Output statistics, equivocation, and state masking
Given a discrete memoryless channel and a target distribution on its output alphabet, one wishes to construct a length-$ n $ rate-$ R $ codebook such that the output distribution—computed over a codeword that is chosen uniformly at random—should be close to the $ n $-fold tensor product of the targe...
Saved in:
Published in | AIMS mathematics Vol. 10; no. 6; pp. 13151 - 13165 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2473-6988 2473-6988 |
DOI | 10.3934/math.2025590 |
Cover
Loading…
Abstract | Given a discrete memoryless channel and a target distribution on its output alphabet, one wishes to construct a length-$ n $ rate-$ R $ codebook such that the output distribution—computed over a codeword that is chosen uniformly at random—should be close to the $ n $-fold tensor product of the target distribution. Here 'close' means that the relative entropy between the output distribution and said $ n $-fold product should be small. We characterize the smallest achievable relative entropy divided by $ n $ as $ n $ tends to infinity. We then demonstrate two applications of this result. The first application is an alternative proof of the achievability of the rate-equivocation region of the wiretap channel. The second application is a new capacity result for communication subject to state masking in the scenario where the decoder has access to channel-state information. |
---|---|
AbstractList | Given a discrete memoryless channel and a target distribution on its output alphabet, one wishes to construct a length-$ n $ rate-$ R $ codebook such that the output distribution—computed over a codeword that is chosen uniformly at random—should be close to the $ n $-fold tensor product of the target distribution. Here 'close' means that the relative entropy between the output distribution and said $ n $-fold product should be small. We characterize the smallest achievable relative entropy divided by $ n $ as $ n $ tends to infinity. We then demonstrate two applications of this result. The first application is an alternative proof of the achievability of the rate-equivocation region of the wiretap channel. The second application is a new capacity result for communication subject to state masking in the scenario where the decoder has access to channel-state information. |
Author | Wang, Ligong |
Author_xml | – sequence: 1 givenname: Ligong surname: Wang fullname: Wang, Ligong |
BookMark | eNpNkMtKw0AUhgepYK3d-QB5gKTOPTNLKV4KhW50Pcy1pjaZmpkIvr3pBXF1Dv8P3zl8t2DSxc4DcI_ggkhCH1qdPxYYYsYkvAJTTGtScSnE5N9-A-Yp7SCEGGGKazoFeDPkw5CLlHVuUm5sKgv_NTTf0Y5B7MpCd-7U-qLV6bPptnfgOuh98vPLnIH356e35Wu13ryslo_ryhJS50oIKT23lCImMQ3UMEgkEsFLixzkHBsORe2gJUZIS7RhmCHjmBMycBYgmYHVmeui3qlD37S6_1FRN-oUxH6rdD9-vPfKmZobyzWxiI33hPCCcyaDI7XkgomRVZ5Zto8p9T788RBUR33qqE9d9JFfW9pjGQ |
Cites_doi | 10.1109/TIT.2013.2284506 10.1109/18.256486 10.1109/TIT.2024.3432573 10.1109/18.568695 10.1002/j.1538-7305.1975.tb02040.x 10.1109/TIT.2007.896860 10.1109/TIT.2013.2279330 10.1109/TIT.2006.871040 10.1561/9781680835359 10.1109/TIT.1975.1055346 10.1109/TIT.1978.1055892 |
ContentType | Journal Article |
CorporateAuthor | Department of Information Technology and Electrical Engineering, ETH Zurich, 8092 Zurich, Switzerland |
CorporateAuthor_xml | – name: Department of Information Technology and Electrical Engineering, ETH Zurich, 8092 Zurich, Switzerland |
DBID | AAYXX CITATION DOA |
DOI | 10.3934/math.2025590 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 13165 |
ExternalDocumentID | oai_doaj_org_article_db76bc6a3c1541588e86659fd3796858 10_3934_math_2025590 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
ID | FETCH-LOGICAL-c337t-8899e6c4415924f4b503918fe9c1d0662b6087d0c3b89c3ab5251bd5d89f65f03 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Mon Sep 01 19:40:26 EDT 2025 Thu Jul 03 08:46:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c337t-8899e6c4415924f4b503918fe9c1d0662b6087d0c3b89c3ab5251bd5d89f65f03 |
OpenAccessLink | https://doaj.org/article/db76bc6a3c1541588e86659fd3796858 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_db76bc6a3c1541588e86659fd3796858 crossref_primary_10_3934_math_2025590 |
PublicationCentury | 2000 |
PublicationDate | 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2025 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/math.2025590-4 key-10.3934/math.2025590-12 key-10.3934/math.2025590-3 key-10.3934/math.2025590-13 key-10.3934/math.2025590-2 key-10.3934/math.2025590-10 key-10.3934/math.2025590-1 key-10.3934/math.2025590-11 key-10.3934/math.2025590-8 key-10.3934/math.2025590-7 key-10.3934/math.2025590-6 key-10.3934/math.2025590-14 key-10.3934/math.2025590-5 key-10.3934/math.2025590-15 key-10.3934/math.2025590-9 |
References_xml | – ident: key-10.3934/math.2025590-9 doi: 10.1109/TIT.2013.2284506 – ident: key-10.3934/math.2025590-2 doi: 10.1109/18.256486 – ident: key-10.3934/math.2025590-6 – ident: key-10.3934/math.2025590-12 doi: 10.1109/TIT.2024.3432573 – ident: key-10.3934/math.2025590-3 doi: 10.1109/18.568695 – ident: key-10.3934/math.2025590-7 – ident: key-10.3934/math.2025590-10 doi: 10.1002/j.1538-7305.1975.tb02040.x – ident: key-10.3934/math.2025590-11 doi: 10.1109/TIT.2007.896860 – ident: key-10.3934/math.2025590-13 – ident: key-10.3934/math.2025590-15 – ident: key-10.3934/math.2025590-5 doi: 10.1109/TIT.2013.2279330 – ident: key-10.3934/math.2025590-4 doi: 10.1109/TIT.2006.871040 – ident: key-10.3934/math.2025590-8 doi: 10.1561/9781680835359 – ident: key-10.3934/math.2025590-1 doi: 10.1109/TIT.1975.1055346 – ident: key-10.3934/math.2025590-14 doi: 10.1109/TIT.1978.1055892 |
SSID | ssj0002124274 |
Score | 2.2789576 |
Snippet | Given a discrete memoryless channel and a target distribution on its output alphabet, one wishes to construct a length-$ n $ rate-$ R $ codebook such that the... |
SourceID | doaj crossref |
SourceType | Open Website Index Database |
StartPage | 13151 |
SubjectTerms | approximation of output statistics equivocation relative entropy soft covering state masking wiretap channel |
Title | Output statistics, equivocation, and state masking |
URI | https://doaj.org/article/db76bc6a3c1541588e86659fd3796858 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLVQJxgQT1FeygBbrSbxewREVSEVFip1i_yUGEgLTfh-fONQlYmFNYki-1zp3nOu7WOEbkphuXKFwYIxh6k0JTbBMEwsCVST4HQBB5xnz3w6p08Ltti66gv2hCV74ATc2BnBjeWa2FjsCyalB4c2FRwRCrzTIfvmKt8SU5CDY0KmUW-lne5EETqO_A_WHoBB579q0JZVf1dTJgdovyeD2V0axCHa8fUR2pttnFTXx6h8aZtV22Rw8Cd5Ko8y_9G-fS1Tr22U6dp1b332rtfQ-D5B88nj68MU9_ccYEuIaLCMmsdzC8omqqFADQPbdhm8soUDh3bDcylcbomRyhJtWCQlxjEnVeAs5OQUDepl7c9QpqAoRYZgPSGUFVYyLXikWJEEyVKIYohuf2ZerZKdRRVlACBUAUJVj9AQ3QMsm2_AhLp7EENT9aGp_grN-X_85ALtwphS1-MSDZrP1l9FHtCY6y7k31u8rb0 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Output+statistics%2C+equivocation%2C+and+state+masking&rft.jtitle=AIMS+mathematics&rft.au=Wang%2C+Ligong&rft.date=2025-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=10&rft.issue=6&rft.spage=13151&rft.epage=13165&rft_id=info:doi/10.3934%2Fmath.2025590&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2025590 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |