 |
Score | 2.5525954 |
Snippet | •NiCoP/CC with high catalytic performance was successfully synthesized via a one-step method.•The electrodeposition and phosphating reactions were carried out... Exploring a simple, low-cost preparation method to synthesize excellent catalyst for hydrogen evolution reaction (HER) in alkaline solution is highly... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 163103 |
SubjectTerms | Alkaline solution Amorphous structure Bimetals Carbon Catalytic activity Charge transfer Chemical synthesis Cloth Current density Electrocatalysts Electrolysis HER Hydrogen evolution reactions Hydrogen production Nanoparticles Nanowires NiCoP nanoparticles One-step electrodeposition Phosphides Room temperature Water electrolysis |
Title | One-step synthesis of amorphous NiCoP nanoparticles by electrodeposition as highly efficient electrocatalyst for hydrogen evolution reaction in alkaline solution |
URI | https://dx.doi.org/10.1016/j.jallcom.2021.163103 https://www.proquest.com/docview/2637663251 |
Volume | 896 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hEAIOCJYiKA_NodfsI3FeR7QqWkAsSC0SN8tOHDVLSFabpdJe-C_8U8Zeu7TlgMQpSmJb0cyXmc_JPAC-FQPl9wsWe6GQfY9lUd-TeSA96esalCJLAqHzna_H0eiOXd6H9yswdLkwOqzS2v6lTTfW2l7pWWn2pmXZ-9FPff3PL6FNCwsHgU74ZSzWKO8-v4V5EEExXfNosKdHv2Xx9CbdiagqHTTik6frEjMZuN5Z7_3Tf5bauJ_zHdi2vBHPlo-2Cyuq7sDG0LVr68DWX5UFO7BuIjuzdg9ebmrlkSqn2C5qYntt2WJToHhsSMK07cdxOWxusRY1bZ9tlBzKBdr-OLlyYV0oWtTFjSu6Z-pOkLtyo8xHoEU7R6LA-GuRzxrCJarfFtdIzNTkT2BJy1QPQnNbdKj_Anfn338OR57ty-BlQRDPyT4Sz2NFIBPSs09ONldRxMjbqojlugB8QJKMdB0ZSQiRxAGlyouCDnHmSzKx-7BaN7U6AMxVyqIiDZOU6WbnKdE1IeM0FDmdBkV8CMxpg2e2aLnunVFxF5024VaJXCuRL5V4CN0_06bLqh0fTUicqvk_8OPkWT6aeuygwe3733ISQkxcjsjj18-vfASbvk62MNGDx7A6nz2pE6JAc3lqMH4Ka2cXV6PxK1RtCms |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIlR6QLBQ0VLAB67ZR-K8jtWKaoF2QaKVerPsxBFZ0mTVLEh76X_pP-1nr015HCpxipLYVjQzmfmcfDND9K6a6HBc8TSIpRoHvEjGgSojFajQ1KCURRZJk-98Ok9m5_zjRXyxRVOfC2Nolc73b3y69dbuyshJc7Ss69HXcR6af34ZNi08nkTZA3rI8fqaNgbD6zueBxCKbZuH0YEZfpfGM1oMF7JpDGskRKgbAppMfPOsfwPUX67axp_jp_TEAUd2tHm2Z7Sl2wHtTH2_tgHt_lZacECPLLWz6J_TzedWB9DlkvXrFnCvr3vWVUxedhAx9v1sXk-7L6yVLfbPjibH1Jq5Bjml9rwuJntmqhs3uGcLTyBe-VH2K9C6XzFgYPZtXV51MEymfzrDZoCmNoGC1Vim-S4NuGXe7F_Q-fH7s-kscI0ZgiKK0hUcJIAeryKVQdEhomypk4Qj3OqEl6YCfARJJqaQjIKJKIBApcuqwiEtQgUfu0fbbdfql8RKnfOkyuMs56bbeQ68JlWax7LEaVSl-8S9NkThqpab5hmN8PS0hXBKFEaJYqPEfRr-mrbclO24b0LmVS3-sD-B0HLf1ENvGsI5gF5ACCnAHNDjwf-v_JZ2ZmenJ-Lkw_zTK3ocmswLSyU8pO3V1Q_9Gnhopd5Ye78FTF0L-Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=One-step+synthesis+of+amorphous+NiCoP+nanoparticles+by+electrodeposition+as+highly+efficient+electrocatalyst+for+hydrogen+evolution+reaction+in+alkaline+solution&rft.jtitle=Journal+of+alloys+and+compounds&rft.au=Cao%2C+Yanpeng&rft.au=Chen%2C+Zhichao&rft.au=Ye%2C+Feng&rft.au=Yang%2C+Yakun&rft.date=2022-03-10&rft.issn=0925-8388&rft.volume=896&rft.spage=163103&rft_id=info:doi/10.1016%2Fj.jallcom.2021.163103&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jallcom_2021_163103 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-8388&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-8388&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-8388&client=summon |