User Classification and Stock Market-Based Recommendation Engine Based on Machine Learning and Twitter Analysis
The stock market prices of the company vary in a daily fashion. The social media pattern usage of the company can be determined to find the sentiment score values. The dependency factor between the social media tweet platform and the performance of an organization can have how much effect on the sto...
Saved in:
Published in | Mathematical problems in engineering Vol. 2022; pp. 1 - 9 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Hindawi
22.04.2022
John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The stock market prices of the company vary in a daily fashion. The social media pattern usage of the company can be determined to find the sentiment score values. The dependency factor between the social media tweet platform and the performance of an organization can have how much effect on the stock prices is determined. The historical data from the Yahoo Finance APIs are taken for the unique company ID and then the probability of stock being good or bad is determined. Also, the tweets related to the company are scanned and analyzed to find the positive and negative scores. The concentration value connected to growth, the intensity of capital expenditure, and the volume of promotion were among the factors utilized in the stock’s modeling. This paper also takes the yearly finances of the end-user based on LIC payments, medical insurance payments, and average rent and then performs a classification of the user. Based on the user classification, companies are recommended to the end-user based on descending order of stock value. The average volume, average price, average market index, average daily turnover, and sentiment discrepancy index are based on the tweets of a company and the predicted value of its performance. For the classification of the user, we make use of the support vector machine algorithm. For the sentiment analysis of the tweets, the naïve Bayes algorithm is made use of, and then stock classification is done based on mathematical modeling, which includes the sentiment analysis index. |
---|---|
AbstractList | The stock market prices of the company vary in a daily fashion. The social media pattern usage of the company can be determined to find the sentiment score values. The dependency factor between the social media tweet platform and the performance of an organization can have how much effect on the stock prices is determined. The historical data from the Yahoo Finance APIs are taken for the unique company ID and then the probability of stock being good or bad is determined. Also, the tweets related to the company are scanned and analyzed to find the positive and negative scores. The concentration value connected to growth, the intensity of capital expenditure, and the volume of promotion were among the factors utilized in the stock’s modeling. This paper also takes the yearly finances of the end-user based on LIC payments, medical insurance payments, and average rent and then performs a classification of the user. Based on the user classification, companies are recommended to the end-user based on descending order of stock value. The average volume, average price, average market index, average daily turnover, and sentiment discrepancy index are based on the tweets of a company and the predicted value of its performance. For the classification of the user, we make use of the support vector machine algorithm. For the sentiment analysis of the tweets, the naïve Bayes algorithm is made use of, and then stock classification is done based on mathematical modeling, which includes the sentiment analysis index. |
Author | Kaliyaperumal, Karthikeyan Kler, Rajnish Bose, Subhas Chandra Achyutha, Prasad N. Chaudhury, Sushovan Surve, Jyoti |
Author_xml | – sequence: 1 givenname: Prasad N. orcidid: 0000-0002-2356-4146 surname: Achyutha fullname: Achyutha, Prasad N. organization: Department of Computer Science and EngineeringEast West Institute of TechnologyBangaloreIndia – sequence: 2 givenname: Sushovan orcidid: 0000-0002-9336-2654 surname: Chaudhury fullname: Chaudhury, Sushovan organization: Department of Computer Science and EngineeringUniversity of Engineering and ManagementKolkataIndiauem.edu.in – sequence: 3 givenname: Subhas Chandra orcidid: 0000-0001-7678-6685 surname: Bose fullname: Bose, Subhas Chandra organization: Thapar Institute of Engineering and TechnologyPatialaIndiathapar.edu – sequence: 4 givenname: Rajnish orcidid: 0000-0002-3910-5323 surname: Kler fullname: Kler, Rajnish organization: Motilal Nehru College (Evening)University of DelhiDelhiIndiadu.ac.in – sequence: 5 givenname: Jyoti orcidid: 0000-0002-7898-9109 surname: Surve fullname: Surve, Jyoti organization: Department of Information TechnologyInternational Institute of Information TechnologyHinjewadiPuneIndiaiiit.ac.in – sequence: 6 givenname: Karthikeyan orcidid: 0000-0003-4705-1799 surname: Kaliyaperumal fullname: Kaliyaperumal, Karthikeyan organization: IT@IoT-HH CampusAmbo UniversityAmboEthiopiaambou.edu.et |
BookMark | eNp9kMtOAjEUQBuDiYju_IBJXOpIn7QskeAjgZgoJO4mpe1gYehgW0L4ewvDykRXbW_PfZ1L0HK1MwDcIPiAEGNdDDHu0h6lgrEz0EasR3KGKG-lO8Q0R5h8XoDLEJYQYsSQaIN6FozPhpUMwZZWyWhrl0mns49Yq1U2kX5lYv4og9HZu1H1em2cbqiRW1hnsuYvvSdSfR0CYyO9s25xLDPd2RhTh4GT1T7YcAXOS1kFc306O2D2NJoOX_Lx2_PrcDDOFSE85ryclwpRg6gyuk8wNX2piVC6L7kigjJaSmQoTxuVWmCo8bwnGNdCcsw1M6QDbpu6G19_b02IxbLe-jREKHCPCQgFxyRR9w2lfB2CN2Wx8XYt_b5AsDgoLQ5Ki5PShONfuLLxKCN6aau_ku6apCRHy539v8UPXxWIQA |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3399548 crossref_primary_10_37391_ijeer_110334 crossref_primary_10_37391_ijeer_110433 crossref_primary_10_1111_fire_12387 crossref_primary_10_35940_ijeat_E4150_0612523 crossref_primary_10_37391_ijeer_110401 crossref_primary_10_46460_ijiea_1176888 crossref_primary_10_1016_j_phycom_2023_102038 crossref_primary_10_37391_IJEER_120141 crossref_primary_10_3390_su15032653 crossref_primary_10_1007_s10639_024_12589_z |
Cites_doi | 10.1155/2021/9465702 10.1080/02522667.2017.1374743 10.1155/2021/1566538 10.1109/cifer.2009.4937501 10.1108/13563280210449804 10.1007/s11277-021-08780-x 10.1007/s13369-018-3687-z 10.1007/s40430-018-1140-6 10.1016/j.eswa.2005.09.026 10.1177/002224298805200203 10.1016/0024-6301(92)90366-a 10.1016/j.dss.2008.04.001 10.1016/j.matpr.2020.08.295 10.1177/002194369303000101 10.1016/j.matpr.2020.12.309 10.1002/smj.4250100502 10.1007/s13198-021-01215-7 10.1177/014920639201800306 10.1155/2019/5941096 10.2307/2392547 10.1126/science.333.6051.1814 10.1016/j.matpr.2020.07.179 |
ContentType | Journal Article |
Copyright | Copyright © 2022 Prasad N. Achyutha et al. Copyright © 2022 Prasad N. Achyutha et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
Copyright_xml | – notice: Copyright © 2022 Prasad N. Achyutha et al. – notice: Copyright © 2022 Prasad N. Achyutha et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
DBID | RHU RHW RHX AAYXX CITATION 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU CWDGH DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.1155/2022/4644855 |
DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (New) Technology Collection ProQuest One Community College Middle East & Africa Database ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Middle East & Africa Database ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1563-5147 |
Editor | Kumar, Vijay |
Editor_xml | – sequence: 1 givenname: Vijay surname: Kumar fullname: Kumar, Vijay |
EndPage | 9 |
ExternalDocumentID | 10_1155_2022_4644855 |
GroupedDBID | 29M 2WC 3V. 4.4 5GY 5VS 8FE 8FG 8R4 8R5 AAFWJ AAJEY ABDBF ABJCF ABUWG ACIPV ACIWK ADBBV AENEX AFKRA AINHJ ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BPHCQ CCPQU CS3 CWDGH E3Z EBS ESX GROUPED_DOAJ HCIFZ I-F IAO IEA IOF ISR ITC K6V K7- KQ8 L6V M7S MK~ M~E OK1 P2P P62 PIMPY PQQKQ PROAC PTHSS Q2X REM RHU RHW RHX RNS TR2 TUS XSB YQT ~8M 0R~ 24P AAYXX ACCMX CITATION H13 OVT PHGZM PHGZT 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY AZQEC DWQXO FR3 GNUQQ JQ2 KR7 PKEHL PQEST PQGLB PQUKI PRINS |
ID | FETCH-LOGICAL-c337t-7fbfc14e14ced9324e9ad38cd9a7c38454fa1e47123fd820d2b6857d8a727d5e3 |
IEDL.DBID | BENPR |
ISSN | 1024-123X |
IngestDate | Fri Jul 25 10:13:01 EDT 2025 Tue Jul 01 04:24:24 EDT 2025 Thu Apr 24 23:01:39 EDT 2025 Sun Jun 02 18:51:21 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c337t-7fbfc14e14ced9324e9ad38cd9a7c38454fa1e47123fd820d2b6857d8a727d5e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9336-2654 0000-0003-4705-1799 0000-0002-2356-4146 0000-0001-7678-6685 0000-0002-7898-9109 0000-0002-3910-5323 |
OpenAccessLink | https://www.proquest.com/docview/2658008723?pq-origsite=%requestingapplication% |
PQID | 2658008723 |
PQPubID | 237775 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2658008723 crossref_primary_10_1155_2022_4644855 crossref_citationtrail_10_1155_2022_4644855 hindawi_primary_10_1155_2022_4644855 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-22 |
PublicationDateYYYYMMDD | 2022-04-22 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Mathematical problems in engineering |
PublicationYear | 2022 |
Publisher | Hindawi John Wiley & Sons, Inc |
Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc |
References | 22 23 B. Li (7) 24 26 27 28 29 M. Demkah (5) E. Vamsidhar (20) 2010; 2 C. W. Down (21) 1988 30 10 11 12 K. Yates (17) 2003 13 E. Gilbert (25) 14 15 16 J. H. Wang (18) 19 1 2 3 Y. S. Sagar (31) 2018; 5 4 6 9 J. Bhola (8) |
References_xml | – ident: 26 doi: 10.1155/2021/9465702 – ident: 15 doi: 10.1080/02522667.2017.1374743 – ident: 30 doi: 10.1155/2021/1566538 – ident: 10 doi: 10.1109/cifer.2009.4937501 – ident: 14 doi: 10.1108/13563280210449804 – ident: 12 doi: 10.1007/s11277-021-08780-x – ident: 16 doi: 10.1007/s13369-018-3687-z – volume: 5 start-page: 2347 issue: 10 year: 2018 ident: 31 article-title: Charm: a cost-efficient multi-cloud data hosting scheme with high availability publication-title: International Journal for Technological Research in Engineering – ident: 13 doi: 10.1007/s40430-018-1140-6 – volume: 2 start-page: 1119 issue: 4 year: 2010 ident: 20 article-title: Prediction of rainfall using backpropagation neural network model publication-title: International Journal of Computational Sciences and Engineering – ident: 19 doi: 10.1016/j.eswa.2005.09.026 – ident: 28 doi: 10.1177/002224298805200203 – start-page: 707 ident: 8 article-title: Recent trends for security applications in wireless sensor networks–A technical review – ident: 29 doi: 10.1016/0024-6301(92)90366-a – start-page: 59 ident: 25 article-title: Widespread worry and the stock market – start-page: 2160 ident: 18 article-title: Stock market trend prediction using ARIMA-based neural networks – ident: 4 doi: 10.1016/j.dss.2008.04.001 – ident: 6 doi: 10.1016/j.matpr.2020.08.295 – ident: 22 doi: 10.1177/002194369303000101 – start-page: 170 ident: 5 article-title: Gamification in education: a cognitive psychology approach to cooperative and fun learning – ident: 2 doi: 10.1016/j.matpr.2020.12.309 – ident: 23 doi: 10.1002/smj.4250100502 – ident: 9 doi: 10.1007/s13198-021-01215-7 – year: 2003 ident: 17 article-title: Effective employee communication linked to greater shareholder returns, watson wyatt study finds – ident: 24 doi: 10.1177/014920639201800306 – start-page: 232 ident: 7 article-title: “Public sentiment analysis in twitter data for prediction of a company’s stock price movements – ident: 11 doi: 10.1155/2019/5941096 – volume-title: Handbook of Organizational Communication year: 1988 ident: 21 article-title: Communication and organizational outcomes – ident: 27 doi: 10.2307/2392547 – ident: 1 doi: 10.1126/science.333.6051.1814 – ident: 3 doi: 10.1016/j.matpr.2020.07.179 |
SSID | ssj0021518 |
Score | 2.314561 |
Snippet | The stock market prices of the company vary in a daily fashion. The social media pattern usage of the company can be determined to find the sentiment score... |
SourceID | proquest crossref hindawi |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Algorithms Classification Communication Corporate profits Data mining Digital media Employees Machine learning Market positioning Market prices Pricing Recommender systems Securities markets Social networks Stock exchanges Success Support vector machines |
SummonAdditionalLinks | – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSgMxFA22ILjxLVarZFFXMtjJYx5LFUsR6qqF2Q2ZyY0W7FTsSH_fm0ymoCK6DHMni5vHOYck5xIySEutUghNAFrFgeDAg0JEKFzjSECi-dA4s-rJUzSeicdMZt4kafXzCB_RzspzdiOsjpCyQzo4wawoH2cbXYWg1bx4Y9aCj2ft_fZv_35Bnu0XK3nX8x9bsMOV0T7Z9YSQ3jYjeEC2oDoke54cUr_0VkdkOcPJQl0NS3u7xyWUqgpDatzS6MS9Xg7uEJQ0tZpysQBfL4k2noO0-YbtibtACdR7qz67bqbruX3YQ1uXkmMyGz1M78eBr5YQlJzHdRCbwpShgFCUoJGVCUiV5kmpUxWXPBFSGBUCYhHjRiPua1ZEiYx1opDCaAn8hHSrZQWnhFpSoYYAwJjC1KkiHZpCa6N1WhikmD1y3WYyL72VuK1o8Zo7SSFlbvOe-7z3yNUm-q2x0PglbuAH5Y-wfjtiuV9vq5whkbLueoyf_a-Xc7Jjm_ZciLE-6dbvH3CB9KIuLt3k-gRCi8e9 priority: 102 providerName: Hindawi Publishing |
Title | User Classification and Stock Market-Based Recommendation Engine Based on Machine Learning and Twitter Analysis |
URI | https://dx.doi.org/10.1155/2022/4644855 https://www.proquest.com/docview/2658008723 |
Volume | 2022 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LSwMxEA5aEbz4Fh9VctCTLLZJtps9iRVrUSoqFnpbspuJFrRVW_HvO5PNqiDqZSHskMMkmfkmmfmGsf20sCaFpovAmiRSEmSUqxYGrklLgbay4TxZde-q1e2ri0E8CBduk5BWWdlEb6jtuKA78iOBrpL404Q8fn6JqGsUva6GFhqzbA5NsNY1Ntc-u7q-_Qy50J-VxXCC2PnkoEp9j2OK-sWRovCEyvy-OaX5B4qG34c_rLN3OZ1lthiwIj8pF3eFzcBolS0F3MjDqZyssXEf9xH37S0p8cfrmpsRikzR2vGeL2yO2uivLKdw8-kJQislXtIR8vIfjns-txJ4oF2999PcvQ-p5odXBCbrrN85uzvtRqGRQlRImUyjxOWuaCpoqgIsAjYFqbFSFzY1SSG1ipUzTUA3JaSzCAmsyFs6Tqw2iG5sDHKD1UbjEWwyTnjDNABACIOqM3nacLm1zto0d4g-t9hhpcmsCCzj1OziMfPRRhxnpPcs6H2LHXxKP5fsGr_I7YdF-UesXq1YFo7iJPvaONt__95hCzQZPRUJUWe16esb7CLimOZ7bFZ3zvfC5sLR5Y3G72138AEbR9ZK |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB5RUNVegNKi8qwPcKpWJLY3u3tAiFcaCuGUSLltvesxIJWEkqCIP8VvZMbrpZUQ5cRxZcuHmdn5ZuyZbwC2stKaDJsuQmuSSCtUUaFblLgmLY2pVQ3nyaq7561OX_8cxIMZeKh7YbissvaJ3lHbUcl35DuSoJL506Tau_kT8dQofl2tR2hUZnGK91NK2ca7J0ek320p28e9w04UpgpEpVLJJEpc4cqmxqYu0VL0ojEzVqWlzUxSqlTH2pkmks-WylnCRyuLVhonNjUE9TZGRee-gzmtCMm5M7394ynBI_SsWu8kcwGqQV1oH8d8xyB3NCdD3FT4DwS-v-Tce3r1DAs8wLUXYT5EpmK_MqVPMIPDJVgIUaoIPmD8GUZ9slrhh2lymZHXrDBD2jIh3yq6vo06OiB0tIKT2-trDIObREV-KKo1-u76Sk4UgeT1wh_Tm15xh5Go6VK-QP9NBLwMs8PREL-C4OjGNBBRSkOiM0XWcIW1ztqscBTrrsD3WpJ5GTjNebTG79znNnGcs9zzIPcV2H7afVNxebywbyso5ZVt67XG8vDjj_O_Zrr6_-Vv8KHT657lZyfnp2vwkQ_mRyop12F2cnuHGxTrTIpNb2ACfr21RT8CdVkPkw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxtBDLZoUKteePSh8uwc4FStkszMZncPCPGKoJAIVUTKbTu742mRSkKbVFH_Gr8Oe3YWkFDhxHE11hxsy589a38G2MpKazJsuwitSSKtUEWF7lDhmnQ0pla1nCer7vU7xwP9dRgP5-CmnoXhtso6JvpAbcclv5E3JUEl86dJ1XShLeL8sLt7_TviDVL8p7Vep1G5yCn-m1H5Ntk5OSRbb0vZPbo4OI7ChoGoVCqZRokrXNnW2NYlWspkNGbGqrS0mUlKlepYO9NGit9SOUtYaWXRSePEpoZg38ao6N5XMJ9wVdSA-f2j_vm3u3KPsLQaxJPMDKiGddt9HPOLg2xqLo14xPABIL7-yZX47PIRMni46y7BQshTxV7lWMswh6N3sBhyVhEiwuQ9jAfkw8Kv1uSmI29nYUYkMqVIK3p-qDraJ6y0gkvdqysMa5xERYUoqjP67vm-ThSB8vWHv-ZidsnzRqImT_kAgxdR8UdojMYj_ASCcx3TQkQpDanOFFnLFdY6a7PCUea7Al9qTeZlYDjnRRu_cl_pxHHOes-D3ldg-076umL2-I_cVjDKM2LrtcXyEAYm-b3Trj59_BnekDfnZyf90zV4y_fyHysp16Ex_fMXNyjxmRabwcMEfH9pp74FnAYVJQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=User+Classification+and+Stock+Market-Based+Recommendation+Engine+Based+on+Machine+Learning+and+Twitter+Analysis&rft.jtitle=Mathematical+problems+in+engineering&rft.au=Achyutha%2C+Prasad+N&rft.au=Chaudhury%2C+Sushovan&rft.au=Bose%2C+Subhas+Chandra&rft.au=Kler%2C+Rajnish&rft.date=2022-04-22&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1024-123X&rft.eissn=1563-5147&rft.volume=2022&rft_id=info:doi/10.1155%2F2022%2F4644855&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1024-123X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1024-123X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1024-123X&client=summon |