Mechanical performances of hip implant design and fabrication with PEEK composite
Artificial bone implant materials need porosity for nutrient distribution, moderate pore size to provide cell cultures and bone-like mechanical properties. The homogenisation of discrepancies between the microstructure of implants and bone is an important subject. This research aims to design micros...
Saved in:
Published in | Polymer (Guilford) Vol. 227; p. 123865 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
16.06.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Artificial bone implant materials need porosity for nutrient distribution, moderate pore size to provide cell cultures and bone-like mechanical properties. The homogenisation of discrepancies between the microstructure of implants and bone is an important subject. This research aims to design microstructures with poly ether-ether-ketone (PEEK) and its composites to improve the compatibility of implants. Porous hip bone implants fabricated by fused deposition modelling (FDM) are proposed to mimic natural bone with various homogenisation lattice structures and excellent properties. Five isotropic lattice structures with homogenisation control strategies are printed with PEEK and composite PEEK with reduced graphene oxide (rGO) and calcium hydroxyapatite (cHAp). An examination is performed on a three-dimensional (3D) distribution of the effective module surface of the five composite porous unit lattice structures. The relationship between the modulus of elasticity, anisotropy and cell parameters are thoroughly investigated by finite element analysis (FEA). Analysis of the surface treatment used to create micropores in the scaffolding and the nanostructure yields a bioactive PEEK/hydroxyapatite (HAp) composite with various control configuration distributions and cell growths. The functionalised biocompatibility and degradability of rGO/HAp composite in various ratios to PEEK, and their nanostructure arrays, are studied by a surface functionalisation approach. The improved design eliminates slight imperfections, allowing for a more stable structure. The controlled homogenisation, porosity and particle size distribution helps to increase cellular infiltration and biological integration of the PEEK and hip implant composites.
[Display omitted]
•To design microstructures with poly ether-ether-ketone and its composites to improve the compatibility of implants.•To homogenised a unit cell of the lattice structure for Hip bone implant.•Design Hip implant with porous lattice structure for body fluid loading.•Homogenisation of discrepancies between the microstructure of implants and bone of PEEK materials. |
---|---|
AbstractList | Artificial bone implant materials need porosity for nutrient distribution, moderate pore size to provide cell cultures and bone-like mechanical properties. The homogenisation of discrepancies between the microstructure of implants and bone is an important subject. This research aims to design microstructures with poly ether-ether-ketone (PEEK) and its composites to improve the compatibility of implants. Porous hip bone implants fabricated by fused deposition modelling (FDM) are proposed to mimic natural bone with various homogenisation lattice structures and excellent properties. Five isotropic lattice structures with homogenisation control strategies are printed with PEEK and composite PEEK with reduced graphene oxide (rGO) and calcium hydroxyapatite (cHAp). An examination is performed on a three-dimensional (3D) distribution of the effective module surface of the five composite porous unit lattice structures. The relationship between the modulus of elasticity, anisotropy and cell parameters are thoroughly investigated by finite element analysis (FEA). Analysis of the surface treatment used to create micropores in the scaffolding and the nanostructure yields a bioactive PEEK/hydroxyapatite (HAp) composite with various control configuration distributions and cell growths. The functionalised biocompatibility and degradability of rGO/HAp composite in various ratios to PEEK, and their nanostructure arrays, are studied by a surface functionalisation approach. The improved design eliminates slight imperfections, allowing for a more stable structure. The controlled homogenisation, porosity and particle size distribution helps to increase cellular infiltration and biological integration of the PEEK and hip implant composites. Artificial bone implant materials need porosity for nutrient distribution, moderate pore size to provide cell cultures and bone-like mechanical properties. The homogenisation of discrepancies between the microstructure of implants and bone is an important subject. This research aims to design microstructures with poly ether-ether-ketone (PEEK) and its composites to improve the compatibility of implants. Porous hip bone implants fabricated by fused deposition modelling (FDM) are proposed to mimic natural bone with various homogenisation lattice structures and excellent properties. Five isotropic lattice structures with homogenisation control strategies are printed with PEEK and composite PEEK with reduced graphene oxide (rGO) and calcium hydroxyapatite (cHAp). An examination is performed on a three-dimensional (3D) distribution of the effective module surface of the five composite porous unit lattice structures. The relationship between the modulus of elasticity, anisotropy and cell parameters are thoroughly investigated by finite element analysis (FEA). Analysis of the surface treatment used to create micropores in the scaffolding and the nanostructure yields a bioactive PEEK/hydroxyapatite (HAp) composite with various control configuration distributions and cell growths. The functionalised biocompatibility and degradability of rGO/HAp composite in various ratios to PEEK, and their nanostructure arrays, are studied by a surface functionalisation approach. The improved design eliminates slight imperfections, allowing for a more stable structure. The controlled homogenisation, porosity and particle size distribution helps to increase cellular infiltration and biological integration of the PEEK and hip implant composites. [Display omitted] •To design microstructures with poly ether-ether-ketone and its composites to improve the compatibility of implants.•To homogenised a unit cell of the lattice structure for Hip bone implant.•Design Hip implant with porous lattice structure for body fluid loading.•Homogenisation of discrepancies between the microstructure of implants and bone of PEEK materials. |
ArticleNumber | 123865 |
Author | Zahedi, S. Abolfazl Oladapo, Bankole I. Ismail, Sikiru O. |
Author_xml | – sequence: 1 givenname: Bankole I. surname: Oladapo fullname: Oladapo, Bankole I. email: P17243433@my365.dmu.ac.uk organization: School of Engineering and Sustainable Development, De Montfort University, LE1 9BH, Leicester, UK – sequence: 2 givenname: S. Abolfazl surname: Zahedi fullname: Zahedi, S. Abolfazl organization: School of Engineering and Sustainable Development, De Montfort University, LE1 9BH, Leicester, UK – sequence: 3 givenname: Sikiru O. surname: Ismail fullname: Ismail, Sikiru O. organization: School of Physics, Engineering and Computer Science, University of Hertfordshire, AL10 9AB, England, UK |
BookMark | eNqFkE1LAzEQhoNUsK3-BCHgeWs-drO7eBAp9QMrKug5ZLOJTdlN1iRV-u9NrScvPc0w877vMM8EjKyzCoBzjGYYYXa5ng2u2_bKzwgieIYJrVhxBMa4KmlGSI1HYIwQJVma4xMwCWGNECIFycfg9UnJlbBGig4Oymvne2GlCtBpuDIDNP3QCRthq4L5sFDYFmrR-KSPxln4beIKviwWj1C6fnDBRHUKjrXogjr7q1Pwfrt4m99ny-e7h_nNMpOUljErmdaU5CInlWIVbasCi6ZRMqdMI9E2TNa61DVp6kaWZUuIYC0pkZYsNYxpOgUX-9zBu8-NCpGv3cbbdJKTIqcVrXOCk6rYq6R3IXil-eBNL_yWY8R39Pia_9HjO3p8Ty_5rv75pIm_P0cvTHfQfb13qwTgy6RtkEYlrq3xSkbeOnMg4Qee1JHF |
CitedBy_id | crossref_primary_10_1016_j_istruc_2023_05_150 crossref_primary_10_1155_2022_4243476 crossref_primary_10_1016_j_polymer_2022_124587 crossref_primary_10_3390_ma18061295 crossref_primary_10_1089_3dp_2021_0317 crossref_primary_10_1016_j_bioadv_2024_214043 crossref_primary_10_1016_j_clet_2025_100925 crossref_primary_10_1088_1402_4896_ad48cb crossref_primary_10_1016_j_jcomc_2023_100398 crossref_primary_10_1021_acsabm_3c00327 crossref_primary_10_1016_j_compositesb_2022_110427 crossref_primary_10_1016_j_tws_2024_112469 crossref_primary_10_1007_s00170_023_12342_9 crossref_primary_10_1016_j_scitotenv_2023_167109 crossref_primary_10_1007_s43207_023_00320_6 crossref_primary_10_3390_jcs6090262 crossref_primary_10_3390_polym14214600 crossref_primary_10_3390_coatings14030253 crossref_primary_10_1002_pc_27498 crossref_primary_10_3390_bioengineering11090924 crossref_primary_10_1016_j_heliyon_2022_e12314 crossref_primary_10_1016_j_matdes_2023_112064 crossref_primary_10_3390_polym15173620 crossref_primary_10_1016_j_matdes_2022_110781 crossref_primary_10_1016_j_matchemphys_2024_129306 crossref_primary_10_1016_j_polymer_2022_124557 crossref_primary_10_3390_ma16155482 crossref_primary_10_1016_j_matchemphys_2023_127960 crossref_primary_10_1177_09544089221141554 crossref_primary_10_1016_j_matdes_2022_110531 crossref_primary_10_1016_j_resconrec_2024_107769 crossref_primary_10_1016_j_cobme_2023_100463 crossref_primary_10_1016_j_matchemphys_2022_126930 crossref_primary_10_3390_polym15051198 crossref_primary_10_1016_j_colsurfb_2022_112583 crossref_primary_10_3390_app14177457 crossref_primary_10_1016_j_tws_2025_112955 crossref_primary_10_1177_14644207241240623 crossref_primary_10_3390_biomimetics9100642 crossref_primary_10_1080_09205063_2022_2124352 crossref_primary_10_1016_j_jmbbm_2023_105885 crossref_primary_10_3390_polym16142027 |
Cites_doi | 10.1016/j.jpor.2015.10.001 10.4012/dmj.2013-345 10.1016/j.actbio.2014.11.030 10.1016/j.colsurfb.2021.111726 10.1016/j.compositesb.2018.09.065 10.1016/j.bspc.2018.07.007 10.14445/22315381/IJETT-V67I6P202 10.3390/coatings2030160 10.1016/j.jmrt.2019.05.009 10.1016/j.porgcoat.2019.01.050 10.1007/s10856-013-5072-5 10.1016/j.physb.2020.412200 10.1111/clr.12454 10.1063/1.3554706 10.1016/j.actamat.2020.09.034 10.1016/j.ijsu.2016.09.008 10.1016/j.apsusc.2014.06.074 10.1007/s42242-020-00098-0 10.1016/j.mechrescom.2019.103400 10.1016/j.matdes.2020.108971 10.1016/j.biomaterials.2014.04.003 10.1016/j.commatsci.2013.05.022 10.1016/j.apsusc.2016.12.158 10.1002/adfm.201400706 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Jun 16, 2021 |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Jun 16, 2021 |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 |
DOI | 10.1016/j.polymer.2021.123865 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-2291 |
ExternalDocumentID | 10_1016_j_polymer_2021_123865 S0032386121004882 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARLI AAXUO ABFNM ABMAC ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNCT ACPRK ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRAH AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SMS SPC SPCBC SPD SSK SSM SSZ T5K TN5 WH7 XPP ZMT ~G- .-4 29O 6TJ 6TU AAQXK AATTM AAXKI AAYWO AAYXX ABDEX ABDPE ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ H~9 R2- RIG SCB SEW SSH T9H WUQ 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K EFKBS F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 |
ID | FETCH-LOGICAL-c337t-76ff324a428e683d851abbec436f0adb6c9f7f92b9bc77d22a6d270fc6a6d66f3 |
IEDL.DBID | .~1 |
ISSN | 0032-3861 |
IngestDate | Wed Aug 13 06:35:50 EDT 2025 Tue Jul 01 02:37:03 EDT 2025 Thu Apr 24 23:03:51 EDT 2025 Fri Feb 23 02:44:45 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Biocompatibility Lattice structures Hip implant PEEK/rGo/cHAp Homogenisation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c337t-76ff324a428e683d851abbec436f0adb6c9f7f92b9bc77d22a6d270fc6a6d66f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2543839421 |
PQPubID | 2045419 |
ParticipantIDs | proquest_journals_2543839421 crossref_primary_10_1016_j_polymer_2021_123865 crossref_citationtrail_10_1016_j_polymer_2021_123865 elsevier_sciencedirect_doi_10_1016_j_polymer_2021_123865 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-16 |
PublicationDateYYYYMMDD | 2021-06-16 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Polymer (Guilford) |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Almasi, Izman, Assadian, Ghanbari, Abdul Kadir (bib35) 2014; 314 Usharani, Bhandarkar, Subramanian, Bhattacharya (bib24) 2020; 200 Sproesser, Schmidlin, Uhrenbacher, Roos, Gernet, Stawarczyk (bib29) 2014; 16 Oladapo, Zahedi, Chaluvadi, Bollapalli, Ismail (bib21) 2019; 46 Omigbodun, Oladapo, Bowoto, Adeyekun (bib28) 2019; 6 Huang, Du, Liang, Hu, Hu, Cheng (bib17) 2016; 35 Hahnel, Wieser, Lang, Rosentritt (bib38) 2014; 26 Oladapo, Zahedi, Vahidnia, Ikumapayi, Farooq (bib15) 2019; 7 Bi Oladapo, SA Zahedi, SO Ismail, FT Omigbodun, 3D printing of PEEK and its composite to increase biointerfaces as a biomedical material-A review, Colloids Surf. B Biointerfaces 203, 111726-111726. Manglam, Kumari, Kar (bib30) 2020; 588 Balogun, Bi (bib32) 2019; 29 Munaz, Vadivelu, John, Barton, Nguyen (bib2) 2016; 1 Tiwari, Sahoo, Wang, Huczko (bib5) 2020; 5 Keul, Liebermann, Schmidlin, Roos, Sener, Stawarczyk (bib19) 2014; 16 Waser-Althaus, Salamon, Waser, Padeste, Kreutzer, Pieles, Müller, Peters (bib13) 2014; 25 Al Jabbari, Fehrman, Barnes, Zapf, Zinelis, Berzins (bib36) 2012; 2 Ok, Bi, Zahedi, Omigbodun, Emenuvwe (bib6) 2020; 111 Song, Lee (bib12) 2011; 18 Bodunde, Ikumapayi, Akinlabi, Oladapo, Adeoye, Fatoba (bib20) 2020 Jenkins, Oulton, Goodall (bib39) 2019; 100 Oladapo, Zahedi, Omigbodun, Oshin, Adebiyi, Malachi (bib22) 2019; 8 Bi, Zahedi, Chong, Omigbodun, Malachi (bib8) 2020; 106 Wu, Weng, Liu, Yeung, Chu (bib18) 2014; 24 Zhu, Liu, Yeung, Chu, Shuilin (bib25) 2017; 400 Tafaoli-Masoule, Shakeri, Zahedi, Seitz, Vaezi (bib1) 2019; 1 Tran, Nguyen (bib9) 2017; 2 Evans, Torstrick, Lee, Dupont, Safranski, Chang, Macedo, Lin, Boothby, Whittingslow, Carson, Guldberg, Gall (bib41) 2015; 13 Oladapo, Zahedi, Ismail, Omigbodun, Bowoto, Olawumi, Muhammad (bib43) 2021; 4 Abdulkareema, Abdalsalam, Bohan (bib10) 2019; 130 Alaña, Cutolo, Hooreweder (bib27) 2020; 195 Oladapo, Zahedi, Adeoye (bib14) 2019; 158 Abbasi, Hamlet, Love, Nguyen (bib7) 2020; 5 Zahedi, Demiral, Roy, Silberschmidt (bib23) 2013; 78 Oladapo, Zahedi, Balogun, Ismail, Samad (bib33) 2021 Omigbodun, Oladapo, Bowoto, Adeyekun (bib31) 2019; 67 Stawarczyk, Eichberger, Uhrenbacher, Wimmer, Edelhoff, Schmidlin (bib16) 2015; 34 Ranjan, Singh, Ahuja (bib26) 2020; 4 Najeeb, Zafar, Khurshid, Siddiqui (bib11) 2016; 60 Oladapo, Zahedi (bib42) 2021; 266 Lu, Liu, Qian, Cao, Qiao, Mei, Chu, Ding (bib40) 2014; 35 Li, Zahedi, Silberschmidt (bib4) 2017 Evans, Torstrick, Lee, Dupont, Safranski, Chang, Macedo, Lin, Boothby, Whittingslow, Carson, Guldberg, Gall (bib34) 2015; 13 Robinson, Alk, Sandbank, Farber, Halperin (bib37) 1999; 4 Tran (10.1016/j.polymer.2021.123865_bib9) 2017; 2 Keul (10.1016/j.polymer.2021.123865_bib19) 2014; 16 Zhu (10.1016/j.polymer.2021.123865_bib25) 2017; 400 Munaz (10.1016/j.polymer.2021.123865_bib2) 2016; 1 Oladapo (10.1016/j.polymer.2021.123865_bib15) 2019; 7 Tiwari (10.1016/j.polymer.2021.123865_bib5) 2020; 5 Tafaoli-Masoule (10.1016/j.polymer.2021.123865_bib1) 2019; 1 Bi (10.1016/j.polymer.2021.123865_bib8) 2020; 106 Al Jabbari (10.1016/j.polymer.2021.123865_bib36) 2012; 2 Evans (10.1016/j.polymer.2021.123865_bib34) 2015; 13 Manglam (10.1016/j.polymer.2021.123865_bib30) 2020; 588 Song (10.1016/j.polymer.2021.123865_bib12) 2011; 18 Lu (10.1016/j.polymer.2021.123865_bib40) 2014; 35 Abdulkareema (10.1016/j.polymer.2021.123865_bib10) 2019; 130 10.1016/j.polymer.2021.123865_bib3 Oladapo (10.1016/j.polymer.2021.123865_bib42) 2021; 266 Evans (10.1016/j.polymer.2021.123865_bib41) 2015; 13 Sproesser (10.1016/j.polymer.2021.123865_bib29) 2014; 16 Ok (10.1016/j.polymer.2021.123865_bib6) 2020; 111 Usharani (10.1016/j.polymer.2021.123865_bib24) 2020; 200 Zahedi (10.1016/j.polymer.2021.123865_bib23) 2013; 78 Li (10.1016/j.polymer.2021.123865_bib4) 2017 Stawarczyk (10.1016/j.polymer.2021.123865_bib16) 2015; 34 Oladapo (10.1016/j.polymer.2021.123865_bib22) 2019; 8 Waser-Althaus (10.1016/j.polymer.2021.123865_bib13) 2014; 25 Omigbodun (10.1016/j.polymer.2021.123865_bib31) 2019; 67 Alaña (10.1016/j.polymer.2021.123865_bib27) 2020; 195 Oladapo (10.1016/j.polymer.2021.123865_bib21) 2019; 46 Almasi (10.1016/j.polymer.2021.123865_bib35) 2014; 314 Balogun (10.1016/j.polymer.2021.123865_bib32) 2019; 29 Huang (10.1016/j.polymer.2021.123865_bib17) 2016; 35 Oladapo (10.1016/j.polymer.2021.123865_bib33) 2021 Bodunde (10.1016/j.polymer.2021.123865_bib20) 2020 Oladapo (10.1016/j.polymer.2021.123865_bib43) 2021; 4 Najeeb (10.1016/j.polymer.2021.123865_bib11) 2016; 60 Oladapo (10.1016/j.polymer.2021.123865_bib14) 2019; 158 Wu (10.1016/j.polymer.2021.123865_bib18) 2014; 24 Hahnel (10.1016/j.polymer.2021.123865_bib38) 2014; 26 Abbasi (10.1016/j.polymer.2021.123865_bib7) 2020; 5 Ranjan (10.1016/j.polymer.2021.123865_bib26) 2020; 4 Omigbodun (10.1016/j.polymer.2021.123865_bib28) 2019; 6 Robinson (10.1016/j.polymer.2021.123865_bib37) 1999; 4 Jenkins (10.1016/j.polymer.2021.123865_bib39) 2019; 100 |
References_xml | – volume: 195 start-page: 108971 year: 2020 ident: bib27 article-title: Understanding elastic anisotropy in diamond based lattice structures produced by laser powder bed fusion: effect of manufacturing deviations publication-title: Mater. Des. – volume: 4 start-page: 91 year: 1999 end-page: 97 ident: bib37 article-title: Inflammatory reactions associated with a calcium sulfate bone substitute publication-title: Ann. Transplant. – volume: 2 start-page: 1 year: 2017 end-page: 14 ident: bib9 article-title: Lithography-based methods to manufacture biomaterials at small scales publication-title: J. Sci. Adv. Mater. Dev. – volume: 16 start-page: 383 year: 2014 end-page: 392 ident: bib19 article-title: Influence of PEEK surface modification on surface properties and bond strength to veneering resin composites publication-title: Adhes. Dent. – volume: 106 start-page: 829 year: 2020 end-page: 841 ident: bib8 article-title: 3D printing of surface characterisation and finite element analysis improvement of PEEK-HAP-GO in bone implant publication-title: Int. J. Adv. Manuf. Technol. – volume: 35 start-page: 5731 year: 2014 end-page: 5740 ident: bib40 article-title: Multilevel surface engineering of nanostructured TiO publication-title: Biomaterials – volume: 5 start-page: 1 year: 2020 end-page: 9 ident: bib7 article-title: Porous scaffolds for bone regeneration publication-title: J. Sci. Adv. Mater. Dev. – volume: 8 start-page: 3213 year: 2019 end-page: 3222 ident: bib22 article-title: Microstructural evaluation of aluminium alloy A365 T6 in machining operation publication-title: J. Mater. Res. Technol. – volume: 35 start-page: 21 year: 2016 end-page: 27 ident: bib17 article-title: Anterior corpectomy versus posterior laminoplasty for the treatment of multilevel cervical myelopathy: a meta-analysis publication-title: Int. J. Surg. – volume: 200 start-page: 526 year: 2020 end-page: 536 ident: bib24 article-title: Antiferromagnetism in a nanocrystalline high entropy oxide (Co,Cu,Mg,Ni,Zn)O: magnetic constituents and surface anisotropy leading to lattice distortion publication-title: Acta Mater. – volume: 1 start-page: 1 year: 2016 end-page: 17 ident: bib2 article-title: Three-dimensional printing of biological matters publication-title: J. Sci. Adv. Mater Dev. – start-page: 187 year: 2017 end-page: 201 ident: bib4 article-title: Numerical Simulation of Bone Cutting: Hybrid SPH-FE Approach, Numerical Methods and Advanced Simulation in Biomechanics and Biological Processes – volume: 2 start-page: 160 year: 2012 end-page: 178 ident: bib36 article-title: Titanium nitride and nitrogen ion implanted coated dental materials publication-title: Coatings – volume: 7 start-page: 461 year: 2019 end-page: 464 ident: bib15 article-title: Three-dimensional finite element analysis of a porcelain crowned tooth, Beni-Suef Univ publication-title: J. Basic Appl. Sci. – volume: 5 start-page: 10 year: 2020 end-page: 29 ident: bib5 article-title: Graphene research and their outputs: status and prospect publication-title: J. Sci. Adv. Mater. Dev. – volume: 24 start-page: 5464 year: 2014 end-page: 5481 ident: bib18 article-title: Functionalized TiO publication-title: Adv. Funct. Mater. – volume: 158 start-page: 428 year: 2019 end-page: 436 ident: bib14 article-title: 3D printing of bone scaffolds with hybrid biomaterials publication-title: Compos. B Eng. – start-page: 1 year: 2021 end-page: 14 ident: bib33 article-title: Overview of additive manufacturing biopolymer composites publication-title: Encycl. Mater. Compos. – volume: 60 start-page: 12 year: 2016 end-page: 19 ident: bib11 article-title: Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics publication-title: Journal of Prosthodontic Research – volume: 34 start-page: 7 year: 2015 end-page: 12 ident: bib16 article-title: Three-unit reinforced poly ether ether ketone composite FDPs: influence of fabrication method on load-bearing capacity and failure types publication-title: Dent. Mater. J. – volume: 78 start-page: 104 year: 2013 end-page: 109 ident: bib23 article-title: FE/SPH modelling of orthogonal micro-machining of fcc single crystal publication-title: Comput. Mater. Sci. – volume: 67 start-page: 5 year: 2019 end-page: 12 ident: bib31 article-title: Modelling detection of magnetic hysteresis properties with a microcontroller publication-title: Int. J. Eng. Trends Technol. – volume: 266 start-page: 124485 year: 2021 ident: bib42 article-title: Improving bioactivity and strength of PEEK composite polymer for bone application Materials publication-title: Chemistry and Physics – volume: 400 start-page: 14 year: 2017 end-page: 23 ident: bib25 article-title: Biofunctionalization of carbon nanotubes/chitosan hybrids on Ti implants by atom layer deposited ZnO nanostructures publication-title: Appl. Surf. Sci. – volume: 6 start-page: 811 year: 2019 end-page: 816 ident: bib28 article-title: Experimental model design and simulation of air conditioning system for energy management publication-title: Int. Res..J. Eng. Technol. – volume: 16 start-page: 465 year: 2014 end-page: 472 ident: bib29 article-title: Effect of sulfuric acid etching of polyetheretherketone on the shear bond strength to resin cements publication-title: J. Adhesive Dent. – volume: 26 start-page: 1297 year: 2014 end-page: 1301 ident: bib38 article-title: Biofilm formation on the surface of modern implant abutment materials publication-title: Clin. Oral Implants Res. – volume: 588 start-page: 412200 year: 2020 ident: bib30 article-title: Lattice strain caused magnetism and magnetocrystalline anisotropy in Zn modified barium hexaferrite publication-title: Phys. B Condens. Matter – volume: 13 start-page: 159 year: 2015 end-page: 167 ident: bib34 article-title: High-strength, surface-porous polyether-ether-ketone for load-bearing orthopedic implants publication-title: Acta Biomater. – volume: 111 start-page: 2311 year: 2020 end-page: 2321 ident: bib6 article-title: Analytical modelling of in situ layer-wise defect detection in 3D-printed parts: additive manufacturing publication-title: Int. J. Adv. Manuf. Technol. – volume: 4 start-page: 44 year: 2021 end-page: 59 ident: bib43 article-title: 3D printing of PEEK–cHAp scaffold for medical bone implant publication-title: Bio-Design and Manufacturing – volume: 314 start-page: 1034 year: 2014 end-page: 1040 ident: bib35 article-title: Crystalline ha coating on PEEK via chemical deposition publication-title: Appl. Surf. Sci. – volume: 46 start-page: 116 year: 2019 end-page: 120 ident: bib21 article-title: Model design of a superconducting quantum interference device of magnetic field sensors for magnetocardiography publication-title: Biomed. Signal Process Contr. – volume: 100 start-page: 103400 year: 2019 ident: bib39 article-title: Anisotropy in the mechanical behavior of Ti6Al4V electron beam melted lattices publication-title: Mech. Res. Commun. – volume: 29 start-page: 1 year: 2019 end-page: 8 ident: bib32 article-title: Electrical energy demand modeling of 3D printing technology for sustainable manufacture publication-title: Int. J. Eng. – volume: 130 start-page: 251 year: 2019 end-page: 259 ident: bib10 article-title: Influence of chitosan on the antibacterial activity of composite coating (PEEK/HAp) fabricated by electrophoretic deposition publication-title: Prog. Org. Coating – volume: 25 start-page: 515 year: 2014 end-page: 525 ident: bib13 article-title: Differentiation of human mesenchymal stem cells on plasma-treated polyetheretherketone publication-title: J. Mater. Sci. Mater. Med. – volume: 13 start-page: 159 year: 2015 end-page: 167 ident: bib41 article-title: High-strength, surface-porous polyether-ether-ketone for load-bearing orthopedic implants publication-title: Acta Biomater. – volume: 18 year: 2011 ident: bib12 article-title: Characterisation of an inductively coupled nitrogen-argon plasma by Langmuir probe combined with optical emission spectroscopy publication-title: Phys. Plasmas – reference: Bi Oladapo, SA Zahedi, SO Ismail, FT Omigbodun, 3D printing of PEEK and its composite to increase biointerfaces as a biomedical material-A review, Colloids Surf. B Biointerfaces 203, 111726-111726. – volume: 4 start-page: 379 year: 2020 end-page: 388 ident: bib26 article-title: Biocompatible thermoplastic composite blended with HAp and CS for 3D Printing publication-title: Encycl. Renew. Sust. Mater. – volume: 1 year: 2019 ident: bib1 article-title: 3D printing of PEEK-based medical devices publication-title: Transactions on Additive Manufacturing Meets Medicine – start-page: 1 year: 2020 end-page: 15 ident: bib20 article-title: A futuristic insight into a “nano-doctor”: a clinical review on medical diagnosis and devices using nanotechnology publication-title: Mater. Today Proc. – volume: 60 start-page: 12 issue: 1 year: 2016 ident: 10.1016/j.polymer.2021.123865_bib11 article-title: Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics publication-title: Journal of Prosthodontic Research doi: 10.1016/j.jpor.2015.10.001 – volume: 34 start-page: 7 year: 2015 ident: 10.1016/j.polymer.2021.123865_bib16 article-title: Three-unit reinforced poly ether ether ketone composite FDPs: influence of fabrication method on load-bearing capacity and failure types publication-title: Dent. Mater. J. doi: 10.4012/dmj.2013-345 – volume: 13 start-page: 159 year: 2015 ident: 10.1016/j.polymer.2021.123865_bib41 article-title: High-strength, surface-porous polyether-ether-ketone for load-bearing orthopedic implants publication-title: Acta Biomater. doi: 10.1016/j.actbio.2014.11.030 – ident: 10.1016/j.polymer.2021.123865_bib3 doi: 10.1016/j.colsurfb.2021.111726 – volume: 5 start-page: 10 issue: 1 year: 2020 ident: 10.1016/j.polymer.2021.123865_bib5 article-title: Graphene research and their outputs: status and prospect publication-title: J. Sci. Adv. Mater. Dev. – volume: 158 start-page: 428 year: 2019 ident: 10.1016/j.polymer.2021.123865_bib14 article-title: 3D printing of bone scaffolds with hybrid biomaterials publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2018.09.065 – volume: 46 start-page: 116 year: 2019 ident: 10.1016/j.polymer.2021.123865_bib21 article-title: Model design of a superconducting quantum interference device of magnetic field sensors for magnetocardiography publication-title: Biomed. Signal Process Contr. doi: 10.1016/j.bspc.2018.07.007 – volume: 67 start-page: 5 issue: 6 year: 2019 ident: 10.1016/j.polymer.2021.123865_bib31 article-title: Modelling detection of magnetic hysteresis properties with a microcontroller publication-title: Int. J. Eng. Trends Technol. doi: 10.14445/22315381/IJETT-V67I6P202 – volume: 29 start-page: 1 issue: 7 year: 2019 ident: 10.1016/j.polymer.2021.123865_bib32 article-title: Electrical energy demand modeling of 3D printing technology for sustainable manufacture publication-title: Int. J. Eng. – volume: 13 start-page: 159 year: 2015 ident: 10.1016/j.polymer.2021.123865_bib34 article-title: High-strength, surface-porous polyether-ether-ketone for load-bearing orthopedic implants publication-title: Acta Biomater. doi: 10.1016/j.actbio.2014.11.030 – volume: 2 start-page: 160 issue: 3 year: 2012 ident: 10.1016/j.polymer.2021.123865_bib36 article-title: Titanium nitride and nitrogen ion implanted coated dental materials publication-title: Coatings doi: 10.3390/coatings2030160 – volume: 8 start-page: 3213 issue: 3 year: 2019 ident: 10.1016/j.polymer.2021.123865_bib22 article-title: Microstructural evaluation of aluminium alloy A365 T6 in machining operation publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2019.05.009 – volume: 1 issue: 1 year: 2019 ident: 10.1016/j.polymer.2021.123865_bib1 article-title: 3D printing of PEEK-based medical devices publication-title: Transactions on Additive Manufacturing Meets Medicine – volume: 106 start-page: 829 issue: 3 year: 2020 ident: 10.1016/j.polymer.2021.123865_bib8 article-title: 3D printing of surface characterisation and finite element analysis improvement of PEEK-HAP-GO in bone implant publication-title: Int. J. Adv. Manuf. Technol. – start-page: 1 year: 2021 ident: 10.1016/j.polymer.2021.123865_bib33 article-title: Overview of additive manufacturing biopolymer composites publication-title: Encycl. Mater. Compos. – start-page: 187 year: 2017 ident: 10.1016/j.polymer.2021.123865_bib4 – volume: 130 start-page: 251 year: 2019 ident: 10.1016/j.polymer.2021.123865_bib10 article-title: Influence of chitosan on the antibacterial activity of composite coating (PEEK/HAp) fabricated by electrophoretic deposition publication-title: Prog. Org. Coating doi: 10.1016/j.porgcoat.2019.01.050 – volume: 25 start-page: 515 year: 2014 ident: 10.1016/j.polymer.2021.123865_bib13 article-title: Differentiation of human mesenchymal stem cells on plasma-treated polyetheretherketone publication-title: J. Mater. Sci. Mater. Med. doi: 10.1007/s10856-013-5072-5 – volume: 588 start-page: 412200 year: 2020 ident: 10.1016/j.polymer.2021.123865_bib30 article-title: Lattice strain caused magnetism and magnetocrystalline anisotropy in Zn modified barium hexaferrite publication-title: Phys. B Condens. Matter doi: 10.1016/j.physb.2020.412200 – volume: 26 start-page: 1297 issue: 11 year: 2014 ident: 10.1016/j.polymer.2021.123865_bib38 article-title: Biofilm formation on the surface of modern implant abutment materials publication-title: Clin. Oral Implants Res. doi: 10.1111/clr.12454 – volume: 18 year: 2011 ident: 10.1016/j.polymer.2021.123865_bib12 article-title: Characterisation of an inductively coupled nitrogen-argon plasma by Langmuir probe combined with optical emission spectroscopy publication-title: Phys. Plasmas doi: 10.1063/1.3554706 – start-page: 1 year: 2020 ident: 10.1016/j.polymer.2021.123865_bib20 article-title: A futuristic insight into a “nano-doctor”: a clinical review on medical diagnosis and devices using nanotechnology publication-title: Mater. Today Proc. – volume: 1 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.polymer.2021.123865_bib2 article-title: Three-dimensional printing of biological matters publication-title: J. Sci. Adv. Mater Dev. – volume: 200 start-page: 526 year: 2020 ident: 10.1016/j.polymer.2021.123865_bib24 article-title: Antiferromagnetism in a nanocrystalline high entropy oxide (Co,Cu,Mg,Ni,Zn)O: magnetic constituents and surface anisotropy leading to lattice distortion publication-title: Acta Mater. doi: 10.1016/j.actamat.2020.09.034 – volume: 4 start-page: 379 year: 2020 ident: 10.1016/j.polymer.2021.123865_bib26 article-title: Biocompatible thermoplastic composite blended with HAp and CS for 3D Printing publication-title: Encycl. Renew. Sust. Mater. – volume: 4 start-page: 91 issue: 3–4 year: 1999 ident: 10.1016/j.polymer.2021.123865_bib37 article-title: Inflammatory reactions associated with a calcium sulfate bone substitute publication-title: Ann. Transplant. – volume: 35 start-page: 21 year: 2016 ident: 10.1016/j.polymer.2021.123865_bib17 article-title: Anterior corpectomy versus posterior laminoplasty for the treatment of multilevel cervical myelopathy: a meta-analysis publication-title: Int. J. Surg. doi: 10.1016/j.ijsu.2016.09.008 – volume: 314 start-page: 1034 year: 2014 ident: 10.1016/j.polymer.2021.123865_bib35 article-title: Crystalline ha coating on PEEK via chemical deposition publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2014.06.074 – volume: 266 start-page: 124485 year: 2021 ident: 10.1016/j.polymer.2021.123865_bib42 article-title: Improving bioactivity and strength of PEEK composite polymer for bone application Materials publication-title: Chemistry and Physics – volume: 4 start-page: 44 issue: 1 year: 2021 ident: 10.1016/j.polymer.2021.123865_bib43 article-title: 3D printing of PEEK–cHAp scaffold for medical bone implant publication-title: Bio-Design and Manufacturing doi: 10.1007/s42242-020-00098-0 – volume: 100 start-page: 103400 year: 2019 ident: 10.1016/j.polymer.2021.123865_bib39 article-title: Anisotropy in the mechanical behavior of Ti6Al4V electron beam melted lattices publication-title: Mech. Res. Commun. doi: 10.1016/j.mechrescom.2019.103400 – volume: 2 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.polymer.2021.123865_bib9 article-title: Lithography-based methods to manufacture biomaterials at small scales publication-title: J. Sci. Adv. Mater. Dev. – volume: 111 start-page: 2311 issue: 7 year: 2020 ident: 10.1016/j.polymer.2021.123865_bib6 article-title: Analytical modelling of in situ layer-wise defect detection in 3D-printed parts: additive manufacturing publication-title: Int. J. Adv. Manuf. Technol. – volume: 16 start-page: 383 year: 2014 ident: 10.1016/j.polymer.2021.123865_bib19 article-title: Influence of PEEK surface modification on surface properties and bond strength to veneering resin composites publication-title: Adhes. Dent. – volume: 195 start-page: 108971 year: 2020 ident: 10.1016/j.polymer.2021.123865_bib27 article-title: Understanding elastic anisotropy in diamond based lattice structures produced by laser powder bed fusion: effect of manufacturing deviations publication-title: Mater. Des. doi: 10.1016/j.matdes.2020.108971 – volume: 35 start-page: 5731 year: 2014 ident: 10.1016/j.polymer.2021.123865_bib40 article-title: Multilevel surface engineering of nanostructured TiO2 on carbon-fiber-reinforced polyetheretherketone publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.04.003 – volume: 78 start-page: 104 year: 2013 ident: 10.1016/j.polymer.2021.123865_bib23 article-title: FE/SPH modelling of orthogonal micro-machining of fcc single crystal publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2013.05.022 – volume: 16 start-page: 465 year: 2014 ident: 10.1016/j.polymer.2021.123865_bib29 article-title: Effect of sulfuric acid etching of polyetheretherketone on the shear bond strength to resin cements publication-title: J. Adhesive Dent. – volume: 400 start-page: 14 year: 2017 ident: 10.1016/j.polymer.2021.123865_bib25 article-title: Biofunctionalization of carbon nanotubes/chitosan hybrids on Ti implants by atom layer deposited ZnO nanostructures publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.12.158 – volume: 5 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.polymer.2021.123865_bib7 article-title: Porous scaffolds for bone regeneration publication-title: J. Sci. Adv. Mater. Dev. – volume: 24 start-page: 5464 year: 2014 ident: 10.1016/j.polymer.2021.123865_bib18 article-title: Functionalized TiO2 based nanomaterials for biomedical applications publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201400706 – volume: 7 start-page: 461 issue: 4 year: 2019 ident: 10.1016/j.polymer.2021.123865_bib15 article-title: Three-dimensional finite element analysis of a porcelain crowned tooth, Beni-Suef Univ publication-title: J. Basic Appl. Sci. – volume: 6 start-page: 811 issue: 6 year: 2019 ident: 10.1016/j.polymer.2021.123865_bib28 article-title: Experimental model design and simulation of air conditioning system for energy management publication-title: Int. Res..J. Eng. Technol. |
SSID | ssj0002524 |
Score | 2.5430348 |
Snippet | Artificial bone implant materials need porosity for nutrient distribution, moderate pore size to provide cell cultures and bone-like mechanical properties. The... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 123865 |
SubjectTerms | Anisotropy Biocompatibility Bone implants Calcium oxide Cell size Composite materials Degradability Design Design improvements Fabrication Finite element method Fused deposition modeling Graphene Hip Hip implant Homogenisation Homogenization Hydroxyapatite Lattice structures Lime Mechanical properties Modulus of elasticity Nanostructure Particle size distribution PEEK/rGo/cHAp Polyether ether ketones Polymer matrix composites Pore size Pore size distribution Porosity Scaffolding Size distribution Surface treatment Surgical implants Transplants & implants |
Title | Mechanical performances of hip implant design and fabrication with PEEK composite |
URI | https://dx.doi.org/10.1016/j.polymer.2021.123865 https://www.proquest.com/docview/2543839421 |
Volume | 227 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFG6IHtSDUdSIIunB64C1pWNHQiAogWgiCbdm648IgbEAHrz4t9u3daImhsTbtqzN8t7b19eX731F6J5bYKRMhZ7mxHhMxcyLqJae9H1DmixmREK9YzTmgwl7nLamJdQtemGAVumwP8f0DK3dk4azZiOdzaDHl9r1JlPAgjAEHGYsgCivf-xoHqRFciVmSjx4e9fF05jX09XifalBFpT4dR9ma_21Pv1C6mz56Z-hU5c34k7-aeeopJMyOuoWx7WV0ck3ZcEL9DzS0NILHsDprjdgg1cGv85SPFumC2tTrDICB44ShU0Ur10BD0N1Fj_1ekMMlHPgdelLNOn3XroDz52e4ElKg60XcGNsthTZ_YXmbapsahXF1mOMctOMVMxlaAITkjiMZRAoQiKuSNA0ktsLzg29QgfJKtHXCMtA00hpxa0H7fbRhL7UXBNu56M6DEkFscJmQjppcTjhYiEKDtlcOFMLMLXITV1B9a9haa6tsW9Au3CI-BEkwuL_vqHVwoHC_aUbAUIANkFkxL_5_8y36BjugD7m8yo62K7f9J1NVLZxLYvEGjrsPAwH409SoOlZ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEJ4YOKgHo6jxgdqD1wW2LV32SAgGRYgmknBrdvuIGISN4sF_b4ftgpoYEm-b3cxkM9N-M53MfAW4Fg4YGddxYAS1AdcpDxJmVKDC0NIGTzlVWO8YDEVvxO_GzfEWdIpZGGyr9NifY_oSrf2burdmPZtMcMaXuXizZMDCZehwuIzsVM0SlNu3_d5wBci0SXMyZkYDFFgP8tRfatl8-vlqkBmUhrUQFTb_ClG_wHoZgW72Yc-njqSd_90BbJlZBbY7xY1tFdj9Ri54CI8Dg1O96ASSrccD3snckudJRiav2dSZlehlDwdJZprYJH3zNTyCBVry0O32CXadY2uXOYLRTfep0wv8BQqBYixaBJGw1iVMiTtiGNFi2mVXSeqcxpmwjUSnQsU2sjFN41RFkaY0EZpGDauEexDCsmMozeYzcwJERYYl2mjhnOhOkDYOlRGGCqePmTimp8ALm0nl2cXxkoupLNrIXqQ3tURTy9zUp1BbiWU5vcYmgVbhEPljnUgXAjaJVgsHSr9R3yVyAbgckdPw7P-ar2C79zS4l_e3w_457OAX7CYLRRVKi7cPc-HylkV66dflF1MB7Ao |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanical+performances+of+hip+implant+design+and+fabrication+with+PEEK+composite&rft.jtitle=Polymer+%28Guilford%29&rft.au=Oladapo%2C+Bankole+I&rft.au=Zahedi%2C+S+Abolfazl&rft.au=Ismail%2C+Sikiru+O&rft.date=2021-06-16&rft.pub=Elsevier+BV&rft.issn=0032-3861&rft.eissn=1873-2291&rft.volume=227&rft.spage=1&rft_id=info:doi/10.1016%2Fj.polymer.2021.123865&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-3861&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-3861&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-3861&client=summon |