Mechanical performances of hip implant design and fabrication with PEEK composite

Artificial bone implant materials need porosity for nutrient distribution, moderate pore size to provide cell cultures and bone-like mechanical properties. The homogenisation of discrepancies between the microstructure of implants and bone is an important subject. This research aims to design micros...

Full description

Saved in:
Bibliographic Details
Published inPolymer (Guilford) Vol. 227; p. 123865
Main Authors Oladapo, Bankole I., Zahedi, S. Abolfazl, Ismail, Sikiru O.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 16.06.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Artificial bone implant materials need porosity for nutrient distribution, moderate pore size to provide cell cultures and bone-like mechanical properties. The homogenisation of discrepancies between the microstructure of implants and bone is an important subject. This research aims to design microstructures with poly ether-ether-ketone (PEEK) and its composites to improve the compatibility of implants. Porous hip bone implants fabricated by fused deposition modelling (FDM) are proposed to mimic natural bone with various homogenisation lattice structures and excellent properties. Five isotropic lattice structures with homogenisation control strategies are printed with PEEK and composite PEEK with reduced graphene oxide (rGO) and calcium hydroxyapatite (cHAp). An examination is performed on a three-dimensional (3D) distribution of the effective module surface of the five composite porous unit lattice structures. The relationship between the modulus of elasticity, anisotropy and cell parameters are thoroughly investigated by finite element analysis (FEA). Analysis of the surface treatment used to create micropores in the scaffolding and the nanostructure yields a bioactive PEEK/hydroxyapatite (HAp) composite with various control configuration distributions and cell growths. The functionalised biocompatibility and degradability of rGO/HAp composite in various ratios to PEEK, and their nanostructure arrays, are studied by a surface functionalisation approach. The improved design eliminates slight imperfections, allowing for a more stable structure. The controlled homogenisation, porosity and particle size distribution helps to increase cellular infiltration and biological integration of the PEEK and hip implant composites. [Display omitted] •To design microstructures with poly ether-ether-ketone and its composites to improve the compatibility of implants.•To homogenised a unit cell of the lattice structure for Hip bone implant.•Design Hip implant with porous lattice structure for body fluid loading.•Homogenisation of discrepancies between the microstructure of implants and bone of PEEK materials.
AbstractList Artificial bone implant materials need porosity for nutrient distribution, moderate pore size to provide cell cultures and bone-like mechanical properties. The homogenisation of discrepancies between the microstructure of implants and bone is an important subject. This research aims to design microstructures with poly ether-ether-ketone (PEEK) and its composites to improve the compatibility of implants. Porous hip bone implants fabricated by fused deposition modelling (FDM) are proposed to mimic natural bone with various homogenisation lattice structures and excellent properties. Five isotropic lattice structures with homogenisation control strategies are printed with PEEK and composite PEEK with reduced graphene oxide (rGO) and calcium hydroxyapatite (cHAp). An examination is performed on a three-dimensional (3D) distribution of the effective module surface of the five composite porous unit lattice structures. The relationship between the modulus of elasticity, anisotropy and cell parameters are thoroughly investigated by finite element analysis (FEA). Analysis of the surface treatment used to create micropores in the scaffolding and the nanostructure yields a bioactive PEEK/hydroxyapatite (HAp) composite with various control configuration distributions and cell growths. The functionalised biocompatibility and degradability of rGO/HAp composite in various ratios to PEEK, and their nanostructure arrays, are studied by a surface functionalisation approach. The improved design eliminates slight imperfections, allowing for a more stable structure. The controlled homogenisation, porosity and particle size distribution helps to increase cellular infiltration and biological integration of the PEEK and hip implant composites.
Artificial bone implant materials need porosity for nutrient distribution, moderate pore size to provide cell cultures and bone-like mechanical properties. The homogenisation of discrepancies between the microstructure of implants and bone is an important subject. This research aims to design microstructures with poly ether-ether-ketone (PEEK) and its composites to improve the compatibility of implants. Porous hip bone implants fabricated by fused deposition modelling (FDM) are proposed to mimic natural bone with various homogenisation lattice structures and excellent properties. Five isotropic lattice structures with homogenisation control strategies are printed with PEEK and composite PEEK with reduced graphene oxide (rGO) and calcium hydroxyapatite (cHAp). An examination is performed on a three-dimensional (3D) distribution of the effective module surface of the five composite porous unit lattice structures. The relationship between the modulus of elasticity, anisotropy and cell parameters are thoroughly investigated by finite element analysis (FEA). Analysis of the surface treatment used to create micropores in the scaffolding and the nanostructure yields a bioactive PEEK/hydroxyapatite (HAp) composite with various control configuration distributions and cell growths. The functionalised biocompatibility and degradability of rGO/HAp composite in various ratios to PEEK, and their nanostructure arrays, are studied by a surface functionalisation approach. The improved design eliminates slight imperfections, allowing for a more stable structure. The controlled homogenisation, porosity and particle size distribution helps to increase cellular infiltration and biological integration of the PEEK and hip implant composites. [Display omitted] •To design microstructures with poly ether-ether-ketone and its composites to improve the compatibility of implants.•To homogenised a unit cell of the lattice structure for Hip bone implant.•Design Hip implant with porous lattice structure for body fluid loading.•Homogenisation of discrepancies between the microstructure of implants and bone of PEEK materials.
ArticleNumber 123865
Author Zahedi, S. Abolfazl
Oladapo, Bankole I.
Ismail, Sikiru O.
Author_xml – sequence: 1
  givenname: Bankole I.
  surname: Oladapo
  fullname: Oladapo, Bankole I.
  email: P17243433@my365.dmu.ac.uk
  organization: School of Engineering and Sustainable Development, De Montfort University, LE1 9BH, Leicester, UK
– sequence: 2
  givenname: S. Abolfazl
  surname: Zahedi
  fullname: Zahedi, S. Abolfazl
  organization: School of Engineering and Sustainable Development, De Montfort University, LE1 9BH, Leicester, UK
– sequence: 3
  givenname: Sikiru O.
  surname: Ismail
  fullname: Ismail, Sikiru O.
  organization: School of Physics, Engineering and Computer Science, University of Hertfordshire, AL10 9AB, England, UK
BookMark eNqFkE1LAzEQhoNUsK3-BCHgeWs-drO7eBAp9QMrKug5ZLOJTdlN1iRV-u9NrScvPc0w877vMM8EjKyzCoBzjGYYYXa5ng2u2_bKzwgieIYJrVhxBMa4KmlGSI1HYIwQJVma4xMwCWGNECIFycfg9UnJlbBGig4Oymvne2GlCtBpuDIDNP3QCRthq4L5sFDYFmrR-KSPxln4beIKviwWj1C6fnDBRHUKjrXogjr7q1Pwfrt4m99ny-e7h_nNMpOUljErmdaU5CInlWIVbasCi6ZRMqdMI9E2TNa61DVp6kaWZUuIYC0pkZYsNYxpOgUX-9zBu8-NCpGv3cbbdJKTIqcVrXOCk6rYq6R3IXil-eBNL_yWY8R39Pia_9HjO3p8Ty_5rv75pIm_P0cvTHfQfb13qwTgy6RtkEYlrq3xSkbeOnMg4Qee1JHF
CitedBy_id crossref_primary_10_1016_j_istruc_2023_05_150
crossref_primary_10_1155_2022_4243476
crossref_primary_10_1016_j_polymer_2022_124587
crossref_primary_10_3390_ma18061295
crossref_primary_10_1089_3dp_2021_0317
crossref_primary_10_1016_j_bioadv_2024_214043
crossref_primary_10_1016_j_clet_2025_100925
crossref_primary_10_1088_1402_4896_ad48cb
crossref_primary_10_1016_j_jcomc_2023_100398
crossref_primary_10_1021_acsabm_3c00327
crossref_primary_10_1016_j_compositesb_2022_110427
crossref_primary_10_1016_j_tws_2024_112469
crossref_primary_10_1007_s00170_023_12342_9
crossref_primary_10_1016_j_scitotenv_2023_167109
crossref_primary_10_1007_s43207_023_00320_6
crossref_primary_10_3390_jcs6090262
crossref_primary_10_3390_polym14214600
crossref_primary_10_3390_coatings14030253
crossref_primary_10_1002_pc_27498
crossref_primary_10_3390_bioengineering11090924
crossref_primary_10_1016_j_heliyon_2022_e12314
crossref_primary_10_1016_j_matdes_2023_112064
crossref_primary_10_3390_polym15173620
crossref_primary_10_1016_j_matdes_2022_110781
crossref_primary_10_1016_j_matchemphys_2024_129306
crossref_primary_10_1016_j_polymer_2022_124557
crossref_primary_10_3390_ma16155482
crossref_primary_10_1016_j_matchemphys_2023_127960
crossref_primary_10_1177_09544089221141554
crossref_primary_10_1016_j_matdes_2022_110531
crossref_primary_10_1016_j_resconrec_2024_107769
crossref_primary_10_1016_j_cobme_2023_100463
crossref_primary_10_1016_j_matchemphys_2022_126930
crossref_primary_10_3390_polym15051198
crossref_primary_10_1016_j_colsurfb_2022_112583
crossref_primary_10_3390_app14177457
crossref_primary_10_1016_j_tws_2025_112955
crossref_primary_10_1177_14644207241240623
crossref_primary_10_3390_biomimetics9100642
crossref_primary_10_1080_09205063_2022_2124352
crossref_primary_10_1016_j_jmbbm_2023_105885
crossref_primary_10_3390_polym16142027
Cites_doi 10.1016/j.jpor.2015.10.001
10.4012/dmj.2013-345
10.1016/j.actbio.2014.11.030
10.1016/j.colsurfb.2021.111726
10.1016/j.compositesb.2018.09.065
10.1016/j.bspc.2018.07.007
10.14445/22315381/IJETT-V67I6P202
10.3390/coatings2030160
10.1016/j.jmrt.2019.05.009
10.1016/j.porgcoat.2019.01.050
10.1007/s10856-013-5072-5
10.1016/j.physb.2020.412200
10.1111/clr.12454
10.1063/1.3554706
10.1016/j.actamat.2020.09.034
10.1016/j.ijsu.2016.09.008
10.1016/j.apsusc.2014.06.074
10.1007/s42242-020-00098-0
10.1016/j.mechrescom.2019.103400
10.1016/j.matdes.2020.108971
10.1016/j.biomaterials.2014.04.003
10.1016/j.commatsci.2013.05.022
10.1016/j.apsusc.2016.12.158
10.1002/adfm.201400706
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Jun 16, 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Jun 16, 2021
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
DOI 10.1016/j.polymer.2021.123865
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-2291
ExternalDocumentID 10_1016_j_polymer_2021_123865
S0032386121004882
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNCT
ACPRK
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SMS
SPC
SPCBC
SPD
SSK
SSM
SSZ
T5K
TN5
WH7
XPP
ZMT
~G-
.-4
29O
6TJ
6TU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDEX
ABDPE
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
R2-
RIG
SCB
SEW
SSH
T9H
WUQ
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
EFKBS
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
ID FETCH-LOGICAL-c337t-76ff324a428e683d851abbec436f0adb6c9f7f92b9bc77d22a6d270fc6a6d66f3
IEDL.DBID .~1
ISSN 0032-3861
IngestDate Wed Aug 13 06:35:50 EDT 2025
Tue Jul 01 02:37:03 EDT 2025
Thu Apr 24 23:03:51 EDT 2025
Fri Feb 23 02:44:45 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Biocompatibility
Lattice structures
Hip implant
PEEK/rGo/cHAp
Homogenisation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-76ff324a428e683d851abbec436f0adb6c9f7f92b9bc77d22a6d270fc6a6d66f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2543839421
PQPubID 2045419
ParticipantIDs proquest_journals_2543839421
crossref_primary_10_1016_j_polymer_2021_123865
crossref_citationtrail_10_1016_j_polymer_2021_123865
elsevier_sciencedirect_doi_10_1016_j_polymer_2021_123865
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-16
PublicationDateYYYYMMDD 2021-06-16
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-16
  day: 16
PublicationDecade 2020
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Polymer (Guilford)
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Almasi, Izman, Assadian, Ghanbari, Abdul Kadir (bib35) 2014; 314
Usharani, Bhandarkar, Subramanian, Bhattacharya (bib24) 2020; 200
Sproesser, Schmidlin, Uhrenbacher, Roos, Gernet, Stawarczyk (bib29) 2014; 16
Oladapo, Zahedi, Chaluvadi, Bollapalli, Ismail (bib21) 2019; 46
Omigbodun, Oladapo, Bowoto, Adeyekun (bib28) 2019; 6
Huang, Du, Liang, Hu, Hu, Cheng (bib17) 2016; 35
Hahnel, Wieser, Lang, Rosentritt (bib38) 2014; 26
Oladapo, Zahedi, Vahidnia, Ikumapayi, Farooq (bib15) 2019; 7
Bi Oladapo, SA Zahedi, SO Ismail, FT Omigbodun, 3D printing of PEEK and its composite to increase biointerfaces as a biomedical material-A review, Colloids Surf. B Biointerfaces 203, 111726-111726.
Manglam, Kumari, Kar (bib30) 2020; 588
Balogun, Bi (bib32) 2019; 29
Munaz, Vadivelu, John, Barton, Nguyen (bib2) 2016; 1
Tiwari, Sahoo, Wang, Huczko (bib5) 2020; 5
Keul, Liebermann, Schmidlin, Roos, Sener, Stawarczyk (bib19) 2014; 16
Waser-Althaus, Salamon, Waser, Padeste, Kreutzer, Pieles, Müller, Peters (bib13) 2014; 25
Al Jabbari, Fehrman, Barnes, Zapf, Zinelis, Berzins (bib36) 2012; 2
Ok, Bi, Zahedi, Omigbodun, Emenuvwe (bib6) 2020; 111
Song, Lee (bib12) 2011; 18
Bodunde, Ikumapayi, Akinlabi, Oladapo, Adeoye, Fatoba (bib20) 2020
Jenkins, Oulton, Goodall (bib39) 2019; 100
Oladapo, Zahedi, Omigbodun, Oshin, Adebiyi, Malachi (bib22) 2019; 8
Bi, Zahedi, Chong, Omigbodun, Malachi (bib8) 2020; 106
Wu, Weng, Liu, Yeung, Chu (bib18) 2014; 24
Zhu, Liu, Yeung, Chu, Shuilin (bib25) 2017; 400
Tafaoli-Masoule, Shakeri, Zahedi, Seitz, Vaezi (bib1) 2019; 1
Tran, Nguyen (bib9) 2017; 2
Evans, Torstrick, Lee, Dupont, Safranski, Chang, Macedo, Lin, Boothby, Whittingslow, Carson, Guldberg, Gall (bib41) 2015; 13
Oladapo, Zahedi, Ismail, Omigbodun, Bowoto, Olawumi, Muhammad (bib43) 2021; 4
Abdulkareema, Abdalsalam, Bohan (bib10) 2019; 130
Alaña, Cutolo, Hooreweder (bib27) 2020; 195
Oladapo, Zahedi, Adeoye (bib14) 2019; 158
Abbasi, Hamlet, Love, Nguyen (bib7) 2020; 5
Zahedi, Demiral, Roy, Silberschmidt (bib23) 2013; 78
Oladapo, Zahedi, Balogun, Ismail, Samad (bib33) 2021
Omigbodun, Oladapo, Bowoto, Adeyekun (bib31) 2019; 67
Stawarczyk, Eichberger, Uhrenbacher, Wimmer, Edelhoff, Schmidlin (bib16) 2015; 34
Ranjan, Singh, Ahuja (bib26) 2020; 4
Najeeb, Zafar, Khurshid, Siddiqui (bib11) 2016; 60
Oladapo, Zahedi (bib42) 2021; 266
Lu, Liu, Qian, Cao, Qiao, Mei, Chu, Ding (bib40) 2014; 35
Li, Zahedi, Silberschmidt (bib4) 2017
Evans, Torstrick, Lee, Dupont, Safranski, Chang, Macedo, Lin, Boothby, Whittingslow, Carson, Guldberg, Gall (bib34) 2015; 13
Robinson, Alk, Sandbank, Farber, Halperin (bib37) 1999; 4
Tran (10.1016/j.polymer.2021.123865_bib9) 2017; 2
Keul (10.1016/j.polymer.2021.123865_bib19) 2014; 16
Zhu (10.1016/j.polymer.2021.123865_bib25) 2017; 400
Munaz (10.1016/j.polymer.2021.123865_bib2) 2016; 1
Oladapo (10.1016/j.polymer.2021.123865_bib15) 2019; 7
Tiwari (10.1016/j.polymer.2021.123865_bib5) 2020; 5
Tafaoli-Masoule (10.1016/j.polymer.2021.123865_bib1) 2019; 1
Bi (10.1016/j.polymer.2021.123865_bib8) 2020; 106
Al Jabbari (10.1016/j.polymer.2021.123865_bib36) 2012; 2
Evans (10.1016/j.polymer.2021.123865_bib34) 2015; 13
Manglam (10.1016/j.polymer.2021.123865_bib30) 2020; 588
Song (10.1016/j.polymer.2021.123865_bib12) 2011; 18
Lu (10.1016/j.polymer.2021.123865_bib40) 2014; 35
Abdulkareema (10.1016/j.polymer.2021.123865_bib10) 2019; 130
10.1016/j.polymer.2021.123865_bib3
Oladapo (10.1016/j.polymer.2021.123865_bib42) 2021; 266
Evans (10.1016/j.polymer.2021.123865_bib41) 2015; 13
Sproesser (10.1016/j.polymer.2021.123865_bib29) 2014; 16
Ok (10.1016/j.polymer.2021.123865_bib6) 2020; 111
Usharani (10.1016/j.polymer.2021.123865_bib24) 2020; 200
Zahedi (10.1016/j.polymer.2021.123865_bib23) 2013; 78
Li (10.1016/j.polymer.2021.123865_bib4) 2017
Stawarczyk (10.1016/j.polymer.2021.123865_bib16) 2015; 34
Oladapo (10.1016/j.polymer.2021.123865_bib22) 2019; 8
Waser-Althaus (10.1016/j.polymer.2021.123865_bib13) 2014; 25
Omigbodun (10.1016/j.polymer.2021.123865_bib31) 2019; 67
Alaña (10.1016/j.polymer.2021.123865_bib27) 2020; 195
Oladapo (10.1016/j.polymer.2021.123865_bib21) 2019; 46
Almasi (10.1016/j.polymer.2021.123865_bib35) 2014; 314
Balogun (10.1016/j.polymer.2021.123865_bib32) 2019; 29
Huang (10.1016/j.polymer.2021.123865_bib17) 2016; 35
Oladapo (10.1016/j.polymer.2021.123865_bib33) 2021
Bodunde (10.1016/j.polymer.2021.123865_bib20) 2020
Oladapo (10.1016/j.polymer.2021.123865_bib43) 2021; 4
Najeeb (10.1016/j.polymer.2021.123865_bib11) 2016; 60
Oladapo (10.1016/j.polymer.2021.123865_bib14) 2019; 158
Wu (10.1016/j.polymer.2021.123865_bib18) 2014; 24
Hahnel (10.1016/j.polymer.2021.123865_bib38) 2014; 26
Abbasi (10.1016/j.polymer.2021.123865_bib7) 2020; 5
Ranjan (10.1016/j.polymer.2021.123865_bib26) 2020; 4
Omigbodun (10.1016/j.polymer.2021.123865_bib28) 2019; 6
Robinson (10.1016/j.polymer.2021.123865_bib37) 1999; 4
Jenkins (10.1016/j.polymer.2021.123865_bib39) 2019; 100
References_xml – volume: 195
  start-page: 108971
  year: 2020
  ident: bib27
  article-title: Understanding elastic anisotropy in diamond based lattice structures produced by laser powder bed fusion: effect of manufacturing deviations
  publication-title: Mater. Des.
– volume: 4
  start-page: 91
  year: 1999
  end-page: 97
  ident: bib37
  article-title: Inflammatory reactions associated with a calcium sulfate bone substitute
  publication-title: Ann. Transplant.
– volume: 2
  start-page: 1
  year: 2017
  end-page: 14
  ident: bib9
  article-title: Lithography-based methods to manufacture biomaterials at small scales
  publication-title: J. Sci. Adv. Mater. Dev.
– volume: 16
  start-page: 383
  year: 2014
  end-page: 392
  ident: bib19
  article-title: Influence of PEEK surface modification on surface properties and bond strength to veneering resin composites
  publication-title: Adhes. Dent.
– volume: 106
  start-page: 829
  year: 2020
  end-page: 841
  ident: bib8
  article-title: 3D printing of surface characterisation and finite element analysis improvement of PEEK-HAP-GO in bone implant
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 35
  start-page: 5731
  year: 2014
  end-page: 5740
  ident: bib40
  article-title: Multilevel surface engineering of nanostructured TiO
  publication-title: Biomaterials
– volume: 5
  start-page: 1
  year: 2020
  end-page: 9
  ident: bib7
  article-title: Porous scaffolds for bone regeneration
  publication-title: J. Sci. Adv. Mater. Dev.
– volume: 8
  start-page: 3213
  year: 2019
  end-page: 3222
  ident: bib22
  article-title: Microstructural evaluation of aluminium alloy A365 T6 in machining operation
  publication-title: J. Mater. Res. Technol.
– volume: 35
  start-page: 21
  year: 2016
  end-page: 27
  ident: bib17
  article-title: Anterior corpectomy versus posterior laminoplasty for the treatment of multilevel cervical myelopathy: a meta-analysis
  publication-title: Int. J. Surg.
– volume: 200
  start-page: 526
  year: 2020
  end-page: 536
  ident: bib24
  article-title: Antiferromagnetism in a nanocrystalline high entropy oxide (Co,Cu,Mg,Ni,Zn)O: magnetic constituents and surface anisotropy leading to lattice distortion
  publication-title: Acta Mater.
– volume: 1
  start-page: 1
  year: 2016
  end-page: 17
  ident: bib2
  article-title: Three-dimensional printing of biological matters
  publication-title: J. Sci. Adv. Mater Dev.
– start-page: 187
  year: 2017
  end-page: 201
  ident: bib4
  article-title: Numerical Simulation of Bone Cutting: Hybrid SPH-FE Approach, Numerical Methods and Advanced Simulation in Biomechanics and Biological Processes
– volume: 2
  start-page: 160
  year: 2012
  end-page: 178
  ident: bib36
  article-title: Titanium nitride and nitrogen ion implanted coated dental materials
  publication-title: Coatings
– volume: 7
  start-page: 461
  year: 2019
  end-page: 464
  ident: bib15
  article-title: Three-dimensional finite element analysis of a porcelain crowned tooth, Beni-Suef Univ
  publication-title: J. Basic Appl. Sci.
– volume: 5
  start-page: 10
  year: 2020
  end-page: 29
  ident: bib5
  article-title: Graphene research and their outputs: status and prospect
  publication-title: J. Sci. Adv. Mater. Dev.
– volume: 24
  start-page: 5464
  year: 2014
  end-page: 5481
  ident: bib18
  article-title: Functionalized TiO
  publication-title: Adv. Funct. Mater.
– volume: 158
  start-page: 428
  year: 2019
  end-page: 436
  ident: bib14
  article-title: 3D printing of bone scaffolds with hybrid biomaterials
  publication-title: Compos. B Eng.
– start-page: 1
  year: 2021
  end-page: 14
  ident: bib33
  article-title: Overview of additive manufacturing biopolymer composites
  publication-title: Encycl. Mater. Compos.
– volume: 60
  start-page: 12
  year: 2016
  end-page: 19
  ident: bib11
  article-title: Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics
  publication-title: Journal of Prosthodontic Research
– volume: 34
  start-page: 7
  year: 2015
  end-page: 12
  ident: bib16
  article-title: Three-unit reinforced poly ether ether ketone composite FDPs: influence of fabrication method on load-bearing capacity and failure types
  publication-title: Dent. Mater. J.
– volume: 78
  start-page: 104
  year: 2013
  end-page: 109
  ident: bib23
  article-title: FE/SPH modelling of orthogonal micro-machining of fcc single crystal
  publication-title: Comput. Mater. Sci.
– volume: 67
  start-page: 5
  year: 2019
  end-page: 12
  ident: bib31
  article-title: Modelling detection of magnetic hysteresis properties with a microcontroller
  publication-title: Int. J. Eng. Trends Technol.
– volume: 266
  start-page: 124485
  year: 2021
  ident: bib42
  article-title: Improving bioactivity and strength of PEEK composite polymer for bone application Materials
  publication-title: Chemistry and Physics
– volume: 400
  start-page: 14
  year: 2017
  end-page: 23
  ident: bib25
  article-title: Biofunctionalization of carbon nanotubes/chitosan hybrids on Ti implants by atom layer deposited ZnO nanostructures
  publication-title: Appl. Surf. Sci.
– volume: 6
  start-page: 811
  year: 2019
  end-page: 816
  ident: bib28
  article-title: Experimental model design and simulation of air conditioning system for energy management
  publication-title: Int. Res..J. Eng. Technol.
– volume: 16
  start-page: 465
  year: 2014
  end-page: 472
  ident: bib29
  article-title: Effect of sulfuric acid etching of polyetheretherketone on the shear bond strength to resin cements
  publication-title: J. Adhesive Dent.
– volume: 26
  start-page: 1297
  year: 2014
  end-page: 1301
  ident: bib38
  article-title: Biofilm formation on the surface of modern implant abutment materials
  publication-title: Clin. Oral Implants Res.
– volume: 588
  start-page: 412200
  year: 2020
  ident: bib30
  article-title: Lattice strain caused magnetism and magnetocrystalline anisotropy in Zn modified barium hexaferrite
  publication-title: Phys. B Condens. Matter
– volume: 13
  start-page: 159
  year: 2015
  end-page: 167
  ident: bib34
  article-title: High-strength, surface-porous polyether-ether-ketone for load-bearing orthopedic implants
  publication-title: Acta Biomater.
– volume: 111
  start-page: 2311
  year: 2020
  end-page: 2321
  ident: bib6
  article-title: Analytical modelling of in situ layer-wise defect detection in 3D-printed parts: additive manufacturing
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 4
  start-page: 44
  year: 2021
  end-page: 59
  ident: bib43
  article-title: 3D printing of PEEK–cHAp scaffold for medical bone implant
  publication-title: Bio-Design and Manufacturing
– volume: 314
  start-page: 1034
  year: 2014
  end-page: 1040
  ident: bib35
  article-title: Crystalline ha coating on PEEK via chemical deposition
  publication-title: Appl. Surf. Sci.
– volume: 46
  start-page: 116
  year: 2019
  end-page: 120
  ident: bib21
  article-title: Model design of a superconducting quantum interference device of magnetic field sensors for magnetocardiography
  publication-title: Biomed. Signal Process Contr.
– volume: 100
  start-page: 103400
  year: 2019
  ident: bib39
  article-title: Anisotropy in the mechanical behavior of Ti6Al4V electron beam melted lattices
  publication-title: Mech. Res. Commun.
– volume: 29
  start-page: 1
  year: 2019
  end-page: 8
  ident: bib32
  article-title: Electrical energy demand modeling of 3D printing technology for sustainable manufacture
  publication-title: Int. J. Eng.
– volume: 130
  start-page: 251
  year: 2019
  end-page: 259
  ident: bib10
  article-title: Influence of chitosan on the antibacterial activity of composite coating (PEEK/HAp) fabricated by electrophoretic deposition
  publication-title: Prog. Org. Coating
– volume: 25
  start-page: 515
  year: 2014
  end-page: 525
  ident: bib13
  article-title: Differentiation of human mesenchymal stem cells on plasma-treated polyetheretherketone
  publication-title: J. Mater. Sci. Mater. Med.
– volume: 13
  start-page: 159
  year: 2015
  end-page: 167
  ident: bib41
  article-title: High-strength, surface-porous polyether-ether-ketone for load-bearing orthopedic implants
  publication-title: Acta Biomater.
– volume: 18
  year: 2011
  ident: bib12
  article-title: Characterisation of an inductively coupled nitrogen-argon plasma by Langmuir probe combined with optical emission spectroscopy
  publication-title: Phys. Plasmas
– reference: Bi Oladapo, SA Zahedi, SO Ismail, FT Omigbodun, 3D printing of PEEK and its composite to increase biointerfaces as a biomedical material-A review, Colloids Surf. B Biointerfaces 203, 111726-111726.
– volume: 4
  start-page: 379
  year: 2020
  end-page: 388
  ident: bib26
  article-title: Biocompatible thermoplastic composite blended with HAp and CS for 3D Printing
  publication-title: Encycl. Renew. Sust. Mater.
– volume: 1
  year: 2019
  ident: bib1
  article-title: 3D printing of PEEK-based medical devices
  publication-title: Transactions on Additive Manufacturing Meets Medicine
– start-page: 1
  year: 2020
  end-page: 15
  ident: bib20
  article-title: A futuristic insight into a “nano-doctor”: a clinical review on medical diagnosis and devices using nanotechnology
  publication-title: Mater. Today Proc.
– volume: 60
  start-page: 12
  issue: 1
  year: 2016
  ident: 10.1016/j.polymer.2021.123865_bib11
  article-title: Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics
  publication-title: Journal of Prosthodontic Research
  doi: 10.1016/j.jpor.2015.10.001
– volume: 34
  start-page: 7
  year: 2015
  ident: 10.1016/j.polymer.2021.123865_bib16
  article-title: Three-unit reinforced poly ether ether ketone composite FDPs: influence of fabrication method on load-bearing capacity and failure types
  publication-title: Dent. Mater. J.
  doi: 10.4012/dmj.2013-345
– volume: 13
  start-page: 159
  year: 2015
  ident: 10.1016/j.polymer.2021.123865_bib41
  article-title: High-strength, surface-porous polyether-ether-ketone for load-bearing orthopedic implants
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2014.11.030
– ident: 10.1016/j.polymer.2021.123865_bib3
  doi: 10.1016/j.colsurfb.2021.111726
– volume: 5
  start-page: 10
  issue: 1
  year: 2020
  ident: 10.1016/j.polymer.2021.123865_bib5
  article-title: Graphene research and their outputs: status and prospect
  publication-title: J. Sci. Adv. Mater. Dev.
– volume: 158
  start-page: 428
  year: 2019
  ident: 10.1016/j.polymer.2021.123865_bib14
  article-title: 3D printing of bone scaffolds with hybrid biomaterials
  publication-title: Compos. B Eng.
  doi: 10.1016/j.compositesb.2018.09.065
– volume: 46
  start-page: 116
  year: 2019
  ident: 10.1016/j.polymer.2021.123865_bib21
  article-title: Model design of a superconducting quantum interference device of magnetic field sensors for magnetocardiography
  publication-title: Biomed. Signal Process Contr.
  doi: 10.1016/j.bspc.2018.07.007
– volume: 67
  start-page: 5
  issue: 6
  year: 2019
  ident: 10.1016/j.polymer.2021.123865_bib31
  article-title: Modelling detection of magnetic hysteresis properties with a microcontroller
  publication-title: Int. J. Eng. Trends Technol.
  doi: 10.14445/22315381/IJETT-V67I6P202
– volume: 29
  start-page: 1
  issue: 7
  year: 2019
  ident: 10.1016/j.polymer.2021.123865_bib32
  article-title: Electrical energy demand modeling of 3D printing technology for sustainable manufacture
  publication-title: Int. J. Eng.
– volume: 13
  start-page: 159
  year: 2015
  ident: 10.1016/j.polymer.2021.123865_bib34
  article-title: High-strength, surface-porous polyether-ether-ketone for load-bearing orthopedic implants
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2014.11.030
– volume: 2
  start-page: 160
  issue: 3
  year: 2012
  ident: 10.1016/j.polymer.2021.123865_bib36
  article-title: Titanium nitride and nitrogen ion implanted coated dental materials
  publication-title: Coatings
  doi: 10.3390/coatings2030160
– volume: 8
  start-page: 3213
  issue: 3
  year: 2019
  ident: 10.1016/j.polymer.2021.123865_bib22
  article-title: Microstructural evaluation of aluminium alloy A365 T6 in machining operation
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2019.05.009
– volume: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.polymer.2021.123865_bib1
  article-title: 3D printing of PEEK-based medical devices
  publication-title: Transactions on Additive Manufacturing Meets Medicine
– volume: 106
  start-page: 829
  issue: 3
  year: 2020
  ident: 10.1016/j.polymer.2021.123865_bib8
  article-title: 3D printing of surface characterisation and finite element analysis improvement of PEEK-HAP-GO in bone implant
  publication-title: Int. J. Adv. Manuf. Technol.
– start-page: 1
  year: 2021
  ident: 10.1016/j.polymer.2021.123865_bib33
  article-title: Overview of additive manufacturing biopolymer composites
  publication-title: Encycl. Mater. Compos.
– start-page: 187
  year: 2017
  ident: 10.1016/j.polymer.2021.123865_bib4
– volume: 130
  start-page: 251
  year: 2019
  ident: 10.1016/j.polymer.2021.123865_bib10
  article-title: Influence of chitosan on the antibacterial activity of composite coating (PEEK/HAp) fabricated by electrophoretic deposition
  publication-title: Prog. Org. Coating
  doi: 10.1016/j.porgcoat.2019.01.050
– volume: 25
  start-page: 515
  year: 2014
  ident: 10.1016/j.polymer.2021.123865_bib13
  article-title: Differentiation of human mesenchymal stem cells on plasma-treated polyetheretherketone
  publication-title: J. Mater. Sci. Mater. Med.
  doi: 10.1007/s10856-013-5072-5
– volume: 588
  start-page: 412200
  year: 2020
  ident: 10.1016/j.polymer.2021.123865_bib30
  article-title: Lattice strain caused magnetism and magnetocrystalline anisotropy in Zn modified barium hexaferrite
  publication-title: Phys. B Condens. Matter
  doi: 10.1016/j.physb.2020.412200
– volume: 26
  start-page: 1297
  issue: 11
  year: 2014
  ident: 10.1016/j.polymer.2021.123865_bib38
  article-title: Biofilm formation on the surface of modern implant abutment materials
  publication-title: Clin. Oral Implants Res.
  doi: 10.1111/clr.12454
– volume: 18
  year: 2011
  ident: 10.1016/j.polymer.2021.123865_bib12
  article-title: Characterisation of an inductively coupled nitrogen-argon plasma by Langmuir probe combined with optical emission spectroscopy
  publication-title: Phys. Plasmas
  doi: 10.1063/1.3554706
– start-page: 1
  year: 2020
  ident: 10.1016/j.polymer.2021.123865_bib20
  article-title: A futuristic insight into a “nano-doctor”: a clinical review on medical diagnosis and devices using nanotechnology
  publication-title: Mater. Today Proc.
– volume: 1
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.polymer.2021.123865_bib2
  article-title: Three-dimensional printing of biological matters
  publication-title: J. Sci. Adv. Mater Dev.
– volume: 200
  start-page: 526
  year: 2020
  ident: 10.1016/j.polymer.2021.123865_bib24
  article-title: Antiferromagnetism in a nanocrystalline high entropy oxide (Co,Cu,Mg,Ni,Zn)O: magnetic constituents and surface anisotropy leading to lattice distortion
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2020.09.034
– volume: 4
  start-page: 379
  year: 2020
  ident: 10.1016/j.polymer.2021.123865_bib26
  article-title: Biocompatible thermoplastic composite blended with HAp and CS for 3D Printing
  publication-title: Encycl. Renew. Sust. Mater.
– volume: 4
  start-page: 91
  issue: 3–4
  year: 1999
  ident: 10.1016/j.polymer.2021.123865_bib37
  article-title: Inflammatory reactions associated with a calcium sulfate bone substitute
  publication-title: Ann. Transplant.
– volume: 35
  start-page: 21
  year: 2016
  ident: 10.1016/j.polymer.2021.123865_bib17
  article-title: Anterior corpectomy versus posterior laminoplasty for the treatment of multilevel cervical myelopathy: a meta-analysis
  publication-title: Int. J. Surg.
  doi: 10.1016/j.ijsu.2016.09.008
– volume: 314
  start-page: 1034
  year: 2014
  ident: 10.1016/j.polymer.2021.123865_bib35
  article-title: Crystalline ha coating on PEEK via chemical deposition
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2014.06.074
– volume: 266
  start-page: 124485
  year: 2021
  ident: 10.1016/j.polymer.2021.123865_bib42
  article-title: Improving bioactivity and strength of PEEK composite polymer for bone application Materials
  publication-title: Chemistry and Physics
– volume: 4
  start-page: 44
  issue: 1
  year: 2021
  ident: 10.1016/j.polymer.2021.123865_bib43
  article-title: 3D printing of PEEK–cHAp scaffold for medical bone implant
  publication-title: Bio-Design and Manufacturing
  doi: 10.1007/s42242-020-00098-0
– volume: 100
  start-page: 103400
  year: 2019
  ident: 10.1016/j.polymer.2021.123865_bib39
  article-title: Anisotropy in the mechanical behavior of Ti6Al4V electron beam melted lattices
  publication-title: Mech. Res. Commun.
  doi: 10.1016/j.mechrescom.2019.103400
– volume: 2
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.polymer.2021.123865_bib9
  article-title: Lithography-based methods to manufacture biomaterials at small scales
  publication-title: J. Sci. Adv. Mater. Dev.
– volume: 111
  start-page: 2311
  issue: 7
  year: 2020
  ident: 10.1016/j.polymer.2021.123865_bib6
  article-title: Analytical modelling of in situ layer-wise defect detection in 3D-printed parts: additive manufacturing
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 16
  start-page: 383
  year: 2014
  ident: 10.1016/j.polymer.2021.123865_bib19
  article-title: Influence of PEEK surface modification on surface properties and bond strength to veneering resin composites
  publication-title: Adhes. Dent.
– volume: 195
  start-page: 108971
  year: 2020
  ident: 10.1016/j.polymer.2021.123865_bib27
  article-title: Understanding elastic anisotropy in diamond based lattice structures produced by laser powder bed fusion: effect of manufacturing deviations
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2020.108971
– volume: 35
  start-page: 5731
  year: 2014
  ident: 10.1016/j.polymer.2021.123865_bib40
  article-title: Multilevel surface engineering of nanostructured TiO2 on carbon-fiber-reinforced polyetheretherketone
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.04.003
– volume: 78
  start-page: 104
  year: 2013
  ident: 10.1016/j.polymer.2021.123865_bib23
  article-title: FE/SPH modelling of orthogonal micro-machining of fcc single crystal
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2013.05.022
– volume: 16
  start-page: 465
  year: 2014
  ident: 10.1016/j.polymer.2021.123865_bib29
  article-title: Effect of sulfuric acid etching of polyetheretherketone on the shear bond strength to resin cements
  publication-title: J. Adhesive Dent.
– volume: 400
  start-page: 14
  year: 2017
  ident: 10.1016/j.polymer.2021.123865_bib25
  article-title: Biofunctionalization of carbon nanotubes/chitosan hybrids on Ti implants by atom layer deposited ZnO nanostructures
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.12.158
– volume: 5
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.polymer.2021.123865_bib7
  article-title: Porous scaffolds for bone regeneration
  publication-title: J. Sci. Adv. Mater. Dev.
– volume: 24
  start-page: 5464
  year: 2014
  ident: 10.1016/j.polymer.2021.123865_bib18
  article-title: Functionalized TiO2 based nanomaterials for biomedical applications
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201400706
– volume: 7
  start-page: 461
  issue: 4
  year: 2019
  ident: 10.1016/j.polymer.2021.123865_bib15
  article-title: Three-dimensional finite element analysis of a porcelain crowned tooth, Beni-Suef Univ
  publication-title: J. Basic Appl. Sci.
– volume: 6
  start-page: 811
  issue: 6
  year: 2019
  ident: 10.1016/j.polymer.2021.123865_bib28
  article-title: Experimental model design and simulation of air conditioning system for energy management
  publication-title: Int. Res..J. Eng. Technol.
SSID ssj0002524
Score 2.5430348
Snippet Artificial bone implant materials need porosity for nutrient distribution, moderate pore size to provide cell cultures and bone-like mechanical properties. The...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 123865
SubjectTerms Anisotropy
Biocompatibility
Bone implants
Calcium oxide
Cell size
Composite materials
Degradability
Design
Design improvements
Fabrication
Finite element method
Fused deposition modeling
Graphene
Hip
Hip implant
Homogenisation
Homogenization
Hydroxyapatite
Lattice structures
Lime
Mechanical properties
Modulus of elasticity
Nanostructure
Particle size distribution
PEEK/rGo/cHAp
Polyether ether ketones
Polymer matrix composites
Pore size
Pore size distribution
Porosity
Scaffolding
Size distribution
Surface treatment
Surgical implants
Transplants & implants
Title Mechanical performances of hip implant design and fabrication with PEEK composite
URI https://dx.doi.org/10.1016/j.polymer.2021.123865
https://www.proquest.com/docview/2543839421
Volume 227
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFG6IHtSDUdSIIunB64C1pWNHQiAogWgiCbdm648IgbEAHrz4t9u3daImhsTbtqzN8t7b19eX731F6J5bYKRMhZ7mxHhMxcyLqJae9H1DmixmREK9YzTmgwl7nLamJdQtemGAVumwP8f0DK3dk4azZiOdzaDHl9r1JlPAgjAEHGYsgCivf-xoHqRFciVmSjx4e9fF05jX09XifalBFpT4dR9ma_21Pv1C6mz56Z-hU5c34k7-aeeopJMyOuoWx7WV0ck3ZcEL9DzS0NILHsDprjdgg1cGv85SPFumC2tTrDICB44ShU0Ur10BD0N1Fj_1ekMMlHPgdelLNOn3XroDz52e4ElKg60XcGNsthTZ_YXmbapsahXF1mOMctOMVMxlaAITkjiMZRAoQiKuSNA0ktsLzg29QgfJKtHXCMtA00hpxa0H7fbRhL7UXBNu56M6DEkFscJmQjppcTjhYiEKDtlcOFMLMLXITV1B9a9haa6tsW9Au3CI-BEkwuL_vqHVwoHC_aUbAUIANkFkxL_5_8y36BjugD7m8yo62K7f9J1NVLZxLYvEGjrsPAwH409SoOlZ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEJ4YOKgHo6jxgdqD1wW2LV32SAgGRYgmknBrdvuIGISN4sF_b4ftgpoYEm-b3cxkM9N-M53MfAW4Fg4YGddxYAS1AdcpDxJmVKDC0NIGTzlVWO8YDEVvxO_GzfEWdIpZGGyr9NifY_oSrf2burdmPZtMcMaXuXizZMDCZehwuIzsVM0SlNu3_d5wBci0SXMyZkYDFFgP8tRfatl8-vlqkBmUhrUQFTb_ClG_wHoZgW72Yc-njqSd_90BbJlZBbY7xY1tFdj9Ri54CI8Dg1O96ASSrccD3snckudJRiav2dSZlehlDwdJZprYJH3zNTyCBVry0O32CXadY2uXOYLRTfep0wv8BQqBYixaBJGw1iVMiTtiGNFi2mVXSeqcxpmwjUSnQsU2sjFN41RFkaY0EZpGDauEexDCsmMozeYzcwJERYYl2mjhnOhOkDYOlRGGCqePmTimp8ALm0nl2cXxkoupLNrIXqQ3tURTy9zUp1BbiWU5vcYmgVbhEPljnUgXAjaJVgsHSr9R3yVyAbgckdPw7P-ar2C79zS4l_e3w_457OAX7CYLRRVKi7cPc-HylkV66dflF1MB7Ao
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanical+performances+of+hip+implant+design+and+fabrication+with+PEEK+composite&rft.jtitle=Polymer+%28Guilford%29&rft.au=Oladapo%2C+Bankole+I&rft.au=Zahedi%2C+S+Abolfazl&rft.au=Ismail%2C+Sikiru+O&rft.date=2021-06-16&rft.pub=Elsevier+BV&rft.issn=0032-3861&rft.eissn=1873-2291&rft.volume=227&rft.spage=1&rft_id=info:doi/10.1016%2Fj.polymer.2021.123865&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-3861&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-3861&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-3861&client=summon