Simple solvothermal synthesis of porous graphene-NiO nanocomposites with high cyclic stability for supercapacitor application
Over the years supercapacitors have established themselves as energy storage devices as well as a subject to reckon with. Thus, not surprisingly tremendous effort has been put in the field of supercapacitor research. However, a device with all desirable characteristics has not yet been realized and...
Saved in:
Published in | Journal of alloys and compounds Vol. 854; p. 157190 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
15.02.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Over the years supercapacitors have established themselves as energy storage devices as well as a subject to reckon with. Thus, not surprisingly tremendous effort has been put in the field of supercapacitor research. However, a device with all desirable characteristics has not yet been realized and hence deserves to be paid utmost heed. Herein, we report a facile synthesis of porous graphene-NiO (PGNO) nanocomposites via a unique mixed solvent system through a solvothermal approach. The microscopic characterization of porous graphene (PG) reveals the presence of pores in the graphene sheets, NiO (NO) shows flake like structure and PGNO composite displays the anchoring of NO nanoflakes on the PG sheets. A series of electrode materials were prepared by varying the percentage composition of PG and the materials were named as 5–30 PGNO, respectively. The electrochemical study represented a good capacitance value of 511.0 F g−1 at a scan rate of 5 mV s−1 for the 10 PGNO composite in a 3-electrode method and 80% retention of initial capacitance after 10,000 cycles at a current density of 8 A g−1. The fabricated symmetrical hybrid supercapacitor by using the 10 PGNO electrodes also depicted a good capacitance value of 86.0 F g−1 at a scan rate of 5 mV s−1. The fabricated device retained 84% of initial capacitance at the end of 10,000 cycles at a current density of 8 A g−1, demonstrating the good electrochemical strength and rate capability of the material. The percentage of double layer capacitance and pseudocapacitance contributions to the overall specific capacitance of the PGNO supercapacitor has also been estimated. Overall, the results exhibited by the composite material warrants its beneficial utility in energy storage devices.
[Display omitted]
•Simple solvothermal synthesis of porous graphene-NiO nanocomposite.•Use of unique mixed solvent system for the solvothermal synthesis.•Nanocomposite exhibits good specific capacitance, high rate capability along with high cyclic stability.•The material would be a potential candidate for supercapacitor application. |
---|---|
AbstractList | Over the years supercapacitors have established themselves as energy storage devices as well as a subject to reckon with. Thus, not surprisingly tremendous effort has been put in the field of supercapacitor research. However, a device with all desirable characteristics has not yet been realized and hence deserves to be paid utmost heed. Herein, we report a facile synthesis of porous graphene-NiO (PGNO) nanocomposites via a unique mixed solvent system through a solvothermal approach. The microscopic characterization of porous graphene (PG) reveals the presence of pores in the graphene sheets, NiO (NO) shows flake like structure and PGNO composite displays the anchoring of NO nanoflakes on the PG sheets. A series of electrode materials were prepared by varying the percentage composition of PG and the materials were named as 5–30 PGNO, respectively. The electrochemical study represented a good capacitance value of 511.0 F g−1 at a scan rate of 5 mV s−1 for the 10 PGNO composite in a 3-electrode method and 80% retention of initial capacitance after 10,000 cycles at a current density of 8 A g−1. The fabricated symmetrical hybrid supercapacitor by using the 10 PGNO electrodes also depicted a good capacitance value of 86.0 F g−1 at a scan rate of 5 mV s−1. The fabricated device retained 84% of initial capacitance at the end of 10,000 cycles at a current density of 8 A g−1, demonstrating the good electrochemical strength and rate capability of the material. The percentage of double layer capacitance and pseudocapacitance contributions to the overall specific capacitance of the PGNO supercapacitor has also been estimated. Overall, the results exhibited by the composite material warrants its beneficial utility in energy storage devices.
[Display omitted]
•Simple solvothermal synthesis of porous graphene-NiO nanocomposite.•Use of unique mixed solvent system for the solvothermal synthesis.•Nanocomposite exhibits good specific capacitance, high rate capability along with high cyclic stability.•The material would be a potential candidate for supercapacitor application. Over the years supercapacitors have established themselves as energy storage devices as well as a subject to reckon with. Thus, not surprisingly tremendous effort has been put in the field of supercapacitor research. However, a device with all desirable characteristics has not yet been realized and hence deserves to be paid utmost heed. Herein, we report a facile synthesis of porous graphene-NiO (PGNO) nanocomposites via a unique mixed solvent system through a solvothermal approach. The microscopic characterization of porous graphene (PG) reveals the presence of pores in the graphene sheets, NiO (NO) shows flake like structure and PGNO composite displays the anchoring of NO nanoflakes on the PG sheets. A series of electrode materials were prepared by varying the percentage composition of PG and the materials were named as 5–30 PGNO, respectively. The electrochemical study represented a good capacitance value of 511.0 F g−1 at a scan rate of 5 mV s−1 for the 10 PGNO composite in a 3-electrode method and 80% retention of initial capacitance after 10,000 cycles at a current density of 8 A g−1. The fabricated symmetrical hybrid supercapacitor by using the 10 PGNO electrodes also depicted a good capacitance value of 86.0 F g−1 at a scan rate of 5 mV s−1. The fabricated device retained 84% of initial capacitance at the end of 10,000 cycles at a current density of 8 A g−1, demonstrating the good electrochemical strength and rate capability of the material. The percentage of double layer capacitance and pseudocapacitance contributions to the overall specific capacitance of the PGNO supercapacitor has also been estimated. Overall, the results exhibited by the composite material warrants its beneficial utility in energy storage devices. |
ArticleNumber | 157190 |
Author | Sethi, Meenaketan Bhat, D. Krishna Shenoy, U. Sandhya |
Author_xml | – sequence: 1 givenname: Meenaketan surname: Sethi fullname: Sethi, Meenaketan organization: Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore, 575025, India – sequence: 2 givenname: U. Sandhya surname: Shenoy fullname: Shenoy, U. Sandhya email: sandhyashenoy347@gmail.com organization: Department of Chemistry, College of Engineering and Technology, Srinivas University, Mukka, Mangalore, 574146, India – sequence: 3 givenname: D. Krishna surname: Bhat fullname: Bhat, D. Krishna email: denthajekb@gmail.com organization: Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore, 575025, India |
BookMark | eNqFkM1rHCEYxqWk0M02f0JA6Hm2foyjQw8hhKQNhObQ9iyuoxkHV426CXvo_17TzSmXnN4P3ud5eH-n4CTEYAA4x2iDER6-LptFea_jbkMQaTvG8Yg-gBUWnHb9MIwnYIVGwjpBhfgETktZEEJ4pHgF_v5yu-QNLNE_xTqbvFMelkNobXEFRgtTzHFf4ENWaTbBdD_dPQwqxJaXYnHVFPjs6gxn9zBDfdDeaViq2jrv6gHamGHZJ5O1Skq72kaVUrtR1cXwGXy0yhdz9lrX4M_N9e-rH93d_ffbq8u7TlPKaycGS5hBtu_ZRARidOotx5RhuiWCaCUm1TNsGVN8y_mEt4IoI6wdKGN25IquwZejb8rxcW9KlUvc59AiJekFx8NIGo41YMcrnWMp2ViZstupfJAYyRfScpGvpOULaXkk3XTf3ujao___q1k5_6764qg2DcCTM1kW7UzQZnLZ6Cqn6N5x-Aes3KKg |
CitedBy_id | crossref_primary_10_1016_j_jallcom_2022_164886 crossref_primary_10_1016_j_jallcom_2021_162587 crossref_primary_10_1016_j_colsurfa_2023_132247 crossref_primary_10_1016_j_diamond_2023_110300 crossref_primary_10_1016_j_jallcom_2023_169738 crossref_primary_10_1016_j_molliq_2022_120008 crossref_primary_10_1016_j_jclepro_2022_130355 crossref_primary_10_1039_D2RA02789E crossref_primary_10_1016_j_est_2024_114972 crossref_primary_10_1002_cnma_202400580 crossref_primary_10_1016_j_electacta_2021_139252 crossref_primary_10_1016_j_jallcom_2021_162218 crossref_primary_10_1016_j_jelechem_2022_116503 crossref_primary_10_1016_j_surfin_2024_104690 crossref_primary_10_1016_j_scenv_2024_100071 crossref_primary_10_1149_2162_8777_ac9edc crossref_primary_10_1016_j_ijhydene_2022_03_179 crossref_primary_10_1016_j_jelechem_2021_115632 crossref_primary_10_1016_j_mssp_2022_107238 crossref_primary_10_1080_10408347_2022_2096401 crossref_primary_10_1002_cssc_202101039 crossref_primary_10_1016_j_jallcom_2021_161488 crossref_primary_10_1021_acsomega_2c07075 crossref_primary_10_1007_s10854_023_10976_9 crossref_primary_10_1016_j_jiec_2022_09_050 crossref_primary_10_1021_acs_jpcc_3c00452 crossref_primary_10_1016_j_jallcom_2022_164652 crossref_primary_10_1016_j_hybadv_2023_100105 crossref_primary_10_1016_j_ceramint_2022_04_092 crossref_primary_10_1088_2053_1591_ad04ae crossref_primary_10_1016_j_ijheatfluidflow_2024_109321 crossref_primary_10_1039_D4MA00469H crossref_primary_10_1016_j_est_2024_113171 crossref_primary_10_1016_j_physb_2021_412959 crossref_primary_10_1002_crat_202300178 crossref_primary_10_1002_slct_202403178 crossref_primary_10_1016_j_heliyon_2023_e18496 crossref_primary_10_1016_j_colsurfa_2023_132028 crossref_primary_10_1016_j_jallcom_2022_167614 crossref_primary_10_1016_j_matchemphys_2022_126046 crossref_primary_10_1016_j_jallcom_2023_169955 crossref_primary_10_1007_s10853_023_08386_7 crossref_primary_10_1016_j_electacta_2022_141400 crossref_primary_10_1177_02670836231221397 crossref_primary_10_1016_j_apsusc_2021_150223 crossref_primary_10_1016_j_est_2025_115738 crossref_primary_10_1016_j_electacta_2022_139914 crossref_primary_10_1016_j_est_2023_108351 crossref_primary_10_1007_s10008_022_05265_0 crossref_primary_10_1016_j_electacta_2023_142814 crossref_primary_10_3390_nano11051248 crossref_primary_10_1016_j_diamond_2023_110312 crossref_primary_10_1016_j_jpcs_2023_111723 crossref_primary_10_1016_j_tsf_2023_139935 crossref_primary_10_1002_aesr_202200152 crossref_primary_10_1016_j_jpowsour_2025_236595 crossref_primary_10_1016_j_jallcom_2022_167305 crossref_primary_10_1016_j_colsurfa_2023_132178 crossref_primary_10_1016_j_ceramint_2022_10_333 crossref_primary_10_1080_10408436_2022_2132910 crossref_primary_10_1016_j_jallcom_2021_163163 crossref_primary_10_1016_j_jallcom_2022_167420 crossref_primary_10_1016_j_jiec_2025_03_040 crossref_primary_10_1016_j_ces_2023_119436 crossref_primary_10_1016_j_mtnano_2023_100399 crossref_primary_10_1515_ntrev_2022_0017 crossref_primary_10_1039_D1NA00468A crossref_primary_10_2139_ssrn_4145378 crossref_primary_10_1016_j_est_2022_104329 crossref_primary_10_1134_S1023193524700642 crossref_primary_10_1016_j_egyr_2022_06_008 |
Cites_doi | 10.1016/j.apsusc.2019.144589 10.1016/j.jcis.2020.03.004 10.1007/BF03353757 10.1016/j.coelec.2020.02.004 10.1016/j.mtchem.2017.04.003 10.1016/j.jallcom.2020.155181 10.1016/j.jallcom.2019.05.302 10.1016/j.electacta.2018.10.112 10.1007/s11581-017-2204-9 10.1016/j.jallcom.2018.12.143 10.1039/C8TA03451F 10.1016/j.apsusc.2020.145858 10.1016/j.jpowsour.2016.01.097 10.1007/s11581-018-2812-z 10.1016/j.apsusc.2018.02.173 10.1016/j.jpcs.2017.05.023 10.1002/chem.201803982 10.1016/j.electacta.2019.04.053 10.1039/C9TC06490G 10.1007/s11706-020-0499-3 10.1039/C7SE00420F 10.1016/j.matchemphys.2018.01.012 10.1039/C9NJ05725K 10.1039/D0NA00440E 10.1021/acsomega.8b00798 10.1016/j.matdes.2018.04.074 10.1039/C9CE01547G 10.1021/acsanm.9b01513 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright Elsevier BV Feb 15, 2021 |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright Elsevier BV Feb 15, 2021 |
DBID | AAYXX CITATION 8BQ 8FD JG9 |
DOI | 10.1016/j.jallcom.2020.157190 |
DatabaseName | CrossRef METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Physics |
EISSN | 1873-4669 |
ExternalDocumentID | 10_1016_j_jallcom_2020_157190 S0925838820335544 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNCT ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SPD SSM SSZ T5K TWZ XPP ZMT ~G- 29J AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SEW SMS SSH T9H WUQ 8BQ 8FD AFXIZ EFKBS JG9 |
ID | FETCH-LOGICAL-c337t-86f25e0f445d28053d4f713513b282ca8da451f55a7b77d1b82ae8ff6355f97a3 |
IEDL.DBID | .~1 |
ISSN | 0925-8388 |
IngestDate | Sun Jul 13 03:53:29 EDT 2025 Tue Jul 01 03:58:51 EDT 2025 Thu Apr 24 23:06:22 EDT 2025 Fri Feb 23 02:46:01 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Cyclic stability Supercapacitor Specific capacitance Porous graphene Nanocomposite NiO nanoflakes |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c337t-86f25e0f445d28053d4f713513b282ca8da451f55a7b77d1b82ae8ff6355f97a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2487169219 |
PQPubID | 2045454 |
ParticipantIDs | proquest_journals_2487169219 crossref_primary_10_1016_j_jallcom_2020_157190 crossref_citationtrail_10_1016_j_jallcom_2020_157190 elsevier_sciencedirect_doi_10_1016_j_jallcom_2020_157190 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-15 |
PublicationDateYYYYMMDD | 2021-02-15 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Journal of alloys and compounds |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Sethi, Bantawal, Shenoy, Bhat (bib10) 2019; 799 Chen, Guan, Dong, Wang (bib16) 2018; 24 Sadiq, Shenoy, Bhat (bib26) 2017; 109 Sethi, Shenoy, Bhat (bib29) 2020; 2 Shenoy, Bhat (bib3) 2020; 8 Mohamed, Shenoy, Bhat (bib19) 2018; 208 Huang, Hao, Zheng, Zhou, Yang, Wang, Jiang, Zhu (bib8) 2020; 505 Sudhakar, Selvakumar, Krishna Bhat (bib11) 2018 Sethi, Shenoy, Bhat (bib7) 2020; 44 Barzegar, Bello, Momodu, Madito, Dangbegnon, Manyala (bib27) 2016; 309 Liu, Yang, Zhou, Huang, Zhu (bib6) 2019; 294 Lu, Su, Qi, Lei, Liu, Zang, Shi, Yan (bib20) 2018; 6 Sadiq, Shenoy, Bhat (bib25) 2017; 4 Chime, Nkele, Ezugwu, Nwanya, Shinde, Kabede, Ejikeme, Maaza, Ezema (bib23) 2020; 21 Banerjee, Ghorai, Das, Das, Thakur, Chattopadhyay (bib4) 2018; 3 Sun, Lu, Liu, Rufford, Gaddam, Fan, Zhao (bib21) 2018; 2 Li, Wei, Wang, Zhao, Quan, Zhan, Li, Xu, Teng, Hou (bib12) 2020; 570 Sethi, Shenoy, Muthu, Bhat (bib18) 2020; 14 Russo, Hu, Compagnini (bib9) 2013; 5 Bantawal, Sethi, Shenoy, Bhat (bib24) 2019; 2 Wang, Li, Zhang, Yang, Cao, Xiong (bib15) 2018; 442 Bantawal, Shenoy, Bhat (bib22) 2020; 513 Liu, Gao, Li, Pang (bib1) 2019; 25 Bhat, Shenoy (bib2) 2020; 834 Sethi, Bhat (bib5) 2019; 781 Razali, Majid (bib17) 2018; 153 Wu, Liu, Wang, Yan (bib14) 2019; 25 Yus, Bravo, Sanchez-Herencia, Ferrari, Gonzalez (bib13) 2019; 308 Biswas, Sharma, Mandal, Chowdhury, Chakravarty, Priya, Gowda, De, Singh, Chandra (bib28) 2020; 22 Russo (10.1016/j.jallcom.2020.157190_bib9) 2013; 5 Sethi (10.1016/j.jallcom.2020.157190_bib5) 2019; 781 Chime (10.1016/j.jallcom.2020.157190_bib23) 2020; 21 Sun (10.1016/j.jallcom.2020.157190_bib21) 2018; 2 Huang (10.1016/j.jallcom.2020.157190_bib8) 2020; 505 Bhat (10.1016/j.jallcom.2020.157190_bib2) 2020; 834 Liu (10.1016/j.jallcom.2020.157190_bib6) 2019; 294 Sudhakar (10.1016/j.jallcom.2020.157190_bib11) 2018 Razali (10.1016/j.jallcom.2020.157190_bib17) 2018; 153 Wang (10.1016/j.jallcom.2020.157190_bib15) 2018; 442 Bantawal (10.1016/j.jallcom.2020.157190_bib22) 2020; 513 Sethi (10.1016/j.jallcom.2020.157190_bib18) 2020; 14 Wu (10.1016/j.jallcom.2020.157190_bib14) 2019; 25 Biswas (10.1016/j.jallcom.2020.157190_bib28) 2020; 22 Lu (10.1016/j.jallcom.2020.157190_bib20) 2018; 6 Sethi (10.1016/j.jallcom.2020.157190_bib29) 2020; 2 Barzegar (10.1016/j.jallcom.2020.157190_bib27) 2016; 309 Bantawal (10.1016/j.jallcom.2020.157190_bib24) 2019; 2 Sethi (10.1016/j.jallcom.2020.157190_bib7) 2020; 44 Sadiq (10.1016/j.jallcom.2020.157190_bib26) 2017; 109 Liu (10.1016/j.jallcom.2020.157190_bib1) 2019; 25 Yus (10.1016/j.jallcom.2020.157190_bib13) 2019; 308 Sadiq (10.1016/j.jallcom.2020.157190_bib25) 2017; 4 Li (10.1016/j.jallcom.2020.157190_bib12) 2020; 570 Sethi (10.1016/j.jallcom.2020.157190_bib10) 2019; 799 Mohamed (10.1016/j.jallcom.2020.157190_bib19) 2018; 208 Banerjee (10.1016/j.jallcom.2020.157190_bib4) 2018; 3 Chen (10.1016/j.jallcom.2020.157190_bib16) 2018; 24 Shenoy (10.1016/j.jallcom.2020.157190_bib3) 2020; 8 |
References_xml | – volume: 4 start-page: 133 year: 2017 end-page: 141 ident: bib25 article-title: Enhanced photocatalytic performance of N-doped RGO-FeWO publication-title: Mat. Today Chem. – volume: 2 start-page: 4229 year: 2020 end-page: 4241 ident: bib29 article-title: A porous graphene–NiFe publication-title: Nanoscale Adv. – volume: 3 start-page: 6311 year: 2018 end-page: 6320 ident: bib4 article-title: Amorphous carbon nanotubes–nickel oxide nanoflower hybrids: a low cost energy storage material publication-title: ACS Omega – volume: 505 start-page: 144589 year: 2020 ident: bib8 article-title: Synthesis of polyaniline/nickel oxide/sulfonated graphene ternary composite for all-solid-state asymmetric supercapacitor publication-title: Appl. Surf. Sci. – volume: 309 start-page: 245 year: 2016 end-page: 253 ident: bib27 article-title: Preparation and characterization of porous carbon from expanded graphite for high energy density supercapacitor in aqueous electrolyte publication-title: J. Power Sources – volume: 8 start-page: 2036 year: 2020 end-page: 2042 ident: bib3 article-title: Bi and Zn Co-doped SnTe thermoelectrics: interplay of resonance levels and heavy hole band dominance leading to enhanced performance and record high room temperature ZT publication-title: J. Mater. Chem. C – volume: 5 start-page: 260 year: 2013 end-page: 273 ident: bib9 article-title: Synthesis, properties and potential applications of porous graphene: a review publication-title: Nano-Micro Lett. – volume: 24 start-page: 513 year: 2018 end-page: 521 ident: bib16 article-title: Synthesis of core-shell carbon sphere@ nickel oxide composites and their application for supercapacitors publication-title: Ionics – volume: 25 start-page: 1 year: 2019 end-page: 8 ident: bib14 article-title: NiO@ graphite carbon nanocomposites derived from Ni-MOFs as supercapacitor electrodes publication-title: Ionics – volume: 153 start-page: 24 year: 2018 end-page: 35 ident: bib17 article-title: Electrochemical performance of binder-free NiO-PANI on etched carbon cloth as active electrode material for supercapacitor publication-title: Mater. Des. – volume: 294 start-page: 383 year: 2019 end-page: 390 ident: bib6 article-title: Hierarchical shell-core structures of concave spherical NiO nanospines@ carbon for high performance supercapacitor electrodes publication-title: Electrochim. Acta – volume: 442 start-page: 565 year: 2018 end-page: 574 ident: bib15 article-title: Synthesis and capacitance properties of N-doped porous carbon/NiO nanosheet composites using coal-based polyaniline as carbon and nitrogen source publication-title: Appl. Surf. Sci. – year: 2018 ident: bib11 article-title: Biopolymer Electrolytes: Fundamentals and Applications in Energy Storage – volume: 25 start-page: 2141 year: 2019 end-page: 2160 ident: bib1 article-title: Nickel oxide/graphene composites: synthesis and applications publication-title: Chem. Eur. J. – volume: 109 start-page: 124 year: 2017 end-page: 133 ident: bib26 article-title: NiWO publication-title: J. Phys. Chem. Solid. – volume: 570 start-page: 286 year: 2020 end-page: 299 ident: bib12 article-title: 3D hierarchical porous nitrogen-doped carbon/Ni@NiO nanocomposites self-templated by cross-linked polyacrylamide gel for high performance supercapacitor electrode publication-title: J. Colloid Interface Sci. – volume: 2 start-page: 6629 year: 2019 end-page: 6636 ident: bib24 article-title: Porous graphene wrapped SrTiO publication-title: ACS Appl. Nano Mater. – volume: 308 start-page: 363 year: 2019 end-page: 372 ident: bib13 article-title: Electrophoretic deposition of RGO-NiO core-shell nanostructures driven by heterocoagulation method with high electrochemical performance publication-title: Electrochim. Acta – volume: 781 start-page: 1013 year: 2019 end-page: 1020 ident: bib5 article-title: Facile solvothermal synthesis and high supercapacitor performance of NiCo publication-title: J. Alloys Compd. – volume: 834 start-page: 155181 year: 2020 ident: bib2 article-title: SnTe thermoelectrics: dual step approach for enhanced performance publication-title: J. Alloys Compd. – volume: 6 start-page: 13717 year: 2018 end-page: 13724 ident: bib20 article-title: A combined DFT and experimental study on the nucleation mechanism of NiO nanodots on graphene publication-title: J. Mater. Chem. – volume: 2 start-page: 673 year: 2018 end-page: 678 ident: bib21 article-title: A reduced graphene oxide–NiO composite electrode with a high and stable capacitance publication-title: Sustain. Energy Fuels – volume: 22 start-page: 1633 year: 2020 end-page: 1644 ident: bib28 article-title: Hollow nanostructures of metal oxides as emerging electrode materials for high performance supercapacitors publication-title: Cryst. Eng. Comm. – volume: 14 start-page: 120 year: 2020 end-page: 132 ident: bib18 article-title: Facile solvothermal synthesis of NiFe publication-title: Front. Mater. Sci. – volume: 44 start-page: 4033 year: 2020 end-page: 4041 ident: bib7 article-title: Porous graphene–NiCo publication-title: New J. Chem. – volume: 21 start-page: 175 year: 2020 end-page: 181 ident: bib23 article-title: Recent progress in nickel oxide-based electrodes for high-performance supercapacitors publication-title: Curr. Opin. Electrochem. – volume: 208 start-page: 112 year: 2018 end-page: 122 ident: bib19 article-title: Novel NRGO-CoWO publication-title: Mater. Chem. Phys. – volume: 513 start-page: 145858 year: 2020 ident: bib22 article-title: Vanadium-doped SrTiO publication-title: Appl. Surf. Sci. – volume: 799 start-page: 256 year: 2019 end-page: 266 ident: bib10 article-title: Eco-friendly synthesis of porous graphene and its utilization as high performance supercapacitor electrode material publication-title: J. Alloys Compd. – volume: 505 start-page: 144589 year: 2020 ident: 10.1016/j.jallcom.2020.157190_bib8 article-title: Synthesis of polyaniline/nickel oxide/sulfonated graphene ternary composite for all-solid-state asymmetric supercapacitor publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.144589 – volume: 570 start-page: 286 year: 2020 ident: 10.1016/j.jallcom.2020.157190_bib12 article-title: 3D hierarchical porous nitrogen-doped carbon/Ni@NiO nanocomposites self-templated by cross-linked polyacrylamide gel for high performance supercapacitor electrode publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.03.004 – volume: 5 start-page: 260 year: 2013 ident: 10.1016/j.jallcom.2020.157190_bib9 article-title: Synthesis, properties and potential applications of porous graphene: a review publication-title: Nano-Micro Lett. doi: 10.1007/BF03353757 – volume: 21 start-page: 175 year: 2020 ident: 10.1016/j.jallcom.2020.157190_bib23 article-title: Recent progress in nickel oxide-based electrodes for high-performance supercapacitors publication-title: Curr. Opin. Electrochem. doi: 10.1016/j.coelec.2020.02.004 – volume: 4 start-page: 133 year: 2017 ident: 10.1016/j.jallcom.2020.157190_bib25 article-title: Enhanced photocatalytic performance of N-doped RGO-FeWO4/Fe3O4 ternary nanocomposite in environmental applications publication-title: Mat. Today Chem. doi: 10.1016/j.mtchem.2017.04.003 – volume: 834 start-page: 155181 year: 2020 ident: 10.1016/j.jallcom.2020.157190_bib2 article-title: SnTe thermoelectrics: dual step approach for enhanced performance publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.155181 – volume: 799 start-page: 256 year: 2019 ident: 10.1016/j.jallcom.2020.157190_bib10 article-title: Eco-friendly synthesis of porous graphene and its utilization as high performance supercapacitor electrode material publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.05.302 – volume: 294 start-page: 383 year: 2019 ident: 10.1016/j.jallcom.2020.157190_bib6 article-title: Hierarchical shell-core structures of concave spherical NiO nanospines@ carbon for high performance supercapacitor electrodes publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.10.112 – volume: 24 start-page: 513 year: 2018 ident: 10.1016/j.jallcom.2020.157190_bib16 article-title: Synthesis of core-shell carbon sphere@ nickel oxide composites and their application for supercapacitors publication-title: Ionics doi: 10.1007/s11581-017-2204-9 – volume: 781 start-page: 1013 year: 2019 ident: 10.1016/j.jallcom.2020.157190_bib5 article-title: Facile solvothermal synthesis and high supercapacitor performance of NiCo2O4 nanorods publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.12.143 – volume: 6 start-page: 13717 year: 2018 ident: 10.1016/j.jallcom.2020.157190_bib20 article-title: A combined DFT and experimental study on the nucleation mechanism of NiO nanodots on graphene publication-title: J. Mater. Chem. doi: 10.1039/C8TA03451F – volume: 513 start-page: 145858 year: 2020 ident: 10.1016/j.jallcom.2020.157190_bib22 article-title: Vanadium-doped SrTiO3 nanocubes: insight into role of vanadium in improving the photocatalytic activity publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.145858 – year: 2018 ident: 10.1016/j.jallcom.2020.157190_bib11 – volume: 309 start-page: 245 year: 2016 ident: 10.1016/j.jallcom.2020.157190_bib27 article-title: Preparation and characterization of porous carbon from expanded graphite for high energy density supercapacitor in aqueous electrolyte publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.01.097 – volume: 25 start-page: 1 year: 2019 ident: 10.1016/j.jallcom.2020.157190_bib14 article-title: NiO@ graphite carbon nanocomposites derived from Ni-MOFs as supercapacitor electrodes publication-title: Ionics doi: 10.1007/s11581-018-2812-z – volume: 442 start-page: 565 year: 2018 ident: 10.1016/j.jallcom.2020.157190_bib15 article-title: Synthesis and capacitance properties of N-doped porous carbon/NiO nanosheet composites using coal-based polyaniline as carbon and nitrogen source publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.02.173 – volume: 109 start-page: 124 year: 2017 ident: 10.1016/j.jallcom.2020.157190_bib26 article-title: NiWO4-ZnO-NRGO ternary nanocomposite as an efficient photocatalyst for degradation of methylene blue and reduction of 4-nitro phenol publication-title: J. Phys. Chem. Solid. doi: 10.1016/j.jpcs.2017.05.023 – volume: 25 start-page: 2141 year: 2019 ident: 10.1016/j.jallcom.2020.157190_bib1 article-title: Nickel oxide/graphene composites: synthesis and applications publication-title: Chem. Eur. J. doi: 10.1002/chem.201803982 – volume: 308 start-page: 363 year: 2019 ident: 10.1016/j.jallcom.2020.157190_bib13 article-title: Electrophoretic deposition of RGO-NiO core-shell nanostructures driven by heterocoagulation method with high electrochemical performance publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.04.053 – volume: 8 start-page: 2036 year: 2020 ident: 10.1016/j.jallcom.2020.157190_bib3 article-title: Bi and Zn Co-doped SnTe thermoelectrics: interplay of resonance levels and heavy hole band dominance leading to enhanced performance and record high room temperature ZT publication-title: J. Mater. Chem. C doi: 10.1039/C9TC06490G – volume: 14 start-page: 120 year: 2020 ident: 10.1016/j.jallcom.2020.157190_bib18 article-title: Facile solvothermal synthesis of NiFe2O4 nanoparticles for high-performance supercapacitor applications publication-title: Front. Mater. Sci. doi: 10.1007/s11706-020-0499-3 – volume: 2 start-page: 673 year: 2018 ident: 10.1016/j.jallcom.2020.157190_bib21 article-title: A reduced graphene oxide–NiO composite electrode with a high and stable capacitance publication-title: Sustain. Energy Fuels doi: 10.1039/C7SE00420F – volume: 208 start-page: 112 year: 2018 ident: 10.1016/j.jallcom.2020.157190_bib19 article-title: Novel NRGO-CoWO4-Fe2O3 nanocomposite as an efficient catalyst for dye degradation and reduction of 4–nitrophenol publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2018.01.012 – volume: 44 start-page: 4033 year: 2020 ident: 10.1016/j.jallcom.2020.157190_bib7 article-title: Porous graphene–NiCo2O4 nanorod hybrid composite as a high performance supercapacitor electrode material publication-title: New J. Chem. doi: 10.1039/C9NJ05725K – volume: 2 start-page: 4229 year: 2020 ident: 10.1016/j.jallcom.2020.157190_bib29 article-title: A porous graphene–NiFe2O4 nanocomposite with high electrochemical performance and high cyclic stability for energy storage application publication-title: Nanoscale Adv. doi: 10.1039/D0NA00440E – volume: 3 start-page: 6311 year: 2018 ident: 10.1016/j.jallcom.2020.157190_bib4 article-title: Amorphous carbon nanotubes–nickel oxide nanoflower hybrids: a low cost energy storage material publication-title: ACS Omega doi: 10.1021/acsomega.8b00798 – volume: 153 start-page: 24 year: 2018 ident: 10.1016/j.jallcom.2020.157190_bib17 article-title: Electrochemical performance of binder-free NiO-PANI on etched carbon cloth as active electrode material for supercapacitor publication-title: Mater. Des. doi: 10.1016/j.matdes.2018.04.074 – volume: 22 start-page: 1633 year: 2020 ident: 10.1016/j.jallcom.2020.157190_bib28 article-title: Hollow nanostructures of metal oxides as emerging electrode materials for high performance supercapacitors publication-title: Cryst. Eng. Comm. doi: 10.1039/C9CE01547G – volume: 2 start-page: 6629 year: 2019 ident: 10.1016/j.jallcom.2020.157190_bib24 article-title: Porous graphene wrapped SrTiO3 nanocomposite: Sr–C bond as an effective coadjutant for high performance photocatalytic degradation of methylene blue publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.9b01513 |
SSID | ssj0001931 |
Score | 2.5802982 |
Snippet | Over the years supercapacitors have established themselves as energy storage devices as well as a subject to reckon with. Thus, not surprisingly tremendous... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 157190 |
SubjectTerms | Capacitance Composite materials Current density Cyclic stability Electrode materials Electrodes Energy storage Graphene Nanocomposite Nanocomposites Nickel oxides NiO nanoflakes Porous graphene Sheets Specific capacitance Supercapacitor Supercapacitors Synthesis |
Title | Simple solvothermal synthesis of porous graphene-NiO nanocomposites with high cyclic stability for supercapacitor application |
URI | https://dx.doi.org/10.1016/j.jallcom.2020.157190 https://www.proquest.com/docview/2487169219 |
Volume | 854 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pa9swFH6UjrHtMLpso926osOuTmpZquRjCStZx7JDV-hNSLIEDpkT4nSQQ_u37z3F7o8xKOxmjCSM39P3Pkmf3gP4rL0T0jqeeatEJmijyXmdZ6V0wYqglU3pi79PTyaX4vxKXu3AuL8LQ7LKDvu3mJ7Qunsz6v7maFnXo4vjktOZH4awgoIm5QQVQpGXD2_vZR5IUFLVPGycUev7Wzyj2XBm53MSjXAkTcNcqpyg-d_x6S-kTuHnbA9ed7yRnW4_7Q3shGYAL8Z9ubYBvHqQWXAAz5Oy07dv4eaipgTADH3sd7pt9QuHaTcNPrZ1yxaRIQPH5T9LqasR-bJp_YM1tlmQ2pwkXaFltFvLKLMx8xs_rz1DTplUtRuGpJe118uw8hh2PeLDij04FH8Hl2dffo4nWVdzIfNFodaZPolchuMohKy4xhlaiZiq-BUOF2fe6soKmUcprXJKVbnT3AYdI_GWWCpbvIfdZtGEfWA2d6p0MQ_BaoENnRdBSl9WXPEKse0ARP-nje8SklNdjLnplWcz0xnIkIHM1kAHMLzrttxm5Hiqg-7NaB65lsGo8VTXw97sppvbreGCFpklQv2H_x_5I7zkpI6h0jLyEHbXq-vwCenN2h0l_z2CZ6dfv02mfwAdzf0o |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ba9swFH50KaPbYWzZxrp1mw67OqllqZKPJayka5sd2kJvQpIlcEidECeDHPrf-55jd90YFHYzRk8YP-l7n6Sn7wF8094JaR1PvFUiEbTR5LxOk1y6YEXQyjbyxReTo_G1-HEjb3Zg1N2FobTKFvu3mN6gdftm2P7N4aIsh5eHOaczPwxhGQVN8Qx2SZ1K9mD3-PRsPHkAZOQoTeE8bJ-Qwe-LPMPpYGpnM8ob4cibBqlUKaHzv0PUX2DdRKCT1_CqpY7sePt1b2AnVH3YG3UV2_rw8pG4YB-eN8mdvn4Ld5claQAzHGa_mgtXt9hNvanwsS5rNo8MSfh8XbNGvRrBL5mUP1llqzklnFNWV6gZbdgyEjdmfuNnpWdIK5vE2g1D3svq9SIsPUZejxCxZI_Oxd_B9cn3q9E4acsuJD7L1CrRR5HLcBiFkAXXOEkLEZtCfpnD9Zm3urBCplFKq5xSReo0t0HHSNQl5spm76FXzavwAZhNncpdTEOwWmBD50WQ0ucFV7xAeNsH0f1p41tNciqNMTNd8tnUtA4y5CCzddA-DB7MFltRjqcMdOdG88foMhg4njI96Nxu2uldGy5onZkj2n_8_56_wt746uLcnJ9Ozj7BC07JMlRpRh5Ab7Vch8_IdlbuSzua7wG_2v_Z |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simple+solvothermal+synthesis+of+porous+graphene-NiO+nanocomposites+with+high+cyclic+stability+for+supercapacitor+application&rft.jtitle=Journal+of+alloys+and+compounds&rft.au=Sethi%2C+Meenaketan&rft.au=Shenoy%2C+U.+Sandhya&rft.au=Bhat%2C+D.+Krishna&rft.date=2021-02-15&rft.pub=Elsevier+B.V&rft.issn=0925-8388&rft.eissn=1873-4669&rft.volume=854&rft_id=info:doi/10.1016%2Fj.jallcom.2020.157190&rft.externalDocID=S0925838820335544 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-8388&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-8388&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-8388&client=summon |