Segmentation of cell-level anomalies in electroluminescence images of photovoltaic modules

[Display omitted] •A novel cell-level anomaly segmentation pipeline for solar panels is proposed.•Several cutting-edge deep learning techniques are used to achieve robust performance.•Electroluminescence images reveal the most slight and subtle anomalies.•Multiple data sources are combined and augme...

Full description

Saved in:
Bibliographic Details
Published inSolar energy Vol. 220; pp. 914 - 926
Main Authors Otamendi, Urtzi, Martinez, Iñigo, Quartulli, Marco, Olaizola, Igor G., Viles, Elisabeth, Cambarau, Werther
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 15.05.2021
Pergamon Press Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •A novel cell-level anomaly segmentation pipeline for solar panels is proposed.•Several cutting-edge deep learning techniques are used to achieve robust performance.•Electroluminescence images reveal the most slight and subtle anomalies.•Multiple data sources are combined and augmented to create a diverse dataset.•Weakly supervised model is used to infer high-level information from low-level knowledge. In the operation & maintenance (O&M) of photovoltaic (PV) plants, the early identification of failures has become crucial to maintain productivity and prolong components’ life. Of all defects, cell-level anomalies can lead to serious failures and may affect surrounding PV modules in the long run. These fine defects are usually captured with high spatial resolution electroluminescence (EL) imaging. The difficulty of acquiring such images has limited the availability of data. For this work, multiple data resources and augmentation techniques have been used to surpass this limitation. Current state-of-the-art detection methods extract barely low-level information from individual PV cell images, and their performance is conditioned by the available training data. In this article, we propose an end-to-end deep learning pipeline that detects, locates and segments cell-level anomalies from entire photovoltaic modules via EL images. The proposed modular pipeline combines three deep learning techniques: 1. object detection (modified Faster-RNN), 2. image classification (EfficientNet) and 3. weakly supervised segmentation (autoencoder). The modular nature of the pipeline allows to upgrade the deep learning models to the further improvements in the state-of-the-art and also extend the pipeline towards new functionalities.
AbstractList In the operation & maintenance (O&M) of photovoltaic (PV) plants, the early identification of failures has become crucial to maintain productivity and prolong components' life. Of all defects, cell-level anomalies can lead to serious failures and may affect surrounding PV modules in the long run. These fine defects are usually captured with high spatial resolution electroluminescence (EL) imaging. The difficulty of acquiring such images has limited the availability of data. For this work, multiple data resources and augmentation techniques have been used to surpass this limitation. Current state-of-the-art detection methods extract barely low-level information from individual PV cell images, and their performance is conditioned by the available training data. In this article, we propose an end-to-end deep learning pipeline that detects, locates and segments cell-level anomalies from entire photovoltaic modules via EL images. The proposed modular pipeline combines three deep learning techniques: 1. object detection (modified Faster-RNN), 2. image classification (EfficientNet) and 3. weakly supervised segmentation (autoencoder). The modular nature of the pipeline allows to upgrade the deep learning models to the further improvements in the state-of-the-art and also extend the pipeline towards new functionalities.
[Display omitted] •A novel cell-level anomaly segmentation pipeline for solar panels is proposed.•Several cutting-edge deep learning techniques are used to achieve robust performance.•Electroluminescence images reveal the most slight and subtle anomalies.•Multiple data sources are combined and augmented to create a diverse dataset.•Weakly supervised model is used to infer high-level information from low-level knowledge. In the operation & maintenance (O&M) of photovoltaic (PV) plants, the early identification of failures has become crucial to maintain productivity and prolong components’ life. Of all defects, cell-level anomalies can lead to serious failures and may affect surrounding PV modules in the long run. These fine defects are usually captured with high spatial resolution electroluminescence (EL) imaging. The difficulty of acquiring such images has limited the availability of data. For this work, multiple data resources and augmentation techniques have been used to surpass this limitation. Current state-of-the-art detection methods extract barely low-level information from individual PV cell images, and their performance is conditioned by the available training data. In this article, we propose an end-to-end deep learning pipeline that detects, locates and segments cell-level anomalies from entire photovoltaic modules via EL images. The proposed modular pipeline combines three deep learning techniques: 1. object detection (modified Faster-RNN), 2. image classification (EfficientNet) and 3. weakly supervised segmentation (autoencoder). The modular nature of the pipeline allows to upgrade the deep learning models to the further improvements in the state-of-the-art and also extend the pipeline towards new functionalities.
Author Quartulli, Marco
Viles, Elisabeth
Martinez, Iñigo
Olaizola, Igor G.
Otamendi, Urtzi
Cambarau, Werther
Author_xml – sequence: 1
  givenname: Urtzi
  surname: Otamendi
  fullname: Otamendi, Urtzi
  email: uotamendi@vicomtech.org
  organization: Vicomtech Foundation, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20009, Spain
– sequence: 2
  givenname: Iñigo
  surname: Martinez
  fullname: Martinez, Iñigo
  organization: Vicomtech Foundation, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20009, Spain
– sequence: 3
  givenname: Marco
  surname: Quartulli
  fullname: Quartulli, Marco
  organization: Vicomtech Foundation, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20009, Spain
– sequence: 4
  givenname: Igor G.
  surname: Olaizola
  fullname: Olaizola, Igor G.
  organization: Vicomtech Foundation, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20009, Spain
– sequence: 5
  givenname: Elisabeth
  surname: Viles
  fullname: Viles, Elisabeth
  organization: TECNUN School of Engineering, University of Navarra, Donostia-San Sebastián 20018, Spain
– sequence: 6
  givenname: Werther
  surname: Cambarau
  fullname: Cambarau, Werther
  organization: Tecnalia Research & Innovation, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20009, Spain
BookMark eNqFkE1rGzEQhkVxII7TnxBYyHm3-thdrcghBJO0hUAPbSD0IrTSKJXRSo60NuTfR8Y-9eLTHOZ9ZnifK7QIMQBCNwQ3BJP-26bJ0UOA1FBMSYNZg7vhC1qSlpOa0I4v0BJjNtRY0NdLdJXzBmPCycCX6O9veJsgzGp2MVTRVhq8rz3swVcqxEl5B7lyoQIPek7R7yYXIGsIGio3qbeyLdT2X5zjPvpZOV1N0ew85Gt0YZXP8PU0V-jl6fHP-kf9_Ov7z_XDc60Z43PNW2Voq1srRCsIHjHnyhrDNO-0AQrcdob0vRk7Qe1AGO17OwrFGSZ21HhkK3R7vLtN8X0HeZabuEuhvJS0Y0IwMbRDSd0dUzrFnBNYqd2x9ZyU85JgeZApN_IkUx5kSsxkkVno7j96m0r79HGWuz9yUATsXdlm7Q7ujEvFpzTRnbnwCTaRllI
CitedBy_id crossref_primary_10_1016_j_ndteint_2022_102762
crossref_primary_10_1088_2516_1083_ac9a33
crossref_primary_10_1109_ACCESS_2024_3349975
crossref_primary_10_1016_j_rineng_2024_102622
crossref_primary_10_1109_JPHOTOV_2022_3195099
crossref_primary_10_1016_j_energy_2024_131222
crossref_primary_10_35234_fumbd_1099000
crossref_primary_10_1002_solr_202201114
crossref_primary_10_1016_j_rser_2021_111532
crossref_primary_10_1002_ese3_1056
crossref_primary_10_1080_10589759_2025_2456673
crossref_primary_10_1109_TII_2022_3228680
crossref_primary_10_1016_j_eswa_2023_120546
crossref_primary_10_1016_j_apenergy_2023_121757
crossref_primary_10_3390_en16227563
crossref_primary_10_1109_JPHOTOV_2024_3450009
crossref_primary_10_32604_cmc_2024_058063
crossref_primary_10_1016_j_seta_2022_102071
crossref_primary_10_1038_s41598_024_72019_5
crossref_primary_10_1016_j_aei_2024_102709
crossref_primary_10_1016_j_enconman_2024_118866
crossref_primary_10_1016_j_rser_2024_114617
crossref_primary_10_3390_en15113961
crossref_primary_10_1007_s00202_024_02930_7
crossref_primary_10_1016_j_engappai_2022_104959
crossref_primary_10_1016_j_solener_2023_04_059
crossref_primary_10_1080_10589759_2025_2478259
crossref_primary_10_1109_JPHOTOV_2021_3131059
crossref_primary_10_1016_j_aei_2023_102147
crossref_primary_10_1016_j_seta_2021_101659
crossref_primary_10_1016_j_solener_2024_112803
crossref_primary_10_1088_1361_6501_ad7d28
crossref_primary_10_1051_epjpv_2022025
crossref_primary_10_3390_s24216908
crossref_primary_10_3390_en16155824
crossref_primary_10_1016_j_solener_2024_112708
crossref_primary_10_1016_j_energy_2022_125902
Cites_doi 10.1038/nature14539
10.1109/TSMC.1979.4310076
10.1016/j.solener.2020.03.049
10.1109/TIP.2003.819861
10.1016/j.solener.2019.02.067
10.1016/j.media.2017.07.005
10.1109/TIM.2015.2508287
10.1016/j.solmat.2010.10.034
10.1109/TIM.2018.2809078
10.1109/ICPR.2006.479
10.1109/MetroAeroSpace.2017.7999594
10.1109/ACCESS.2019.2911892
10.1186/1687-5281-2014-15
10.1007/978-3-319-46448-0_2
10.1016/j.energy.2019.116319
10.1109/CVPR.2009.5206848
10.3390/info11020125
10.1109/CAC48633.2019.8996338
10.1016/j.egypro.2012.07.046
10.1007/978-3-642-15825-4_10
10.1109/ACCESS.2020.2976843
10.1063/1.1978979
ContentType Journal Article
Copyright 2021 International Solar Energy Society
Copyright Pergamon Press Inc. May 15, 2021
Copyright_xml – notice: 2021 International Solar Energy Society
– notice: Copyright Pergamon Press Inc. May 15, 2021
DBID AAYXX
CITATION
7SP
7ST
8FD
C1K
FR3
KR7
L7M
SOI
DOI 10.1016/j.solener.2021.03.058
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1471-1257
EndPage 926
ExternalDocumentID 10_1016_j_solener_2021_03_058
S0038092X21002462
GroupedDBID --K
--M
-ET
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACGOD
ACIWK
ACRLP
ADBBV
ADEZE
ADHUB
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BKOMP
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
H~9
IHE
J1W
JARJE
KOM
LY6
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
RXW
SDF
SDG
SDP
SES
SPC
SPCBC
SSM
SSR
SSZ
T5K
TAE
TN5
WH7
XPP
YNT
ZMT
~02
~G-
~KM
~S-
6TJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
NEJ
R2-
RIG
SAC
SEW
SSH
UKR
VOH
WUQ
XOL
ZY4
~A~
7SP
7ST
8FD
C1K
EFKBS
FR3
KR7
L7M
SOI
ID FETCH-LOGICAL-c337t-74ad24c4f994910b077afdd3c75cde2e7f5d166db592f813266fb9a7301fbc0b3
IEDL.DBID .~1
ISSN 0038-092X
IngestDate Wed Aug 13 06:24:13 EDT 2025
Tue Jul 01 00:39:42 EDT 2025
Thu Apr 24 23:06:37 EDT 2025
Fri Feb 23 02:45:34 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Weakly supervised segmentation
Electroluminescence images
Photovoltaic modules
Anomaly detection
Deep autoencoder
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-74ad24c4f994910b077afdd3c75cde2e7f5d166db592f813266fb9a7301fbc0b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2539939848
PQPubID 9393
PageCount 13
ParticipantIDs proquest_journals_2539939848
crossref_citationtrail_10_1016_j_solener_2021_03_058
crossref_primary_10_1016_j_solener_2021_03_058
elsevier_sciencedirect_doi_10_1016_j_solener_2021_03_058
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-15
PublicationDateYYYYMMDD 2021-05-15
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Solar energy
PublicationYear 2021
Publisher Elsevier Ltd
Pergamon Press Inc
Publisher_xml – name: Elsevier Ltd
– name: Pergamon Press Inc
References Addabbo, P., Angrisano, A., Bernardi, M., Gagliarde, G., Mennella, A., Nisi, M., Ullo, S., 2017. A uav infrared measurement approach for defect detection in photovoltaic plants. In: 4th IEEE International Workshop on Metrology for AeroSpace, MetroAeroSpace 2017 - Proceedings, 345–350. doi:10.1109/MetroAeroSpace.2017.7999594. cited By 25.
Ren, Zuo, Hu, Zhu, Meng (b0180) 2019
Tan, M., Le, Q.V., 2019. Efficientnet: Rethinking model scaling for convolutional neural networks. CoRR abs/1905.11946. http://arxiv.org/abs/1905.11946, arXiv:1905.11946.
IEA, 2019a. Renewables 2019: Market analysis and forecast from 2019 to 2024. IEA 2019.
Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition. arXiv 1409.1556.
Bergmann, P., Löwe, S., Fauser, M., Sattlegger, D., Steger, C., 2018. Improving unsupervised defect segmentation by applying structural similarity to autoencoders. CoRR abs/1807.02011. http://arxiv.org/abs/1807.02011, arXiv:1807.02011.
Chen, H., Wang, S., Xing, J., 2019a. Detection of cracks in electroluminescence images by fusing deep learning and structural decoupling. In: 2019 Chinese Automation Congress (CAC), IEEE. pp. 2565–2569.
Chen, Wang, Chen, Zhu, Yang, Wang, Xia (b0045) 2019; 7
Lecun, Bengio, Hinton (b0130) 2015; 521
Schuss, Leppänen, Remes, Saarela, Fabritius, Eichberger, Rahkonen (b0200) 2016; 65
Litjens, Kooi, Bejnordi, Setio, Ciompi, Ghafoorian, van der Laak, van Ginneken, Sánchez (b0140) 2017; 42
Tzutalin (b0230) 2015
Grunow, P., Clemens, P., Hoffmann, V., Litzenburger, B., Podlowski, L., 2005. Influence of micro cracks in multi-crystalline silicon solar cells on the reliability of pv modules.
Deitsch, Christlein, Berger, Buerhop-Lutz, Maier, Gallwitz, Riess (b0060) 2019; 185
Wire (b0240) 2019
Wang, Bovik, Sheikh, Simoncelli (b0255) 2004; 13
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L., 2009. ImageNet: A Large-Scale Hierarchical Image Database.
He, K., Zhang, X., Ren, S., Sun, J., 2015. Deep residual learning for image recognition. CoRR abs/1512.03385. http://arxiv.org/abs/1512.03385, arXiv:1512.03385.
He, Zhang, Ren, Sun (b0090) 2016
van Mölken, J., Yusufoglu, U., Safiei, A., Windgassen, H., Khandelwal, R., Pletzer, T., Kurz, H., 2012. Impact of micro-cracks on the degradation of solar cell performance based on two-diode model parameters. Energy Procedia 27, 167–172. http://www.sciencedirect.com/science/article/pii/S1876610212012593, 2012, doi: 10.1016/j.egypro.2012.07.046. proceedings of the 2nd International Conference on Crystalline Silicon Photovoltaics SiliconPV.
Köntges, M., Kunze, I., Kajari-Schröder, S., Breitenmoser, X., Bjorneklett, B., 2010. Quantifying the risk of power loss in pv modules due to micro cracks.
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A., 2016. Ssd: Single shot multibox detector. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 9905 LNCS, 21–37. doi:10.1007/978-3-319-46448-0_2. cited By 4210.
Xu, Zhou, Fei (b0250) 2014
(IEC), I.E.C., 2018. IEC TS 60904-13:2018 Photovoltaic devices - Part 13: Electroluminescence of photovoltaic modules. IEC. p. 40.
Rigutti, Tchernycheva (b0190) 2013
Schuss, Remes, Leppanen, Saarela, Fabritius, Eichberger, Rahkonen (b0205) 2018; 67
IEA, 2019b. Solar energy: Mapping the road ahead. IEA 2019.
Xu, B., Wang, N., Chen, T., Li, M., 2015. Empirical evaluation of rectified activations in convolutional network. CoRR abs/1505.00853. http://arxiv.org/abs/1505.00853, arXiv:1505.00853.
Redmon, Divvala, Girshick, Farhadi (b0175) 2016
Tang, Yang, Xiong, Yan (b0220) 2020; 201
Otsu (b0165) 1979; 9
IEA-PVPS, 2020. Snapshot 2020. IEA-PVPS 2020-May.
Scherer, D., Müller, A., Behnke, S., 2010. Evaluation of pooling operations in convolutional architectures for object recognition.. doi:10.1007/978-3-642-15825-4_10.
Köntges, Kunze, Kajari-Schröder, Breitenmoser, Bjørneklett (b0125) 2011; 95
Deitsch, Buerhop-Lutz, Maier, Gallwitz, Riess (b0055) 2018
Akram, Li, Jin, Chen, Zhu, Zhao, Khaliq, Faheem, Ahmad (b0010) 2019; 189
Rahman, Chen (b0170) 2020; 8
Neubeck, A., Van Gool, L., 2006. Efficient non-maximum suppression, in: 18th International Conference on Pattern Recognition (ICPR’06), pp. 850–855.
Girshick, R.B., Donahue, J., Darrell, T., Malik, J., 2013. Rich feature hierarchies for accurate object detection and semantic segmentation. CoRR abs/1311.2524. http://arxiv.org/abs/1311.2524, arXiv:1311.2524.
Mayr, Hoffmann, Maier, Christlein (b0155) 2019
Buerhop-Lutz, C., Deitsch, S., Maier, A., Gallwitz, F., Berger, S., Doll, B., Hauch, J., Camus, C., Brabec, C.J., 2018. A benchmark for visual identification of defective solar cells in electroluminescence imagery. https://github.com/zae-bayern/elpv-dataset. doi:10.4229/35thEUPVSEC20182018-5CV.3.15. accessed: 2019-11-28.
Buslaev, Iglovikov, Khvedchenya, Parinov, Druzhinin, Kalinin (b0035) 2020; 11
Lin, T., Maire, M., Belongie, S.J., Bourdev, L.D., Girshick, R.B., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L., 2014. Microsoft COCO: common objects in context. CoRR abs/1405.0312. http://arxiv.org/abs/1405.0312, arXiv:1405.0312.
Fuyuki, Kondo, Yamazaki, Takahashi, Uraoka (b0070) 2005; 86
Ren, S., He, K., Girshick, R.B., Sun, J., 2015. Faster R-CNN: towards real-time object detection with region proposal networks. CoRR abs/1506.01497. http://arxiv.org/abs/1506.01497, arXiv:1506.01497.
Long, Shelhamer, Darrell (b0150) 2015
Anwar, Abdullah (b0015) 2014; 2014
Jiao, L., Zhang, F., Liu, F., Yang, S., Li, L., Feng, Z., Qu, R., 2019. A survey of deep learning-based object detection. CoRR abs/1907.09408. http://arxiv.org/abs/1907.09408, arXiv:1907.09408.
Tur, Colak, Bayindir (b0225) 2018
Dai, J., Li, Y., He, K., Sun, J., 2016. R-fcn: Object detection via region-based fully convolutional networks. Advances in Neural Information Processing Systems, 379–387Cited By 1585.
Balzategui, Eciolaza, Arana-Arexolaleiba (b0020) 2020
Köntges (10.1016/j.solener.2021.03.058_b0125) 2011; 95
Long (10.1016/j.solener.2021.03.058_b0150) 2015
Wire (10.1016/j.solener.2021.03.058_b0240) 2019
Wang (10.1016/j.solener.2021.03.058_b0255) 2004; 13
Schuss (10.1016/j.solener.2021.03.058_b0200) 2016; 65
10.1016/j.solener.2021.03.058_b0115
10.1016/j.solener.2021.03.058_b0235
10.1016/j.solener.2021.03.058_b0110
10.1016/j.solener.2021.03.058_b0030
10.1016/j.solener.2021.03.058_b0195
10.1016/j.solener.2021.03.058_b0075
He (10.1016/j.solener.2021.03.058_b0090) 2016
10.1016/j.solener.2021.03.058_b0080
Tur (10.1016/j.solener.2021.03.058_b0225) 2018
10.1016/j.solener.2021.03.058_b0160
Deitsch (10.1016/j.solener.2021.03.058_b0055) 2018
Rahman (10.1016/j.solener.2021.03.058_b0170) 2020; 8
Mayr (10.1016/j.solener.2021.03.058_b0155) 2019
10.1016/j.solener.2021.03.058_b0005
Otsu (10.1016/j.solener.2021.03.058_b0165) 1979; 9
Deitsch (10.1016/j.solener.2021.03.058_b0060) 2019; 185
10.1016/j.solener.2021.03.058_b0245
10.1016/j.solener.2021.03.058_b0085
10.1016/j.solener.2021.03.058_b0040
10.1016/j.solener.2021.03.058_b0120
Tang (10.1016/j.solener.2021.03.058_b0220) 2020; 201
10.1016/j.solener.2021.03.058_b0050
Litjens (10.1016/j.solener.2021.03.058_b0140) 2017; 42
Schuss (10.1016/j.solener.2021.03.058_b0205) 2018; 67
Balzategui (10.1016/j.solener.2021.03.058_b0020) 2020
Ren (10.1016/j.solener.2021.03.058_b0180) 2019
10.1016/j.solener.2021.03.058_b0215
10.1016/j.solener.2021.03.058_b0210
Tzutalin (10.1016/j.solener.2021.03.058_b0230) 2015
10.1016/j.solener.2021.03.058_b0135
10.1016/j.solener.2021.03.058_b0095
Fuyuki (10.1016/j.solener.2021.03.058_b0070) 2005; 86
Anwar (10.1016/j.solener.2021.03.058_b0015) 2014; 2014
Lecun (10.1016/j.solener.2021.03.058_b0130) 2015; 521
Rigutti (10.1016/j.solener.2021.03.058_b0190) 2013
Xu (10.1016/j.solener.2021.03.058_b0250) 2014
Chen (10.1016/j.solener.2021.03.058_b0045) 2019; 7
10.1016/j.solener.2021.03.058_b0105
Buslaev (10.1016/j.solener.2021.03.058_b0035) 2020; 11
10.1016/j.solener.2021.03.058_b0100
Redmon (10.1016/j.solener.2021.03.058_b0175) 2016
10.1016/j.solener.2021.03.058_b0025
Akram (10.1016/j.solener.2021.03.058_b0010) 2019; 189
10.1016/j.solener.2021.03.058_b0145
10.1016/j.solener.2021.03.058_b0065
10.1016/j.solener.2021.03.058_b0185
References_xml – start-page: 287
  year: 2018
  end-page: 293
  ident: b0225
  article-title: Effect of faults in solar panels on production rate and efficiency
  publication-title: 2018 International Conference on Smart Grid (icSmartGrid)
– reference: Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition. arXiv 1409.1556.
– year: 2018
  ident: b0055
  article-title: Segmentation of Photovoltaic Module Cells in Electroluminescence Images
  publication-title: Technical Report. CoRR.
– volume: 42
  start-page: 60
  year: 2017
  end-page: 88
  ident: b0140
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med. Image Anal.
– reference: Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L., 2009. ImageNet: A Large-Scale Hierarchical Image Database.
– volume: 8
  start-page: 40547
  year: 2020
  end-page: 40558
  ident: b0170
  article-title: Defects inspection in polycrystalline solar cells electroluminescence images using deep learning
  publication-title: IEEE Access
– reference: Xu, B., Wang, N., Chen, T., Li, M., 2015. Empirical evaluation of rectified activations in convolutional network. CoRR abs/1505.00853. http://arxiv.org/abs/1505.00853, arXiv:1505.00853.
– volume: 65
  start-page: 1108
  year: 2016
  end-page: 1119
  ident: b0200
  article-title: Detecting defects in photovoltaic cells and panels and evaluating the impact on output performances
  publication-title: IEEE Trans. Instrum. Meas.
– reference: Jiao, L., Zhang, F., Liu, F., Yang, S., Li, L., Feng, Z., Qu, R., 2019. A survey of deep learning-based object detection. CoRR abs/1907.09408. http://arxiv.org/abs/1907.09408, arXiv:1907.09408.
– reference: Köntges, M., Kunze, I., Kajari-Schröder, S., Breitenmoser, X., Bjorneklett, B., 2010. Quantifying the risk of power loss in pv modules due to micro cracks.
– reference: He, K., Zhang, X., Ren, S., Sun, J., 2015. Deep residual learning for image recognition. CoRR abs/1512.03385. http://arxiv.org/abs/1512.03385, arXiv:1512.03385.
– start-page: 949
  year: 2020
  end-page: 953
  ident: b0020
  article-title: Defect detection on polycrystalline solar cells using electroluminescence and fully convolutional neural networks
  publication-title: 2020 IEEE/SICE International Symposium on System Integration (SII)
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: b0130
  article-title: Deep learning
  publication-title: Nature
– volume: 189
  start-page: 116319
  year: 2019
  ident: b0010
  article-title: Cnn based automatic detection of photovoltaic cell defects in electroluminescence images
  publication-title: Energy
– reference: Girshick, R.B., Donahue, J., Darrell, T., Malik, J., 2013. Rich feature hierarchies for accurate object detection and semantic segmentation. CoRR abs/1311.2524. http://arxiv.org/abs/1311.2524, arXiv:1311.2524.
– reference: (IEC), I.E.C., 2018. IEC TS 60904-13:2018 Photovoltaic devices - Part 13: Electroluminescence of photovoltaic modules. IEC. p. 40.
– reference: Addabbo, P., Angrisano, A., Bernardi, M., Gagliarde, G., Mennella, A., Nisi, M., Ullo, S., 2017. A uav infrared measurement approach for defect detection in photovoltaic plants. In: 4th IEEE International Workshop on Metrology for AeroSpace, MetroAeroSpace 2017 - Proceedings, 345–350. doi:10.1109/MetroAeroSpace.2017.7999594. cited By 25.
– year: 2016
  ident: b0090
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, 770–778
– volume: 95
  start-page: 1131
  year: 2011
  end-page: 1137
  ident: b0125
  article-title: The risk of power loss in crystalline silicon based photovoltaic modules due to micro-cracks
  publication-title: Sol. Energy Mater. Sol. Cells
– start-page: 1885
  year: 2019
  end-page: 1889
  ident: b0155
  article-title: Weakly supervised segmentation of cracks on solar cells using normalized lp norm
  publication-title: 2019 IEEE International Conference on Image Processing (ICIP)
– year: 2019
  ident: b0180
  article-title: Progressive image deraining networks: A better and simpler baseline
  publication-title: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2019-June, 3932–3941
– volume: 86
  year: 2005
  ident: b0070
  article-title: Photographic surveying of minority carrier diffusion length in polycrystalline silicon solar cells by electroluminescence
  publication-title: Appl. Phys. Lett.
– reference: Scherer, D., Müller, A., Behnke, S., 2010. Evaluation of pooling operations in convolutional architectures for object recognition.. doi:10.1007/978-3-642-15825-4_10.
– volume: 7
  start-page: 58791
  year: 2019
  end-page: 58801
  ident: b0045
  article-title: Single-image super-resolution algorithm based on structural self-similarity and deformation block features
  publication-title: IEEE Access
– reference: IEA-PVPS, 2020. Snapshot 2020. IEA-PVPS 2020-May.
– reference: Ren, S., He, K., Girshick, R.B., Sun, J., 2015. Faster R-CNN: towards real-time object detection with region proposal networks. CoRR abs/1506.01497. http://arxiv.org/abs/1506.01497, arXiv:1506.01497.
– reference: IEA, 2019b. Solar energy: Mapping the road ahead. IEA 2019.
– volume: 9
  start-page: 62
  year: 1979
  end-page: 66
  ident: b0165
  article-title: A threshold selection method from gray-level histograms
  publication-title: IEEE Trans. Syst., Man, Cybernet.
– year: 2015
  ident: b0150
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 07–12-June-2015, 3431–3440
– reference: Grunow, P., Clemens, P., Hoffmann, V., Litzenburger, B., Podlowski, L., 2005. Influence of micro cracks in multi-crystalline silicon solar cells on the reliability of pv modules.
– reference: IEA, 2019a. Renewables 2019: Market analysis and forecast from 2019 to 2024. IEA 2019.
– volume: 67
  start-page: 1178
  year: 2018
  end-page: 1186
  ident: b0205
  article-title: Detecting defects in photovoltaic panels with the help of synchronized thermography
  publication-title: IEEE Trans. Instrum. Meas.
– reference: Chen, H., Wang, S., Xing, J., 2019a. Detection of cracks in electroluminescence images by fusing deep learning and structural decoupling. In: 2019 Chinese Automation Congress (CAC), IEEE. pp. 2565–2569.
– reference: Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A., 2016. Ssd: Single shot multibox detector. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 9905 LNCS, 21–37. doi:10.1007/978-3-319-46448-0_2. cited By 4210.
– year: 2019
  ident: b0240
  article-title: Global solar photovoltaic services market 2019–2023
  publication-title: Business Wire
– volume: 2014
  start-page: 15
  year: 2014
  ident: b0015
  article-title: Micro-crack detection of multicrystalline solar cells featuring an improved anisotropic diffusion filter and image segmentation technique
  publication-title: EURASIP J. Image Video Process.
– reference: Bergmann, P., Löwe, S., Fauser, M., Sattlegger, D., Steger, C., 2018. Improving unsupervised defect segmentation by applying structural similarity to autoencoders. CoRR abs/1807.02011. http://arxiv.org/abs/1807.02011, arXiv:1807.02011.
– volume: 13
  start-page: 600
  year: 2004
  end-page: 612
  ident: b0255
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
– start-page: 779
  year: 2016
  end-page: 788
  ident: b0175
  article-title: You only look once: Unified, real-time object detection
  publication-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 641
  year: 2013
  end-page: 684
  ident: b0190
  article-title: Chapter 15 - electrical and electro-optical characterization of semiconductor nanowires
  publication-title: Characterization of Semiconductor Heterostructures and Nanostructures
– reference: Lin, T., Maire, M., Belongie, S.J., Bourdev, L.D., Girshick, R.B., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L., 2014. Microsoft COCO: common objects in context. CoRR abs/1405.0312. http://arxiv.org/abs/1405.0312, arXiv:1405.0312.
– reference: Tan, M., Le, Q.V., 2019. Efficientnet: Rethinking model scaling for convolutional neural networks. CoRR abs/1905.11946. http://arxiv.org/abs/1905.11946, arXiv:1905.11946.
– reference: Buerhop-Lutz, C., Deitsch, S., Maier, A., Gallwitz, F., Berger, S., Doll, B., Hauch, J., Camus, C., Brabec, C.J., 2018. A benchmark for visual identification of defective solar cells in electroluminescence imagery. https://github.com/zae-bayern/elpv-dataset. doi:10.4229/35thEUPVSEC20182018-5CV.3.15. accessed: 2019-11-28.
– start-page: 609
  year: 2014
  end-page: 613
  ident: b0250
  article-title: Detection methods for micro-cracked defects of photovoltaic modules based on machine vision
  publication-title: CCIS 2014 - Proceedings of 2014 IEEE 3rd International Conference on Cloud Computing and Intelligence Systems
– year: 2015
  ident: b0230
  article-title: Labelimg
– volume: 185
  start-page: 455
  year: 2019
  end-page: 468
  ident: b0060
  article-title: Automatic classification of defective photovoltaic module cells in electroluminescence images
  publication-title: Sol. Energy
– reference: Neubeck, A., Van Gool, L., 2006. Efficient non-maximum suppression, in: 18th International Conference on Pattern Recognition (ICPR’06), pp. 850–855.
– volume: 201
  start-page: 453
  year: 2020
  end-page: 460
  ident: b0220
  article-title: Deep learning based automatic defect identification of photovoltaic module using electroluminescence images
  publication-title: Sol. Energy
– volume: 11
  year: 2020
  ident: b0035
  article-title: Albumentations: Fast and flexible image augmentations
  publication-title: Information
– reference: van Mölken, J., Yusufoglu, U., Safiei, A., Windgassen, H., Khandelwal, R., Pletzer, T., Kurz, H., 2012. Impact of micro-cracks on the degradation of solar cell performance based on two-diode model parameters. Energy Procedia 27, 167–172. http://www.sciencedirect.com/science/article/pii/S1876610212012593, 2012, doi: 10.1016/j.egypro.2012.07.046. proceedings of the 2nd International Conference on Crystalline Silicon Photovoltaics SiliconPV.
– reference: Dai, J., Li, Y., He, K., Sun, J., 2016. R-fcn: Object detection via region-based fully convolutional networks. Advances in Neural Information Processing Systems, 379–387Cited By 1585.
– ident: 10.1016/j.solener.2021.03.058_b0215
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.solener.2021.03.058_b0130
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 9
  start-page: 62
  year: 1979
  ident: 10.1016/j.solener.2021.03.058_b0165
  article-title: A threshold selection method from gray-level histograms
  publication-title: IEEE Trans. Syst., Man, Cybernet.
  doi: 10.1109/TSMC.1979.4310076
– volume: 201
  start-page: 453
  year: 2020
  ident: 10.1016/j.solener.2021.03.058_b0220
  article-title: Deep learning based automatic defect identification of photovoltaic module using electroluminescence images
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2020.03.049
– volume: 13
  start-page: 600
  year: 2004
  ident: 10.1016/j.solener.2021.03.058_b0255
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819861
– year: 2015
  ident: 10.1016/j.solener.2021.03.058_b0150
  article-title: Fully convolutional networks for semantic segmentation
– volume: 185
  start-page: 455
  year: 2019
  ident: 10.1016/j.solener.2021.03.058_b0060
  article-title: Automatic classification of defective photovoltaic module cells in electroluminescence images
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2019.02.067
– ident: 10.1016/j.solener.2021.03.058_b0080
– ident: 10.1016/j.solener.2021.03.058_b0115
– volume: 42
  start-page: 60
  year: 2017
  ident: 10.1016/j.solener.2021.03.058_b0140
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.07.005
– year: 2015
  ident: 10.1016/j.solener.2021.03.058_b0230
– start-page: 779
  year: 2016
  ident: 10.1016/j.solener.2021.03.058_b0175
  article-title: You only look once: Unified, real-time object detection
– year: 2019
  ident: 10.1016/j.solener.2021.03.058_b0180
  article-title: Progressive image deraining networks: A better and simpler baseline
– volume: 65
  start-page: 1108
  year: 2016
  ident: 10.1016/j.solener.2021.03.058_b0200
  article-title: Detecting defects in photovoltaic cells and panels and evaluating the impact on output performances
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2015.2508287
– ident: 10.1016/j.solener.2021.03.058_b0105
– volume: 95
  start-page: 1131
  year: 2011
  ident: 10.1016/j.solener.2021.03.058_b0125
  article-title: The risk of power loss in crystalline silicon based photovoltaic modules due to micro-cracks
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2010.10.034
– year: 2019
  ident: 10.1016/j.solener.2021.03.058_b0240
  article-title: Global solar photovoltaic services market 2019–2023
  publication-title: Business Wire
– volume: 67
  start-page: 1178
  year: 2018
  ident: 10.1016/j.solener.2021.03.058_b0205
  article-title: Detecting defects in photovoltaic panels with the help of synchronized thermography
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2018.2809078
– start-page: 1885
  year: 2019
  ident: 10.1016/j.solener.2021.03.058_b0155
  article-title: Weakly supervised segmentation of cracks on solar cells using normalized lp norm
– ident: 10.1016/j.solener.2021.03.058_b0160
  doi: 10.1109/ICPR.2006.479
– start-page: 609
  year: 2014
  ident: 10.1016/j.solener.2021.03.058_b0250
  article-title: Detection methods for micro-cracked defects of photovoltaic modules based on machine vision
– ident: 10.1016/j.solener.2021.03.058_b0005
  doi: 10.1109/MetroAeroSpace.2017.7999594
– volume: 7
  start-page: 58791
  year: 2019
  ident: 10.1016/j.solener.2021.03.058_b0045
  article-title: Single-image super-resolution algorithm based on structural self-similarity and deformation block features
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2911892
– volume: 2014
  start-page: 15
  year: 2014
  ident: 10.1016/j.solener.2021.03.058_b0015
  article-title: Micro-crack detection of multicrystalline solar cells featuring an improved anisotropic diffusion filter and image segmentation technique
  publication-title: EURASIP J. Image Video Process.
  doi: 10.1186/1687-5281-2014-15
– year: 2018
  ident: 10.1016/j.solener.2021.03.058_b0055
  article-title: Segmentation of Photovoltaic Module Cells in Electroluminescence Images
  publication-title: Technical Report. CoRR.
– ident: 10.1016/j.solener.2021.03.058_b0145
  doi: 10.1007/978-3-319-46448-0_2
– ident: 10.1016/j.solener.2021.03.058_b0110
– ident: 10.1016/j.solener.2021.03.058_b0095
– volume: 189
  start-page: 116319
  year: 2019
  ident: 10.1016/j.solener.2021.03.058_b0010
  article-title: Cnn based automatic detection of photovoltaic cell defects in electroluminescence images
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116319
– start-page: 949
  year: 2020
  ident: 10.1016/j.solener.2021.03.058_b0020
  article-title: Defect detection on polycrystalline solar cells using electroluminescence and fully convolutional neural networks
– start-page: 641
  year: 2013
  ident: 10.1016/j.solener.2021.03.058_b0190
  article-title: Chapter 15 - electrical and electro-optical characterization of semiconductor nanowires
– ident: 10.1016/j.solener.2021.03.058_b0065
  doi: 10.1109/CVPR.2009.5206848
– ident: 10.1016/j.solener.2021.03.058_b0185
– ident: 10.1016/j.solener.2021.03.058_b0030
– start-page: 287
  year: 2018
  ident: 10.1016/j.solener.2021.03.058_b0225
  article-title: Effect of faults in solar panels on production rate and efficiency
– volume: 11
  year: 2020
  ident: 10.1016/j.solener.2021.03.058_b0035
  article-title: Albumentations: Fast and flexible image augmentations
  publication-title: Information
  doi: 10.3390/info11020125
– ident: 10.1016/j.solener.2021.03.058_b0120
– ident: 10.1016/j.solener.2021.03.058_b0210
– year: 2016
  ident: 10.1016/j.solener.2021.03.058_b0090
  article-title: Deep residual learning for image recognition
– ident: 10.1016/j.solener.2021.03.058_b0245
– ident: 10.1016/j.solener.2021.03.058_b0040
  doi: 10.1109/CAC48633.2019.8996338
– ident: 10.1016/j.solener.2021.03.058_b0235
  doi: 10.1016/j.egypro.2012.07.046
– ident: 10.1016/j.solener.2021.03.058_b0025
– ident: 10.1016/j.solener.2021.03.058_b0050
– ident: 10.1016/j.solener.2021.03.058_b0195
  doi: 10.1007/978-3-642-15825-4_10
– ident: 10.1016/j.solener.2021.03.058_b0075
– volume: 8
  start-page: 40547
  year: 2020
  ident: 10.1016/j.solener.2021.03.058_b0170
  article-title: Defects inspection in polycrystalline solar cells electroluminescence images using deep learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2976843
– ident: 10.1016/j.solener.2021.03.058_b0100
– ident: 10.1016/j.solener.2021.03.058_b0085
– volume: 86
  year: 2005
  ident: 10.1016/j.solener.2021.03.058_b0070
  article-title: Photographic surveying of minority carrier diffusion length in polycrystalline silicon solar cells by electroluminescence
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1978979
– ident: 10.1016/j.solener.2021.03.058_b0135
SSID ssj0017187
Score 2.5182245
Snippet [Display omitted] •A novel cell-level anomaly segmentation pipeline for solar panels is proposed.•Several cutting-edge deep learning techniques are used to...
In the operation & maintenance (O&M) of photovoltaic (PV) plants, the early identification of failures has become crucial to maintain productivity and prolong...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 914
SubjectTerms Anomalies
Anomaly detection
Deep autoencoder
Deep learning
Defects
Electroluminescence
Electroluminescence images
Image acquisition
Image classification
Image processing
Image segmentation
Information processing
Machine learning
Modules
Object recognition
Photovoltaic cells
Photovoltaic modules
Photovoltaics
Pipelines
Solar energy
Spatial discrimination
Spatial resolution
Weakly supervised segmentation
Title Segmentation of cell-level anomalies in electroluminescence images of photovoltaic modules
URI https://dx.doi.org/10.1016/j.solener.2021.03.058
https://www.proquest.com/docview/2539939848
Volume 220
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFz2IT3yTg9e6bZKm7XFZXFZFLyosXkKeWtltF7de_e1muqkvBMFjC1PaycyXmXTmG4ROUymZYkRFyiU-QeEyiRRTKkq1jjW33HAJ55DXN3x0zy7H6XgJDbpeGCirDNi_wPQWrcOdXtBmb1aW0ONL87ggYwIsoqzFYcYysPKzt48yj8Rj74I3k8JvfjL-7OLpPfskdgLkzj5NJEnLdQqT33_fn34gdbv9DDfQeogbcX_xaptoyVZbaO0Lm-A2eri1j9PQSlTh2mE4lI8mUBWEZVVPfcRt57iscBh942EJat41fDMupx5Y5iA1e6qb2oNWI0uNp7V5ndj5Drofnt8NRlEYnRBpSrMmypg0hGnmioL5gEDFWSadMVRnqTaW2MylJuHcqLQgLvcZKedOFRLc3SkdK7qLlqu6snsIU1n4LDDNFOGW0dynzEZ6J3cwsyN3zu0j1ilM6MArDuMtJqIrIHsWQc8C9CxiKrye99HZh9hsQazxl0DerYb4ZiHCg_9fokfd6ongonNBgJOXFjnLD_7_5EO0CldQTpCkR2i5eXm1xz5KadRJa4YnaKV_cTW6eQewHun7
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF6hcKA9IKCtSgmwh17d2PuyfUQRKLxyIZGiXlb7bI0SO2rM_2cnWQNFSEhcbc3Knt35dmZ35huEfnKlmGZEJ9pnIUARKks00zrhxqRGOGGFgnPI27EYTdnVjM-20LCrhYG0yoj9G0xfo3V8MojaHCyrCmp8aZGWZEaARZQBDm8DOxXvoe2zy-vR-OkyIcDvhjqTwk0_mT0X8gzuQxw7B37nECmSbE13Cs3f396iXoH1ege62EO70XXEZ5uv20dbrj5An18QCn5Bv-_cn0WsJqpx4zGcyydzSAzCqm4Wwel2K1zVOHa_CcgEae8GfhtXi4AtK5Ba_m3aJuBWqyqDF419mLvVVzS9OJ8MR0nsnpAYSvM2yZmyhBnmy5IFn0Cnea68tdTk3FhHXO65zYSwmpfEFyEoFcLrUoHFe21STb-hXt3U7jvCVJUhEOS5JsIxWoSo2apg5x7adhTe-0PEOoVJE6nFocPFXHY5ZPcy6lmCnmVKZdDzIfr1JLbccGu8J1B0syH_WyQy4P97ov1u9mS00pUkQMtLy4IVPz4-8inaGU1ub-TN5fj6CH2CN5BdkPE-6rX_HtxxcFpafRIX5SO0hOys
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Segmentation+of+cell-level+anomalies+in+electroluminescence+images+of+photovoltaic+modules&rft.jtitle=Solar+energy&rft.au=Otamendi%2C+Urtzi&rft.au=Martinez%2C+I%C3%B1igo&rft.au=Quartulli%2C+Marco&rft.au=Olaizola%2C+Igor+G.&rft.date=2021-05-15&rft.pub=Elsevier+Ltd&rft.issn=0038-092X&rft.eissn=1471-1257&rft.volume=220&rft.spage=914&rft.epage=926&rft_id=info:doi/10.1016%2Fj.solener.2021.03.058&rft.externalDocID=S0038092X21002462
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-092X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-092X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-092X&client=summon