Facile preparation of hydrogen-bonded supramolecular polyvinyl alcohol-glycerol gels with excellent thermoplasticity and mechanical properties
Facile preparation of tough hydrogels with excellent processability is of great practical importance, but it remains a great challenge. A novel type of hydrogen-bonded supramolecular PVA-glycerol gels is prepared with a very simple physical mixing method, in which glycerol molecules connect PVA chai...
Saved in:
Published in | Polymer (Guilford) Vol. 111; pp. 168 - 176 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
24.02.2017
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Facile preparation of tough hydrogels with excellent processability is of great practical importance, but it remains a great challenge. A novel type of hydrogen-bonded supramolecular PVA-glycerol gels is prepared with a very simple physical mixing method, in which glycerol molecules connect PVA chains into bundles by forming many H-bonds. The PVA-glycerol gels show much higher transparency than common PVA gels, due to their lower crystallinities and nanosized microstructures. The physical crosslinking nature and easy gelation at room temperature endow the gels with excellent moldability and thermoplasticity. The easy breaking of the H-bonding provides an effective energy-dissipating mechanism, leading to the high tensile strengths (up to more than 2 MPa), moduli, toughness and fracture energies of the gels. The PVA-glycerol gels also exhibit weaker temperature-dependent mechanical behaviors and excellent cold-resistance. The easy preparation and excellent properties of these gels should facilitate the practical applications of tough gels in many fields.
Nanostructured PVA-glycerol gels are formed through the self-assembly of PVA and glycerol molecules. The supramolecular hydrogels show excellent moldability, thermoplasticity and mechanical properties. [Display omitted]
•Facile preparation of hydrogen-bonded supramolecular PVA-glycerol gels.•The gels exhibit excellent moldability, thermoplasticity and cold-resistance.•The gels show high tensile strengths, moduli, toughness and fracture energies. |
---|---|
AbstractList | Facile preparation of tough hydrogels with excellent processability is of great practical importance, but it remains a great challenge. A novel type of hydrogen-bonded supramolecular PVA-glycerol gels is prepared with a very simple physical mixing method, in which glycerol molecules connect PVA chains into bundles by forming many H-bonds. The PVA-glycerol gels show much higher transparency than common PVA gels, due to their lower crystallinities and nanosized microstructures. The physical crosslinking nature and easy gelation at room temperature endow the gels with excellent moldability and thermoplasticity. The easy breaking of the H-bonding provides an effective energy-dissipating mechanism, leading to the high tensile strengths (up to more than 2 MPa), moduli, toughness and fracture energies of the gels. The PVA-glycerol gels also exhibit weaker temperature-dependent mechanical behaviors and excellent cold-resistance. The easy preparation and excellent properties of these gels should facilitate the practical applications of tough gels in many fields.
Nanostructured PVA-glycerol gels are formed through the self-assembly of PVA and glycerol molecules. The supramolecular hydrogels show excellent moldability, thermoplasticity and mechanical properties. [Display omitted]
•Facile preparation of hydrogen-bonded supramolecular PVA-glycerol gels.•The gels exhibit excellent moldability, thermoplasticity and cold-resistance.•The gels show high tensile strengths, moduli, toughness and fracture energies. Facile preparation of tough hydrogels with excellent processability is of great practical importance, but it remains a great challenge. A novel type of hydrogen-bonded supramolecular PVA-glycerol gels is prepared with a very simple physical mixing method, in which glycerol molecules connect PVA chains into bundles by forming many H-bonds. The PVA-glycerol gels show much higher transparency than common PVA gels, due to their lower crystallinities and nanosized microstructures. The physical crosslinking nature and easy gelation at room temperature endow the gels with excellent moldability and thermoplasticity. The easy breaking of the H-bonding provides an effective energy-dissipating mechanism, leading to the high tensile strengths (up to more than 2 MPa), moduli, toughness and fracture energies of the gels. The PVA-glycerol gels also exhibit weaker temperature-dependent mechanical behaviors and excellent cold-resistance. The easy preparation and excellent properties of these gels should facilitate the practical applications of tough gels in many fields. |
Author | Wang, Huiliang He, Changcheng Liu, Tianqi Peng, Xin Shi, Shengjie Chen, Ya-Nan |
Author_xml | – sequence: 1 givenname: Shengjie surname: Shi fullname: Shi, Shengjie – sequence: 2 givenname: Xin surname: Peng fullname: Peng, Xin – sequence: 3 givenname: Tianqi surname: Liu fullname: Liu, Tianqi – sequence: 4 givenname: Ya-Nan surname: Chen fullname: Chen, Ya-Nan – sequence: 5 givenname: Changcheng orcidid: 0000-0002-6372-5397 surname: He fullname: He, Changcheng – sequence: 6 givenname: Huiliang orcidid: 0000-0001-7964-0809 surname: Wang fullname: Wang, Huiliang email: wanghl@bnu.edu.cn |
BookMark | eNqFkE1v1DAQhi1UJLalP6GSJc4JtvMtDghVFJAqcaFnyxlPNl45drC9hfyJ_uZ62Z649DSHmed9Nc8luXDeISE3nJWc8fbjoVy93RYMpWC8KxkvWcPfkB3vu6oQYuAXZMdYJYqqb_k7chnjgTEmGlHvyNOdAmORrgFXFVQy3lE_0XnTwe_RFaN3GjWNxzWoxVuEo1WBnvoejdssVRb87G2xtxtg8Jbu0Ub6x6SZ4l9Aa9ElmmYMi1-tismASRtVTtMFYVbOgLK53K8YksH4nrydlI14_TKvyMPd11-334v7n99-3H65L6CqulT0Iyo9TMCmth11CwxV10wMh77DZhpBt32lsGUooFOiHkehu7GBeugH3WcT1RX5cM7N1b-PGJM8-GNwuVLyoe7rljV9la-a8xUEH2PASa7BLCpskjN5Ui8P8kW9PKmXjMusPnOf_uPy1__cpqCMfZX-fKazSXw0eRvBoAPUJiAkqb15JeEZ2gOr1w |
CitedBy_id | crossref_primary_10_1021_acssuschemeng_1c02464 crossref_primary_10_1002_marc_201800050 crossref_primary_10_1016_j_cej_2019_122926 crossref_primary_10_1002_mame_202100549 crossref_primary_10_1002_marc_202100618 crossref_primary_10_1002_adfm_202108423 crossref_primary_10_1039_C9SM01413F crossref_primary_10_1002_smll_202409565 crossref_primary_10_1016_j_mtcomm_2021_102757 crossref_primary_10_1016_j_carbpol_2019_115051 crossref_primary_10_1016_j_cej_2025_160946 crossref_primary_10_1021_acsami_0c04933 crossref_primary_10_1021_acsapm_2c00160 crossref_primary_10_1039_D1MH01871J crossref_primary_10_1016_j_seppur_2023_124223 crossref_primary_10_1039_C9TC05804D crossref_primary_10_1016_j_carbpol_2022_119268 crossref_primary_10_1002_aenm_201801967 crossref_primary_10_1021_acsomega_8b02041 crossref_primary_10_1016_j_cej_2020_127544 crossref_primary_10_1016_j_mtchem_2022_101085 crossref_primary_10_1021_acsami_8b17440 crossref_primary_10_1021_acsapm_1c01824 crossref_primary_10_1002_mame_201700527 crossref_primary_10_1002_admt_202401325 crossref_primary_10_1007_s12274_019_2300_4 crossref_primary_10_1039_D4SC05295A crossref_primary_10_1016_j_giant_2020_100014 crossref_primary_10_1016_j_polymer_2022_125661 crossref_primary_10_1016_j_jmrt_2022_10_115 crossref_primary_10_1016_j_eurpolymj_2018_07_024 crossref_primary_10_1039_C9TC03475G crossref_primary_10_1016_j_compositesb_2020_108492 crossref_primary_10_1039_D0CC05469K crossref_primary_10_1039_D1TC04514H crossref_primary_10_1007_s10118_021_2607_y crossref_primary_10_1002_slct_201800298 crossref_primary_10_3390_polym10101102 crossref_primary_10_1016_j_jpowsour_2023_233453 crossref_primary_10_1002_admt_202201020 crossref_primary_10_1016_j_jiec_2022_09_011 crossref_primary_10_1089_bio_2023_0108 crossref_primary_10_1007_s11581_024_05535_z crossref_primary_10_1021_acsami_0c21841 crossref_primary_10_1515_ijfe_2020_0185 crossref_primary_10_1016_j_carbpol_2020_117019 crossref_primary_10_3390_en17184530 crossref_primary_10_1016_j_ijbiomac_2021_07_026 crossref_primary_10_1039_C9TA13407G crossref_primary_10_3390_ijms222112022 crossref_primary_10_1039_D1NR07226A crossref_primary_10_1007_s10118_018_2105_z crossref_primary_10_1021_acsami_0c12176 crossref_primary_10_1021_acsami_9b20573 crossref_primary_10_1007_s40820_023_01148_9 crossref_primary_10_1016_j_compscitech_2020_108608 crossref_primary_10_1002_chem_201801302 crossref_primary_10_3390_polym15183782 crossref_primary_10_1016_j_polymer_2019_122003 crossref_primary_10_1021_acsapm_1c00042 crossref_primary_10_1016_j_ijhydene_2022_10_201 crossref_primary_10_1021_acsami_7b15843 crossref_primary_10_1002_app_49118 crossref_primary_10_1016_j_bioadv_2022_213244 crossref_primary_10_1002_cphc_201900545 crossref_primary_10_1016_j_compositesb_2021_109528 crossref_primary_10_1016_j_jcis_2021_09_125 crossref_primary_10_1002_app_51925 crossref_primary_10_1039_D2TC02148J crossref_primary_10_1080_15567036_2018_1495786 crossref_primary_10_1039_C8NR05897K crossref_primary_10_1039_D3TC03533F crossref_primary_10_1016_j_mtcomm_2019_100609 crossref_primary_10_1016_j_colsurfa_2021_127823 crossref_primary_10_1039_D0RA07322A crossref_primary_10_1021_acsmaterialslett_3c01664 crossref_primary_10_1016_j_colsurfa_2025_136383 crossref_primary_10_1039_D0TC05255H crossref_primary_10_1002_cssc_201902079 crossref_primary_10_1039_C8TB01668B crossref_primary_10_1039_D3TC04479C crossref_primary_10_1140_epjp_i2019_13079_y crossref_primary_10_1021_acsami_2c08042 crossref_primary_10_1021_acsaem_9b02379 crossref_primary_10_1002_adfm_202313395 crossref_primary_10_36561_ING_27_5 crossref_primary_10_1021_acsomega_4c04851 crossref_primary_10_1016_j_jmst_2022_06_002 crossref_primary_10_1039_D1TA04336F crossref_primary_10_1039_D2TC03364J crossref_primary_10_1039_D0TC02986F crossref_primary_10_1016_j_mattod_2023_11_014 crossref_primary_10_1016_j_polymer_2024_127257 crossref_primary_10_1021_acssuschemeng_1c06741 crossref_primary_10_1039_C8TB02556H crossref_primary_10_1002_polb_24724 crossref_primary_10_1039_D4TA02576H crossref_primary_10_1002_smll_202302727 crossref_primary_10_1016_j_ensm_2023_01_034 crossref_primary_10_1016_j_jpowsour_2019_227472 crossref_primary_10_1021_acsapm_4c01350 crossref_primary_10_1016_j_jphotochem_2023_115262 crossref_primary_10_1021_acssuschemeng_0c01111 crossref_primary_10_1021_acsapm_2c00487 crossref_primary_10_1002_app_50979 crossref_primary_10_3390_pharmaceutics11080389 crossref_primary_10_15251_CL_2022_193_217 crossref_primary_10_1021_acsami_1c02242 crossref_primary_10_1002_pen_26538 crossref_primary_10_1039_C9TC06338B crossref_primary_10_1016_j_apmt_2025_102675 crossref_primary_10_1021_acsami_2c07213 crossref_primary_10_1039_C8TA12360H crossref_primary_10_1016_j_colsurfa_2019_03_027 crossref_primary_10_3390_gels9010007 crossref_primary_10_1016_j_eurpolymj_2019_109465 crossref_primary_10_1021_acsami_8b12106 crossref_primary_10_1039_D0MH01029D crossref_primary_10_1007_s10853_019_04101_7 crossref_primary_10_1016_j_apmt_2022_101367 crossref_primary_10_1039_C9TC02719J crossref_primary_10_1016_j_sna_2023_114813 crossref_primary_10_1039_D0CC05130F crossref_primary_10_1016_j_coco_2024_102208 crossref_primary_10_1002_adma_202007559 crossref_primary_10_1016_j_cej_2021_128903 crossref_primary_10_1038_s41598_024_75235_1 crossref_primary_10_1039_D0TA01553A crossref_primary_10_1002_mame_202000285 crossref_primary_10_1039_C7PY02097J crossref_primary_10_1016_j_jallcom_2022_163658 crossref_primary_10_1016_j_jechem_2022_04_029 crossref_primary_10_1016_j_jmrt_2021_06_088 crossref_primary_10_3389_fchem_2020_00102 crossref_primary_10_3390_polym15204047 crossref_primary_10_1016_j_talanta_2024_126768 crossref_primary_10_1016_j_ceramint_2024_08_252 crossref_primary_10_1080_87559129_2020_1858313 crossref_primary_10_3390_polym12112670 crossref_primary_10_3390_polym15143087 crossref_primary_10_1016_j_bej_2023_108845 crossref_primary_10_1002_slct_202200201 crossref_primary_10_1016_j_mtcomm_2022_104551 crossref_primary_10_3390_polym16172421 crossref_primary_10_1016_j_mtcomm_2021_102375 crossref_primary_10_1039_D0TB00424C crossref_primary_10_1021_acsami_4c06662 crossref_primary_10_1016_j_memsci_2019_117740 crossref_primary_10_1039_D4EE03820G crossref_primary_10_1039_C9TB00372J crossref_primary_10_3390_polym12030532 crossref_primary_10_1021_acsami_1c07563 crossref_primary_10_1039_C7PY01105A crossref_primary_10_3390_polym14193941 crossref_primary_10_1002_app_53076 crossref_primary_10_1016_j_est_2023_106926 crossref_primary_10_1021_acsami_9b11032 crossref_primary_10_1039_D4TA00748D crossref_primary_10_1039_D0TB02250K crossref_primary_10_1016_j_cis_2021_102408 crossref_primary_10_1016_j_ijbiomac_2024_131203 crossref_primary_10_1016_j_ijbiomac_2020_08_115 crossref_primary_10_3390_biomimetics9110714 crossref_primary_10_1016_j_cej_2022_139898 crossref_primary_10_1007_s40843_021_1961_1 crossref_primary_10_1080_10584587_2020_1803675 crossref_primary_10_2174_0122117385266276230928064235 crossref_primary_10_1021_acsapm_3c02580 crossref_primary_10_1021_acs_chemmater_1c04211 crossref_primary_10_1007_s10008_023_05631_6 crossref_primary_10_1021_acsapm_2c01546 crossref_primary_10_1002_adma_202104006 crossref_primary_10_1016_j_polymer_2019_02_012 |
Cites_doi | 10.1002/adma.201500534 10.1002/adfm.201404357 10.1021/acs.langmuir.5b03474 10.1016/j.polymer.2015.03.079 10.1002/adma.201503724 10.1021/mz300451r 10.1039/c2sm26102b 10.1007/BF01412597 10.1021/ma800476x 10.1021/acsmacrolett.6b00346 10.1039/c2sm27605d 10.1021/acsami.6b08374 10.1002/1521-4095(200104)13:7<485::AID-ADMA485>3.0.CO;2-T 10.1002/adma.200800534 10.1002/adma.201405022 10.1021/mz5007014 10.1016/j.carbpol.2006.02.016 10.1021/acsmacrolett.5b00501 10.1016/j.polymer.2012.03.013 10.1002/adma.200602533 10.1002/adma.201601742 10.1039/C4TB01194E 10.1016/S0144-8617(00)00242-3 10.1038/35025027 10.1016/j.polymer.2013.01.025 10.1021/mz5002355 10.1021/mz3006389 10.1126/science.1240228 10.1021/acsami.6b09881 10.1021/ma9907587 10.1002/adma.200802205 10.1021/ma401053c 10.1002/1521-4095(20020816)14:16<1120::AID-ADMA1120>3.0.CO;2-9 10.1021/mz500221j 10.1039/c0jm04043f 10.1021/jp063837a 10.1039/b605478a 10.1021/la503815y 10.1002/adma.200304907 10.1021/ma048418v 10.1002/adma.201500140 10.1021/acsami.5b02234 10.1021/acs.chemmater.6b01920 10.1021/acsami.5b08609 10.1016/j.polymer.2016.04.043 10.1016/j.polymer.2013.12.066 10.1071/CH11156 10.1021/mz4005265 10.1016/j.polymer.2016.08.022 10.1021/ma200579v 10.1021/nn302874v 10.1007/s10853-016-9891-x |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd Copyright Elsevier BV Feb 24, 2017 |
Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright Elsevier BV Feb 24, 2017 |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 |
DOI | 10.1016/j.polymer.2017.01.051 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-2291 |
EndPage | 176 |
ExternalDocumentID | 10_1016_j_polymer_2017_01_051 S0032386117300770 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARLI AAXUO ABFNM ABMAC ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNCT ACPRK ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRAH AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SMS SPC SPCBC SPD SSK SSM SSZ T5K TN5 WH7 XPP ZMT ~G- .-4 29O 6TJ 6TU AAQXK AATTM AAXKI AAYWO AAYXX ABDEX ABDPE ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ H~9 R2- SCB SEW SSH T9H WUQ 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K EFKBS F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 |
ID | FETCH-LOGICAL-c337t-8bead9fc0f66bd6c0ea75f0e987e5fbcd683ae60e2c7a24bb2d7b5c4989d80323 |
IEDL.DBID | .~1 |
ISSN | 0032-3861 |
IngestDate | Wed Aug 13 11:21:34 EDT 2025 Thu Apr 24 22:51:57 EDT 2025 Tue Jul 01 03:36:03 EDT 2025 Fri Feb 23 02:33:29 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Mechanical properties Polyvinyl alcohol Supramolecular Gels Thermoplasticity Hydrogen bonding |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c337t-8bead9fc0f66bd6c0ea75f0e987e5fbcd683ae60e2c7a24bb2d7b5c4989d80323 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6372-5397 0000-0001-7964-0809 |
PQID | 1948460583 |
PQPubID | 2045419 |
PageCount | 9 |
ParticipantIDs | proquest_journals_1948460583 crossref_primary_10_1016_j_polymer_2017_01_051 crossref_citationtrail_10_1016_j_polymer_2017_01_051 elsevier_sciencedirect_doi_10_1016_j_polymer_2017_01_051 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-02-24 |
PublicationDateYYYYMMDD | 2017-02-24 |
PublicationDate_xml | – month: 02 year: 2017 text: 2017-02-24 day: 24 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Polymer (Guilford) |
PublicationYear | 2017 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Yokoyama, Masada, Shimamura (bib27) 1986; 264 Cherian, Gennadios, Weller, Chinachoti (bib55) 1995; 72 Hirschberg, Brunsveld, Ramzi, Vekemans, Sijbesma, Meijer (bib40) 2000; 407 Nikolov, Yeh, Alexeev (bib3) 2015; 4 Zhang, Wang, Xu, Li, Gao, Wang, Liu (bib32) 2011; 21 Sakai, Matsunaga, Yamamoto, Ito, Yoshida, Suzuki, Sasaki, Shibayama, Chung (bib11) 2008; 41 Chen, Peng, Liu, Wang, Shi, Wang (bib45) 2016; 8 Hao, Weiss (bib52) 2013; 2 Song, Zhang, He, Fang, Whitten, Wang (bib43) 2013; 46 Stading, Rindlav-Westling, Gatenholm (bib54) 2001; 45 Zhang, Xia, Zhao (bib30) 2012; 1 Lin, Ma, Wang, Zhou (bib21) 2015; 27 Li, Wang, Wen, Nie, Yang, Xu, Cheng (bib42) 2016; 5 Peng, He, Liu, Wang (bib35) 2016; 51 Geng, Lin, Pan, Shan, Bao, Song, Wu, Zheng (bib24) 2016; 100 Ricciardi, Auriemma, Gaillet, De Rosa, Laupretre (bib31) 2004; 37 Haraguchi, Takehisa (bib8) 2002; 14 Shi, Liu, Wei, Wang, Ju, Xie, Chu (bib2) 2015; 7 Datta, Pati (bib38) 2006; 35 Dai, Zhang, Gao, Bai, Wang, Cui, Liu (bib26) 2015; 27 Song, Xu, Guo (bib41) 2013; 2 Luo, Sun, Nakajima, Kurokawa, Bin Ihsan, Li, Guo, Gong (bib25) 2015; 4 Karpfen (bib37) 2002; vol. 123 Naficy, Brown, Razal, Spinks, Whitten (bib47) 2011; 64 Sun, Gao, Du, Cheng, Fu (bib15) 2014; 3 Haque, Kurokawa, Gong (bib5) 2012; 53 Chen, Zhu, Chen, Yan, Huang, Yang, Zheng (bib51) 2015; 25 Zhu, Lin, Wu, Cheng, Yin, Song, Qian, Zheng (bib20) 2016; 95 Calvert (bib4) 2009; 21 Zhao, Jiao, Yang, He, Wang (bib13) 2013; 54 Gong, Katsuyama, Kurokawa, Osada (bib9) 2003; 15 Zhu, Song, Liu, Whitten, Liu, Wang (bib36) 2014; 30 Huang, Xu, Jiao, Zhu, Brown, Wang (bib10) 2007; 19 He, Zheng, Zhao, Liu, Ouyang, Wang (bib14) 2013; 9 Luo, Sun, Nakajima, Kurokawa, Zhao, Sato, Bin Ihsan, Li, Guo, Gong (bib22) 2015; 27 Keplinger, Sun, Foo, Rothemund, Whitesides, Suo (bib6) 2013; 341 Fama, Flores, Gerschemon, Goyanes (bib53) 2006; 66 Zhang, Zhao, Zhu, He, Wang (bib29) 2012; 8 Hu, Vatankhah-Varnoosfaderani, Zhou, Li, Sheiko (bib44) 2015; 27 Tuncaboylu, Sari, Oppermann, Okay (bib50) 2011; 44 Li, Illeperuma, Suo, Vlassak (bib49) 2014; 3 Zhu, Cheng, Yin, Wu, Qian, Fu, Zheng (bib23) 2016; 8 Chen, Yan, Zhu, Chen, Jiang, Wei, Huang, Yang, Liu, Zheng (bib17) 2016; 28 Ahmed, Nakajima, Kurokawa, Haque, Gong (bib18) 2014; 55 Li, Suo, Vlassak (bib48) 2014; 2 Xin, Brown, Naficy, Spinks (bib19) 2015; 65 Liu, Chen, He, Zhao, Yang, Wang (bib12) 2012; 6 Hassan, Peppas (bib28) 2000; 33 Li, Yan, Xia, Zhao (bib33) 2015; 7 Li, Zhang, Fortin, Xia, Zhao (bib34) 2015; 31 Okumura, Ito (bib7) 2001; 13 Kriz, Dybal, Brus (bib39) 2006; 110 Pretsch, Bühlmann, Affolter (bib46) 2011 Yang, Wang, Yang, Shen, Wu (bib16) 2016; 28 Shin, Spinks, Shin, Kim, Kim (bib1) 2009; 21 Haque (10.1016/j.polymer.2017.01.051_bib5) 2012; 53 Hu (10.1016/j.polymer.2017.01.051_bib44) 2015; 27 Zhang (10.1016/j.polymer.2017.01.051_bib32) 2011; 21 Yokoyama (10.1016/j.polymer.2017.01.051_bib27) 1986; 264 Luo (10.1016/j.polymer.2017.01.051_bib25) 2015; 4 Kriz (10.1016/j.polymer.2017.01.051_bib39) 2006; 110 Zhang (10.1016/j.polymer.2017.01.051_bib29) 2012; 8 Yang (10.1016/j.polymer.2017.01.051_bib16) 2016; 28 Zhu (10.1016/j.polymer.2017.01.051_bib23) 2016; 8 Geng (10.1016/j.polymer.2017.01.051_bib24) 2016; 100 Song (10.1016/j.polymer.2017.01.051_bib43) 2013; 46 Li (10.1016/j.polymer.2017.01.051_bib48) 2014; 2 Xin (10.1016/j.polymer.2017.01.051_bib19) 2015; 65 Ricciardi (10.1016/j.polymer.2017.01.051_bib31) 2004; 37 Cherian (10.1016/j.polymer.2017.01.051_bib55) 1995; 72 Li (10.1016/j.polymer.2017.01.051_bib49) 2014; 3 Zhu (10.1016/j.polymer.2017.01.051_bib36) 2014; 30 Huang (10.1016/j.polymer.2017.01.051_bib10) 2007; 19 Karpfen (10.1016/j.polymer.2017.01.051_bib37) 2002; vol. 123 Stading (10.1016/j.polymer.2017.01.051_bib54) 2001; 45 Nikolov (10.1016/j.polymer.2017.01.051_bib3) 2015; 4 Zhu (10.1016/j.polymer.2017.01.051_bib20) 2016; 95 Shin (10.1016/j.polymer.2017.01.051_bib1) 2009; 21 Haraguchi (10.1016/j.polymer.2017.01.051_bib8) 2002; 14 Chen (10.1016/j.polymer.2017.01.051_bib51) 2015; 25 Ahmed (10.1016/j.polymer.2017.01.051_bib18) 2014; 55 Chen (10.1016/j.polymer.2017.01.051_bib17) 2016; 28 Dai (10.1016/j.polymer.2017.01.051_bib26) 2015; 27 Hassan (10.1016/j.polymer.2017.01.051_bib28) 2000; 33 Tuncaboylu (10.1016/j.polymer.2017.01.051_bib50) 2011; 44 Li (10.1016/j.polymer.2017.01.051_bib42) 2016; 5 Okumura (10.1016/j.polymer.2017.01.051_bib7) 2001; 13 Hirschberg (10.1016/j.polymer.2017.01.051_bib40) 2000; 407 Luo (10.1016/j.polymer.2017.01.051_bib22) 2015; 27 Zhang (10.1016/j.polymer.2017.01.051_bib30) 2012; 1 Shi (10.1016/j.polymer.2017.01.051_bib2) 2015; 7 Li (10.1016/j.polymer.2017.01.051_bib34) 2015; 31 Fama (10.1016/j.polymer.2017.01.051_bib53) 2006; 66 Peng (10.1016/j.polymer.2017.01.051_bib35) 2016; 51 Calvert (10.1016/j.polymer.2017.01.051_bib4) 2009; 21 Sakai (10.1016/j.polymer.2017.01.051_bib11) 2008; 41 He (10.1016/j.polymer.2017.01.051_bib14) 2013; 9 Song (10.1016/j.polymer.2017.01.051_bib41) 2013; 2 Datta (10.1016/j.polymer.2017.01.051_bib38) 2006; 35 Liu (10.1016/j.polymer.2017.01.051_bib12) 2012; 6 Zhao (10.1016/j.polymer.2017.01.051_bib13) 2013; 54 Lin (10.1016/j.polymer.2017.01.051_bib21) 2015; 27 Chen (10.1016/j.polymer.2017.01.051_bib45) 2016; 8 Pretsch (10.1016/j.polymer.2017.01.051_bib46) 2011 Naficy (10.1016/j.polymer.2017.01.051_bib47) 2011; 64 Keplinger (10.1016/j.polymer.2017.01.051_bib6) 2013; 341 Li (10.1016/j.polymer.2017.01.051_bib33) 2015; 7 Hao (10.1016/j.polymer.2017.01.051_bib52) 2013; 2 Sun (10.1016/j.polymer.2017.01.051_bib15) 2014; 3 Gong (10.1016/j.polymer.2017.01.051_bib9) 2003; 15 |
References_xml | – volume: 2 start-page: 1100 year: 2013 end-page: 1104 ident: bib41 article-title: Bioinspired strategy to reinforce PVA with improved toughness and thermal properties via hydrogen-bond self-assembly publication-title: ACS Macro Lett. – volume: 1 start-page: 1233 year: 2012 end-page: 1236 ident: bib30 article-title: Poly(vinyl alcohol) hydrogel can autonomously self-heal publication-title: ACS Macro Lett. – volume: 4 start-page: 84 year: 2015 end-page: 88 ident: bib3 article-title: Self-propelled microswimmer actuated by stimuli-sensitive bilayered hydrogel publication-title: ACS Macro Lett. – volume: 30 start-page: 14648 year: 2014 end-page: 14657 ident: bib36 article-title: Liquid crystalline behavior of graphene oxide in the formation and deformation of tough nanocomposite hydrogels publication-title: Langmuir – volume: 53 start-page: 1805 year: 2012 end-page: 1822 ident: bib5 article-title: Super tough double network hydrogels and their application as biomaterials publication-title: Polymer – volume: 3 start-page: 520 year: 2014 end-page: 523 ident: bib49 article-title: Hybrid hydrogels with extremely high stiffness and toughness publication-title: ACS Macro Lett. – volume: 44 start-page: 4997 year: 2011 end-page: 5005 ident: bib50 article-title: Tough and self-healing hydrogels formed via hydrophobic interactions publication-title: Macromolecules – volume: 27 start-page: 3566 year: 2015 end-page: 3571 ident: bib26 article-title: A mechanically strong, highly stable, thermoplastic, and self-healable supramolecular polymer hydrogel publication-title: Adv. Mater – volume: 64 start-page: 1007 year: 2011 end-page: 1025 ident: bib47 article-title: Progress toward robust polymer hydrogels publication-title: Aust. J. Chem. – volume: 2 start-page: 6708 year: 2014 end-page: 6713 ident: bib48 article-title: Stiff, strong, and tough hydrogels with good chemical stability publication-title: J. Mater. Chem. B – volume: 25 start-page: 1598 year: 2015 end-page: 1607 ident: bib51 article-title: A novel design strategy for fully physically linked double network hydrogels with tough, fatigue resistant, and self-healing properties publication-title: Adv. Funct. Mater – start-page: 287 year: 2011 ident: bib46 article-title: Structure Determination of Organic Compounds: Tables of Spectral Data – volume: 19 start-page: 1622 year: 2007 end-page: 1626 ident: bib10 article-title: A novel hydrogel with high mechanical strength: a macromolecular microsphere composite hydrogel publication-title: Adv. Mater – volume: 7 start-page: 12067 year: 2015 end-page: 12073 ident: bib33 article-title: Therapeutic-ultrasound-triggered shape memory of a melamine-enhanced poly(vinyl alcohol) physical hydrogel publication-title: ACS Appl. Mater. Interfaces – volume: 55 start-page: 914 year: 2014 end-page: 923 ident: bib18 article-title: Brittle-ductile transition of double network hydrogels: mechanical balance of two networks as the key factor publication-title: Polymer – volume: 37 start-page: 9510 year: 2004 end-page: 9516 ident: bib31 article-title: Investigation of the crystallinity of freeze/thaw poly(vinyl alcohol) hydrogels by different techniques publication-title: Macromolecules – volume: 41 start-page: 5379 year: 2008 end-page: 5384 ident: bib11 article-title: Design and fabrication of a high-strength hydrogel with ideally homogeneous network structure from tetrahedron-like macromonomers publication-title: Macromolecules – volume: 13 start-page: 485 year: 2001 end-page: 487 ident: bib7 article-title: The Polyrotaxane Gel:A topological gel by figure-of-eight cross-links publication-title: Adv. Mater – volume: 14 start-page: 1120 year: 2002 end-page: 1124 ident: bib8 article-title: Nanocomposite hydrogels: a unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties publication-title: Adv. Mater – volume: 9 start-page: 2837 year: 2013 end-page: 2844 ident: bib14 article-title: Tough and super-resilient hydrogels synthesized by using peroxidized polymer chains as polyfunctional initiating and cross-linking centers publication-title: Soft Matter – volume: 5 start-page: 814 year: 2016 end-page: 818 ident: bib42 article-title: Highly elastic fibers made from hydrogen-bonded polymer complex publication-title: ACS Macro Lett. – volume: 27 start-page: 2722 year: 2015 end-page: 2727 ident: bib22 article-title: Oppositely charged polyelectrolytes form tough, self-healing, and rebuildable hydrogels publication-title: Adv. Mater – volume: 28 start-page: 5710 year: 2016 end-page: 5720 ident: bib17 article-title: Improvement of mechanical strength and fatigue resistance of double network hydrogels by ionic coordination interactions publication-title: Chem. Mater – volume: 7 start-page: 27289 year: 2015 end-page: 27298 ident: bib2 article-title: Near-infrared light-responsive poly( publication-title: ACS Appl. Mater. Interfaces – volume: 15 start-page: 1155 year: 2003 end-page: 1158 ident: bib9 article-title: Double-network hydrogels with extremely high mechanical strength publication-title: Adv. Mater – volume: 31 start-page: 11709 year: 2015 end-page: 11716 ident: bib34 article-title: Poly(vinyl alcohol)-poly(ethylene glycol) double-network hydrogel: a general approach to shape memory and self-healing functionalities publication-title: Langmuir – volume: 21 start-page: 1712 year: 2009 end-page: 1715 ident: bib1 article-title: Nanocomposite hydrogel with high toughness for bioactuators publication-title: Adv. Mater – volume: 27 start-page: 2054 year: 2015 end-page: 2059 ident: bib21 article-title: Molecularly engineered dual-crosslinked hydrogel with ultrahigh mechanical strength, toughness, and good self-recovery publication-title: Adv. Mater – volume: 72 start-page: 1 year: 1995 end-page: 6 ident: bib55 article-title: Thermomechanical behavior of wheat gluten films - effect of sucrose, glycerin, and sorbitol publication-title: Cereal Chem. – volume: 46 start-page: 7423 year: 2013 end-page: 7435 ident: bib43 article-title: Facile fabrication of tough hydrogels physically cross-linked by strong cooperative hydrogen bonding publication-title: Macromolecules – volume: 6 start-page: 8194 year: 2012 end-page: 8202 ident: bib12 article-title: Synthesis of graphene peroxide and its application in fabricating super extensible and highly resilient nanocomposite hydrogels publication-title: ACS Nano – volume: vol. 123 start-page: 469 year: 2002 end-page: 510 ident: bib37 article-title: Cooperative effects in hydrogen bonding publication-title: Adv. Chem. Phys – volume: 8 start-page: 27199 year: 2016 end-page: 27206 ident: bib45 article-title: Poly(vinyl alcohol)–tannic acid hydrogels with excellent mechanical properties and shape memory behaviors publication-title: ACS Appl. Mater. Interfaces – volume: 95 start-page: 9 year: 2016 end-page: 17 ident: bib20 article-title: Processing tough supramolecular hydrogels with tunable strength of polyion complex publication-title: Polymer – volume: 33 start-page: 2472 year: 2000 end-page: 2479 ident: bib28 article-title: Structure and morphology of freeze/thawed PVA hydrogels publication-title: Macromolecules – volume: 51 start-page: 5901 year: 2016 end-page: 5911 ident: bib35 article-title: Biomimetic jellyfish-like PVA/graphene oxide nanocomposite hydrogels with anisotropic and pH-responsive mechanical properties publication-title: J. Mater. Sci. – volume: 21 start-page: 743 year: 2009 end-page: 756 ident: bib4 article-title: Hydrogels for soft machines publication-title: Adv. Mater – volume: 28 start-page: 7178 year: 2016 end-page: 7184 ident: bib16 article-title: A universal soaking strategy to convert composite hydrogels into extremely tough and rapidly recoverable double-network hydrogels publication-title: Adv. Mater – volume: 3 start-page: 496 year: 2014 end-page: 500 ident: bib15 article-title: Super tough, ultrastretchable, and thermoresponsive hydrogels with functionalized triblock copolymer micelles as macro-cross-linkers publication-title: ACS Macro Lett. – volume: 8 start-page: 10439 year: 2012 end-page: 10447 ident: bib29 article-title: Anisotropic tough poly(vinyl alcohol) hydrogels publication-title: Soft Matter – volume: 54 start-page: 1596 year: 2013 end-page: 1602 ident: bib13 article-title: Mechanically strong and thermosensitive macromolecular microsphere composite poly(N-isopropylacrylamide) hydrogels publication-title: Polymer – volume: 21 start-page: 10399 year: 2011 end-page: 10406 ident: bib32 article-title: High strength graphene oxide/polyvinyl alcohol composite hydrogels publication-title: J. Mater. Chem. – volume: 65 start-page: 253 year: 2015 end-page: 261 ident: bib19 article-title: Time-dependent mechanical properties of tough ionic-covalent hybrid hydrogels publication-title: Polymer – volume: 27 start-page: 6899 year: 2015 end-page: 6905 ident: bib44 article-title: Weak hydrogen bonding enables hard, strong, tough, and elastic hydrogels publication-title: Adv. Mater – volume: 100 start-page: 60 year: 2016 end-page: 68 ident: bib24 article-title: Hydrophobic association mediated physical hydrogels with high strength and healing ability publication-title: Polymer – volume: 407 start-page: 167 year: 2000 end-page: 170 ident: bib40 article-title: Helical self-assembled polymers from cooperative stacking of hydrogen-bonded pairs publication-title: Nature – volume: 264 start-page: 595 year: 1986 end-page: 601 ident: bib27 article-title: Morphology and structure of highly elastic poly (vinyl alcohol) hydrogel prepared by repeated freezing-and-melting publication-title: Colloid Polym. Sci. – volume: 35 start-page: 1305 year: 2006 end-page: 1323 ident: bib38 article-title: Dipolar interactions and hydrogen bonding in supramolecular aggregates: understanding cooperative phenomena for 1st hyperpolarizability publication-title: Chem. Soc. Rev. – volume: 341 start-page: 984 year: 2013 end-page: 987 ident: bib6 article-title: Stretchable, transparent, ionic conductors publication-title: Science – volume: 2 start-page: 86 year: 2013 end-page: 89 ident: bib52 article-title: Mechanically tough, thermally activated shape memory hydrogels publication-title: ACS Macro Lett. – volume: 66 start-page: 8 year: 2006 end-page: 15 ident: bib53 article-title: Physical characterization of cassava starch biofilms with special reference to dynamic mechanical properties at low temperatures publication-title: Carbohyd. Polym. – volume: 45 start-page: 209 year: 2001 end-page: 217 ident: bib54 article-title: Humidity-induced structural transitions in amylose and amylopectin films publication-title: Carbohyd. Polym. – volume: 4 start-page: 961 year: 2015 end-page: 964 ident: bib25 article-title: Free reprocessability of tough and self-healing hydrogels based on polyion complex publication-title: ACS Macro Lett. – volume: 8 start-page: 31304 year: 2016 end-page: 31310 ident: bib23 article-title: 3D Printing of ultratough polyion complex hydrogels publication-title: ACS Appl. Mater. Interfaces – volume: 110 start-page: 18338 year: 2006 end-page: 18346 ident: bib39 article-title: Cooperative hydrogen bonds of macromolecules. 2. Two-dimensional cooperativity in the binding of poly(4-vinylpyridine) to poly(4-vinylphenol) publication-title: J. Phys. Chem. B – volume: 27 start-page: 3566 issue: 23 year: 2015 ident: 10.1016/j.polymer.2017.01.051_bib26 article-title: A mechanically strong, highly stable, thermoplastic, and self-healable supramolecular polymer hydrogel publication-title: Adv. Mater doi: 10.1002/adma.201500534 – volume: 25 start-page: 1598 issue: 10 year: 2015 ident: 10.1016/j.polymer.2017.01.051_bib51 article-title: A novel design strategy for fully physically linked double network hydrogels with tough, fatigue resistant, and self-healing properties publication-title: Adv. Funct. Mater doi: 10.1002/adfm.201404357 – volume: 31 start-page: 11709 issue: 42 year: 2015 ident: 10.1016/j.polymer.2017.01.051_bib34 article-title: Poly(vinyl alcohol)-poly(ethylene glycol) double-network hydrogel: a general approach to shape memory and self-healing functionalities publication-title: Langmuir doi: 10.1021/acs.langmuir.5b03474 – volume: 65 start-page: 253 year: 2015 ident: 10.1016/j.polymer.2017.01.051_bib19 article-title: Time-dependent mechanical properties of tough ionic-covalent hybrid hydrogels publication-title: Polymer doi: 10.1016/j.polymer.2015.03.079 – start-page: 287 year: 2011 ident: 10.1016/j.polymer.2017.01.051_bib46 – volume: 27 start-page: 6899 issue: 43 year: 2015 ident: 10.1016/j.polymer.2017.01.051_bib44 article-title: Weak hydrogen bonding enables hard, strong, tough, and elastic hydrogels publication-title: Adv. Mater doi: 10.1002/adma.201503724 – volume: 1 start-page: 1233 issue: 11 year: 2012 ident: 10.1016/j.polymer.2017.01.051_bib30 article-title: Poly(vinyl alcohol) hydrogel can autonomously self-heal publication-title: ACS Macro Lett. doi: 10.1021/mz300451r – volume: 8 start-page: 10439 issue: 40 year: 2012 ident: 10.1016/j.polymer.2017.01.051_bib29 article-title: Anisotropic tough poly(vinyl alcohol) hydrogels publication-title: Soft Matter doi: 10.1039/c2sm26102b – volume: 264 start-page: 595 issue: 7 year: 1986 ident: 10.1016/j.polymer.2017.01.051_bib27 article-title: Morphology and structure of highly elastic poly (vinyl alcohol) hydrogel prepared by repeated freezing-and-melting publication-title: Colloid Polym. Sci. doi: 10.1007/BF01412597 – volume: 41 start-page: 5379 issue: 14 year: 2008 ident: 10.1016/j.polymer.2017.01.051_bib11 article-title: Design and fabrication of a high-strength hydrogel with ideally homogeneous network structure from tetrahedron-like macromonomers publication-title: Macromolecules doi: 10.1021/ma800476x – volume: 5 start-page: 814 issue: 7 year: 2016 ident: 10.1016/j.polymer.2017.01.051_bib42 article-title: Highly elastic fibers made from hydrogen-bonded polymer complex publication-title: ACS Macro Lett. doi: 10.1021/acsmacrolett.6b00346 – volume: 9 start-page: 2837 issue: 10 year: 2013 ident: 10.1016/j.polymer.2017.01.051_bib14 article-title: Tough and super-resilient hydrogels synthesized by using peroxidized polymer chains as polyfunctional initiating and cross-linking centers publication-title: Soft Matter doi: 10.1039/c2sm27605d – volume: vol. 123 start-page: 469 year: 2002 ident: 10.1016/j.polymer.2017.01.051_bib37 article-title: Cooperative effects in hydrogen bonding – volume: 8 start-page: 27199 issue: 40 year: 2016 ident: 10.1016/j.polymer.2017.01.051_bib45 article-title: Poly(vinyl alcohol)–tannic acid hydrogels with excellent mechanical properties and shape memory behaviors publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b08374 – volume: 13 start-page: 485 issue: 7 year: 2001 ident: 10.1016/j.polymer.2017.01.051_bib7 article-title: The Polyrotaxane Gel:A topological gel by figure-of-eight cross-links publication-title: Adv. Mater doi: 10.1002/1521-4095(200104)13:7<485::AID-ADMA485>3.0.CO;2-T – volume: 21 start-page: 743 issue: 7 year: 2009 ident: 10.1016/j.polymer.2017.01.051_bib4 article-title: Hydrogels for soft machines publication-title: Adv. Mater doi: 10.1002/adma.200800534 – volume: 27 start-page: 2054 issue: 12 year: 2015 ident: 10.1016/j.polymer.2017.01.051_bib21 article-title: Molecularly engineered dual-crosslinked hydrogel with ultrahigh mechanical strength, toughness, and good self-recovery publication-title: Adv. Mater doi: 10.1002/adma.201405022 – volume: 4 start-page: 84 issue: 1 year: 2015 ident: 10.1016/j.polymer.2017.01.051_bib3 article-title: Self-propelled microswimmer actuated by stimuli-sensitive bilayered hydrogel publication-title: ACS Macro Lett. doi: 10.1021/mz5007014 – volume: 66 start-page: 8 issue: 1 year: 2006 ident: 10.1016/j.polymer.2017.01.051_bib53 article-title: Physical characterization of cassava starch biofilms with special reference to dynamic mechanical properties at low temperatures publication-title: Carbohyd. Polym. doi: 10.1016/j.carbpol.2006.02.016 – volume: 4 start-page: 961 issue: 9 year: 2015 ident: 10.1016/j.polymer.2017.01.051_bib25 article-title: Free reprocessability of tough and self-healing hydrogels based on polyion complex publication-title: ACS Macro Lett. doi: 10.1021/acsmacrolett.5b00501 – volume: 53 start-page: 1805 issue: 9 year: 2012 ident: 10.1016/j.polymer.2017.01.051_bib5 article-title: Super tough double network hydrogels and their application as biomaterials publication-title: Polymer doi: 10.1016/j.polymer.2012.03.013 – volume: 19 start-page: 1622 issue: 12 year: 2007 ident: 10.1016/j.polymer.2017.01.051_bib10 article-title: A novel hydrogel with high mechanical strength: a macromolecular microsphere composite hydrogel publication-title: Adv. Mater doi: 10.1002/adma.200602533 – volume: 28 start-page: 7178 issue: 33 year: 2016 ident: 10.1016/j.polymer.2017.01.051_bib16 article-title: A universal soaking strategy to convert composite hydrogels into extremely tough and rapidly recoverable double-network hydrogels publication-title: Adv. Mater doi: 10.1002/adma.201601742 – volume: 2 start-page: 6708 issue: 39 year: 2014 ident: 10.1016/j.polymer.2017.01.051_bib48 article-title: Stiff, strong, and tough hydrogels with good chemical stability publication-title: J. Mater. Chem. B doi: 10.1039/C4TB01194E – volume: 45 start-page: 209 issue: 3 year: 2001 ident: 10.1016/j.polymer.2017.01.051_bib54 article-title: Humidity-induced structural transitions in amylose and amylopectin films publication-title: Carbohyd. Polym. doi: 10.1016/S0144-8617(00)00242-3 – volume: 407 start-page: 167 issue: 6801 year: 2000 ident: 10.1016/j.polymer.2017.01.051_bib40 article-title: Helical self-assembled polymers from cooperative stacking of hydrogen-bonded pairs publication-title: Nature doi: 10.1038/35025027 – volume: 54 start-page: 1596 issue: 6 year: 2013 ident: 10.1016/j.polymer.2017.01.051_bib13 article-title: Mechanically strong and thermosensitive macromolecular microsphere composite poly(N-isopropylacrylamide) hydrogels publication-title: Polymer doi: 10.1016/j.polymer.2013.01.025 – volume: 3 start-page: 520 issue: 6 year: 2014 ident: 10.1016/j.polymer.2017.01.051_bib49 article-title: Hybrid hydrogels with extremely high stiffness and toughness publication-title: ACS Macro Lett. doi: 10.1021/mz5002355 – volume: 2 start-page: 86 issue: 1 year: 2013 ident: 10.1016/j.polymer.2017.01.051_bib52 article-title: Mechanically tough, thermally activated shape memory hydrogels publication-title: ACS Macro Lett. doi: 10.1021/mz3006389 – volume: 341 start-page: 984 issue: 6149 year: 2013 ident: 10.1016/j.polymer.2017.01.051_bib6 article-title: Stretchable, transparent, ionic conductors publication-title: Science doi: 10.1126/science.1240228 – volume: 8 start-page: 31304 issue: 45 year: 2016 ident: 10.1016/j.polymer.2017.01.051_bib23 article-title: 3D Printing of ultratough polyion complex hydrogels publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b09881 – volume: 33 start-page: 2472 issue: 7 year: 2000 ident: 10.1016/j.polymer.2017.01.051_bib28 article-title: Structure and morphology of freeze/thawed PVA hydrogels publication-title: Macromolecules doi: 10.1021/ma9907587 – volume: 21 start-page: 1712 issue: 17 year: 2009 ident: 10.1016/j.polymer.2017.01.051_bib1 article-title: Nanocomposite hydrogel with high toughness for bioactuators publication-title: Adv. Mater doi: 10.1002/adma.200802205 – volume: 46 start-page: 7423 issue: 18 year: 2013 ident: 10.1016/j.polymer.2017.01.051_bib43 article-title: Facile fabrication of tough hydrogels physically cross-linked by strong cooperative hydrogen bonding publication-title: Macromolecules doi: 10.1021/ma401053c – volume: 14 start-page: 1120 issue: 16 year: 2002 ident: 10.1016/j.polymer.2017.01.051_bib8 article-title: Nanocomposite hydrogels: a unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties publication-title: Adv. Mater doi: 10.1002/1521-4095(20020816)14:16<1120::AID-ADMA1120>3.0.CO;2-9 – volume: 3 start-page: 496 issue: 5 year: 2014 ident: 10.1016/j.polymer.2017.01.051_bib15 article-title: Super tough, ultrastretchable, and thermoresponsive hydrogels with functionalized triblock copolymer micelles as macro-cross-linkers publication-title: ACS Macro Lett. doi: 10.1021/mz500221j – volume: 21 start-page: 10399 issue: 28 year: 2011 ident: 10.1016/j.polymer.2017.01.051_bib32 article-title: High strength graphene oxide/polyvinyl alcohol composite hydrogels publication-title: J. Mater. Chem. doi: 10.1039/c0jm04043f – volume: 110 start-page: 18338 issue: 37 year: 2006 ident: 10.1016/j.polymer.2017.01.051_bib39 article-title: Cooperative hydrogen bonds of macromolecules. 2. Two-dimensional cooperativity in the binding of poly(4-vinylpyridine) to poly(4-vinylphenol) publication-title: J. Phys. Chem. B doi: 10.1021/jp063837a – volume: 35 start-page: 1305 issue: 12 year: 2006 ident: 10.1016/j.polymer.2017.01.051_bib38 article-title: Dipolar interactions and hydrogen bonding in supramolecular aggregates: understanding cooperative phenomena for 1st hyperpolarizability publication-title: Chem. Soc. Rev. doi: 10.1039/b605478a – volume: 30 start-page: 14648 issue: 48 year: 2014 ident: 10.1016/j.polymer.2017.01.051_bib36 article-title: Liquid crystalline behavior of graphene oxide in the formation and deformation of tough nanocomposite hydrogels publication-title: Langmuir doi: 10.1021/la503815y – volume: 15 start-page: 1155 issue: 14 year: 2003 ident: 10.1016/j.polymer.2017.01.051_bib9 article-title: Double-network hydrogels with extremely high mechanical strength publication-title: Adv. Mater doi: 10.1002/adma.200304907 – volume: 37 start-page: 9510 issue: 25 year: 2004 ident: 10.1016/j.polymer.2017.01.051_bib31 article-title: Investigation of the crystallinity of freeze/thaw poly(vinyl alcohol) hydrogels by different techniques publication-title: Macromolecules doi: 10.1021/ma048418v – volume: 27 start-page: 2722 issue: 17 year: 2015 ident: 10.1016/j.polymer.2017.01.051_bib22 article-title: Oppositely charged polyelectrolytes form tough, self-healing, and rebuildable hydrogels publication-title: Adv. Mater doi: 10.1002/adma.201500140 – volume: 7 start-page: 12067 issue: 22 year: 2015 ident: 10.1016/j.polymer.2017.01.051_bib33 article-title: Therapeutic-ultrasound-triggered shape memory of a melamine-enhanced poly(vinyl alcohol) physical hydrogel publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b02234 – volume: 28 start-page: 5710 issue: 16 year: 2016 ident: 10.1016/j.polymer.2017.01.051_bib17 article-title: Improvement of mechanical strength and fatigue resistance of double network hydrogels by ionic coordination interactions publication-title: Chem. Mater doi: 10.1021/acs.chemmater.6b01920 – volume: 7 start-page: 27289 issue: 49 year: 2015 ident: 10.1016/j.polymer.2017.01.051_bib2 article-title: Near-infrared light-responsive poly(N-isopropylacrylamide)/graphene oxide nanocomposite hydrogels with ultrahigh tensibility publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b08609 – volume: 95 start-page: 9 year: 2016 ident: 10.1016/j.polymer.2017.01.051_bib20 article-title: Processing tough supramolecular hydrogels with tunable strength of polyion complex publication-title: Polymer doi: 10.1016/j.polymer.2016.04.043 – volume: 55 start-page: 914 issue: 3 year: 2014 ident: 10.1016/j.polymer.2017.01.051_bib18 article-title: Brittle-ductile transition of double network hydrogels: mechanical balance of two networks as the key factor publication-title: Polymer doi: 10.1016/j.polymer.2013.12.066 – volume: 64 start-page: 1007 issue: 8 year: 2011 ident: 10.1016/j.polymer.2017.01.051_bib47 article-title: Progress toward robust polymer hydrogels publication-title: Aust. J. Chem. doi: 10.1071/CH11156 – volume: 2 start-page: 1100 issue: 12 year: 2013 ident: 10.1016/j.polymer.2017.01.051_bib41 article-title: Bioinspired strategy to reinforce PVA with improved toughness and thermal properties via hydrogen-bond self-assembly publication-title: ACS Macro Lett. doi: 10.1021/mz4005265 – volume: 100 start-page: 60 year: 2016 ident: 10.1016/j.polymer.2017.01.051_bib24 article-title: Hydrophobic association mediated physical hydrogels with high strength and healing ability publication-title: Polymer doi: 10.1016/j.polymer.2016.08.022 – volume: 72 start-page: 1 issue: 1 year: 1995 ident: 10.1016/j.polymer.2017.01.051_bib55 article-title: Thermomechanical behavior of wheat gluten films - effect of sucrose, glycerin, and sorbitol publication-title: Cereal Chem. – volume: 44 start-page: 4997 issue: 12 year: 2011 ident: 10.1016/j.polymer.2017.01.051_bib50 article-title: Tough and self-healing hydrogels formed via hydrophobic interactions publication-title: Macromolecules doi: 10.1021/ma200579v – volume: 6 start-page: 8194 issue: 9 year: 2012 ident: 10.1016/j.polymer.2017.01.051_bib12 article-title: Synthesis of graphene peroxide and its application in fabricating super extensible and highly resilient nanocomposite hydrogels publication-title: ACS Nano doi: 10.1021/nn302874v – volume: 51 start-page: 5901 issue: 12 year: 2016 ident: 10.1016/j.polymer.2017.01.051_bib35 article-title: Biomimetic jellyfish-like PVA/graphene oxide nanocomposite hydrogels with anisotropic and pH-responsive mechanical properties publication-title: J. Mater. Sci. doi: 10.1007/s10853-016-9891-x |
SSID | ssj0002524 |
Score | 2.5904932 |
Snippet | Facile preparation of tough hydrogels with excellent processability is of great practical importance, but it remains a great challenge. A novel type of... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 168 |
SubjectTerms | Alcohols Bonding strength Chemical bonds Crosslinking Fracture toughness Gelation Gels Glycerol Hydrogels Hydrogen bonding Hydrogen bonds Low temperature resistance Mechanical properties Microstructure Moldability Polyvinyl alcohol Supramolecular Temperature Tensile strength Thermoplasticity |
Title | Facile preparation of hydrogen-bonded supramolecular polyvinyl alcohol-glycerol gels with excellent thermoplasticity and mechanical properties |
URI | https://dx.doi.org/10.1016/j.polymer.2017.01.051 https://www.proquest.com/docview/1948460583 |
Volume | 111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcgAOCAqIQql84OrdxHFi51itWC0geqJSb5Yfk7JVNomyaUUu_AR-M548KCChShwTxYnlbzwznsx8Q8g7L0HFziUMlDJMcO6ZVU4wZzikkPsi8nhQ_HyebS7Ex8v08oCs5loYTKucdP-o0wdtPd1ZTqu5bLZbrPFNgr3J4hgp16XEc7sQEqV88f0uzYOnfGRiTjjDp--qeJbXi6Yu-x0gLWgsB_bONP6XffpLUw_mZ_2UPJn8Rno2Tu0ZOYDqiDxcze3ajsjj35gFn5Mfa-PCfqdNCyO5d13RuqBfe9_WQWSYrTHyTfc3TWt2c4dcihO93VZ9Sc3YOZddlb2Dti7pVZgjxaAthW9DsL_qKPqOu7oJ_jemZnc9NZWnO8BaYoQ-fLxuMG0b9i_Ixfr9l9WGTa0XmEsS2TFlg4TlhYuKLLM-cxEYmRYR5EpCWljnM5UYyCLgThourOVe2tSJXOVeIS4vyWFVV_CKUAgeUG4TxzPuhPSRCQ6f9OEwbFWaZ8ofEzEvuHYTLzm2xyj1nIB2rSecNOKko1gHnI7J4tewZiTmuG-AmtHUf0iYDsbjvqEnM_p62uJ7HedCDT-Vk9f__-Y35BFeDTXy4oQcdu0NvA1eTmdPBzE-JQ_OPnzanP8EE_QDWw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcigcEBQQLQV84OrdxHFi54hWrBZoe2ql3iw_JmWr3STKpohc-An8Zjx5UEBClbgmcWL5G8-MJzPfEPLOS1CxcwkDpQwTnHtmlRPMGQ4p5L6IPB4Uz86z1aX4dJVe7ZHFVAuDaZWj7h90eq-txyvzcTXn9XqNNb5JsDdZHCPlupTh3P5AhO2LbQxm3-_yPHjKByrmhDN8_K6MZ34zq6tNtwXkBY1lT9-Zxv8yUH-p6t7-LJ-Qx6PjSN8Pc3tK9qA8JAeLqV_bIXn0G7XgM_JjaVzY8LRuYGD3rkpaFfRL55sqyAyzFYa-6e62bsx2apFLcaJf12W3oWZoncuuN52DptrQ6zBHilFbCt_6aH_ZUnQet1UdHHDMzW47akpPt4DFxIh9-HhVY9427J6Ty-WHi8WKjb0XmEsS2TJlg4jlhYuKLLM-cxEYmRYR5EpCWljnM5UYyCLgThourOVe2tSJXOVeITAvyH5ZlfCSUAguUG4TxzPuhPSRCR6f9OE0bFWaZ8ofETEtuHYjMTn2x9joKQPtRo84acRJR7EOOB2R2a9h9cDMcd8ANaGp_xAxHazHfUNPJvT1uMd3Os6F6v8qJ8f__-a35GB1cXaqTz-ef35FHuKdvmBenJD9trmF18Hlae2bXqR_AuntBOk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facile+preparation+of+hydrogen-bonded+supramolecular+polyvinyl+alcohol-glycerol+gels+with+excellent+thermoplasticity+and+mechanical+properties&rft.jtitle=Polymer+%28Guilford%29&rft.au=Shi%2C+Shengjie&rft.au=Peng%2C+Xin&rft.au=Liu%2C+Tianqi&rft.au=Chen%2C+Ya-Nan&rft.date=2017-02-24&rft.pub=Elsevier+Ltd&rft.issn=0032-3861&rft.eissn=1873-2291&rft.volume=111&rft.spage=168&rft.epage=176&rft_id=info:doi/10.1016%2Fj.polymer.2017.01.051&rft.externalDocID=S0032386117300770 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-3861&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-3861&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-3861&client=summon |