Facile preparation of hydrogen-bonded supramolecular polyvinyl alcohol-glycerol gels with excellent thermoplasticity and mechanical properties

Facile preparation of tough hydrogels with excellent processability is of great practical importance, but it remains a great challenge. A novel type of hydrogen-bonded supramolecular PVA-glycerol gels is prepared with a very simple physical mixing method, in which glycerol molecules connect PVA chai...

Full description

Saved in:
Bibliographic Details
Published inPolymer (Guilford) Vol. 111; pp. 168 - 176
Main Authors Shi, Shengjie, Peng, Xin, Liu, Tianqi, Chen, Ya-Nan, He, Changcheng, Wang, Huiliang
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 24.02.2017
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Facile preparation of tough hydrogels with excellent processability is of great practical importance, but it remains a great challenge. A novel type of hydrogen-bonded supramolecular PVA-glycerol gels is prepared with a very simple physical mixing method, in which glycerol molecules connect PVA chains into bundles by forming many H-bonds. The PVA-glycerol gels show much higher transparency than common PVA gels, due to their lower crystallinities and nanosized microstructures. The physical crosslinking nature and easy gelation at room temperature endow the gels with excellent moldability and thermoplasticity. The easy breaking of the H-bonding provides an effective energy-dissipating mechanism, leading to the high tensile strengths (up to more than 2 MPa), moduli, toughness and fracture energies of the gels. The PVA-glycerol gels also exhibit weaker temperature-dependent mechanical behaviors and excellent cold-resistance. The easy preparation and excellent properties of these gels should facilitate the practical applications of tough gels in many fields. Nanostructured PVA-glycerol gels are formed through the self-assembly of PVA and glycerol molecules. The supramolecular hydrogels show excellent moldability, thermoplasticity and mechanical properties. [Display omitted] •Facile preparation of hydrogen-bonded supramolecular PVA-glycerol gels.•The gels exhibit excellent moldability, thermoplasticity and cold-resistance.•The gels show high tensile strengths, moduli, toughness and fracture energies.
AbstractList Facile preparation of tough hydrogels with excellent processability is of great practical importance, but it remains a great challenge. A novel type of hydrogen-bonded supramolecular PVA-glycerol gels is prepared with a very simple physical mixing method, in which glycerol molecules connect PVA chains into bundles by forming many H-bonds. The PVA-glycerol gels show much higher transparency than common PVA gels, due to their lower crystallinities and nanosized microstructures. The physical crosslinking nature and easy gelation at room temperature endow the gels with excellent moldability and thermoplasticity. The easy breaking of the H-bonding provides an effective energy-dissipating mechanism, leading to the high tensile strengths (up to more than 2 MPa), moduli, toughness and fracture energies of the gels. The PVA-glycerol gels also exhibit weaker temperature-dependent mechanical behaviors and excellent cold-resistance. The easy preparation and excellent properties of these gels should facilitate the practical applications of tough gels in many fields. Nanostructured PVA-glycerol gels are formed through the self-assembly of PVA and glycerol molecules. The supramolecular hydrogels show excellent moldability, thermoplasticity and mechanical properties. [Display omitted] •Facile preparation of hydrogen-bonded supramolecular PVA-glycerol gels.•The gels exhibit excellent moldability, thermoplasticity and cold-resistance.•The gels show high tensile strengths, moduli, toughness and fracture energies.
Facile preparation of tough hydrogels with excellent processability is of great practical importance, but it remains a great challenge. A novel type of hydrogen-bonded supramolecular PVA-glycerol gels is prepared with a very simple physical mixing method, in which glycerol molecules connect PVA chains into bundles by forming many H-bonds. The PVA-glycerol gels show much higher transparency than common PVA gels, due to their lower crystallinities and nanosized microstructures. The physical crosslinking nature and easy gelation at room temperature endow the gels with excellent moldability and thermoplasticity. The easy breaking of the H-bonding provides an effective energy-dissipating mechanism, leading to the high tensile strengths (up to more than 2 MPa), moduli, toughness and fracture energies of the gels. The PVA-glycerol gels also exhibit weaker temperature-dependent mechanical behaviors and excellent cold-resistance. The easy preparation and excellent properties of these gels should facilitate the practical applications of tough gels in many fields.
Author Wang, Huiliang
He, Changcheng
Liu, Tianqi
Peng, Xin
Shi, Shengjie
Chen, Ya-Nan
Author_xml – sequence: 1
  givenname: Shengjie
  surname: Shi
  fullname: Shi, Shengjie
– sequence: 2
  givenname: Xin
  surname: Peng
  fullname: Peng, Xin
– sequence: 3
  givenname: Tianqi
  surname: Liu
  fullname: Liu, Tianqi
– sequence: 4
  givenname: Ya-Nan
  surname: Chen
  fullname: Chen, Ya-Nan
– sequence: 5
  givenname: Changcheng
  orcidid: 0000-0002-6372-5397
  surname: He
  fullname: He, Changcheng
– sequence: 6
  givenname: Huiliang
  orcidid: 0000-0001-7964-0809
  surname: Wang
  fullname: Wang, Huiliang
  email: wanghl@bnu.edu.cn
BookMark eNqFkE1v1DAQhi1UJLalP6GSJc4JtvMtDghVFJAqcaFnyxlPNl45drC9hfyJ_uZ62Z649DSHmed9Nc8luXDeISE3nJWc8fbjoVy93RYMpWC8KxkvWcPfkB3vu6oQYuAXZMdYJYqqb_k7chnjgTEmGlHvyNOdAmORrgFXFVQy3lE_0XnTwe_RFaN3GjWNxzWoxVuEo1WBnvoejdssVRb87G2xtxtg8Jbu0Ub6x6SZ4l9Aa9ElmmYMi1-tismASRtVTtMFYVbOgLK53K8YksH4nrydlI14_TKvyMPd11-334v7n99-3H65L6CqulT0Iyo9TMCmth11CwxV10wMh77DZhpBt32lsGUooFOiHkehu7GBeugH3WcT1RX5cM7N1b-PGJM8-GNwuVLyoe7rljV9la-a8xUEH2PASa7BLCpskjN5Ui8P8kW9PKmXjMusPnOf_uPy1__cpqCMfZX-fKazSXw0eRvBoAPUJiAkqb15JeEZ2gOr1w
CitedBy_id crossref_primary_10_1021_acssuschemeng_1c02464
crossref_primary_10_1002_marc_201800050
crossref_primary_10_1016_j_cej_2019_122926
crossref_primary_10_1002_mame_202100549
crossref_primary_10_1002_marc_202100618
crossref_primary_10_1002_adfm_202108423
crossref_primary_10_1039_C9SM01413F
crossref_primary_10_1002_smll_202409565
crossref_primary_10_1016_j_mtcomm_2021_102757
crossref_primary_10_1016_j_carbpol_2019_115051
crossref_primary_10_1016_j_cej_2025_160946
crossref_primary_10_1021_acsami_0c04933
crossref_primary_10_1021_acsapm_2c00160
crossref_primary_10_1039_D1MH01871J
crossref_primary_10_1016_j_seppur_2023_124223
crossref_primary_10_1039_C9TC05804D
crossref_primary_10_1016_j_carbpol_2022_119268
crossref_primary_10_1002_aenm_201801967
crossref_primary_10_1021_acsomega_8b02041
crossref_primary_10_1016_j_cej_2020_127544
crossref_primary_10_1016_j_mtchem_2022_101085
crossref_primary_10_1021_acsami_8b17440
crossref_primary_10_1021_acsapm_1c01824
crossref_primary_10_1002_mame_201700527
crossref_primary_10_1002_admt_202401325
crossref_primary_10_1007_s12274_019_2300_4
crossref_primary_10_1039_D4SC05295A
crossref_primary_10_1016_j_giant_2020_100014
crossref_primary_10_1016_j_polymer_2022_125661
crossref_primary_10_1016_j_jmrt_2022_10_115
crossref_primary_10_1016_j_eurpolymj_2018_07_024
crossref_primary_10_1039_C9TC03475G
crossref_primary_10_1016_j_compositesb_2020_108492
crossref_primary_10_1039_D0CC05469K
crossref_primary_10_1039_D1TC04514H
crossref_primary_10_1007_s10118_021_2607_y
crossref_primary_10_1002_slct_201800298
crossref_primary_10_3390_polym10101102
crossref_primary_10_1016_j_jpowsour_2023_233453
crossref_primary_10_1002_admt_202201020
crossref_primary_10_1016_j_jiec_2022_09_011
crossref_primary_10_1089_bio_2023_0108
crossref_primary_10_1007_s11581_024_05535_z
crossref_primary_10_1021_acsami_0c21841
crossref_primary_10_1515_ijfe_2020_0185
crossref_primary_10_1016_j_carbpol_2020_117019
crossref_primary_10_3390_en17184530
crossref_primary_10_1016_j_ijbiomac_2021_07_026
crossref_primary_10_1039_C9TA13407G
crossref_primary_10_3390_ijms222112022
crossref_primary_10_1039_D1NR07226A
crossref_primary_10_1007_s10118_018_2105_z
crossref_primary_10_1021_acsami_0c12176
crossref_primary_10_1021_acsami_9b20573
crossref_primary_10_1007_s40820_023_01148_9
crossref_primary_10_1016_j_compscitech_2020_108608
crossref_primary_10_1002_chem_201801302
crossref_primary_10_3390_polym15183782
crossref_primary_10_1016_j_polymer_2019_122003
crossref_primary_10_1021_acsapm_1c00042
crossref_primary_10_1016_j_ijhydene_2022_10_201
crossref_primary_10_1021_acsami_7b15843
crossref_primary_10_1002_app_49118
crossref_primary_10_1016_j_bioadv_2022_213244
crossref_primary_10_1002_cphc_201900545
crossref_primary_10_1016_j_compositesb_2021_109528
crossref_primary_10_1016_j_jcis_2021_09_125
crossref_primary_10_1002_app_51925
crossref_primary_10_1039_D2TC02148J
crossref_primary_10_1080_15567036_2018_1495786
crossref_primary_10_1039_C8NR05897K
crossref_primary_10_1039_D3TC03533F
crossref_primary_10_1016_j_mtcomm_2019_100609
crossref_primary_10_1016_j_colsurfa_2021_127823
crossref_primary_10_1039_D0RA07322A
crossref_primary_10_1021_acsmaterialslett_3c01664
crossref_primary_10_1016_j_colsurfa_2025_136383
crossref_primary_10_1039_D0TC05255H
crossref_primary_10_1002_cssc_201902079
crossref_primary_10_1039_C8TB01668B
crossref_primary_10_1039_D3TC04479C
crossref_primary_10_1140_epjp_i2019_13079_y
crossref_primary_10_1021_acsami_2c08042
crossref_primary_10_1021_acsaem_9b02379
crossref_primary_10_1002_adfm_202313395
crossref_primary_10_36561_ING_27_5
crossref_primary_10_1021_acsomega_4c04851
crossref_primary_10_1016_j_jmst_2022_06_002
crossref_primary_10_1039_D1TA04336F
crossref_primary_10_1039_D2TC03364J
crossref_primary_10_1039_D0TC02986F
crossref_primary_10_1016_j_mattod_2023_11_014
crossref_primary_10_1016_j_polymer_2024_127257
crossref_primary_10_1021_acssuschemeng_1c06741
crossref_primary_10_1039_C8TB02556H
crossref_primary_10_1002_polb_24724
crossref_primary_10_1039_D4TA02576H
crossref_primary_10_1002_smll_202302727
crossref_primary_10_1016_j_ensm_2023_01_034
crossref_primary_10_1016_j_jpowsour_2019_227472
crossref_primary_10_1021_acsapm_4c01350
crossref_primary_10_1016_j_jphotochem_2023_115262
crossref_primary_10_1021_acssuschemeng_0c01111
crossref_primary_10_1021_acsapm_2c00487
crossref_primary_10_1002_app_50979
crossref_primary_10_3390_pharmaceutics11080389
crossref_primary_10_15251_CL_2022_193_217
crossref_primary_10_1021_acsami_1c02242
crossref_primary_10_1002_pen_26538
crossref_primary_10_1039_C9TC06338B
crossref_primary_10_1016_j_apmt_2025_102675
crossref_primary_10_1021_acsami_2c07213
crossref_primary_10_1039_C8TA12360H
crossref_primary_10_1016_j_colsurfa_2019_03_027
crossref_primary_10_3390_gels9010007
crossref_primary_10_1016_j_eurpolymj_2019_109465
crossref_primary_10_1021_acsami_8b12106
crossref_primary_10_1039_D0MH01029D
crossref_primary_10_1007_s10853_019_04101_7
crossref_primary_10_1016_j_apmt_2022_101367
crossref_primary_10_1039_C9TC02719J
crossref_primary_10_1016_j_sna_2023_114813
crossref_primary_10_1039_D0CC05130F
crossref_primary_10_1016_j_coco_2024_102208
crossref_primary_10_1002_adma_202007559
crossref_primary_10_1016_j_cej_2021_128903
crossref_primary_10_1038_s41598_024_75235_1
crossref_primary_10_1039_D0TA01553A
crossref_primary_10_1002_mame_202000285
crossref_primary_10_1039_C7PY02097J
crossref_primary_10_1016_j_jallcom_2022_163658
crossref_primary_10_1016_j_jechem_2022_04_029
crossref_primary_10_1016_j_jmrt_2021_06_088
crossref_primary_10_3389_fchem_2020_00102
crossref_primary_10_3390_polym15204047
crossref_primary_10_1016_j_talanta_2024_126768
crossref_primary_10_1016_j_ceramint_2024_08_252
crossref_primary_10_1080_87559129_2020_1858313
crossref_primary_10_3390_polym12112670
crossref_primary_10_3390_polym15143087
crossref_primary_10_1016_j_bej_2023_108845
crossref_primary_10_1002_slct_202200201
crossref_primary_10_1016_j_mtcomm_2022_104551
crossref_primary_10_3390_polym16172421
crossref_primary_10_1016_j_mtcomm_2021_102375
crossref_primary_10_1039_D0TB00424C
crossref_primary_10_1021_acsami_4c06662
crossref_primary_10_1016_j_memsci_2019_117740
crossref_primary_10_1039_D4EE03820G
crossref_primary_10_1039_C9TB00372J
crossref_primary_10_3390_polym12030532
crossref_primary_10_1021_acsami_1c07563
crossref_primary_10_1039_C7PY01105A
crossref_primary_10_3390_polym14193941
crossref_primary_10_1002_app_53076
crossref_primary_10_1016_j_est_2023_106926
crossref_primary_10_1021_acsami_9b11032
crossref_primary_10_1039_D4TA00748D
crossref_primary_10_1039_D0TB02250K
crossref_primary_10_1016_j_cis_2021_102408
crossref_primary_10_1016_j_ijbiomac_2024_131203
crossref_primary_10_1016_j_ijbiomac_2020_08_115
crossref_primary_10_3390_biomimetics9110714
crossref_primary_10_1016_j_cej_2022_139898
crossref_primary_10_1007_s40843_021_1961_1
crossref_primary_10_1080_10584587_2020_1803675
crossref_primary_10_2174_0122117385266276230928064235
crossref_primary_10_1021_acsapm_3c02580
crossref_primary_10_1021_acs_chemmater_1c04211
crossref_primary_10_1007_s10008_023_05631_6
crossref_primary_10_1021_acsapm_2c01546
crossref_primary_10_1002_adma_202104006
crossref_primary_10_1016_j_polymer_2019_02_012
Cites_doi 10.1002/adma.201500534
10.1002/adfm.201404357
10.1021/acs.langmuir.5b03474
10.1016/j.polymer.2015.03.079
10.1002/adma.201503724
10.1021/mz300451r
10.1039/c2sm26102b
10.1007/BF01412597
10.1021/ma800476x
10.1021/acsmacrolett.6b00346
10.1039/c2sm27605d
10.1021/acsami.6b08374
10.1002/1521-4095(200104)13:7<485::AID-ADMA485>3.0.CO;2-T
10.1002/adma.200800534
10.1002/adma.201405022
10.1021/mz5007014
10.1016/j.carbpol.2006.02.016
10.1021/acsmacrolett.5b00501
10.1016/j.polymer.2012.03.013
10.1002/adma.200602533
10.1002/adma.201601742
10.1039/C4TB01194E
10.1016/S0144-8617(00)00242-3
10.1038/35025027
10.1016/j.polymer.2013.01.025
10.1021/mz5002355
10.1021/mz3006389
10.1126/science.1240228
10.1021/acsami.6b09881
10.1021/ma9907587
10.1002/adma.200802205
10.1021/ma401053c
10.1002/1521-4095(20020816)14:16<1120::AID-ADMA1120>3.0.CO;2-9
10.1021/mz500221j
10.1039/c0jm04043f
10.1021/jp063837a
10.1039/b605478a
10.1021/la503815y
10.1002/adma.200304907
10.1021/ma048418v
10.1002/adma.201500140
10.1021/acsami.5b02234
10.1021/acs.chemmater.6b01920
10.1021/acsami.5b08609
10.1016/j.polymer.2016.04.043
10.1016/j.polymer.2013.12.066
10.1071/CH11156
10.1021/mz4005265
10.1016/j.polymer.2016.08.022
10.1021/ma200579v
10.1021/nn302874v
10.1007/s10853-016-9891-x
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright Elsevier BV Feb 24, 2017
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright Elsevier BV Feb 24, 2017
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
DOI 10.1016/j.polymer.2017.01.051
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-2291
EndPage 176
ExternalDocumentID 10_1016_j_polymer_2017_01_051
S0032386117300770
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNCT
ACPRK
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SMS
SPC
SPCBC
SPD
SSK
SSM
SSZ
T5K
TN5
WH7
XPP
ZMT
~G-
.-4
29O
6TJ
6TU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDEX
ABDPE
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
R2-
SCB
SEW
SSH
T9H
WUQ
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
EFKBS
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
ID FETCH-LOGICAL-c337t-8bead9fc0f66bd6c0ea75f0e987e5fbcd683ae60e2c7a24bb2d7b5c4989d80323
IEDL.DBID .~1
ISSN 0032-3861
IngestDate Wed Aug 13 11:21:34 EDT 2025
Thu Apr 24 22:51:57 EDT 2025
Tue Jul 01 03:36:03 EDT 2025
Fri Feb 23 02:33:29 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Mechanical properties
Polyvinyl alcohol
Supramolecular
Gels
Thermoplasticity
Hydrogen bonding
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-8bead9fc0f66bd6c0ea75f0e987e5fbcd683ae60e2c7a24bb2d7b5c4989d80323
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6372-5397
0000-0001-7964-0809
PQID 1948460583
PQPubID 2045419
PageCount 9
ParticipantIDs proquest_journals_1948460583
crossref_primary_10_1016_j_polymer_2017_01_051
crossref_citationtrail_10_1016_j_polymer_2017_01_051
elsevier_sciencedirect_doi_10_1016_j_polymer_2017_01_051
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-02-24
PublicationDateYYYYMMDD 2017-02-24
PublicationDate_xml – month: 02
  year: 2017
  text: 2017-02-24
  day: 24
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Polymer (Guilford)
PublicationYear 2017
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Yokoyama, Masada, Shimamura (bib27) 1986; 264
Cherian, Gennadios, Weller, Chinachoti (bib55) 1995; 72
Hirschberg, Brunsveld, Ramzi, Vekemans, Sijbesma, Meijer (bib40) 2000; 407
Nikolov, Yeh, Alexeev (bib3) 2015; 4
Zhang, Wang, Xu, Li, Gao, Wang, Liu (bib32) 2011; 21
Sakai, Matsunaga, Yamamoto, Ito, Yoshida, Suzuki, Sasaki, Shibayama, Chung (bib11) 2008; 41
Chen, Peng, Liu, Wang, Shi, Wang (bib45) 2016; 8
Hao, Weiss (bib52) 2013; 2
Song, Zhang, He, Fang, Whitten, Wang (bib43) 2013; 46
Stading, Rindlav-Westling, Gatenholm (bib54) 2001; 45
Zhang, Xia, Zhao (bib30) 2012; 1
Lin, Ma, Wang, Zhou (bib21) 2015; 27
Li, Wang, Wen, Nie, Yang, Xu, Cheng (bib42) 2016; 5
Peng, He, Liu, Wang (bib35) 2016; 51
Geng, Lin, Pan, Shan, Bao, Song, Wu, Zheng (bib24) 2016; 100
Ricciardi, Auriemma, Gaillet, De Rosa, Laupretre (bib31) 2004; 37
Haraguchi, Takehisa (bib8) 2002; 14
Shi, Liu, Wei, Wang, Ju, Xie, Chu (bib2) 2015; 7
Datta, Pati (bib38) 2006; 35
Dai, Zhang, Gao, Bai, Wang, Cui, Liu (bib26) 2015; 27
Song, Xu, Guo (bib41) 2013; 2
Luo, Sun, Nakajima, Kurokawa, Bin Ihsan, Li, Guo, Gong (bib25) 2015; 4
Karpfen (bib37) 2002; vol. 123
Naficy, Brown, Razal, Spinks, Whitten (bib47) 2011; 64
Sun, Gao, Du, Cheng, Fu (bib15) 2014; 3
Haque, Kurokawa, Gong (bib5) 2012; 53
Chen, Zhu, Chen, Yan, Huang, Yang, Zheng (bib51) 2015; 25
Zhu, Lin, Wu, Cheng, Yin, Song, Qian, Zheng (bib20) 2016; 95
Calvert (bib4) 2009; 21
Zhao, Jiao, Yang, He, Wang (bib13) 2013; 54
Gong, Katsuyama, Kurokawa, Osada (bib9) 2003; 15
Zhu, Song, Liu, Whitten, Liu, Wang (bib36) 2014; 30
Huang, Xu, Jiao, Zhu, Brown, Wang (bib10) 2007; 19
He, Zheng, Zhao, Liu, Ouyang, Wang (bib14) 2013; 9
Luo, Sun, Nakajima, Kurokawa, Zhao, Sato, Bin Ihsan, Li, Guo, Gong (bib22) 2015; 27
Keplinger, Sun, Foo, Rothemund, Whitesides, Suo (bib6) 2013; 341
Fama, Flores, Gerschemon, Goyanes (bib53) 2006; 66
Zhang, Zhao, Zhu, He, Wang (bib29) 2012; 8
Hu, Vatankhah-Varnoosfaderani, Zhou, Li, Sheiko (bib44) 2015; 27
Tuncaboylu, Sari, Oppermann, Okay (bib50) 2011; 44
Li, Illeperuma, Suo, Vlassak (bib49) 2014; 3
Zhu, Cheng, Yin, Wu, Qian, Fu, Zheng (bib23) 2016; 8
Chen, Yan, Zhu, Chen, Jiang, Wei, Huang, Yang, Liu, Zheng (bib17) 2016; 28
Ahmed, Nakajima, Kurokawa, Haque, Gong (bib18) 2014; 55
Li, Suo, Vlassak (bib48) 2014; 2
Xin, Brown, Naficy, Spinks (bib19) 2015; 65
Liu, Chen, He, Zhao, Yang, Wang (bib12) 2012; 6
Hassan, Peppas (bib28) 2000; 33
Li, Yan, Xia, Zhao (bib33) 2015; 7
Li, Zhang, Fortin, Xia, Zhao (bib34) 2015; 31
Okumura, Ito (bib7) 2001; 13
Kriz, Dybal, Brus (bib39) 2006; 110
Pretsch, Bühlmann, Affolter (bib46) 2011
Yang, Wang, Yang, Shen, Wu (bib16) 2016; 28
Shin, Spinks, Shin, Kim, Kim (bib1) 2009; 21
Haque (10.1016/j.polymer.2017.01.051_bib5) 2012; 53
Hu (10.1016/j.polymer.2017.01.051_bib44) 2015; 27
Zhang (10.1016/j.polymer.2017.01.051_bib32) 2011; 21
Yokoyama (10.1016/j.polymer.2017.01.051_bib27) 1986; 264
Luo (10.1016/j.polymer.2017.01.051_bib25) 2015; 4
Kriz (10.1016/j.polymer.2017.01.051_bib39) 2006; 110
Zhang (10.1016/j.polymer.2017.01.051_bib29) 2012; 8
Yang (10.1016/j.polymer.2017.01.051_bib16) 2016; 28
Zhu (10.1016/j.polymer.2017.01.051_bib23) 2016; 8
Geng (10.1016/j.polymer.2017.01.051_bib24) 2016; 100
Song (10.1016/j.polymer.2017.01.051_bib43) 2013; 46
Li (10.1016/j.polymer.2017.01.051_bib48) 2014; 2
Xin (10.1016/j.polymer.2017.01.051_bib19) 2015; 65
Ricciardi (10.1016/j.polymer.2017.01.051_bib31) 2004; 37
Cherian (10.1016/j.polymer.2017.01.051_bib55) 1995; 72
Li (10.1016/j.polymer.2017.01.051_bib49) 2014; 3
Zhu (10.1016/j.polymer.2017.01.051_bib36) 2014; 30
Huang (10.1016/j.polymer.2017.01.051_bib10) 2007; 19
Karpfen (10.1016/j.polymer.2017.01.051_bib37) 2002; vol. 123
Stading (10.1016/j.polymer.2017.01.051_bib54) 2001; 45
Nikolov (10.1016/j.polymer.2017.01.051_bib3) 2015; 4
Zhu (10.1016/j.polymer.2017.01.051_bib20) 2016; 95
Shin (10.1016/j.polymer.2017.01.051_bib1) 2009; 21
Haraguchi (10.1016/j.polymer.2017.01.051_bib8) 2002; 14
Chen (10.1016/j.polymer.2017.01.051_bib51) 2015; 25
Ahmed (10.1016/j.polymer.2017.01.051_bib18) 2014; 55
Chen (10.1016/j.polymer.2017.01.051_bib17) 2016; 28
Dai (10.1016/j.polymer.2017.01.051_bib26) 2015; 27
Hassan (10.1016/j.polymer.2017.01.051_bib28) 2000; 33
Tuncaboylu (10.1016/j.polymer.2017.01.051_bib50) 2011; 44
Li (10.1016/j.polymer.2017.01.051_bib42) 2016; 5
Okumura (10.1016/j.polymer.2017.01.051_bib7) 2001; 13
Hirschberg (10.1016/j.polymer.2017.01.051_bib40) 2000; 407
Luo (10.1016/j.polymer.2017.01.051_bib22) 2015; 27
Zhang (10.1016/j.polymer.2017.01.051_bib30) 2012; 1
Shi (10.1016/j.polymer.2017.01.051_bib2) 2015; 7
Li (10.1016/j.polymer.2017.01.051_bib34) 2015; 31
Fama (10.1016/j.polymer.2017.01.051_bib53) 2006; 66
Peng (10.1016/j.polymer.2017.01.051_bib35) 2016; 51
Calvert (10.1016/j.polymer.2017.01.051_bib4) 2009; 21
Sakai (10.1016/j.polymer.2017.01.051_bib11) 2008; 41
He (10.1016/j.polymer.2017.01.051_bib14) 2013; 9
Song (10.1016/j.polymer.2017.01.051_bib41) 2013; 2
Datta (10.1016/j.polymer.2017.01.051_bib38) 2006; 35
Liu (10.1016/j.polymer.2017.01.051_bib12) 2012; 6
Zhao (10.1016/j.polymer.2017.01.051_bib13) 2013; 54
Lin (10.1016/j.polymer.2017.01.051_bib21) 2015; 27
Chen (10.1016/j.polymer.2017.01.051_bib45) 2016; 8
Pretsch (10.1016/j.polymer.2017.01.051_bib46) 2011
Naficy (10.1016/j.polymer.2017.01.051_bib47) 2011; 64
Keplinger (10.1016/j.polymer.2017.01.051_bib6) 2013; 341
Li (10.1016/j.polymer.2017.01.051_bib33) 2015; 7
Hao (10.1016/j.polymer.2017.01.051_bib52) 2013; 2
Sun (10.1016/j.polymer.2017.01.051_bib15) 2014; 3
Gong (10.1016/j.polymer.2017.01.051_bib9) 2003; 15
References_xml – volume: 2
  start-page: 1100
  year: 2013
  end-page: 1104
  ident: bib41
  article-title: Bioinspired strategy to reinforce PVA with improved toughness and thermal properties via hydrogen-bond self-assembly
  publication-title: ACS Macro Lett.
– volume: 1
  start-page: 1233
  year: 2012
  end-page: 1236
  ident: bib30
  article-title: Poly(vinyl alcohol) hydrogel can autonomously self-heal
  publication-title: ACS Macro Lett.
– volume: 4
  start-page: 84
  year: 2015
  end-page: 88
  ident: bib3
  article-title: Self-propelled microswimmer actuated by stimuli-sensitive bilayered hydrogel
  publication-title: ACS Macro Lett.
– volume: 30
  start-page: 14648
  year: 2014
  end-page: 14657
  ident: bib36
  article-title: Liquid crystalline behavior of graphene oxide in the formation and deformation of tough nanocomposite hydrogels
  publication-title: Langmuir
– volume: 53
  start-page: 1805
  year: 2012
  end-page: 1822
  ident: bib5
  article-title: Super tough double network hydrogels and their application as biomaterials
  publication-title: Polymer
– volume: 3
  start-page: 520
  year: 2014
  end-page: 523
  ident: bib49
  article-title: Hybrid hydrogels with extremely high stiffness and toughness
  publication-title: ACS Macro Lett.
– volume: 44
  start-page: 4997
  year: 2011
  end-page: 5005
  ident: bib50
  article-title: Tough and self-healing hydrogels formed via hydrophobic interactions
  publication-title: Macromolecules
– volume: 27
  start-page: 3566
  year: 2015
  end-page: 3571
  ident: bib26
  article-title: A mechanically strong, highly stable, thermoplastic, and self-healable supramolecular polymer hydrogel
  publication-title: Adv. Mater
– volume: 64
  start-page: 1007
  year: 2011
  end-page: 1025
  ident: bib47
  article-title: Progress toward robust polymer hydrogels
  publication-title: Aust. J. Chem.
– volume: 2
  start-page: 6708
  year: 2014
  end-page: 6713
  ident: bib48
  article-title: Stiff, strong, and tough hydrogels with good chemical stability
  publication-title: J. Mater. Chem. B
– volume: 25
  start-page: 1598
  year: 2015
  end-page: 1607
  ident: bib51
  article-title: A novel design strategy for fully physically linked double network hydrogels with tough, fatigue resistant, and self-healing properties
  publication-title: Adv. Funct. Mater
– start-page: 287
  year: 2011
  ident: bib46
  article-title: Structure Determination of Organic Compounds: Tables of Spectral Data
– volume: 19
  start-page: 1622
  year: 2007
  end-page: 1626
  ident: bib10
  article-title: A novel hydrogel with high mechanical strength: a macromolecular microsphere composite hydrogel
  publication-title: Adv. Mater
– volume: 7
  start-page: 12067
  year: 2015
  end-page: 12073
  ident: bib33
  article-title: Therapeutic-ultrasound-triggered shape memory of a melamine-enhanced poly(vinyl alcohol) physical hydrogel
  publication-title: ACS Appl. Mater. Interfaces
– volume: 55
  start-page: 914
  year: 2014
  end-page: 923
  ident: bib18
  article-title: Brittle-ductile transition of double network hydrogels: mechanical balance of two networks as the key factor
  publication-title: Polymer
– volume: 37
  start-page: 9510
  year: 2004
  end-page: 9516
  ident: bib31
  article-title: Investigation of the crystallinity of freeze/thaw poly(vinyl alcohol) hydrogels by different techniques
  publication-title: Macromolecules
– volume: 41
  start-page: 5379
  year: 2008
  end-page: 5384
  ident: bib11
  article-title: Design and fabrication of a high-strength hydrogel with ideally homogeneous network structure from tetrahedron-like macromonomers
  publication-title: Macromolecules
– volume: 13
  start-page: 485
  year: 2001
  end-page: 487
  ident: bib7
  article-title: The Polyrotaxane Gel:A topological gel by figure-of-eight cross-links
  publication-title: Adv. Mater
– volume: 14
  start-page: 1120
  year: 2002
  end-page: 1124
  ident: bib8
  article-title: Nanocomposite hydrogels: a unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties
  publication-title: Adv. Mater
– volume: 9
  start-page: 2837
  year: 2013
  end-page: 2844
  ident: bib14
  article-title: Tough and super-resilient hydrogels synthesized by using peroxidized polymer chains as polyfunctional initiating and cross-linking centers
  publication-title: Soft Matter
– volume: 5
  start-page: 814
  year: 2016
  end-page: 818
  ident: bib42
  article-title: Highly elastic fibers made from hydrogen-bonded polymer complex
  publication-title: ACS Macro Lett.
– volume: 27
  start-page: 2722
  year: 2015
  end-page: 2727
  ident: bib22
  article-title: Oppositely charged polyelectrolytes form tough, self-healing, and rebuildable hydrogels
  publication-title: Adv. Mater
– volume: 28
  start-page: 5710
  year: 2016
  end-page: 5720
  ident: bib17
  article-title: Improvement of mechanical strength and fatigue resistance of double network hydrogels by ionic coordination interactions
  publication-title: Chem. Mater
– volume: 7
  start-page: 27289
  year: 2015
  end-page: 27298
  ident: bib2
  article-title: Near-infrared light-responsive poly(
  publication-title: ACS Appl. Mater. Interfaces
– volume: 15
  start-page: 1155
  year: 2003
  end-page: 1158
  ident: bib9
  article-title: Double-network hydrogels with extremely high mechanical strength
  publication-title: Adv. Mater
– volume: 31
  start-page: 11709
  year: 2015
  end-page: 11716
  ident: bib34
  article-title: Poly(vinyl alcohol)-poly(ethylene glycol) double-network hydrogel: a general approach to shape memory and self-healing functionalities
  publication-title: Langmuir
– volume: 21
  start-page: 1712
  year: 2009
  end-page: 1715
  ident: bib1
  article-title: Nanocomposite hydrogel with high toughness for bioactuators
  publication-title: Adv. Mater
– volume: 27
  start-page: 2054
  year: 2015
  end-page: 2059
  ident: bib21
  article-title: Molecularly engineered dual-crosslinked hydrogel with ultrahigh mechanical strength, toughness, and good self-recovery
  publication-title: Adv. Mater
– volume: 72
  start-page: 1
  year: 1995
  end-page: 6
  ident: bib55
  article-title: Thermomechanical behavior of wheat gluten films - effect of sucrose, glycerin, and sorbitol
  publication-title: Cereal Chem.
– volume: 46
  start-page: 7423
  year: 2013
  end-page: 7435
  ident: bib43
  article-title: Facile fabrication of tough hydrogels physically cross-linked by strong cooperative hydrogen bonding
  publication-title: Macromolecules
– volume: 6
  start-page: 8194
  year: 2012
  end-page: 8202
  ident: bib12
  article-title: Synthesis of graphene peroxide and its application in fabricating super extensible and highly resilient nanocomposite hydrogels
  publication-title: ACS Nano
– volume: vol. 123
  start-page: 469
  year: 2002
  end-page: 510
  ident: bib37
  article-title: Cooperative effects in hydrogen bonding
  publication-title: Adv. Chem. Phys
– volume: 8
  start-page: 27199
  year: 2016
  end-page: 27206
  ident: bib45
  article-title: Poly(vinyl alcohol)–tannic acid hydrogels with excellent mechanical properties and shape memory behaviors
  publication-title: ACS Appl. Mater. Interfaces
– volume: 95
  start-page: 9
  year: 2016
  end-page: 17
  ident: bib20
  article-title: Processing tough supramolecular hydrogels with tunable strength of polyion complex
  publication-title: Polymer
– volume: 33
  start-page: 2472
  year: 2000
  end-page: 2479
  ident: bib28
  article-title: Structure and morphology of freeze/thawed PVA hydrogels
  publication-title: Macromolecules
– volume: 51
  start-page: 5901
  year: 2016
  end-page: 5911
  ident: bib35
  article-title: Biomimetic jellyfish-like PVA/graphene oxide nanocomposite hydrogels with anisotropic and pH-responsive mechanical properties
  publication-title: J. Mater. Sci.
– volume: 21
  start-page: 743
  year: 2009
  end-page: 756
  ident: bib4
  article-title: Hydrogels for soft machines
  publication-title: Adv. Mater
– volume: 28
  start-page: 7178
  year: 2016
  end-page: 7184
  ident: bib16
  article-title: A universal soaking strategy to convert composite hydrogels into extremely tough and rapidly recoverable double-network hydrogels
  publication-title: Adv. Mater
– volume: 3
  start-page: 496
  year: 2014
  end-page: 500
  ident: bib15
  article-title: Super tough, ultrastretchable, and thermoresponsive hydrogels with functionalized triblock copolymer micelles as macro-cross-linkers
  publication-title: ACS Macro Lett.
– volume: 8
  start-page: 10439
  year: 2012
  end-page: 10447
  ident: bib29
  article-title: Anisotropic tough poly(vinyl alcohol) hydrogels
  publication-title: Soft Matter
– volume: 54
  start-page: 1596
  year: 2013
  end-page: 1602
  ident: bib13
  article-title: Mechanically strong and thermosensitive macromolecular microsphere composite poly(N-isopropylacrylamide) hydrogels
  publication-title: Polymer
– volume: 21
  start-page: 10399
  year: 2011
  end-page: 10406
  ident: bib32
  article-title: High strength graphene oxide/polyvinyl alcohol composite hydrogels
  publication-title: J. Mater. Chem.
– volume: 65
  start-page: 253
  year: 2015
  end-page: 261
  ident: bib19
  article-title: Time-dependent mechanical properties of tough ionic-covalent hybrid hydrogels
  publication-title: Polymer
– volume: 27
  start-page: 6899
  year: 2015
  end-page: 6905
  ident: bib44
  article-title: Weak hydrogen bonding enables hard, strong, tough, and elastic hydrogels
  publication-title: Adv. Mater
– volume: 100
  start-page: 60
  year: 2016
  end-page: 68
  ident: bib24
  article-title: Hydrophobic association mediated physical hydrogels with high strength and healing ability
  publication-title: Polymer
– volume: 407
  start-page: 167
  year: 2000
  end-page: 170
  ident: bib40
  article-title: Helical self-assembled polymers from cooperative stacking of hydrogen-bonded pairs
  publication-title: Nature
– volume: 264
  start-page: 595
  year: 1986
  end-page: 601
  ident: bib27
  article-title: Morphology and structure of highly elastic poly (vinyl alcohol) hydrogel prepared by repeated freezing-and-melting
  publication-title: Colloid Polym. Sci.
– volume: 35
  start-page: 1305
  year: 2006
  end-page: 1323
  ident: bib38
  article-title: Dipolar interactions and hydrogen bonding in supramolecular aggregates: understanding cooperative phenomena for 1st hyperpolarizability
  publication-title: Chem. Soc. Rev.
– volume: 341
  start-page: 984
  year: 2013
  end-page: 987
  ident: bib6
  article-title: Stretchable, transparent, ionic conductors
  publication-title: Science
– volume: 2
  start-page: 86
  year: 2013
  end-page: 89
  ident: bib52
  article-title: Mechanically tough, thermally activated shape memory hydrogels
  publication-title: ACS Macro Lett.
– volume: 66
  start-page: 8
  year: 2006
  end-page: 15
  ident: bib53
  article-title: Physical characterization of cassava starch biofilms with special reference to dynamic mechanical properties at low temperatures
  publication-title: Carbohyd. Polym.
– volume: 45
  start-page: 209
  year: 2001
  end-page: 217
  ident: bib54
  article-title: Humidity-induced structural transitions in amylose and amylopectin films
  publication-title: Carbohyd. Polym.
– volume: 4
  start-page: 961
  year: 2015
  end-page: 964
  ident: bib25
  article-title: Free reprocessability of tough and self-healing hydrogels based on polyion complex
  publication-title: ACS Macro Lett.
– volume: 8
  start-page: 31304
  year: 2016
  end-page: 31310
  ident: bib23
  article-title: 3D Printing of ultratough polyion complex hydrogels
  publication-title: ACS Appl. Mater. Interfaces
– volume: 110
  start-page: 18338
  year: 2006
  end-page: 18346
  ident: bib39
  article-title: Cooperative hydrogen bonds of macromolecules. 2. Two-dimensional cooperativity in the binding of poly(4-vinylpyridine) to poly(4-vinylphenol)
  publication-title: J. Phys. Chem. B
– volume: 27
  start-page: 3566
  issue: 23
  year: 2015
  ident: 10.1016/j.polymer.2017.01.051_bib26
  article-title: A mechanically strong, highly stable, thermoplastic, and self-healable supramolecular polymer hydrogel
  publication-title: Adv. Mater
  doi: 10.1002/adma.201500534
– volume: 25
  start-page: 1598
  issue: 10
  year: 2015
  ident: 10.1016/j.polymer.2017.01.051_bib51
  article-title: A novel design strategy for fully physically linked double network hydrogels with tough, fatigue resistant, and self-healing properties
  publication-title: Adv. Funct. Mater
  doi: 10.1002/adfm.201404357
– volume: 31
  start-page: 11709
  issue: 42
  year: 2015
  ident: 10.1016/j.polymer.2017.01.051_bib34
  article-title: Poly(vinyl alcohol)-poly(ethylene glycol) double-network hydrogel: a general approach to shape memory and self-healing functionalities
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.5b03474
– volume: 65
  start-page: 253
  year: 2015
  ident: 10.1016/j.polymer.2017.01.051_bib19
  article-title: Time-dependent mechanical properties of tough ionic-covalent hybrid hydrogels
  publication-title: Polymer
  doi: 10.1016/j.polymer.2015.03.079
– start-page: 287
  year: 2011
  ident: 10.1016/j.polymer.2017.01.051_bib46
– volume: 27
  start-page: 6899
  issue: 43
  year: 2015
  ident: 10.1016/j.polymer.2017.01.051_bib44
  article-title: Weak hydrogen bonding enables hard, strong, tough, and elastic hydrogels
  publication-title: Adv. Mater
  doi: 10.1002/adma.201503724
– volume: 1
  start-page: 1233
  issue: 11
  year: 2012
  ident: 10.1016/j.polymer.2017.01.051_bib30
  article-title: Poly(vinyl alcohol) hydrogel can autonomously self-heal
  publication-title: ACS Macro Lett.
  doi: 10.1021/mz300451r
– volume: 8
  start-page: 10439
  issue: 40
  year: 2012
  ident: 10.1016/j.polymer.2017.01.051_bib29
  article-title: Anisotropic tough poly(vinyl alcohol) hydrogels
  publication-title: Soft Matter
  doi: 10.1039/c2sm26102b
– volume: 264
  start-page: 595
  issue: 7
  year: 1986
  ident: 10.1016/j.polymer.2017.01.051_bib27
  article-title: Morphology and structure of highly elastic poly (vinyl alcohol) hydrogel prepared by repeated freezing-and-melting
  publication-title: Colloid Polym. Sci.
  doi: 10.1007/BF01412597
– volume: 41
  start-page: 5379
  issue: 14
  year: 2008
  ident: 10.1016/j.polymer.2017.01.051_bib11
  article-title: Design and fabrication of a high-strength hydrogel with ideally homogeneous network structure from tetrahedron-like macromonomers
  publication-title: Macromolecules
  doi: 10.1021/ma800476x
– volume: 5
  start-page: 814
  issue: 7
  year: 2016
  ident: 10.1016/j.polymer.2017.01.051_bib42
  article-title: Highly elastic fibers made from hydrogen-bonded polymer complex
  publication-title: ACS Macro Lett.
  doi: 10.1021/acsmacrolett.6b00346
– volume: 9
  start-page: 2837
  issue: 10
  year: 2013
  ident: 10.1016/j.polymer.2017.01.051_bib14
  article-title: Tough and super-resilient hydrogels synthesized by using peroxidized polymer chains as polyfunctional initiating and cross-linking centers
  publication-title: Soft Matter
  doi: 10.1039/c2sm27605d
– volume: vol. 123
  start-page: 469
  year: 2002
  ident: 10.1016/j.polymer.2017.01.051_bib37
  article-title: Cooperative effects in hydrogen bonding
– volume: 8
  start-page: 27199
  issue: 40
  year: 2016
  ident: 10.1016/j.polymer.2017.01.051_bib45
  article-title: Poly(vinyl alcohol)–tannic acid hydrogels with excellent mechanical properties and shape memory behaviors
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b08374
– volume: 13
  start-page: 485
  issue: 7
  year: 2001
  ident: 10.1016/j.polymer.2017.01.051_bib7
  article-title: The Polyrotaxane Gel:A topological gel by figure-of-eight cross-links
  publication-title: Adv. Mater
  doi: 10.1002/1521-4095(200104)13:7<485::AID-ADMA485>3.0.CO;2-T
– volume: 21
  start-page: 743
  issue: 7
  year: 2009
  ident: 10.1016/j.polymer.2017.01.051_bib4
  article-title: Hydrogels for soft machines
  publication-title: Adv. Mater
  doi: 10.1002/adma.200800534
– volume: 27
  start-page: 2054
  issue: 12
  year: 2015
  ident: 10.1016/j.polymer.2017.01.051_bib21
  article-title: Molecularly engineered dual-crosslinked hydrogel with ultrahigh mechanical strength, toughness, and good self-recovery
  publication-title: Adv. Mater
  doi: 10.1002/adma.201405022
– volume: 4
  start-page: 84
  issue: 1
  year: 2015
  ident: 10.1016/j.polymer.2017.01.051_bib3
  article-title: Self-propelled microswimmer actuated by stimuli-sensitive bilayered hydrogel
  publication-title: ACS Macro Lett.
  doi: 10.1021/mz5007014
– volume: 66
  start-page: 8
  issue: 1
  year: 2006
  ident: 10.1016/j.polymer.2017.01.051_bib53
  article-title: Physical characterization of cassava starch biofilms with special reference to dynamic mechanical properties at low temperatures
  publication-title: Carbohyd. Polym.
  doi: 10.1016/j.carbpol.2006.02.016
– volume: 4
  start-page: 961
  issue: 9
  year: 2015
  ident: 10.1016/j.polymer.2017.01.051_bib25
  article-title: Free reprocessability of tough and self-healing hydrogels based on polyion complex
  publication-title: ACS Macro Lett.
  doi: 10.1021/acsmacrolett.5b00501
– volume: 53
  start-page: 1805
  issue: 9
  year: 2012
  ident: 10.1016/j.polymer.2017.01.051_bib5
  article-title: Super tough double network hydrogels and their application as biomaterials
  publication-title: Polymer
  doi: 10.1016/j.polymer.2012.03.013
– volume: 19
  start-page: 1622
  issue: 12
  year: 2007
  ident: 10.1016/j.polymer.2017.01.051_bib10
  article-title: A novel hydrogel with high mechanical strength: a macromolecular microsphere composite hydrogel
  publication-title: Adv. Mater
  doi: 10.1002/adma.200602533
– volume: 28
  start-page: 7178
  issue: 33
  year: 2016
  ident: 10.1016/j.polymer.2017.01.051_bib16
  article-title: A universal soaking strategy to convert composite hydrogels into extremely tough and rapidly recoverable double-network hydrogels
  publication-title: Adv. Mater
  doi: 10.1002/adma.201601742
– volume: 2
  start-page: 6708
  issue: 39
  year: 2014
  ident: 10.1016/j.polymer.2017.01.051_bib48
  article-title: Stiff, strong, and tough hydrogels with good chemical stability
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C4TB01194E
– volume: 45
  start-page: 209
  issue: 3
  year: 2001
  ident: 10.1016/j.polymer.2017.01.051_bib54
  article-title: Humidity-induced structural transitions in amylose and amylopectin films
  publication-title: Carbohyd. Polym.
  doi: 10.1016/S0144-8617(00)00242-3
– volume: 407
  start-page: 167
  issue: 6801
  year: 2000
  ident: 10.1016/j.polymer.2017.01.051_bib40
  article-title: Helical self-assembled polymers from cooperative stacking of hydrogen-bonded pairs
  publication-title: Nature
  doi: 10.1038/35025027
– volume: 54
  start-page: 1596
  issue: 6
  year: 2013
  ident: 10.1016/j.polymer.2017.01.051_bib13
  article-title: Mechanically strong and thermosensitive macromolecular microsphere composite poly(N-isopropylacrylamide) hydrogels
  publication-title: Polymer
  doi: 10.1016/j.polymer.2013.01.025
– volume: 3
  start-page: 520
  issue: 6
  year: 2014
  ident: 10.1016/j.polymer.2017.01.051_bib49
  article-title: Hybrid hydrogels with extremely high stiffness and toughness
  publication-title: ACS Macro Lett.
  doi: 10.1021/mz5002355
– volume: 2
  start-page: 86
  issue: 1
  year: 2013
  ident: 10.1016/j.polymer.2017.01.051_bib52
  article-title: Mechanically tough, thermally activated shape memory hydrogels
  publication-title: ACS Macro Lett.
  doi: 10.1021/mz3006389
– volume: 341
  start-page: 984
  issue: 6149
  year: 2013
  ident: 10.1016/j.polymer.2017.01.051_bib6
  article-title: Stretchable, transparent, ionic conductors
  publication-title: Science
  doi: 10.1126/science.1240228
– volume: 8
  start-page: 31304
  issue: 45
  year: 2016
  ident: 10.1016/j.polymer.2017.01.051_bib23
  article-title: 3D Printing of ultratough polyion complex hydrogels
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b09881
– volume: 33
  start-page: 2472
  issue: 7
  year: 2000
  ident: 10.1016/j.polymer.2017.01.051_bib28
  article-title: Structure and morphology of freeze/thawed PVA hydrogels
  publication-title: Macromolecules
  doi: 10.1021/ma9907587
– volume: 21
  start-page: 1712
  issue: 17
  year: 2009
  ident: 10.1016/j.polymer.2017.01.051_bib1
  article-title: Nanocomposite hydrogel with high toughness for bioactuators
  publication-title: Adv. Mater
  doi: 10.1002/adma.200802205
– volume: 46
  start-page: 7423
  issue: 18
  year: 2013
  ident: 10.1016/j.polymer.2017.01.051_bib43
  article-title: Facile fabrication of tough hydrogels physically cross-linked by strong cooperative hydrogen bonding
  publication-title: Macromolecules
  doi: 10.1021/ma401053c
– volume: 14
  start-page: 1120
  issue: 16
  year: 2002
  ident: 10.1016/j.polymer.2017.01.051_bib8
  article-title: Nanocomposite hydrogels: a unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties
  publication-title: Adv. Mater
  doi: 10.1002/1521-4095(20020816)14:16<1120::AID-ADMA1120>3.0.CO;2-9
– volume: 3
  start-page: 496
  issue: 5
  year: 2014
  ident: 10.1016/j.polymer.2017.01.051_bib15
  article-title: Super tough, ultrastretchable, and thermoresponsive hydrogels with functionalized triblock copolymer micelles as macro-cross-linkers
  publication-title: ACS Macro Lett.
  doi: 10.1021/mz500221j
– volume: 21
  start-page: 10399
  issue: 28
  year: 2011
  ident: 10.1016/j.polymer.2017.01.051_bib32
  article-title: High strength graphene oxide/polyvinyl alcohol composite hydrogels
  publication-title: J. Mater. Chem.
  doi: 10.1039/c0jm04043f
– volume: 110
  start-page: 18338
  issue: 37
  year: 2006
  ident: 10.1016/j.polymer.2017.01.051_bib39
  article-title: Cooperative hydrogen bonds of macromolecules. 2. Two-dimensional cooperativity in the binding of poly(4-vinylpyridine) to poly(4-vinylphenol)
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp063837a
– volume: 35
  start-page: 1305
  issue: 12
  year: 2006
  ident: 10.1016/j.polymer.2017.01.051_bib38
  article-title: Dipolar interactions and hydrogen bonding in supramolecular aggregates: understanding cooperative phenomena for 1st hyperpolarizability
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b605478a
– volume: 30
  start-page: 14648
  issue: 48
  year: 2014
  ident: 10.1016/j.polymer.2017.01.051_bib36
  article-title: Liquid crystalline behavior of graphene oxide in the formation and deformation of tough nanocomposite hydrogels
  publication-title: Langmuir
  doi: 10.1021/la503815y
– volume: 15
  start-page: 1155
  issue: 14
  year: 2003
  ident: 10.1016/j.polymer.2017.01.051_bib9
  article-title: Double-network hydrogels with extremely high mechanical strength
  publication-title: Adv. Mater
  doi: 10.1002/adma.200304907
– volume: 37
  start-page: 9510
  issue: 25
  year: 2004
  ident: 10.1016/j.polymer.2017.01.051_bib31
  article-title: Investigation of the crystallinity of freeze/thaw poly(vinyl alcohol) hydrogels by different techniques
  publication-title: Macromolecules
  doi: 10.1021/ma048418v
– volume: 27
  start-page: 2722
  issue: 17
  year: 2015
  ident: 10.1016/j.polymer.2017.01.051_bib22
  article-title: Oppositely charged polyelectrolytes form tough, self-healing, and rebuildable hydrogels
  publication-title: Adv. Mater
  doi: 10.1002/adma.201500140
– volume: 7
  start-page: 12067
  issue: 22
  year: 2015
  ident: 10.1016/j.polymer.2017.01.051_bib33
  article-title: Therapeutic-ultrasound-triggered shape memory of a melamine-enhanced poly(vinyl alcohol) physical hydrogel
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b02234
– volume: 28
  start-page: 5710
  issue: 16
  year: 2016
  ident: 10.1016/j.polymer.2017.01.051_bib17
  article-title: Improvement of mechanical strength and fatigue resistance of double network hydrogels by ionic coordination interactions
  publication-title: Chem. Mater
  doi: 10.1021/acs.chemmater.6b01920
– volume: 7
  start-page: 27289
  issue: 49
  year: 2015
  ident: 10.1016/j.polymer.2017.01.051_bib2
  article-title: Near-infrared light-responsive poly(N-isopropylacrylamide)/graphene oxide nanocomposite hydrogels with ultrahigh tensibility
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b08609
– volume: 95
  start-page: 9
  year: 2016
  ident: 10.1016/j.polymer.2017.01.051_bib20
  article-title: Processing tough supramolecular hydrogels with tunable strength of polyion complex
  publication-title: Polymer
  doi: 10.1016/j.polymer.2016.04.043
– volume: 55
  start-page: 914
  issue: 3
  year: 2014
  ident: 10.1016/j.polymer.2017.01.051_bib18
  article-title: Brittle-ductile transition of double network hydrogels: mechanical balance of two networks as the key factor
  publication-title: Polymer
  doi: 10.1016/j.polymer.2013.12.066
– volume: 64
  start-page: 1007
  issue: 8
  year: 2011
  ident: 10.1016/j.polymer.2017.01.051_bib47
  article-title: Progress toward robust polymer hydrogels
  publication-title: Aust. J. Chem.
  doi: 10.1071/CH11156
– volume: 2
  start-page: 1100
  issue: 12
  year: 2013
  ident: 10.1016/j.polymer.2017.01.051_bib41
  article-title: Bioinspired strategy to reinforce PVA with improved toughness and thermal properties via hydrogen-bond self-assembly
  publication-title: ACS Macro Lett.
  doi: 10.1021/mz4005265
– volume: 100
  start-page: 60
  year: 2016
  ident: 10.1016/j.polymer.2017.01.051_bib24
  article-title: Hydrophobic association mediated physical hydrogels with high strength and healing ability
  publication-title: Polymer
  doi: 10.1016/j.polymer.2016.08.022
– volume: 72
  start-page: 1
  issue: 1
  year: 1995
  ident: 10.1016/j.polymer.2017.01.051_bib55
  article-title: Thermomechanical behavior of wheat gluten films - effect of sucrose, glycerin, and sorbitol
  publication-title: Cereal Chem.
– volume: 44
  start-page: 4997
  issue: 12
  year: 2011
  ident: 10.1016/j.polymer.2017.01.051_bib50
  article-title: Tough and self-healing hydrogels formed via hydrophobic interactions
  publication-title: Macromolecules
  doi: 10.1021/ma200579v
– volume: 6
  start-page: 8194
  issue: 9
  year: 2012
  ident: 10.1016/j.polymer.2017.01.051_bib12
  article-title: Synthesis of graphene peroxide and its application in fabricating super extensible and highly resilient nanocomposite hydrogels
  publication-title: ACS Nano
  doi: 10.1021/nn302874v
– volume: 51
  start-page: 5901
  issue: 12
  year: 2016
  ident: 10.1016/j.polymer.2017.01.051_bib35
  article-title: Biomimetic jellyfish-like PVA/graphene oxide nanocomposite hydrogels with anisotropic and pH-responsive mechanical properties
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-016-9891-x
SSID ssj0002524
Score 2.5904932
Snippet Facile preparation of tough hydrogels with excellent processability is of great practical importance, but it remains a great challenge. A novel type of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 168
SubjectTerms Alcohols
Bonding strength
Chemical bonds
Crosslinking
Fracture toughness
Gelation
Gels
Glycerol
Hydrogels
Hydrogen bonding
Hydrogen bonds
Low temperature resistance
Mechanical properties
Microstructure
Moldability
Polyvinyl alcohol
Supramolecular
Temperature
Tensile strength
Thermoplasticity
Title Facile preparation of hydrogen-bonded supramolecular polyvinyl alcohol-glycerol gels with excellent thermoplasticity and mechanical properties
URI https://dx.doi.org/10.1016/j.polymer.2017.01.051
https://www.proquest.com/docview/1948460583
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcgAOCAqIQql84OrdxHFi51itWC0geqJSb5Yfk7JVNomyaUUu_AR-M548KCChShwTxYnlbzwznsx8Q8g7L0HFziUMlDJMcO6ZVU4wZzikkPsi8nhQ_HyebS7Ex8v08oCs5loYTKucdP-o0wdtPd1ZTqu5bLZbrPFNgr3J4hgp16XEc7sQEqV88f0uzYOnfGRiTjjDp--qeJbXi6Yu-x0gLWgsB_bONP6XffpLUw_mZ_2UPJn8Rno2Tu0ZOYDqiDxcze3ajsjj35gFn5Mfa-PCfqdNCyO5d13RuqBfe9_WQWSYrTHyTfc3TWt2c4dcihO93VZ9Sc3YOZddlb2Dti7pVZgjxaAthW9DsL_qKPqOu7oJ_jemZnc9NZWnO8BaYoQ-fLxuMG0b9i_Ixfr9l9WGTa0XmEsS2TFlg4TlhYuKLLM-cxEYmRYR5EpCWljnM5UYyCLgThourOVe2tSJXOVeIS4vyWFVV_CKUAgeUG4TxzPuhPSRCQ6f9OEwbFWaZ8ofEzEvuHYTLzm2xyj1nIB2rSecNOKko1gHnI7J4tewZiTmuG-AmtHUf0iYDsbjvqEnM_p62uJ7HedCDT-Vk9f__-Y35BFeDTXy4oQcdu0NvA1eTmdPBzE-JQ_OPnzanP8EE_QDWw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcigcEBQQLQV84OrdxHFi54hWrBZoe2ql3iw_JmWr3STKpohc-An8Zjx5UEBClbgmcWL5G8-MJzPfEPLOS1CxcwkDpQwTnHtmlRPMGQ4p5L6IPB4Uz86z1aX4dJVe7ZHFVAuDaZWj7h90eq-txyvzcTXn9XqNNb5JsDdZHCPlupTh3P5AhO2LbQxm3-_yPHjKByrmhDN8_K6MZ34zq6tNtwXkBY1lT9-Zxv8yUH-p6t7-LJ-Qx6PjSN8Pc3tK9qA8JAeLqV_bIXn0G7XgM_JjaVzY8LRuYGD3rkpaFfRL55sqyAyzFYa-6e62bsx2apFLcaJf12W3oWZoncuuN52DptrQ6zBHilFbCt_6aH_ZUnQet1UdHHDMzW47akpPt4DFxIh9-HhVY9427J6Ty-WHi8WKjb0XmEsS2TJlg4jlhYuKLLM-cxEYmRYR5EpCWljnM5UYyCLgThourOVe2tSJXOVeITAvyH5ZlfCSUAguUG4TxzPuhPSRCR6f9OE0bFWaZ8ofETEtuHYjMTn2x9joKQPtRo84acRJR7EOOB2R2a9h9cDMcd8ANaGp_xAxHazHfUNPJvT1uMd3Os6F6v8qJ8f__-a35GB1cXaqTz-ef35FHuKdvmBenJD9trmF18Hlae2bXqR_AuntBOk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facile+preparation+of+hydrogen-bonded+supramolecular+polyvinyl+alcohol-glycerol+gels+with+excellent+thermoplasticity+and+mechanical+properties&rft.jtitle=Polymer+%28Guilford%29&rft.au=Shi%2C+Shengjie&rft.au=Peng%2C+Xin&rft.au=Liu%2C+Tianqi&rft.au=Chen%2C+Ya-Nan&rft.date=2017-02-24&rft.pub=Elsevier+Ltd&rft.issn=0032-3861&rft.eissn=1873-2291&rft.volume=111&rft.spage=168&rft.epage=176&rft_id=info:doi/10.1016%2Fj.polymer.2017.01.051&rft.externalDocID=S0032386117300770
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-3861&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-3861&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-3861&client=summon