Output statistics, equivocation, and state masking

Given a discrete memoryless channel and a target distribution on its output alphabet, one wishes to construct a length-$ n $ rate-$ R $ codebook such that the output distribution—computed over a codeword that is chosen uniformly at random—should be close to the $ n $-fold tensor product of the targe...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 10; no. 6; pp. 13151 - 13165
Main Author Wang, Ligong
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2025
Subjects
Online AccessGet full text
ISSN2473-6988
2473-6988
DOI10.3934/math.2025590

Cover

Loading…
Abstract Given a discrete memoryless channel and a target distribution on its output alphabet, one wishes to construct a length-$ n $ rate-$ R $ codebook such that the output distribution—computed over a codeword that is chosen uniformly at random—should be close to the $ n $-fold tensor product of the target distribution. Here 'close' means that the relative entropy between the output distribution and said $ n $-fold product should be small. We characterize the smallest achievable relative entropy divided by $ n $ as $ n $ tends to infinity. We then demonstrate two applications of this result. The first application is an alternative proof of the achievability of the rate-equivocation region of the wiretap channel. The second application is a new capacity result for communication subject to state masking in the scenario where the decoder has access to channel-state information.
AbstractList Given a discrete memoryless channel and a target distribution on its output alphabet, one wishes to construct a length-$ n $ rate-$ R $ codebook such that the output distribution—computed over a codeword that is chosen uniformly at random—should be close to the $ n $-fold tensor product of the target distribution. Here 'close' means that the relative entropy between the output distribution and said $ n $-fold product should be small. We characterize the smallest achievable relative entropy divided by $ n $ as $ n $ tends to infinity. We then demonstrate two applications of this result. The first application is an alternative proof of the achievability of the rate-equivocation region of the wiretap channel. The second application is a new capacity result for communication subject to state masking in the scenario where the decoder has access to channel-state information.
Author Wang, Ligong
Author_xml – sequence: 1
  givenname: Ligong
  surname: Wang
  fullname: Wang, Ligong
BookMark eNpNkMtKw0AUhgepYK3d-QB5gKTOPTNLKV4KhW50Pcy1pjaZmpkIvr3pBXF1Dv8P3zl8t2DSxc4DcI_ggkhCH1qdPxYYYsYkvAJTTGtScSnE5N9-A-Yp7SCEGGGKazoFeDPkw5CLlHVuUm5sKgv_NTTf0Y5B7MpCd-7U-qLV6bPptnfgOuh98vPLnIH356e35Wu13ryslo_ryhJS50oIKT23lCImMQ3UMEgkEsFLixzkHBsORe2gJUZIS7RhmCHjmBMycBYgmYHVmeui3qlD37S6_1FRN-oUxH6rdD9-vPfKmZobyzWxiI33hPCCcyaDI7XkgomRVZ5Zto8p9T788RBUR33qqE9d9JFfW9pjGQ
Cites_doi 10.1109/TIT.2013.2284506
10.1109/18.256486
10.1109/TIT.2024.3432573
10.1109/18.568695
10.1002/j.1538-7305.1975.tb02040.x
10.1109/TIT.2007.896860
10.1109/TIT.2013.2279330
10.1109/TIT.2006.871040
10.1561/9781680835359
10.1109/TIT.1975.1055346
10.1109/TIT.1978.1055892
ContentType Journal Article
CorporateAuthor Department of Information Technology and Electrical Engineering, ETH Zurich, 8092 Zurich, Switzerland
CorporateAuthor_xml – name: Department of Information Technology and Electrical Engineering, ETH Zurich, 8092 Zurich, Switzerland
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2025590
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 13165
ExternalDocumentID oai_doaj_org_article_db76bc6a3c1541588e86659fd3796858
10_3934_math_2025590
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c337t-8899e6c4415924f4b503918fe9c1d0662b6087d0c3b89c3ab5251bd5d89f65f03
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Mon Sep 01 19:40:26 EDT 2025
Thu Jul 03 08:46:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-8899e6c4415924f4b503918fe9c1d0662b6087d0c3b89c3ab5251bd5d89f65f03
OpenAccessLink https://doaj.org/article/db76bc6a3c1541588e86659fd3796858
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_db76bc6a3c1541588e86659fd3796858
crossref_primary_10_3934_math_2025590
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2025
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2025590-4
key-10.3934/math.2025590-12
key-10.3934/math.2025590-3
key-10.3934/math.2025590-13
key-10.3934/math.2025590-2
key-10.3934/math.2025590-10
key-10.3934/math.2025590-1
key-10.3934/math.2025590-11
key-10.3934/math.2025590-8
key-10.3934/math.2025590-7
key-10.3934/math.2025590-6
key-10.3934/math.2025590-14
key-10.3934/math.2025590-5
key-10.3934/math.2025590-15
key-10.3934/math.2025590-9
References_xml – ident: key-10.3934/math.2025590-9
  doi: 10.1109/TIT.2013.2284506
– ident: key-10.3934/math.2025590-2
  doi: 10.1109/18.256486
– ident: key-10.3934/math.2025590-6
– ident: key-10.3934/math.2025590-12
  doi: 10.1109/TIT.2024.3432573
– ident: key-10.3934/math.2025590-3
  doi: 10.1109/18.568695
– ident: key-10.3934/math.2025590-7
– ident: key-10.3934/math.2025590-10
  doi: 10.1002/j.1538-7305.1975.tb02040.x
– ident: key-10.3934/math.2025590-11
  doi: 10.1109/TIT.2007.896860
– ident: key-10.3934/math.2025590-13
– ident: key-10.3934/math.2025590-15
– ident: key-10.3934/math.2025590-5
  doi: 10.1109/TIT.2013.2279330
– ident: key-10.3934/math.2025590-4
  doi: 10.1109/TIT.2006.871040
– ident: key-10.3934/math.2025590-8
  doi: 10.1561/9781680835359
– ident: key-10.3934/math.2025590-1
  doi: 10.1109/TIT.1975.1055346
– ident: key-10.3934/math.2025590-14
  doi: 10.1109/TIT.1978.1055892
SSID ssj0002124274
Score 2.2789576
Snippet Given a discrete memoryless channel and a target distribution on its output alphabet, one wishes to construct a length-$ n $ rate-$ R $ codebook such that the...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 13151
SubjectTerms approximation of output statistics
equivocation
relative entropy
soft covering
state masking
wiretap channel
Title Output statistics, equivocation, and state masking
URI https://doaj.org/article/db76bc6a3c1541588e86659fd3796858
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLVQJxgQT1FeygBbrSbxewREVSEVFip1i_yUGEgLTfh-fONQlYmFNYki-1zp3nOu7WOEbkphuXKFwYIxh6k0JTbBMEwsCVST4HQBB5xnz3w6p08Ltti66gv2hCV74ATc2BnBjeWa2FjsCyalB4c2FRwRCrzTIfvmKt8SU5CDY0KmUW-lne5EETqO_A_WHoBB579q0JZVf1dTJgdovyeD2V0axCHa8fUR2pttnFTXx6h8aZtV22Rw8Cd5Ko8y_9G-fS1Tr22U6dp1b332rtfQ-D5B88nj68MU9_ccYEuIaLCMmsdzC8omqqFADQPbdhm8soUDh3bDcylcbomRyhJtWCQlxjEnVeAs5OQUDepl7c9QpqAoRYZgPSGUFVYyLXikWJEEyVKIYohuf2ZerZKdRRVlACBUAUJVj9AQ3QMsm2_AhLp7EENT9aGp_grN-X_85ALtwphS1-MSDZrP1l9FHtCY6y7k31u8rb0
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Output+statistics%2C+equivocation%2C+and+state+masking&rft.jtitle=AIMS+mathematics&rft.au=Wang%2C+Ligong&rft.date=2025-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=10&rft.issue=6&rft.spage=13151&rft.epage=13165&rft_id=info:doi/10.3934%2Fmath.2025590&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2025590
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon