One-step synthesis of amorphous NiCoP nanoparticles by electrodeposition as highly efficient electrocatalyst for hydrogen evolution reaction in alkaline solution

•NiCoP/CC with high catalytic performance was successfully synthesized via a one-step method.•The electrodeposition and phosphating reactions were carried out simultaneously.•Amorphous phosphates were constructed to obtain more active sites for exposure.•The synergistic effect between Ni and Co bime...

Full description

Saved in:
Bibliographic Details
Published inJournal of alloys and compounds Vol. 896; p. 163103
Main Authors Cao, Yanpeng, Chen, Zhichao, Ye, Feng, Yang, Yakun, Wang, Kaichen, Wang, Zhiming, Yin, Likun, Xu, Chao
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 10.03.2022
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •NiCoP/CC with high catalytic performance was successfully synthesized via a one-step method.•The electrodeposition and phosphating reactions were carried out simultaneously.•Amorphous phosphates were constructed to obtain more active sites for exposure.•The synergistic effect between Ni and Co bimetals leads to high catalytic activity. Exploring a simple, low-cost preparation method to synthesize excellent catalyst for hydrogen evolution reaction (HER) in alkaline solution is highly meaningful for large-scale electrolysis of water for hydrogen production. Herein, a one-step electrodeposition method with simultaneous electrodeposition and phosphation was proposed to synthesize the three-dimensional NiCoP/carbon cloth (NiCoP/CC) nanoparticles at room temperature on the conductive carbon cloth (CC). The results showed that the NiCoP nanoparticles covered by nanowires had an amorphous structure. The NiCoP/CC electrode exhibited a good catalytic activity in 1.0 M KOH solution. It required only 74, 101, 149 mV overpotential for HER in basic solution to obtain current densities of − 10, − 20, − 50 mA cm−2, respectively, with a corresponding Tafel slope of 89.5 mV dec−1. Furthermore, after 24 h constant voltage test, the current density of NiCoP/CC only showed 2% decay, indicating a good stability. The obtained excellent catalytic activity can be attributed to the amorphous structure, the synergetic effect of Ni and Co, the charge transfer among Ni/Co and P, and nanoparticles in situ grown on carbon cloth. The simple one-step electrodeposition method shows a very promising potential for the preparation of bimetallic phosphides.
AbstractList •NiCoP/CC with high catalytic performance was successfully synthesized via a one-step method.•The electrodeposition and phosphating reactions were carried out simultaneously.•Amorphous phosphates were constructed to obtain more active sites for exposure.•The synergistic effect between Ni and Co bimetals leads to high catalytic activity. Exploring a simple, low-cost preparation method to synthesize excellent catalyst for hydrogen evolution reaction (HER) in alkaline solution is highly meaningful for large-scale electrolysis of water for hydrogen production. Herein, a one-step electrodeposition method with simultaneous electrodeposition and phosphation was proposed to synthesize the three-dimensional NiCoP/carbon cloth (NiCoP/CC) nanoparticles at room temperature on the conductive carbon cloth (CC). The results showed that the NiCoP nanoparticles covered by nanowires had an amorphous structure. The NiCoP/CC electrode exhibited a good catalytic activity in 1.0 M KOH solution. It required only 74, 101, 149 mV overpotential for HER in basic solution to obtain current densities of − 10, − 20, − 50 mA cm−2, respectively, with a corresponding Tafel slope of 89.5 mV dec−1. Furthermore, after 24 h constant voltage test, the current density of NiCoP/CC only showed 2% decay, indicating a good stability. The obtained excellent catalytic activity can be attributed to the amorphous structure, the synergetic effect of Ni and Co, the charge transfer among Ni/Co and P, and nanoparticles in situ grown on carbon cloth. The simple one-step electrodeposition method shows a very promising potential for the preparation of bimetallic phosphides.
Exploring a simple, low-cost preparation method to synthesize excellent catalyst for hydrogen evolution reaction (HER) in alkaline solution is highly meaningful for large-scale electrolysis of water for hydrogen production. Herein, a one-step electrodeposition method with simultaneous electrodeposition and phosphation was proposed to synthesize the three-dimensional NiCoP/carbon cloth (NiCoP/CC) nanoparticles at room temperature on the conductive carbon cloth (CC). The results showed that the NiCoP nanoparticles covered by nanowires had an amorphous structure. The NiCoP/CC electrode exhibited a good catalytic activity in 1.0 M KOH solution. It required only 74, 101, 149 mV overpotential for HER in basic solution to obtain current densities of − 10, − 20, − 50 mA cm−2, respectively, with a corresponding Tafel slope of 89.5 mV dec−1. Furthermore, after 24 h constant voltage test, the current density of NiCoP/CC only showed 2% decay, indicating a good stability. The obtained excellent catalytic activity can be attributed to the amorphous structure, the synergetic effect of Ni and Co, the charge transfer among Ni/Co and P, and nanoparticles in situ grown on carbon cloth. The simple one-step electrodeposition method shows a very promising potential for the preparation of bimetallic phosphides.
ArticleNumber 163103
Author Yang, Yakun
Cao, Yanpeng
Chen, Zhichao
Wang, Kaichen
Xu, Chao
Wang, Zhiming
Yin, Likun
Ye, Feng
Author_xml – sequence: 1
  givenname: Yanpeng
  surname: Cao
  fullname: Cao, Yanpeng
  organization: School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China
– sequence: 2
  givenname: Zhichao
  surname: Chen
  fullname: Chen, Zhichao
  organization: Institute of Science and Technology, China Three Gorges Corporation, Beijing 100038, China
– sequence: 3
  givenname: Feng
  surname: Ye
  fullname: Ye, Feng
  email: fye@ncepu.edu.cn
  organization: School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China
– sequence: 4
  givenname: Yakun
  surname: Yang
  fullname: Yang, Yakun
  organization: School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China
– sequence: 5
  givenname: Kaichen
  surname: Wang
  fullname: Wang, Kaichen
  organization: School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China
– sequence: 6
  givenname: Zhiming
  surname: Wang
  fullname: Wang, Zhiming
  organization: School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China
– sequence: 7
  givenname: Likun
  surname: Yin
  fullname: Yin, Likun
  organization: Institute of Science and Technology, China Three Gorges Corporation, Beijing 100038, China
– sequence: 8
  givenname: Chao
  surname: Xu
  fullname: Xu, Chao
  email: mechxu@ncepu.edu.cn
  organization: School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China
BookMark eNqFkc1q3DAUhUVJoZOfRygIuvZUsmyNhy5KGfoHocmiWQtZvorlanRdSRPw4_RNq8lMN91kdQX3fEeXcy7JRcAAhLzlbM0Zl--n9aS9N7hf16zmay4FZ-IVWfFuI6pGyu0FWbFt3Vad6Lo35DKliTHGt4KvyJ-7AFXKMNO0hDxCcomipXqPcR7xkOgPt8N7GnTAWcfsjIdE-4WCB5MjDjBjctlhoDrR0T2OvuysdcZByP9URmftl5SpxUjHZYj4CIHCE_rDMxpBm-eHKzb-l_YuAE3n7TV5bbVPcHOeV-Thy-efu2_V7d3X77tPt5URYpOrLWdt01jRd1BSABgGkLIxACCboamlECUW2day63swvWxZD4O1ZWxM3fNWXJF3J9854u8DpKwmPMRQvlSF3kgp6pYX1YeTykRMKYJVxmV9vDNH7bziTB07UZM6d6KOnahTJ4Vu_6Pn6PY6Li9yH08clACeHESVjgEbGFwsCasB3QsOfwG0KbDJ
CitedBy_id crossref_primary_10_1016_j_jece_2024_112891
crossref_primary_10_1016_j_jssc_2022_123554
crossref_primary_10_1016_j_est_2022_106379
crossref_primary_10_1016_j_jece_2025_115544
crossref_primary_10_1016_j_fuel_2023_129087
crossref_primary_10_1016_j_ijhydene_2023_05_214
crossref_primary_10_1016_j_jallcom_2022_167678
crossref_primary_10_1021_acsaem_2c03286
crossref_primary_10_1016_j_jallcom_2022_165932
crossref_primary_10_1016_j_coelec_2024_101507
crossref_primary_10_1016_j_jpowsour_2024_235132
crossref_primary_10_1039_D4DT01118J
crossref_primary_10_1016_j_electacta_2024_144676
crossref_primary_10_1016_j_jallcom_2022_167035
crossref_primary_10_1016_j_colsurfa_2024_133195
crossref_primary_10_1021_acs_langmuir_3c00268
crossref_primary_10_1002_asia_202401295
crossref_primary_10_1016_j_jallcom_2022_167031
crossref_primary_10_1016_j_fuel_2024_131605
crossref_primary_10_1021_acs_inorgchem_4c03089
crossref_primary_10_1016_j_ijhydene_2023_01_341
crossref_primary_10_3866_PKU_WHXB202306029
crossref_primary_10_1016_j_ijhydene_2024_09_346
crossref_primary_10_3390_ma16041529
crossref_primary_10_1016_j_mcat_2023_113670
crossref_primary_10_1149_1945_7111_ad2054
crossref_primary_10_1016_j_fuel_2023_130174
crossref_primary_10_1021_acsaem_4c01497
crossref_primary_10_1021_acs_chemrev_3c00459
crossref_primary_10_1016_j_jallcom_2022_163866
crossref_primary_10_1016_j_jallcom_2022_167229
crossref_primary_10_1007_s11244_022_01706_2
crossref_primary_10_1021_acssuschemeng_2c06444
crossref_primary_10_1021_acsanm_3c01221
crossref_primary_10_1016_j_jallcom_2024_173974
crossref_primary_10_1016_j_jcis_2024_09_058
crossref_primary_10_1016_j_seppur_2023_124155
crossref_primary_10_1016_j_ijhydene_2025_01_218
crossref_primary_10_1016_j_ijhydene_2022_08_087
crossref_primary_10_1016_j_jelechem_2022_116993
crossref_primary_10_1016_S1003_6326_23_66380_0
crossref_primary_10_1016_j_jallcom_2022_164848
crossref_primary_10_1016_j_jallcom_2025_178445
crossref_primary_10_1021_acsanm_4c06916
Cites_doi 10.1002/smll.201905779
10.1016/j.ijepes.2017.03.004
10.1039/C7TA01716B
10.1016/j.apcatb.2021.120754
10.1016/j.ijhydene.2019.07.139
10.1016/j.jallcom.2021.160816
10.1186/s40580-021-00254-x
10.1126/science.aad4998
10.1016/j.ijhydene.2018.03.003
10.1016/j.nanoen.2018.08.025
10.1016/j.ijhydene.2020.06.249
10.1039/C8TA07197G
10.1016/j.jpowsour.2020.228165
10.1039/C8NR07472K
10.1002/sia.1309
10.1039/C4CS00448E
10.1016/j.electacta.2019.01.001
10.1016/j.jpowsour.2016.08.126
10.1007/s12274-020-2819-4
10.1039/C8NA00261D
10.1021/acssuschemeng.9b06929
10.1016/j.jallcom.2018.06.008
10.1016/j.electacta.2020.136114
10.1016/j.ijhydene.2020.05.021
10.1016/j.jallcom.2021.160749
10.1021/jacs.5b07924
10.1016/j.electacta.2017.08.047
10.1007/s12274-016-1112-z
10.1002/er.6204
10.1021/acs.inorgchem.6b02808
10.1016/j.electacta.2019.05.150
10.1039/C9DT04755G
10.1016/j.jechem.2020.03.046
10.1016/j.electacta.2019.134595
10.1002/smll.201905201
10.1039/C6NR07009D
10.1039/C8TA03163K
10.1002/anie.201909939
10.1021/acsami.6b07226
10.1021/acs.nanolett.6b03332
10.1039/C7TA03947F
10.1039/C7CC08340H
10.1021/acs.accounts.8b00002
10.1039/C6TA11188B
10.1021/acssuschemeng.8b02343
10.1016/j.apcatb.2016.03.032
10.1016/j.apsusc.2018.09.204
10.1016/j.apsusc.2019.07.156
10.1016/j.apcatb.2019.117953
10.1016/j.apsusc.2019.07.231
10.1002/adfm.201601420
10.1002/anie.201911617
10.1002/adfm.201807031
10.1007/s41918-018-0014-z
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright Elsevier BV Mar 10, 2022
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright Elsevier BV Mar 10, 2022
DBID AAYXX
CITATION
8BQ
8FD
JG9
DOI 10.1016/j.jallcom.2021.163103
DatabaseName CrossRef
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Physics
EISSN 1873-4669
ExternalDocumentID 10_1016_j_jallcom_2021_163103
S0925838821045138
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SPD
SSM
SSZ
T5K
TWZ
XPP
ZMT
~G-
29J
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SEW
SMS
SSH
T9H
WUQ
8BQ
8FD
AFXIZ
EFKBS
JG9
ID FETCH-LOGICAL-c337t-910544f3b8e202eedde664ceee64d4263363165268bbecb650bedff50b7c2b153
IEDL.DBID .~1
ISSN 0925-8388
IngestDate Mon Jul 14 07:31:51 EDT 2025
Thu Apr 24 23:10:49 EDT 2025
Tue Jul 01 03:33:56 EDT 2025
Fri Feb 23 02:41:33 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Water electrolysis
Alkaline solution
NiCoP nanoparticles
HER
One-step electrodeposition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-910544f3b8e202eedde664ceee64d4263363165268bbecb650bedff50b7c2b153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2637663251
PQPubID 2045454
ParticipantIDs proquest_journals_2637663251
crossref_citationtrail_10_1016_j_jallcom_2021_163103
crossref_primary_10_1016_j_jallcom_2021_163103
elsevier_sciencedirect_doi_10_1016_j_jallcom_2021_163103
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-10
PublicationDateYYYYMMDD 2022-03-10
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-10
  day: 10
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Journal of alloys and compounds
PublicationYear 2022
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Zhang, Wang, Yu, Wen, Hu (bib23) 2016; 29
Kang, Guo, Wu, Sun, Zhang, Liao, Zhang, Si, Wu, Wang (bib14) 2019; 29
Wen, Shan, Liu, Mu, Jiang (bib30) 2020; 59
Ao, Dong, Fan, Wang, Cai, Li, Huang, Wei (bib57) 2018; 6
Li, Xu, Zhou, Li, Qiu, Jiang, Yuan (bib35) 2019; 299
Zhou, Zhou, Huang, Fan, Ju, Mi, Shen (bib36) 2018; 6
Wu, Dang, He, Li, Qu, Gao, Tan (bib15) 2019; 494
Cai, Li, Zhang, Zhang, Liu (bib9) 2021; 882
You, Sun (bib8) 2018; 51
Yi, He, Yin, Chen, Li, Yin (bib29) 2020; 49
Wu, Zhang, Wei, Feng, Yan, Tang (bib58) 2020; 13
Jiao, Hassan, Bo, Zhao (bib20) 2018; 764
Li, Wei, Zhu, Xi, Pan, Ji, Zatovsky, Han (bib48) 2017
Chen, Wei, Wei, Zhai, Liu, Gu, Yang, Zuo, Zhang, Gong (bib7) 2022; 301
Liang, Li, Han, Ye, Liu, Feng, Huang, Liu, Peng (bib4) 2021; 883
Peng, Pi, Zhang, Li, Huo, Chu (bib3) 2021; 883
Yu, Xu, Luo, Abbo, Yin (bib33) 2019; 317
Wen, Yang, Zhao, Ma, Liu (bib39) 2019; 258
Atuchin, Kesler, Meng, Lin (bib46) 2012; 24
Wang, Tong, Wang, Tao, Wang (bib55) 2016; 8
Seh, Kibsgaard, Dickens, Chorkendorff, Norskov, Jaramillo (bib11) 2017; 355
Sazali (bib1) 2020; 45
Wang, Ma, Qu, Asiri, Sun (bib26) 2017; 56
Zhang, Tan, Wang, Cao, Dong (bib27) 2020; 4
Yu, Mishra, Xie, Zhou, Sun, Zhou, Ni, Luo, Yu, Yu, Chen, Ren (bib18) 2018; 53
Yu, Duan, Yu, Hu, Gao (bib31) 2019; 58
Li, Zhang, Jiang, Kuang, Sun, Duan (bib42) 2016; 9
Wang, Wang, Zhu, Bao, Xiao, Su, Li, Wang (bib13) 2015; 137
Liu, He, Wang, Gao, Zhou, Li, Zhang, Yang, He, Jia, Dong, Liu (bib54) 2019; 44
Zou, Sun, Zhao, Li, Zhang (bib49) 2020; 345
Xu, Zhang, Ye, Liu, Cen, Yuan (bib16) 2019; 494
Yin, Zhu, Li, Zhang, Zhang, Chen (bib50) 2016; 8
Liu, Liu, Lv, Chen, Zhou, Wang, Zheng, Che, Chen (bib40) 2017; 53
Xu, Liang, Tang, Hong, Xie, Qi, Xu, Wang (bib19) 2019; 1
Ashraf, Li, Pham, Zhang (bib59) 2020; 45
Li, Gao, Wang, Xiong, Huang, Song, Bao, Liu (bib41) 2016; 330
Wang, Lu, Zhong (bib6) 2021; 8
Zhang, Chen, Wang, Yang, Jiang, Zhang, Duan, Daniel, Li, Sun (bib51) 2017; 5
Tang, Gan, Zhang, Lu, Jiang, Asiri, Sun, Wang, Chen (bib21) 2016; 16
Wang, She, Mu, Shi (bib32) 2020; 8
Atuchin, Kesler, Maklakova, Pokrovsky, Semenenko (bib45) 2010; 34
Gong, Xu, Pan, Lin, Yang, Wang (bib47) 2018; 6
Liu, Yang, Liu, Yang (bib38) 2020; 461
Wang, Liu, Cao, Ye, Xu, Du (bib10) 2020; 45
Li, Yan, Zhou, Huang, Xia, Chang, Ma, Qu (bib22) 2016; 26
Du, Jannatun, Yu, Ren, Huang, Lu (bib53) 2018; 10
Gupta, Patel, Fernandes, Kadrekar, Dashora, Yadav, Bhattacharyya, Jha, Miotello, Kothari (bib56) 2016; 192
Zotov, Razinkin, Atuchin (bib2) 2017; 91
Darband, Aliofkhazraei, Rouhaghdam, Kiani (bib12) 2018; 465
Anantharaj, Noda (bib28) 2020; 16
Wang, Chen, Xu, Liao, Chen, Rao, Kuang, Su (bib24) 2017; 5
Guo, Song, Zhang, Yan, Zhan, Yang, Zhao (bib25) 2017; 5
Khan, Zhao, Zou, Chen, Cao, Fang, Xu, Zhang, Zhang (bib5) 2018; 1
Zou, Zhang (bib52) 2015; 44
Ming, Liang, Shi, Mei, Xu, Wang (bib17) 2017; 250
Yao, Hu, Sun, Wang, Hu, Komarneni (bib43) 2019; 15
Yang, Lv, Huang, Zhang (bib44) 2018; 43
Zhang, Li, Zhou, Zheng, Xie, Lam, Lin (bib34) 2019; 323
Chen, Song, Liu, Xu, Qin, Lei, Tang (bib37) 2020; 50
Wang (10.1016/j.jallcom.2021.163103_bib13) 2015; 137
Gupta (10.1016/j.jallcom.2021.163103_bib56) 2016; 192
Xu (10.1016/j.jallcom.2021.163103_bib16) 2019; 494
Li (10.1016/j.jallcom.2021.163103_bib22) 2016; 26
Ashraf (10.1016/j.jallcom.2021.163103_bib59) 2020; 45
Khan (10.1016/j.jallcom.2021.163103_bib5) 2018; 1
Atuchin (10.1016/j.jallcom.2021.163103_bib45) 2010; 34
Zotov (10.1016/j.jallcom.2021.163103_bib2) 2017; 91
Seh (10.1016/j.jallcom.2021.163103_bib11) 2017; 355
Wang (10.1016/j.jallcom.2021.163103_bib10) 2020; 45
Darband (10.1016/j.jallcom.2021.163103_bib12) 2018; 465
Yi (10.1016/j.jallcom.2021.163103_bib29) 2020; 49
Cai (10.1016/j.jallcom.2021.163103_bib9) 2021; 882
Tang (10.1016/j.jallcom.2021.163103_bib21) 2016; 16
Wu (10.1016/j.jallcom.2021.163103_bib15) 2019; 494
Liu (10.1016/j.jallcom.2021.163103_bib38) 2020; 461
Anantharaj (10.1016/j.jallcom.2021.163103_bib28) 2020; 16
Wang (10.1016/j.jallcom.2021.163103_bib55) 2016; 8
Yang (10.1016/j.jallcom.2021.163103_bib44) 2018; 43
Zou (10.1016/j.jallcom.2021.163103_bib52) 2015; 44
Peng (10.1016/j.jallcom.2021.163103_bib3) 2021; 883
Kang (10.1016/j.jallcom.2021.163103_bib14) 2019; 29
Wu (10.1016/j.jallcom.2021.163103_bib58) 2020; 13
Wang (10.1016/j.jallcom.2021.163103_bib24) 2017; 5
Wen (10.1016/j.jallcom.2021.163103_bib39) 2019; 258
Ming (10.1016/j.jallcom.2021.163103_bib17) 2017; 250
Li (10.1016/j.jallcom.2021.163103_bib48) 2017
Yu (10.1016/j.jallcom.2021.163103_bib31) 2019; 58
Chen (10.1016/j.jallcom.2021.163103_bib37) 2020; 50
Yao (10.1016/j.jallcom.2021.163103_bib43) 2019; 15
Du (10.1016/j.jallcom.2021.163103_bib53) 2018; 10
Gong (10.1016/j.jallcom.2021.163103_bib47) 2018; 6
Chen (10.1016/j.jallcom.2021.163103_bib7) 2022; 301
You (10.1016/j.jallcom.2021.163103_bib8) 2018; 51
Li (10.1016/j.jallcom.2021.163103_bib35) 2019; 299
Li (10.1016/j.jallcom.2021.163103_bib42) 2016; 9
Liu (10.1016/j.jallcom.2021.163103_bib40) 2017; 53
Li (10.1016/j.jallcom.2021.163103_bib41) 2016; 330
Ao (10.1016/j.jallcom.2021.163103_bib57) 2018; 6
Wang (10.1016/j.jallcom.2021.163103_bib6) 2021; 8
Zhang (10.1016/j.jallcom.2021.163103_bib23) 2016; 29
Wang (10.1016/j.jallcom.2021.163103_bib26) 2017; 56
Zhou (10.1016/j.jallcom.2021.163103_bib36) 2018; 6
Zhang (10.1016/j.jallcom.2021.163103_bib34) 2019; 323
Zou (10.1016/j.jallcom.2021.163103_bib49) 2020; 345
Yu (10.1016/j.jallcom.2021.163103_bib18) 2018; 53
Yu (10.1016/j.jallcom.2021.163103_bib33) 2019; 317
Xu (10.1016/j.jallcom.2021.163103_bib19) 2019; 1
Zhang (10.1016/j.jallcom.2021.163103_bib51) 2017; 5
Atuchin (10.1016/j.jallcom.2021.163103_bib46) 2012; 24
Liang (10.1016/j.jallcom.2021.163103_bib4) 2021; 883
Sazali (10.1016/j.jallcom.2021.163103_bib1) 2020; 45
Yin (10.1016/j.jallcom.2021.163103_bib50) 2016; 8
Wang (10.1016/j.jallcom.2021.163103_bib32) 2020; 8
Guo (10.1016/j.jallcom.2021.163103_bib25) 2017; 5
Zhang (10.1016/j.jallcom.2021.163103_bib27) 2020; 4
Liu (10.1016/j.jallcom.2021.163103_bib54) 2019; 44
Jiao (10.1016/j.jallcom.2021.163103_bib20) 2018; 764
Wen (10.1016/j.jallcom.2021.163103_bib30) 2020; 59
References_xml – volume: 44
  start-page: 24140
  year: 2019
  end-page: 24150
  ident: bib54
  article-title: Facile one-step fabrication of bimetallic Co-Ni-P hollow nanospheres anchored on reduced graphene oxide as highly efficient electrocatalyst for hydrogen evolution reaction
  publication-title: Int. J. Hydrog. Energy
– volume: 10
  start-page: 23070
  year: 2018
  end-page: 23079
  ident: bib53
  article-title: C
  publication-title: Nanoscale
– volume: 355
  start-page: 1
  year: 2017
  end-page: 14
  ident: bib11
  article-title: Combining theory and experiment in electrocatalysis: insights into materials design
  publication-title: Science
– volume: 301
  year: 2022
  ident: bib7
  article-title: Synergistic effect in ultrafine PtNiP nanowires for highly efficient electrochemical hydrogen evolution in alkaline electrolyte
  publication-title: Appl. Catal. B: Environ.
– volume: 29
  year: 2019
  ident: bib14
  article-title: Engineering an earth-abundant element-based bifunctional electrocatalyst for highly efficient and durable overall water splitting
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 34270
  year: 2016
  end-page: 34279
  ident: bib55
  article-title: Surface roughening of nickel cobalt phosphide nanowire arrays/ni foam for enhanced hydrogen evolution activity
  publication-title: ACS Appl. Mater. Interfaces
– volume: 44
  start-page: 5148
  year: 2015
  end-page: 5180
  ident: bib52
  article-title: Noble metal-free hydrogen evolution catalysts for water splitting
  publication-title: Chem. Soc. Rev.
– volume: 58
  start-page: 15772
  year: 2019
  end-page: 15777
  ident: bib31
  article-title: Scaled‐up synthesis of amorphous NiFeMo oxides and their rapid surface reconstruction for superior oxygen evolution catalysis
  publication-title: Angew. Chem. Int. Ed.
– volume: 13
  start-page: 2130
  year: 2020
  end-page: 2135
  ident: bib58
  article-title: Facile synthesis of Co and Ce dual-doped Ni
  publication-title: Nano Res.
– volume: 8
  start-page: 19129
  year: 2016
  end-page: 19138
  ident: bib50
  article-title: Hierarchical nickel–cobalt phosphide yolk–shell spheres as highly active and stable bifunctional electrocatalysts for overall water splitting
  publication-title: Nanoscale
– volume: 461
  year: 2020
  ident: bib38
  article-title: Nickel foam supported cobalt phosphate electrocatalyst for alkaline oxygen evolution reaction
  publication-title: J. Power Sources
– start-page: 14828
  year: 2017
  end-page: 14837
  ident: bib48
  article-title: Hierarchical NiCoP nanocone arrays supported on Ni foam as an efficient and stable bifunctional electrocatalyst for overall water splitting
  publication-title: J. Mater. Chem. A
– volume: 345
  year: 2020
  ident: bib49
  article-title: Surface reconstruction of NiCoP pre-catalysts for bifunctional water splitting in alkaline electrolyte
  publication-title: Electrochim. Acta
– volume: 50
  start-page: 395
  year: 2020
  end-page: 401
  ident: bib37
  article-title: NiCoP nanoleaves array for electrocatalytic alkaline H
  publication-title: J. Energy Chem.
– volume: 137
  start-page: 15753
  year: 2015
  end-page: 15759
  ident: bib13
  article-title: Molybdenum-carbide-modified nitrogen-doped carbon vesicle encapsulating nickel nanoparticles: a highly efficient, low-cost catalyst for hydrogen evolution reaction
  publication-title: J. Am. Chem. Soc.
– volume: 43
  start-page: 7872
  year: 2018
  end-page: 7880
  ident: bib44
  article-title: Amorphous film of ternary Ni-Co-P alloy on Ni foam for efficient hydrogen evolution by electroless deposition
  publication-title: Int. J. Hydrog. Energy
– volume: 45
  start-page: 5841
  year: 2020
  end-page: 5851
  ident: bib10
  article-title: Characterization and electrocatalytic properties of electrospun Pt-IrO
  publication-title: Int. J. Energy Res.
– volume: 1
  start-page: 177
  year: 2019
  end-page: 183
  ident: bib19
  article-title: Accelerating the water splitting kinetics of CoP microcubes anchored on a graphene electrocatalyst by Mn incorporation
  publication-title: Nanoscale Adv.
– volume: 5
  start-page: 7564
  year: 2017
  end-page: 7570
  ident: bib51
  article-title: Gas-templating of hierarchically structured Ni–Co–P for efficient electrocatalytic hydrogen evolution
  publication-title: J. Mater. Chem. A
– volume: 882
  year: 2021
  ident: bib9
  article-title: Hierarchical Cu@Co-decorated CuO@Co
  publication-title: J. Alloy. Compd.
– volume: 26
  start-page: 6785
  year: 2016
  end-page: 6796
  ident: bib22
  article-title: Mechanistic insights on ternary Ni
  publication-title: Adv. Funct. Mater.
– volume: 258
  year: 2019
  ident: bib39
  article-title: Ni-Co-Mo-O nanosheets decorated with NiCo nanoparticles as advanced electrocatalysts for highly efficient hydrogen evolution
  publication-title: Appl. Catal. B: Environ.
– volume: 6
  start-page: 12506
  year: 2018
  end-page: 12514
  ident: bib47
  article-title: A 3D well-matched electrode pair of Ni–Co–S//Ni–Co–P nanoarrays grown on nickel foam as a high-performance electrocatalyst for water splitting
  publication-title: J. Mater. Chem. A
– volume: 16
  year: 2020
  ident: bib28
  article-title: Amorphous catalysts and electrochemical water splitting: an untold story of harmony
  publication-title: Small
– volume: 8
  start-page: 1
  year: 2021
  end-page: 23
  ident: bib6
  article-title: Hydrogen production from water electrolysis: role of catalysts
  publication-title: Nano Converg.
– volume: 56
  start-page: 1041
  year: 2017
  end-page: 1044
  ident: bib26
  article-title: Fe-doped Ni
  publication-title: Inorg. Chem.
– volume: 6
  start-page: 20297
  year: 2018
  end-page: 20303
  ident: bib36
  article-title: A bifunctional and stable Ni-Co-S/Ni-Co-P bistratal electrocatalyst for 10.8%-efficient overall solar water splitting
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 7191
  year: 2017
  end-page: 7199
  ident: bib25
  article-title: Fe-doped Ni-Co phosphide nanoplates with planar defects as an efficient bifunctional electrocatalyst for overall water splitting
  publication-title: J. Mater. Chem. A
– volume: 883
  year: 2021
  ident: bib4
  article-title: Hierarchical Cu/Cu
  publication-title: J. Alloy. Compd.
– volume: 29
  year: 2016
  ident: bib23
  article-title: Ternary NiCo
  publication-title: Adv. Mater.
– volume: 8
  start-page: 2835
  year: 2020
  end-page: 2842
  ident: bib32
  article-title: Amorphous Co-Mo-P-O bifunctional electrocatalyst via facile electrodeposition for overall water splitting
  publication-title: ACS Sustain. Chem. Eng.
– volume: 53
  start-page: 13153
  year: 2017
  end-page: 13156
  ident: bib40
  article-title: Ru decorated with NiCoP: an efficient and durable hydrogen evolution reaction electrocatalyst in both acidic and alkaline conditions
  publication-title: Chem. Commun.
– volume: 250
  start-page: 163
  year: 2017
  end-page: 173
  ident: bib17
  article-title: Hierarchical (Ni,Co)Se
  publication-title: Electrochim. Acta
– volume: 317
  start-page: 191
  year: 2019
  end-page: 198
  ident: bib33
  article-title: Bimetallic NiCo phosphide nanosheets self-supported on nickel foam as high-performance electrocatalyst for hydrogen evolution reaction
  publication-title: Electrochim. Acta
– volume: 5
  start-page: 7191
  year: 2017
  end-page: 7199
  ident: bib24
  article-title: Self-supported NiMoP
  publication-title: J. Mater. Chem. A
– volume: 91
  start-page: 117
  year: 2017
  end-page: 120
  ident: bib2
  article-title: Controllable electronic transformer based on the resonance structure with switching capacitor for low-rise buildings residential area power supply stabilization systems
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 15
  year: 2019
  ident: bib43
  article-title: Self‐supportive mesoporous Ni/Co/Fe phosphosulfide nanorods derived from novel hydrothermal electrodeposition as a highly efficient electrocatalyst for overall water splitting
  publication-title: Small
– volume: 34
  start-page: 320
  year: 2010
  end-page: 323
  ident: bib45
  article-title: Study of KTiOPO
  publication-title: Surf. Interface Anal.
– volume: 51
  start-page: 1571
  year: 2018
  end-page: 1580
  ident: bib8
  article-title: Innovative strategies for electrocatalytic water splitting
  publication-title: Acc. Chem. Res.
– volume: 883
  year: 2021
  ident: bib3
  article-title: Recent progress of transition metal carbides/nitrides for electrocatalytic water splitting
  publication-title: J. Alloy. Compd.
– volume: 1
  start-page: 483
  year: 2018
  end-page: 530
  ident: bib5
  article-title: Recent progresses in electrocatalysts for water electrolysis
  publication-title: Electrochem. Energy Rev.
– volume: 764
  start-page: 88
  year: 2018
  end-page: 95
  ident: bib20
  article-title: Co
  publication-title: J. Alloy. Compd.
– volume: 323
  year: 2019
  ident: bib34
  article-title: Ultrathin amorphous CoFeP nanosheets derived from CoFe LDHs by partial phosphating as excellent bifunctional catalysts for overall water splitting
  publication-title: Electrochim. Acta
– volume: 4
  start-page: 4704
  year: 2020
  end-page: 4712
  ident: bib27
  article-title: Iron-doped cobalt phosphate 1D amorphous ultrathin nanowires as highly efficient electrocatalyst for water oxidation, Sustainable
  publication-title: Energy Fuels
– volume: 494
  start-page: 749
  year: 2019
  end-page: 755
  ident: bib16
  article-title: Co doped Ni
  publication-title: Appl. Surf. Sci.
– volume: 49
  start-page: 6764
  year: 2020
  end-page: 6775
  ident: bib29
  article-title: Amorphous Ni–Fe–Se hollow nanospheres electrodeposited on nickel foam as a highly active and bifunctional catalyst for alkaline water splitting
  publication-title: Dalton Trans.
– volume: 299
  start-page: 152
  year: 2019
  end-page: 162
  ident: bib35
  article-title: Co
  publication-title: Electrochim. Acta
– volume: 9
  start-page: 2251
  year: 2016
  end-page: 2259
  ident: bib42
  article-title: Ternary NiCoP nanosheet arrays: an excellent bifunctional catalyst for alkaline overall water splitting
  publication-title: Nano Res.
– volume: 53
  start-page: 492
  year: 2018
  end-page: 500
  ident: bib18
  article-title: Ternary Ni
  publication-title: Nano Energy
– volume: 59
  start-page: 1659
  year: 2020
  end-page: 1665
  ident: bib30
  article-title: An engineered superhydrophilic/superaerophobic electrocatalyst composed of the supported CoMoSx chalcogel for overall water splitting
  publication-title: Angew. Chem. Int. Ed.
– volume: 24
  year: 2012
  ident: bib46
  article-title: The electronic structure of RbTiOPO
  publication-title: J. Phys. Condens. Matter Inst. Phys. J.
– volume: 45
  start-page: 24670
  year: 2020
  end-page: 24683
  ident: bib59
  article-title: Electrodeposition of Ni–Fe–Mn ternary nanosheets as affordable and efficient electrocatalyst for both hydrogen and oxygen evolution reactions
  publication-title: Int. J. Hydrog. Energy
– volume: 16
  start-page: 6617
  year: 2016
  ident: bib21
  article-title: Ternary Fe
  publication-title: Nano Lett.
– volume: 330
  start-page: 156
  year: 2016
  end-page: 166
  ident: bib41
  article-title: From water reduction to oxidation: Janus Co-Ni-P nanowires as high-efficiency and ultrastable electrocatalysts for over 3000 h water splitting
  publication-title: J. Power Sources
– volume: 6
  start-page: 10952
  year: 2018
  end-page: 10959
  ident: bib57
  article-title: Formation of yolk-shelled nickel-cobalt selenide dodecahedral nanocages from metal-organic frameworks for efficient hydrogen and oxygen evolution
  publication-title: ACS Sustain. Chem. Eng.
– volume: 192
  start-page: 126
  year: 2016
  end-page: 133
  ident: bib56
  article-title: Co-Ni-B nanocatalyst for efficient hydrogen evolution reaction in wide pH range
  publication-title: Appl. Catal. B: Environ.
– volume: 45
  start-page: 18753
  year: 2020
  end-page: 18771
  ident: bib1
  article-title: Emerging technologies by hydrogen: a review
  publication-title: Int. J. Hydrog. Energy
– volume: 465
  start-page: 846
  year: 2018
  end-page: 862
  ident: bib12
  article-title: Three-dimensional Ni-Co alloy hierarchical nanostructure as efficient non-noble-metal electrocatalyst for hydrogen evolution reaction
  publication-title: Appl. Surf. Sci.
– volume: 494
  start-page: 179
  year: 2019
  end-page: 186
  ident: bib15
  article-title: Synthesis and mechanism investigation of three-dimensional porous CoP
  publication-title: Appl. Surf. Sci.
– volume: 16
  year: 2020
  ident: 10.1016/j.jallcom.2021.163103_bib28
  article-title: Amorphous catalysts and electrochemical water splitting: an untold story of harmony
  publication-title: Small
  doi: 10.1002/smll.201905779
– volume: 91
  start-page: 117
  year: 2017
  ident: 10.1016/j.jallcom.2021.163103_bib2
  article-title: Controllable electronic transformer based on the resonance structure with switching capacitor for low-rise buildings residential area power supply stabilization systems
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2017.03.004
– volume: 5
  start-page: 7564
  year: 2017
  ident: 10.1016/j.jallcom.2021.163103_bib51
  article-title: Gas-templating of hierarchically structured Ni–Co–P for efficient electrocatalytic hydrogen evolution
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA01716B
– volume: 301
  year: 2022
  ident: 10.1016/j.jallcom.2021.163103_bib7
  article-title: Synergistic effect in ultrafine PtNiP nanowires for highly efficient electrochemical hydrogen evolution in alkaline electrolyte
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2021.120754
– volume: 24
  year: 2012
  ident: 10.1016/j.jallcom.2021.163103_bib46
  article-title: The electronic structure of RbTiOPO4 and the effects of the A-site cation substitution in KTiOPO4-family crystals
  publication-title: J. Phys. Condens. Matter Inst. Phys. J.
– volume: 44
  start-page: 24140
  year: 2019
  ident: 10.1016/j.jallcom.2021.163103_bib54
  article-title: Facile one-step fabrication of bimetallic Co-Ni-P hollow nanospheres anchored on reduced graphene oxide as highly efficient electrocatalyst for hydrogen evolution reaction
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2019.07.139
– volume: 4
  start-page: 4704
  year: 2020
  ident: 10.1016/j.jallcom.2021.163103_bib27
  article-title: Iron-doped cobalt phosphate 1D amorphous ultrathin nanowires as highly efficient electrocatalyst for water oxidation, Sustainable
  publication-title: Energy Fuels
– volume: 883
  year: 2021
  ident: 10.1016/j.jallcom.2021.163103_bib4
  article-title: Hierarchical Cu/Cu2O structure derived from hexagonal Cu9S5 nanocrystal with enhanced electrocatalytic ability for hydrogen evolution reaction
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2021.160816
– volume: 8
  start-page: 1
  year: 2021
  ident: 10.1016/j.jallcom.2021.163103_bib6
  article-title: Hydrogen production from water electrolysis: role of catalysts
  publication-title: Nano Converg.
  doi: 10.1186/s40580-021-00254-x
– volume: 355
  start-page: 1
  year: 2017
  ident: 10.1016/j.jallcom.2021.163103_bib11
  article-title: Combining theory and experiment in electrocatalysis: insights into materials design
  publication-title: Science
  doi: 10.1126/science.aad4998
– volume: 43
  start-page: 7872
  year: 2018
  ident: 10.1016/j.jallcom.2021.163103_bib44
  article-title: Amorphous film of ternary Ni-Co-P alloy on Ni foam for efficient hydrogen evolution by electroless deposition
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2018.03.003
– volume: 53
  start-page: 492
  year: 2018
  ident: 10.1016/j.jallcom.2021.163103_bib18
  article-title: Ternary Ni2(1−x)Mo2xP nanowire arrays toward efficient and stable hydrogen evolution electrocatalysis under large-current-density
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.08.025
– volume: 45
  start-page: 24670
  year: 2020
  ident: 10.1016/j.jallcom.2021.163103_bib59
  article-title: Electrodeposition of Ni–Fe–Mn ternary nanosheets as affordable and efficient electrocatalyst for both hydrogen and oxygen evolution reactions
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2020.06.249
– volume: 6
  start-page: 20297
  year: 2018
  ident: 10.1016/j.jallcom.2021.163103_bib36
  article-title: A bifunctional and stable Ni-Co-S/Ni-Co-P bistratal electrocatalyst for 10.8%-efficient overall solar water splitting
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA07197G
– volume: 461
  year: 2020
  ident: 10.1016/j.jallcom.2021.163103_bib38
  article-title: Nickel foam supported cobalt phosphate electrocatalyst for alkaline oxygen evolution reaction
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.228165
– volume: 10
  start-page: 23070
  year: 2018
  ident: 10.1016/j.jallcom.2021.163103_bib53
  article-title: C60-Decorated nickel–cobalt phosphide as an efficient and robust electrocatalyst for hydrogen evolution reaction
  publication-title: Nanoscale
  doi: 10.1039/C8NR07472K
– volume: 34
  start-page: 320
  year: 2010
  ident: 10.1016/j.jallcom.2021.163103_bib45
  article-title: Study of KTiOPO4 surface by x-ray photoelectron spectroscopy and reflection high-energy electron diffraction
  publication-title: Surf. Interface Anal.
  doi: 10.1002/sia.1309
– volume: 44
  start-page: 5148
  year: 2015
  ident: 10.1016/j.jallcom.2021.163103_bib52
  article-title: Noble metal-free hydrogen evolution catalysts for water splitting
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00448E
– volume: 299
  start-page: 152
  year: 2019
  ident: 10.1016/j.jallcom.2021.163103_bib35
  article-title: Co9S8–Ni3S2 heterointerfaced nanotubes on Ni foam as highly efficient and flexible bifunctional electrodes for water splitting
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.01.001
– volume: 330
  start-page: 156
  year: 2016
  ident: 10.1016/j.jallcom.2021.163103_bib41
  article-title: From water reduction to oxidation: Janus Co-Ni-P nanowires as high-efficiency and ultrastable electrocatalysts for over 3000 h water splitting
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.08.126
– volume: 13
  start-page: 2130
  year: 2020
  ident: 10.1016/j.jallcom.2021.163103_bib58
  article-title: Facile synthesis of Co and Ce dual-doped Ni3S2 nanosheets on Ni foam for enhanced oxygen evolution reaction
  publication-title: Nano Res.
  doi: 10.1007/s12274-020-2819-4
– volume: 1
  start-page: 177
  year: 2019
  ident: 10.1016/j.jallcom.2021.163103_bib19
  article-title: Accelerating the water splitting kinetics of CoP microcubes anchored on a graphene electrocatalyst by Mn incorporation
  publication-title: Nanoscale Adv.
  doi: 10.1039/C8NA00261D
– volume: 8
  start-page: 2835
  year: 2020
  ident: 10.1016/j.jallcom.2021.163103_bib32
  article-title: Amorphous Co-Mo-P-O bifunctional electrocatalyst via facile electrodeposition for overall water splitting
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b06929
– volume: 764
  start-page: 88
  year: 2018
  ident: 10.1016/j.jallcom.2021.163103_bib20
  article-title: Co0.5Ni0.5P nanoparticles embedded in carbon layers for efficient electrochemical water splitting
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2018.06.008
– volume: 345
  year: 2020
  ident: 10.1016/j.jallcom.2021.163103_bib49
  article-title: Surface reconstruction of NiCoP pre-catalysts for bifunctional water splitting in alkaline electrolyte
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2020.136114
– volume: 45
  start-page: 18753
  year: 2020
  ident: 10.1016/j.jallcom.2021.163103_bib1
  article-title: Emerging technologies by hydrogen: a review
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2020.05.021
– volume: 29
  year: 2016
  ident: 10.1016/j.jallcom.2021.163103_bib23
  article-title: Ternary NiCo2Px nanowires as pH‐universal electrocatalysts for highly efficient hydrogen evolution reaction
  publication-title: Adv. Mater.
– volume: 882
  year: 2021
  ident: 10.1016/j.jallcom.2021.163103_bib9
  article-title: Hierarchical Cu@Co-decorated CuO@Co3O4 nanostructure on Cu foam as efficient self-supported catalyst for hydrogen evolution reaction
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2021.160749
– volume: 137
  start-page: 15753
  year: 2015
  ident: 10.1016/j.jallcom.2021.163103_bib13
  article-title: Molybdenum-carbide-modified nitrogen-doped carbon vesicle encapsulating nickel nanoparticles: a highly efficient, low-cost catalyst for hydrogen evolution reaction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b07924
– volume: 250
  start-page: 163
  year: 2017
  ident: 10.1016/j.jallcom.2021.163103_bib17
  article-title: Hierarchical (Ni,Co)Se2/carbon hollow rhombic dodecahedra derived from metal-organic frameworks for efficient water-splitting electrocatalysis
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.08.047
– volume: 9
  start-page: 2251
  year: 2016
  ident: 10.1016/j.jallcom.2021.163103_bib42
  article-title: Ternary NiCoP nanosheet arrays: an excellent bifunctional catalyst for alkaline overall water splitting
  publication-title: Nano Res.
  doi: 10.1007/s12274-016-1112-z
– volume: 45
  start-page: 5841
  year: 2020
  ident: 10.1016/j.jallcom.2021.163103_bib10
  article-title: Characterization and electrocatalytic properties of electrospun Pt-IrO2 nanofiber catalysts for oxygen evolution reaction
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.6204
– volume: 56
  start-page: 1041
  year: 2017
  ident: 10.1016/j.jallcom.2021.163103_bib26
  article-title: Fe-doped Ni2P nanosheet array for high-efficiency electrochemical water oxidation
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.6b02808
– volume: 317
  start-page: 191
  year: 2019
  ident: 10.1016/j.jallcom.2021.163103_bib33
  article-title: Bimetallic NiCo phosphide nanosheets self-supported on nickel foam as high-performance electrocatalyst for hydrogen evolution reaction
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.05.150
– volume: 49
  start-page: 6764
  year: 2020
  ident: 10.1016/j.jallcom.2021.163103_bib29
  article-title: Amorphous Ni–Fe–Se hollow nanospheres electrodeposited on nickel foam as a highly active and bifunctional catalyst for alkaline water splitting
  publication-title: Dalton Trans.
  doi: 10.1039/C9DT04755G
– volume: 50
  start-page: 395
  year: 2020
  ident: 10.1016/j.jallcom.2021.163103_bib37
  article-title: NiCoP nanoleaves array for electrocatalytic alkaline H2 evolution and overall water splitting
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2020.03.046
– volume: 323
  year: 2019
  ident: 10.1016/j.jallcom.2021.163103_bib34
  article-title: Ultrathin amorphous CoFeP nanosheets derived from CoFe LDHs by partial phosphating as excellent bifunctional catalysts for overall water splitting
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.134595
– volume: 15
  year: 2019
  ident: 10.1016/j.jallcom.2021.163103_bib43
  article-title: Self‐supportive mesoporous Ni/Co/Fe phosphosulfide nanorods derived from novel hydrothermal electrodeposition as a highly efficient electrocatalyst for overall water splitting
  publication-title: Small
  doi: 10.1002/smll.201905201
– volume: 5
  start-page: 7191
  year: 2017
  ident: 10.1016/j.jallcom.2021.163103_bib25
  article-title: Fe-doped Ni-Co phosphide nanoplates with planar defects as an efficient bifunctional electrocatalyst for overall water splitting
  publication-title: J. Mater. Chem. A
– volume: 883
  year: 2021
  ident: 10.1016/j.jallcom.2021.163103_bib3
  article-title: Recent progress of transition metal carbides/nitrides for electrocatalytic water splitting
  publication-title: J. Alloy. Compd.
– volume: 8
  start-page: 19129
  year: 2016
  ident: 10.1016/j.jallcom.2021.163103_bib50
  article-title: Hierarchical nickel–cobalt phosphide yolk–shell spheres as highly active and stable bifunctional electrocatalysts for overall water splitting
  publication-title: Nanoscale
  doi: 10.1039/C6NR07009D
– volume: 6
  start-page: 12506
  year: 2018
  ident: 10.1016/j.jallcom.2021.163103_bib47
  article-title: A 3D well-matched electrode pair of Ni–Co–S//Ni–Co–P nanoarrays grown on nickel foam as a high-performance electrocatalyst for water splitting
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA03163K
– volume: 58
  start-page: 15772
  year: 2019
  ident: 10.1016/j.jallcom.2021.163103_bib31
  article-title: Scaled‐up synthesis of amorphous NiFeMo oxides and their rapid surface reconstruction for superior oxygen evolution catalysis
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201909939
– volume: 8
  start-page: 34270
  year: 2016
  ident: 10.1016/j.jallcom.2021.163103_bib55
  article-title: Surface roughening of nickel cobalt phosphide nanowire arrays/ni foam for enhanced hydrogen evolution activity
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b07226
– volume: 16
  start-page: 6617
  year: 2016
  ident: 10.1016/j.jallcom.2021.163103_bib21
  article-title: Ternary FexCo1–xP nanowire array as a robust hydrogen evolution reaction electrocatalyst with Pt-like activity: experimental and theoretical insight
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b03332
– start-page: 14828
  year: 2017
  ident: 10.1016/j.jallcom.2021.163103_bib48
  article-title: Hierarchical NiCoP nanocone arrays supported on Ni foam as an efficient and stable bifunctional electrocatalyst for overall water splitting
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA03947F
– volume: 53
  start-page: 13153
  year: 2017
  ident: 10.1016/j.jallcom.2021.163103_bib40
  article-title: Ru decorated with NiCoP: an efficient and durable hydrogen evolution reaction electrocatalyst in both acidic and alkaline conditions
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC08340H
– volume: 51
  start-page: 1571
  year: 2018
  ident: 10.1016/j.jallcom.2021.163103_bib8
  article-title: Innovative strategies for electrocatalytic water splitting
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00002
– volume: 5
  start-page: 7191
  year: 2017
  ident: 10.1016/j.jallcom.2021.163103_bib24
  article-title: Self-supported NiMoP2 nanowires on carbon cloth as an efficient and durable electrocatalyst for overall water splitting
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA11188B
– volume: 6
  start-page: 10952
  year: 2018
  ident: 10.1016/j.jallcom.2021.163103_bib57
  article-title: Formation of yolk-shelled nickel-cobalt selenide dodecahedral nanocages from metal-organic frameworks for efficient hydrogen and oxygen evolution
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b02343
– volume: 192
  start-page: 126
  year: 2016
  ident: 10.1016/j.jallcom.2021.163103_bib56
  article-title: Co-Ni-B nanocatalyst for efficient hydrogen evolution reaction in wide pH range
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2016.03.032
– volume: 465
  start-page: 846
  year: 2018
  ident: 10.1016/j.jallcom.2021.163103_bib12
  article-title: Three-dimensional Ni-Co alloy hierarchical nanostructure as efficient non-noble-metal electrocatalyst for hydrogen evolution reaction
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.09.204
– volume: 494
  start-page: 179
  year: 2019
  ident: 10.1016/j.jallcom.2021.163103_bib15
  article-title: Synthesis and mechanism investigation of three-dimensional porous CoP3 nanoplate arrays as efficient hydrogen evolution reaction electrocatalyst
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.07.156
– volume: 258
  year: 2019
  ident: 10.1016/j.jallcom.2021.163103_bib39
  article-title: Ni-Co-Mo-O nanosheets decorated with NiCo nanoparticles as advanced electrocatalysts for highly efficient hydrogen evolution
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2019.117953
– volume: 494
  start-page: 749
  year: 2019
  ident: 10.1016/j.jallcom.2021.163103_bib16
  article-title: Co doped Ni0.85Se nanoparticles on RGO as efficient electrocatalysts for hydrogen evolution reaction
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.07.231
– volume: 26
  start-page: 6785
  year: 2016
  ident: 10.1016/j.jallcom.2021.163103_bib22
  article-title: Mechanistic insights on ternary Ni2−xCoxP for hydrogen evolution and their hybrids with graphene as highly efficient and robust catalysts for overall water splitting
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201601420
– volume: 59
  start-page: 1659
  year: 2020
  ident: 10.1016/j.jallcom.2021.163103_bib30
  article-title: An engineered superhydrophilic/superaerophobic electrocatalyst composed of the supported CoMoSx chalcogel for overall water splitting
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201911617
– volume: 29
  year: 2019
  ident: 10.1016/j.jallcom.2021.163103_bib14
  article-title: Engineering an earth-abundant element-based bifunctional electrocatalyst for highly efficient and durable overall water splitting
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201807031
– volume: 1
  start-page: 483
  year: 2018
  ident: 10.1016/j.jallcom.2021.163103_bib5
  article-title: Recent progresses in electrocatalysts for water electrolysis
  publication-title: Electrochem. Energy Rev.
  doi: 10.1007/s41918-018-0014-z
SSID ssj0001931
Score 2.5525954
Snippet •NiCoP/CC with high catalytic performance was successfully synthesized via a one-step method.•The electrodeposition and phosphating reactions were carried out...
Exploring a simple, low-cost preparation method to synthesize excellent catalyst for hydrogen evolution reaction (HER) in alkaline solution is highly...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 163103
SubjectTerms Alkaline solution
Amorphous structure
Bimetals
Carbon
Catalytic activity
Charge transfer
Chemical synthesis
Cloth
Current density
Electrocatalysts
Electrolysis
HER
Hydrogen evolution reactions
Hydrogen production
Nanoparticles
Nanowires
NiCoP nanoparticles
One-step electrodeposition
Phosphides
Room temperature
Water electrolysis
Title One-step synthesis of amorphous NiCoP nanoparticles by electrodeposition as highly efficient electrocatalyst for hydrogen evolution reaction in alkaline solution
URI https://dx.doi.org/10.1016/j.jallcom.2021.163103
https://www.proquest.com/docview/2637663251
Volume 896
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hEAIOCJYiKA_NodfsI3FeR7QqWkAsSC0SN8tOHDVLSFabpdJe-C_8U8Zeu7TlgMQpSmJb0cyXmc_JPAC-FQPl9wsWe6GQfY9lUd-TeSA96esalCJLAqHzna_H0eiOXd6H9yswdLkwOqzS2v6lTTfW2l7pWWn2pmXZ-9FPff3PL6FNCwsHgU74ZSzWKO8-v4V5EEExXfNosKdHv2Xx9CbdiagqHTTik6frEjMZuN5Z7_3Tf5bauJ_zHdi2vBHPlo-2Cyuq7sDG0LVr68DWX5UFO7BuIjuzdg9ebmrlkSqn2C5qYntt2WJToHhsSMK07cdxOWxusRY1bZ9tlBzKBdr-OLlyYV0oWtTFjSu6Z-pOkLtyo8xHoEU7R6LA-GuRzxrCJarfFtdIzNTkT2BJy1QPQnNbdKj_Anfn338OR57ty-BlQRDPyT4Sz2NFIBPSs09ONldRxMjbqojlugB8QJKMdB0ZSQiRxAGlyouCDnHmSzKx-7BaN7U6AMxVyqIiDZOU6WbnKdE1IeM0FDmdBkV8CMxpg2e2aLnunVFxF5024VaJXCuRL5V4CN0_06bLqh0fTUicqvk_8OPkWT6aeuygwe3733ISQkxcjsjj18-vfASbvk62MNGDx7A6nz2pE6JAc3lqMH4Ka2cXV6PxK1RtCms
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIlR6QLBQ0VLAB67ZR-K8jtWKaoF2QaKVerPsxBFZ0mTVLEh76X_pP-1nr015HCpxipLYVjQzmfmcfDND9K6a6HBc8TSIpRoHvEjGgSojFajQ1KCURRZJk-98Ok9m5_zjRXyxRVOfC2Nolc73b3y69dbuyshJc7Ss69HXcR6af34ZNi08nkTZA3rI8fqaNgbD6zueBxCKbZuH0YEZfpfGM1oMF7JpDGskRKgbAppMfPOsfwPUX67axp_jp_TEAUd2tHm2Z7Sl2wHtTH2_tgHt_lZacECPLLWz6J_TzedWB9DlkvXrFnCvr3vWVUxedhAx9v1sXk-7L6yVLfbPjibH1Jq5Bjml9rwuJntmqhs3uGcLTyBe-VH2K9C6XzFgYPZtXV51MEymfzrDZoCmNoGC1Vim-S4NuGXe7F_Q-fH7s-kscI0ZgiKK0hUcJIAeryKVQdEhomypk4Qj3OqEl6YCfARJJqaQjIKJKIBApcuqwiEtQgUfu0fbbdfql8RKnfOkyuMs56bbeQ68JlWax7LEaVSl-8S9NkThqpab5hmN8PS0hXBKFEaJYqPEfRr-mrbclO24b0LmVS3-sD-B0HLf1ENvGsI5gF5ACCnAHNDjwf-v_JZ2ZmenJ-Lkw_zTK3ocmswLSyU8pO3V1Q_9Gnhopd5Ye78FTF0L-Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=One-step+synthesis+of+amorphous+NiCoP+nanoparticles+by+electrodeposition+as+highly+efficient+electrocatalyst+for+hydrogen+evolution+reaction+in+alkaline+solution&rft.jtitle=Journal+of+alloys+and+compounds&rft.au=Cao%2C+Yanpeng&rft.au=Chen%2C+Zhichao&rft.au=Ye%2C+Feng&rft.au=Yang%2C+Yakun&rft.date=2022-03-10&rft.issn=0925-8388&rft.volume=896&rft.spage=163103&rft_id=info:doi/10.1016%2Fj.jallcom.2021.163103&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jallcom_2021_163103
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-8388&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-8388&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-8388&client=summon