Segmentation of cell-level anomalies in electroluminescence images of photovoltaic modules
[Display omitted] •A novel cell-level anomaly segmentation pipeline for solar panels is proposed.•Several cutting-edge deep learning techniques are used to achieve robust performance.•Electroluminescence images reveal the most slight and subtle anomalies.•Multiple data sources are combined and augme...
Saved in:
Published in | Solar energy Vol. 220; pp. 914 - 926 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Ltd
15.05.2021
Pergamon Press Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•A novel cell-level anomaly segmentation pipeline for solar panels is proposed.•Several cutting-edge deep learning techniques are used to achieve robust performance.•Electroluminescence images reveal the most slight and subtle anomalies.•Multiple data sources are combined and augmented to create a diverse dataset.•Weakly supervised model is used to infer high-level information from low-level knowledge.
In the operation & maintenance (O&M) of photovoltaic (PV) plants, the early identification of failures has become crucial to maintain productivity and prolong components’ life. Of all defects, cell-level anomalies can lead to serious failures and may affect surrounding PV modules in the long run. These fine defects are usually captured with high spatial resolution electroluminescence (EL) imaging. The difficulty of acquiring such images has limited the availability of data. For this work, multiple data resources and augmentation techniques have been used to surpass this limitation. Current state-of-the-art detection methods extract barely low-level information from individual PV cell images, and their performance is conditioned by the available training data. In this article, we propose an end-to-end deep learning pipeline that detects, locates and segments cell-level anomalies from entire photovoltaic modules via EL images. The proposed modular pipeline combines three deep learning techniques: 1. object detection (modified Faster-RNN), 2. image classification (EfficientNet) and 3. weakly supervised segmentation (autoencoder). The modular nature of the pipeline allows to upgrade the deep learning models to the further improvements in the state-of-the-art and also extend the pipeline towards new functionalities. |
---|---|
AbstractList | In the operation & maintenance (O&M) of photovoltaic (PV) plants, the early identification of failures has become crucial to maintain productivity and prolong components' life. Of all defects, cell-level anomalies can lead to serious failures and may affect surrounding PV modules in the long run. These fine defects are usually captured with high spatial resolution electroluminescence (EL) imaging. The difficulty of acquiring such images has limited the availability of data. For this work, multiple data resources and augmentation techniques have been used to surpass this limitation. Current state-of-the-art detection methods extract barely low-level information from individual PV cell images, and their performance is conditioned by the available training data. In this article, we propose an end-to-end deep learning pipeline that detects, locates and segments cell-level anomalies from entire photovoltaic modules via EL images. The proposed modular pipeline combines three deep learning techniques: 1. object detection (modified Faster-RNN), 2. image classification (EfficientNet) and 3. weakly supervised segmentation (autoencoder). The modular nature of the pipeline allows to upgrade the deep learning models to the further improvements in the state-of-the-art and also extend the pipeline towards new functionalities. [Display omitted] •A novel cell-level anomaly segmentation pipeline for solar panels is proposed.•Several cutting-edge deep learning techniques are used to achieve robust performance.•Electroluminescence images reveal the most slight and subtle anomalies.•Multiple data sources are combined and augmented to create a diverse dataset.•Weakly supervised model is used to infer high-level information from low-level knowledge. In the operation & maintenance (O&M) of photovoltaic (PV) plants, the early identification of failures has become crucial to maintain productivity and prolong components’ life. Of all defects, cell-level anomalies can lead to serious failures and may affect surrounding PV modules in the long run. These fine defects are usually captured with high spatial resolution electroluminescence (EL) imaging. The difficulty of acquiring such images has limited the availability of data. For this work, multiple data resources and augmentation techniques have been used to surpass this limitation. Current state-of-the-art detection methods extract barely low-level information from individual PV cell images, and their performance is conditioned by the available training data. In this article, we propose an end-to-end deep learning pipeline that detects, locates and segments cell-level anomalies from entire photovoltaic modules via EL images. The proposed modular pipeline combines three deep learning techniques: 1. object detection (modified Faster-RNN), 2. image classification (EfficientNet) and 3. weakly supervised segmentation (autoencoder). The modular nature of the pipeline allows to upgrade the deep learning models to the further improvements in the state-of-the-art and also extend the pipeline towards new functionalities. |
Author | Quartulli, Marco Viles, Elisabeth Martinez, Iñigo Olaizola, Igor G. Otamendi, Urtzi Cambarau, Werther |
Author_xml | – sequence: 1 givenname: Urtzi surname: Otamendi fullname: Otamendi, Urtzi email: uotamendi@vicomtech.org organization: Vicomtech Foundation, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20009, Spain – sequence: 2 givenname: Iñigo surname: Martinez fullname: Martinez, Iñigo organization: Vicomtech Foundation, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20009, Spain – sequence: 3 givenname: Marco surname: Quartulli fullname: Quartulli, Marco organization: Vicomtech Foundation, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20009, Spain – sequence: 4 givenname: Igor G. surname: Olaizola fullname: Olaizola, Igor G. organization: Vicomtech Foundation, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20009, Spain – sequence: 5 givenname: Elisabeth surname: Viles fullname: Viles, Elisabeth organization: TECNUN School of Engineering, University of Navarra, Donostia-San Sebastián 20018, Spain – sequence: 6 givenname: Werther surname: Cambarau fullname: Cambarau, Werther organization: Tecnalia Research & Innovation, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20009, Spain |
BookMark | eNqFkE1rGzEQhkVxII7TnxBYyHm3-thdrcghBJO0hUAPbSD0IrTSKJXRSo60NuTfR8Y-9eLTHOZ9ZnifK7QIMQBCNwQ3BJP-26bJ0UOA1FBMSYNZg7vhC1qSlpOa0I4v0BJjNtRY0NdLdJXzBmPCycCX6O9veJsgzGp2MVTRVhq8rz3swVcqxEl5B7lyoQIPek7R7yYXIGsIGio3qbeyLdT2X5zjPvpZOV1N0ew85Gt0YZXP8PU0V-jl6fHP-kf9_Ov7z_XDc60Z43PNW2Voq1srRCsIHjHnyhrDNO-0AQrcdob0vRk7Qe1AGO17OwrFGSZ21HhkK3R7vLtN8X0HeZabuEuhvJS0Y0IwMbRDSd0dUzrFnBNYqd2x9ZyU85JgeZApN_IkUx5kSsxkkVno7j96m0r79HGWuz9yUATsXdlm7Q7ujEvFpzTRnbnwCTaRllI |
CitedBy_id | crossref_primary_10_1016_j_ndteint_2022_102762 crossref_primary_10_1088_2516_1083_ac9a33 crossref_primary_10_1109_ACCESS_2024_3349975 crossref_primary_10_1016_j_rineng_2024_102622 crossref_primary_10_1109_JPHOTOV_2022_3195099 crossref_primary_10_1016_j_energy_2024_131222 crossref_primary_10_35234_fumbd_1099000 crossref_primary_10_1002_solr_202201114 crossref_primary_10_1016_j_rser_2021_111532 crossref_primary_10_1002_ese3_1056 crossref_primary_10_1080_10589759_2025_2456673 crossref_primary_10_1109_TII_2022_3228680 crossref_primary_10_1016_j_eswa_2023_120546 crossref_primary_10_1016_j_apenergy_2023_121757 crossref_primary_10_3390_en16227563 crossref_primary_10_1109_JPHOTOV_2024_3450009 crossref_primary_10_32604_cmc_2024_058063 crossref_primary_10_1016_j_seta_2022_102071 crossref_primary_10_1038_s41598_024_72019_5 crossref_primary_10_1016_j_aei_2024_102709 crossref_primary_10_1016_j_enconman_2024_118866 crossref_primary_10_1016_j_rser_2024_114617 crossref_primary_10_3390_en15113961 crossref_primary_10_1007_s00202_024_02930_7 crossref_primary_10_1016_j_engappai_2022_104959 crossref_primary_10_1016_j_solener_2023_04_059 crossref_primary_10_1080_10589759_2025_2478259 crossref_primary_10_1109_JPHOTOV_2021_3131059 crossref_primary_10_1016_j_aei_2023_102147 crossref_primary_10_1016_j_seta_2021_101659 crossref_primary_10_1016_j_solener_2024_112803 crossref_primary_10_1088_1361_6501_ad7d28 crossref_primary_10_1051_epjpv_2022025 crossref_primary_10_3390_s24216908 crossref_primary_10_3390_en16155824 crossref_primary_10_1016_j_solener_2024_112708 crossref_primary_10_1016_j_energy_2022_125902 |
Cites_doi | 10.1038/nature14539 10.1109/TSMC.1979.4310076 10.1016/j.solener.2020.03.049 10.1109/TIP.2003.819861 10.1016/j.solener.2019.02.067 10.1016/j.media.2017.07.005 10.1109/TIM.2015.2508287 10.1016/j.solmat.2010.10.034 10.1109/TIM.2018.2809078 10.1109/ICPR.2006.479 10.1109/MetroAeroSpace.2017.7999594 10.1109/ACCESS.2019.2911892 10.1186/1687-5281-2014-15 10.1007/978-3-319-46448-0_2 10.1016/j.energy.2019.116319 10.1109/CVPR.2009.5206848 10.3390/info11020125 10.1109/CAC48633.2019.8996338 10.1016/j.egypro.2012.07.046 10.1007/978-3-642-15825-4_10 10.1109/ACCESS.2020.2976843 10.1063/1.1978979 |
ContentType | Journal Article |
Copyright | 2021 International Solar Energy Society Copyright Pergamon Press Inc. May 15, 2021 |
Copyright_xml | – notice: 2021 International Solar Energy Society – notice: Copyright Pergamon Press Inc. May 15, 2021 |
DBID | AAYXX CITATION 7SP 7ST 8FD C1K FR3 KR7 L7M SOI |
DOI | 10.1016/j.solener.2021.03.058 |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1471-1257 |
EndPage | 926 |
ExternalDocumentID | 10_1016_j_solener_2021_03_058 S0038092X21002462 |
GroupedDBID | --K --M -ET -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABMAC ABXRA ABYKQ ACDAQ ACGFS ACGOD ACIWK ACRLP ADBBV ADEZE ADHUB AEBSH AEKER AENEX AEZYN AFKWA AFRAH AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BKOMP BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA H~9 IHE J1W JARJE KOM LY6 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ RXW SDF SDG SDP SES SPC SPCBC SSM SSR SSZ T5K TAE TN5 WH7 XPP YNT ZMT ~02 ~G- ~KM ~S- 6TJ AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ NEJ R2- RIG SAC SEW SSH UKR VOH WUQ XOL ZY4 ~A~ 7SP 7ST 8FD C1K EFKBS FR3 KR7 L7M SOI |
ID | FETCH-LOGICAL-c337t-74ad24c4f994910b077afdd3c75cde2e7f5d166db592f813266fb9a7301fbc0b3 |
IEDL.DBID | .~1 |
ISSN | 0038-092X |
IngestDate | Wed Aug 13 06:24:13 EDT 2025 Tue Jul 01 00:39:42 EDT 2025 Thu Apr 24 23:06:37 EDT 2025 Fri Feb 23 02:45:34 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Weakly supervised segmentation Electroluminescence images Photovoltaic modules Anomaly detection Deep autoencoder |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c337t-74ad24c4f994910b077afdd3c75cde2e7f5d166db592f813266fb9a7301fbc0b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2539939848 |
PQPubID | 9393 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2539939848 crossref_citationtrail_10_1016_j_solener_2021_03_058 crossref_primary_10_1016_j_solener_2021_03_058 elsevier_sciencedirect_doi_10_1016_j_solener_2021_03_058 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-15 |
PublicationDateYYYYMMDD | 2021-05-15 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Solar energy |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Pergamon Press Inc |
Publisher_xml | – name: Elsevier Ltd – name: Pergamon Press Inc |
References | Addabbo, P., Angrisano, A., Bernardi, M., Gagliarde, G., Mennella, A., Nisi, M., Ullo, S., 2017. A uav infrared measurement approach for defect detection in photovoltaic plants. In: 4th IEEE International Workshop on Metrology for AeroSpace, MetroAeroSpace 2017 - Proceedings, 345–350. doi:10.1109/MetroAeroSpace.2017.7999594. cited By 25. Ren, Zuo, Hu, Zhu, Meng (b0180) 2019 Tan, M., Le, Q.V., 2019. Efficientnet: Rethinking model scaling for convolutional neural networks. CoRR abs/1905.11946. http://arxiv.org/abs/1905.11946, arXiv:1905.11946. IEA, 2019a. Renewables 2019: Market analysis and forecast from 2019 to 2024. IEA 2019. Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition. arXiv 1409.1556. Bergmann, P., Löwe, S., Fauser, M., Sattlegger, D., Steger, C., 2018. Improving unsupervised defect segmentation by applying structural similarity to autoencoders. CoRR abs/1807.02011. http://arxiv.org/abs/1807.02011, arXiv:1807.02011. Chen, H., Wang, S., Xing, J., 2019a. Detection of cracks in electroluminescence images by fusing deep learning and structural decoupling. In: 2019 Chinese Automation Congress (CAC), IEEE. pp. 2565–2569. Chen, Wang, Chen, Zhu, Yang, Wang, Xia (b0045) 2019; 7 Lecun, Bengio, Hinton (b0130) 2015; 521 Schuss, Leppänen, Remes, Saarela, Fabritius, Eichberger, Rahkonen (b0200) 2016; 65 Litjens, Kooi, Bejnordi, Setio, Ciompi, Ghafoorian, van der Laak, van Ginneken, Sánchez (b0140) 2017; 42 Tzutalin (b0230) 2015 Grunow, P., Clemens, P., Hoffmann, V., Litzenburger, B., Podlowski, L., 2005. Influence of micro cracks in multi-crystalline silicon solar cells on the reliability of pv modules. Deitsch, Christlein, Berger, Buerhop-Lutz, Maier, Gallwitz, Riess (b0060) 2019; 185 Wire (b0240) 2019 Wang, Bovik, Sheikh, Simoncelli (b0255) 2004; 13 Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L., 2009. ImageNet: A Large-Scale Hierarchical Image Database. He, K., Zhang, X., Ren, S., Sun, J., 2015. Deep residual learning for image recognition. CoRR abs/1512.03385. http://arxiv.org/abs/1512.03385, arXiv:1512.03385. He, Zhang, Ren, Sun (b0090) 2016 van Mölken, J., Yusufoglu, U., Safiei, A., Windgassen, H., Khandelwal, R., Pletzer, T., Kurz, H., 2012. Impact of micro-cracks on the degradation of solar cell performance based on two-diode model parameters. Energy Procedia 27, 167–172. http://www.sciencedirect.com/science/article/pii/S1876610212012593, 2012, doi: 10.1016/j.egypro.2012.07.046. proceedings of the 2nd International Conference on Crystalline Silicon Photovoltaics SiliconPV. Köntges, M., Kunze, I., Kajari-Schröder, S., Breitenmoser, X., Bjorneklett, B., 2010. Quantifying the risk of power loss in pv modules due to micro cracks. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A., 2016. Ssd: Single shot multibox detector. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 9905 LNCS, 21–37. doi:10.1007/978-3-319-46448-0_2. cited By 4210. Xu, Zhou, Fei (b0250) 2014 (IEC), I.E.C., 2018. IEC TS 60904-13:2018 Photovoltaic devices - Part 13: Electroluminescence of photovoltaic modules. IEC. p. 40. Rigutti, Tchernycheva (b0190) 2013 Schuss, Remes, Leppanen, Saarela, Fabritius, Eichberger, Rahkonen (b0205) 2018; 67 IEA, 2019b. Solar energy: Mapping the road ahead. IEA 2019. Xu, B., Wang, N., Chen, T., Li, M., 2015. Empirical evaluation of rectified activations in convolutional network. CoRR abs/1505.00853. http://arxiv.org/abs/1505.00853, arXiv:1505.00853. Redmon, Divvala, Girshick, Farhadi (b0175) 2016 Tang, Yang, Xiong, Yan (b0220) 2020; 201 Otsu (b0165) 1979; 9 IEA-PVPS, 2020. Snapshot 2020. IEA-PVPS 2020-May. Scherer, D., Müller, A., Behnke, S., 2010. Evaluation of pooling operations in convolutional architectures for object recognition.. doi:10.1007/978-3-642-15825-4_10. Köntges, Kunze, Kajari-Schröder, Breitenmoser, Bjørneklett (b0125) 2011; 95 Deitsch, Buerhop-Lutz, Maier, Gallwitz, Riess (b0055) 2018 Akram, Li, Jin, Chen, Zhu, Zhao, Khaliq, Faheem, Ahmad (b0010) 2019; 189 Rahman, Chen (b0170) 2020; 8 Neubeck, A., Van Gool, L., 2006. Efficient non-maximum suppression, in: 18th International Conference on Pattern Recognition (ICPR’06), pp. 850–855. Girshick, R.B., Donahue, J., Darrell, T., Malik, J., 2013. Rich feature hierarchies for accurate object detection and semantic segmentation. CoRR abs/1311.2524. http://arxiv.org/abs/1311.2524, arXiv:1311.2524. Mayr, Hoffmann, Maier, Christlein (b0155) 2019 Buerhop-Lutz, C., Deitsch, S., Maier, A., Gallwitz, F., Berger, S., Doll, B., Hauch, J., Camus, C., Brabec, C.J., 2018. A benchmark for visual identification of defective solar cells in electroluminescence imagery. https://github.com/zae-bayern/elpv-dataset. doi:10.4229/35thEUPVSEC20182018-5CV.3.15. accessed: 2019-11-28. Buslaev, Iglovikov, Khvedchenya, Parinov, Druzhinin, Kalinin (b0035) 2020; 11 Lin, T., Maire, M., Belongie, S.J., Bourdev, L.D., Girshick, R.B., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L., 2014. Microsoft COCO: common objects in context. CoRR abs/1405.0312. http://arxiv.org/abs/1405.0312, arXiv:1405.0312. Fuyuki, Kondo, Yamazaki, Takahashi, Uraoka (b0070) 2005; 86 Ren, S., He, K., Girshick, R.B., Sun, J., 2015. Faster R-CNN: towards real-time object detection with region proposal networks. CoRR abs/1506.01497. http://arxiv.org/abs/1506.01497, arXiv:1506.01497. Long, Shelhamer, Darrell (b0150) 2015 Anwar, Abdullah (b0015) 2014; 2014 Jiao, L., Zhang, F., Liu, F., Yang, S., Li, L., Feng, Z., Qu, R., 2019. A survey of deep learning-based object detection. CoRR abs/1907.09408. http://arxiv.org/abs/1907.09408, arXiv:1907.09408. Tur, Colak, Bayindir (b0225) 2018 Dai, J., Li, Y., He, K., Sun, J., 2016. R-fcn: Object detection via region-based fully convolutional networks. Advances in Neural Information Processing Systems, 379–387Cited By 1585. Balzategui, Eciolaza, Arana-Arexolaleiba (b0020) 2020 Köntges (10.1016/j.solener.2021.03.058_b0125) 2011; 95 Long (10.1016/j.solener.2021.03.058_b0150) 2015 Wire (10.1016/j.solener.2021.03.058_b0240) 2019 Wang (10.1016/j.solener.2021.03.058_b0255) 2004; 13 Schuss (10.1016/j.solener.2021.03.058_b0200) 2016; 65 10.1016/j.solener.2021.03.058_b0115 10.1016/j.solener.2021.03.058_b0235 10.1016/j.solener.2021.03.058_b0110 10.1016/j.solener.2021.03.058_b0030 10.1016/j.solener.2021.03.058_b0195 10.1016/j.solener.2021.03.058_b0075 He (10.1016/j.solener.2021.03.058_b0090) 2016 10.1016/j.solener.2021.03.058_b0080 Tur (10.1016/j.solener.2021.03.058_b0225) 2018 10.1016/j.solener.2021.03.058_b0160 Deitsch (10.1016/j.solener.2021.03.058_b0055) 2018 Rahman (10.1016/j.solener.2021.03.058_b0170) 2020; 8 Mayr (10.1016/j.solener.2021.03.058_b0155) 2019 10.1016/j.solener.2021.03.058_b0005 Otsu (10.1016/j.solener.2021.03.058_b0165) 1979; 9 Deitsch (10.1016/j.solener.2021.03.058_b0060) 2019; 185 10.1016/j.solener.2021.03.058_b0245 10.1016/j.solener.2021.03.058_b0085 10.1016/j.solener.2021.03.058_b0040 10.1016/j.solener.2021.03.058_b0120 Tang (10.1016/j.solener.2021.03.058_b0220) 2020; 201 10.1016/j.solener.2021.03.058_b0050 Litjens (10.1016/j.solener.2021.03.058_b0140) 2017; 42 Schuss (10.1016/j.solener.2021.03.058_b0205) 2018; 67 Balzategui (10.1016/j.solener.2021.03.058_b0020) 2020 Ren (10.1016/j.solener.2021.03.058_b0180) 2019 10.1016/j.solener.2021.03.058_b0215 10.1016/j.solener.2021.03.058_b0210 Tzutalin (10.1016/j.solener.2021.03.058_b0230) 2015 10.1016/j.solener.2021.03.058_b0135 10.1016/j.solener.2021.03.058_b0095 Fuyuki (10.1016/j.solener.2021.03.058_b0070) 2005; 86 Anwar (10.1016/j.solener.2021.03.058_b0015) 2014; 2014 Lecun (10.1016/j.solener.2021.03.058_b0130) 2015; 521 Rigutti (10.1016/j.solener.2021.03.058_b0190) 2013 Xu (10.1016/j.solener.2021.03.058_b0250) 2014 Chen (10.1016/j.solener.2021.03.058_b0045) 2019; 7 10.1016/j.solener.2021.03.058_b0105 Buslaev (10.1016/j.solener.2021.03.058_b0035) 2020; 11 10.1016/j.solener.2021.03.058_b0100 Redmon (10.1016/j.solener.2021.03.058_b0175) 2016 10.1016/j.solener.2021.03.058_b0025 Akram (10.1016/j.solener.2021.03.058_b0010) 2019; 189 10.1016/j.solener.2021.03.058_b0145 10.1016/j.solener.2021.03.058_b0065 10.1016/j.solener.2021.03.058_b0185 |
References_xml | – start-page: 287 year: 2018 end-page: 293 ident: b0225 article-title: Effect of faults in solar panels on production rate and efficiency publication-title: 2018 International Conference on Smart Grid (icSmartGrid) – reference: Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition. arXiv 1409.1556. – year: 2018 ident: b0055 article-title: Segmentation of Photovoltaic Module Cells in Electroluminescence Images publication-title: Technical Report. CoRR. – volume: 42 start-page: 60 year: 2017 end-page: 88 ident: b0140 article-title: A survey on deep learning in medical image analysis publication-title: Med. Image Anal. – reference: Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L., 2009. ImageNet: A Large-Scale Hierarchical Image Database. – volume: 8 start-page: 40547 year: 2020 end-page: 40558 ident: b0170 article-title: Defects inspection in polycrystalline solar cells electroluminescence images using deep learning publication-title: IEEE Access – reference: Xu, B., Wang, N., Chen, T., Li, M., 2015. Empirical evaluation of rectified activations in convolutional network. CoRR abs/1505.00853. http://arxiv.org/abs/1505.00853, arXiv:1505.00853. – volume: 65 start-page: 1108 year: 2016 end-page: 1119 ident: b0200 article-title: Detecting defects in photovoltaic cells and panels and evaluating the impact on output performances publication-title: IEEE Trans. Instrum. Meas. – reference: Jiao, L., Zhang, F., Liu, F., Yang, S., Li, L., Feng, Z., Qu, R., 2019. A survey of deep learning-based object detection. CoRR abs/1907.09408. http://arxiv.org/abs/1907.09408, arXiv:1907.09408. – reference: Köntges, M., Kunze, I., Kajari-Schröder, S., Breitenmoser, X., Bjorneklett, B., 2010. Quantifying the risk of power loss in pv modules due to micro cracks. – reference: He, K., Zhang, X., Ren, S., Sun, J., 2015. Deep residual learning for image recognition. CoRR abs/1512.03385. http://arxiv.org/abs/1512.03385, arXiv:1512.03385. – start-page: 949 year: 2020 end-page: 953 ident: b0020 article-title: Defect detection on polycrystalline solar cells using electroluminescence and fully convolutional neural networks publication-title: 2020 IEEE/SICE International Symposium on System Integration (SII) – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: b0130 article-title: Deep learning publication-title: Nature – volume: 189 start-page: 116319 year: 2019 ident: b0010 article-title: Cnn based automatic detection of photovoltaic cell defects in electroluminescence images publication-title: Energy – reference: Girshick, R.B., Donahue, J., Darrell, T., Malik, J., 2013. Rich feature hierarchies for accurate object detection and semantic segmentation. CoRR abs/1311.2524. http://arxiv.org/abs/1311.2524, arXiv:1311.2524. – reference: (IEC), I.E.C., 2018. IEC TS 60904-13:2018 Photovoltaic devices - Part 13: Electroluminescence of photovoltaic modules. IEC. p. 40. – reference: Addabbo, P., Angrisano, A., Bernardi, M., Gagliarde, G., Mennella, A., Nisi, M., Ullo, S., 2017. A uav infrared measurement approach for defect detection in photovoltaic plants. In: 4th IEEE International Workshop on Metrology for AeroSpace, MetroAeroSpace 2017 - Proceedings, 345–350. doi:10.1109/MetroAeroSpace.2017.7999594. cited By 25. – year: 2016 ident: b0090 article-title: Deep residual learning for image recognition publication-title: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, 770–778 – volume: 95 start-page: 1131 year: 2011 end-page: 1137 ident: b0125 article-title: The risk of power loss in crystalline silicon based photovoltaic modules due to micro-cracks publication-title: Sol. Energy Mater. Sol. Cells – start-page: 1885 year: 2019 end-page: 1889 ident: b0155 article-title: Weakly supervised segmentation of cracks on solar cells using normalized lp norm publication-title: 2019 IEEE International Conference on Image Processing (ICIP) – year: 2019 ident: b0180 article-title: Progressive image deraining networks: A better and simpler baseline publication-title: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2019-June, 3932–3941 – volume: 86 year: 2005 ident: b0070 article-title: Photographic surveying of minority carrier diffusion length in polycrystalline silicon solar cells by electroluminescence publication-title: Appl. Phys. Lett. – reference: Scherer, D., Müller, A., Behnke, S., 2010. Evaluation of pooling operations in convolutional architectures for object recognition.. doi:10.1007/978-3-642-15825-4_10. – volume: 7 start-page: 58791 year: 2019 end-page: 58801 ident: b0045 article-title: Single-image super-resolution algorithm based on structural self-similarity and deformation block features publication-title: IEEE Access – reference: IEA-PVPS, 2020. Snapshot 2020. IEA-PVPS 2020-May. – reference: Ren, S., He, K., Girshick, R.B., Sun, J., 2015. Faster R-CNN: towards real-time object detection with region proposal networks. CoRR abs/1506.01497. http://arxiv.org/abs/1506.01497, arXiv:1506.01497. – reference: IEA, 2019b. Solar energy: Mapping the road ahead. IEA 2019. – volume: 9 start-page: 62 year: 1979 end-page: 66 ident: b0165 article-title: A threshold selection method from gray-level histograms publication-title: IEEE Trans. Syst., Man, Cybernet. – year: 2015 ident: b0150 article-title: Fully convolutional networks for semantic segmentation publication-title: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 07–12-June-2015, 3431–3440 – reference: Grunow, P., Clemens, P., Hoffmann, V., Litzenburger, B., Podlowski, L., 2005. Influence of micro cracks in multi-crystalline silicon solar cells on the reliability of pv modules. – reference: IEA, 2019a. Renewables 2019: Market analysis and forecast from 2019 to 2024. IEA 2019. – volume: 67 start-page: 1178 year: 2018 end-page: 1186 ident: b0205 article-title: Detecting defects in photovoltaic panels with the help of synchronized thermography publication-title: IEEE Trans. Instrum. Meas. – reference: Chen, H., Wang, S., Xing, J., 2019a. Detection of cracks in electroluminescence images by fusing deep learning and structural decoupling. In: 2019 Chinese Automation Congress (CAC), IEEE. pp. 2565–2569. – reference: Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A., 2016. Ssd: Single shot multibox detector. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 9905 LNCS, 21–37. doi:10.1007/978-3-319-46448-0_2. cited By 4210. – year: 2019 ident: b0240 article-title: Global solar photovoltaic services market 2019–2023 publication-title: Business Wire – volume: 2014 start-page: 15 year: 2014 ident: b0015 article-title: Micro-crack detection of multicrystalline solar cells featuring an improved anisotropic diffusion filter and image segmentation technique publication-title: EURASIP J. Image Video Process. – reference: Bergmann, P., Löwe, S., Fauser, M., Sattlegger, D., Steger, C., 2018. Improving unsupervised defect segmentation by applying structural similarity to autoencoders. CoRR abs/1807.02011. http://arxiv.org/abs/1807.02011, arXiv:1807.02011. – volume: 13 start-page: 600 year: 2004 end-page: 612 ident: b0255 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans. Image Process. – start-page: 779 year: 2016 end-page: 788 ident: b0175 article-title: You only look once: Unified, real-time object detection publication-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 641 year: 2013 end-page: 684 ident: b0190 article-title: Chapter 15 - electrical and electro-optical characterization of semiconductor nanowires publication-title: Characterization of Semiconductor Heterostructures and Nanostructures – reference: Lin, T., Maire, M., Belongie, S.J., Bourdev, L.D., Girshick, R.B., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L., 2014. Microsoft COCO: common objects in context. CoRR abs/1405.0312. http://arxiv.org/abs/1405.0312, arXiv:1405.0312. – reference: Tan, M., Le, Q.V., 2019. Efficientnet: Rethinking model scaling for convolutional neural networks. CoRR abs/1905.11946. http://arxiv.org/abs/1905.11946, arXiv:1905.11946. – reference: Buerhop-Lutz, C., Deitsch, S., Maier, A., Gallwitz, F., Berger, S., Doll, B., Hauch, J., Camus, C., Brabec, C.J., 2018. A benchmark for visual identification of defective solar cells in electroluminescence imagery. https://github.com/zae-bayern/elpv-dataset. doi:10.4229/35thEUPVSEC20182018-5CV.3.15. accessed: 2019-11-28. – start-page: 609 year: 2014 end-page: 613 ident: b0250 article-title: Detection methods for micro-cracked defects of photovoltaic modules based on machine vision publication-title: CCIS 2014 - Proceedings of 2014 IEEE 3rd International Conference on Cloud Computing and Intelligence Systems – year: 2015 ident: b0230 article-title: Labelimg – volume: 185 start-page: 455 year: 2019 end-page: 468 ident: b0060 article-title: Automatic classification of defective photovoltaic module cells in electroluminescence images publication-title: Sol. Energy – reference: Neubeck, A., Van Gool, L., 2006. Efficient non-maximum suppression, in: 18th International Conference on Pattern Recognition (ICPR’06), pp. 850–855. – volume: 201 start-page: 453 year: 2020 end-page: 460 ident: b0220 article-title: Deep learning based automatic defect identification of photovoltaic module using electroluminescence images publication-title: Sol. Energy – volume: 11 year: 2020 ident: b0035 article-title: Albumentations: Fast and flexible image augmentations publication-title: Information – reference: van Mölken, J., Yusufoglu, U., Safiei, A., Windgassen, H., Khandelwal, R., Pletzer, T., Kurz, H., 2012. Impact of micro-cracks on the degradation of solar cell performance based on two-diode model parameters. Energy Procedia 27, 167–172. http://www.sciencedirect.com/science/article/pii/S1876610212012593, 2012, doi: 10.1016/j.egypro.2012.07.046. proceedings of the 2nd International Conference on Crystalline Silicon Photovoltaics SiliconPV. – reference: Dai, J., Li, Y., He, K., Sun, J., 2016. R-fcn: Object detection via region-based fully convolutional networks. Advances in Neural Information Processing Systems, 379–387Cited By 1585. – ident: 10.1016/j.solener.2021.03.058_b0215 – volume: 521 start-page: 436 year: 2015 ident: 10.1016/j.solener.2021.03.058_b0130 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 9 start-page: 62 year: 1979 ident: 10.1016/j.solener.2021.03.058_b0165 article-title: A threshold selection method from gray-level histograms publication-title: IEEE Trans. Syst., Man, Cybernet. doi: 10.1109/TSMC.1979.4310076 – volume: 201 start-page: 453 year: 2020 ident: 10.1016/j.solener.2021.03.058_b0220 article-title: Deep learning based automatic defect identification of photovoltaic module using electroluminescence images publication-title: Sol. Energy doi: 10.1016/j.solener.2020.03.049 – volume: 13 start-page: 600 year: 2004 ident: 10.1016/j.solener.2021.03.058_b0255 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2003.819861 – year: 2015 ident: 10.1016/j.solener.2021.03.058_b0150 article-title: Fully convolutional networks for semantic segmentation – volume: 185 start-page: 455 year: 2019 ident: 10.1016/j.solener.2021.03.058_b0060 article-title: Automatic classification of defective photovoltaic module cells in electroluminescence images publication-title: Sol. Energy doi: 10.1016/j.solener.2019.02.067 – ident: 10.1016/j.solener.2021.03.058_b0080 – ident: 10.1016/j.solener.2021.03.058_b0115 – volume: 42 start-page: 60 year: 2017 ident: 10.1016/j.solener.2021.03.058_b0140 article-title: A survey on deep learning in medical image analysis publication-title: Med. Image Anal. doi: 10.1016/j.media.2017.07.005 – year: 2015 ident: 10.1016/j.solener.2021.03.058_b0230 – start-page: 779 year: 2016 ident: 10.1016/j.solener.2021.03.058_b0175 article-title: You only look once: Unified, real-time object detection – year: 2019 ident: 10.1016/j.solener.2021.03.058_b0180 article-title: Progressive image deraining networks: A better and simpler baseline – volume: 65 start-page: 1108 year: 2016 ident: 10.1016/j.solener.2021.03.058_b0200 article-title: Detecting defects in photovoltaic cells and panels and evaluating the impact on output performances publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2015.2508287 – ident: 10.1016/j.solener.2021.03.058_b0105 – volume: 95 start-page: 1131 year: 2011 ident: 10.1016/j.solener.2021.03.058_b0125 article-title: The risk of power loss in crystalline silicon based photovoltaic modules due to micro-cracks publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2010.10.034 – year: 2019 ident: 10.1016/j.solener.2021.03.058_b0240 article-title: Global solar photovoltaic services market 2019–2023 publication-title: Business Wire – volume: 67 start-page: 1178 year: 2018 ident: 10.1016/j.solener.2021.03.058_b0205 article-title: Detecting defects in photovoltaic panels with the help of synchronized thermography publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2018.2809078 – start-page: 1885 year: 2019 ident: 10.1016/j.solener.2021.03.058_b0155 article-title: Weakly supervised segmentation of cracks on solar cells using normalized lp norm – ident: 10.1016/j.solener.2021.03.058_b0160 doi: 10.1109/ICPR.2006.479 – start-page: 609 year: 2014 ident: 10.1016/j.solener.2021.03.058_b0250 article-title: Detection methods for micro-cracked defects of photovoltaic modules based on machine vision – ident: 10.1016/j.solener.2021.03.058_b0005 doi: 10.1109/MetroAeroSpace.2017.7999594 – volume: 7 start-page: 58791 year: 2019 ident: 10.1016/j.solener.2021.03.058_b0045 article-title: Single-image super-resolution algorithm based on structural self-similarity and deformation block features publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2911892 – volume: 2014 start-page: 15 year: 2014 ident: 10.1016/j.solener.2021.03.058_b0015 article-title: Micro-crack detection of multicrystalline solar cells featuring an improved anisotropic diffusion filter and image segmentation technique publication-title: EURASIP J. Image Video Process. doi: 10.1186/1687-5281-2014-15 – year: 2018 ident: 10.1016/j.solener.2021.03.058_b0055 article-title: Segmentation of Photovoltaic Module Cells in Electroluminescence Images publication-title: Technical Report. CoRR. – ident: 10.1016/j.solener.2021.03.058_b0145 doi: 10.1007/978-3-319-46448-0_2 – ident: 10.1016/j.solener.2021.03.058_b0110 – ident: 10.1016/j.solener.2021.03.058_b0095 – volume: 189 start-page: 116319 year: 2019 ident: 10.1016/j.solener.2021.03.058_b0010 article-title: Cnn based automatic detection of photovoltaic cell defects in electroluminescence images publication-title: Energy doi: 10.1016/j.energy.2019.116319 – start-page: 949 year: 2020 ident: 10.1016/j.solener.2021.03.058_b0020 article-title: Defect detection on polycrystalline solar cells using electroluminescence and fully convolutional neural networks – start-page: 641 year: 2013 ident: 10.1016/j.solener.2021.03.058_b0190 article-title: Chapter 15 - electrical and electro-optical characterization of semiconductor nanowires – ident: 10.1016/j.solener.2021.03.058_b0065 doi: 10.1109/CVPR.2009.5206848 – ident: 10.1016/j.solener.2021.03.058_b0185 – ident: 10.1016/j.solener.2021.03.058_b0030 – start-page: 287 year: 2018 ident: 10.1016/j.solener.2021.03.058_b0225 article-title: Effect of faults in solar panels on production rate and efficiency – volume: 11 year: 2020 ident: 10.1016/j.solener.2021.03.058_b0035 article-title: Albumentations: Fast and flexible image augmentations publication-title: Information doi: 10.3390/info11020125 – ident: 10.1016/j.solener.2021.03.058_b0120 – ident: 10.1016/j.solener.2021.03.058_b0210 – year: 2016 ident: 10.1016/j.solener.2021.03.058_b0090 article-title: Deep residual learning for image recognition – ident: 10.1016/j.solener.2021.03.058_b0245 – ident: 10.1016/j.solener.2021.03.058_b0040 doi: 10.1109/CAC48633.2019.8996338 – ident: 10.1016/j.solener.2021.03.058_b0235 doi: 10.1016/j.egypro.2012.07.046 – ident: 10.1016/j.solener.2021.03.058_b0025 – ident: 10.1016/j.solener.2021.03.058_b0050 – ident: 10.1016/j.solener.2021.03.058_b0195 doi: 10.1007/978-3-642-15825-4_10 – ident: 10.1016/j.solener.2021.03.058_b0075 – volume: 8 start-page: 40547 year: 2020 ident: 10.1016/j.solener.2021.03.058_b0170 article-title: Defects inspection in polycrystalline solar cells electroluminescence images using deep learning publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2976843 – ident: 10.1016/j.solener.2021.03.058_b0100 – ident: 10.1016/j.solener.2021.03.058_b0085 – volume: 86 year: 2005 ident: 10.1016/j.solener.2021.03.058_b0070 article-title: Photographic surveying of minority carrier diffusion length in polycrystalline silicon solar cells by electroluminescence publication-title: Appl. Phys. Lett. doi: 10.1063/1.1978979 – ident: 10.1016/j.solener.2021.03.058_b0135 |
SSID | ssj0017187 |
Score | 2.5182245 |
Snippet | [Display omitted]
•A novel cell-level anomaly segmentation pipeline for solar panels is proposed.•Several cutting-edge deep learning techniques are used to... In the operation & maintenance (O&M) of photovoltaic (PV) plants, the early identification of failures has become crucial to maintain productivity and prolong... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 914 |
SubjectTerms | Anomalies Anomaly detection Deep autoencoder Deep learning Defects Electroluminescence Electroluminescence images Image acquisition Image classification Image processing Image segmentation Information processing Machine learning Modules Object recognition Photovoltaic cells Photovoltaic modules Photovoltaics Pipelines Solar energy Spatial discrimination Spatial resolution Weakly supervised segmentation |
Title | Segmentation of cell-level anomalies in electroluminescence images of photovoltaic modules |
URI | https://dx.doi.org/10.1016/j.solener.2021.03.058 https://www.proquest.com/docview/2539939848 |
Volume | 220 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFz2IT3yTg9e6bZKm7XFZXFZFLyosXkKeWtltF7de_e1muqkvBMFjC1PaycyXmXTmG4ROUymZYkRFyiU-QeEyiRRTKkq1jjW33HAJ55DXN3x0zy7H6XgJDbpeGCirDNi_wPQWrcOdXtBmb1aW0ONL87ggYwIsoqzFYcYysPKzt48yj8Rj74I3k8JvfjL-7OLpPfskdgLkzj5NJEnLdQqT33_fn34gdbv9DDfQeogbcX_xaptoyVZbaO0Lm-A2eri1j9PQSlTh2mE4lI8mUBWEZVVPfcRt57iscBh942EJat41fDMupx5Y5iA1e6qb2oNWI0uNp7V5ndj5Drofnt8NRlEYnRBpSrMmypg0hGnmioL5gEDFWSadMVRnqTaW2MylJuHcqLQgLvcZKedOFRLc3SkdK7qLlqu6snsIU1n4LDDNFOGW0dynzEZ6J3cwsyN3zu0j1ilM6MArDuMtJqIrIHsWQc8C9CxiKrye99HZh9hsQazxl0DerYb4ZiHCg_9fokfd6ongonNBgJOXFjnLD_7_5EO0CldQTpCkR2i5eXm1xz5KadRJa4YnaKV_cTW6eQewHun7 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF6hcKA9IKCtSgmwh17d2PuyfUQRKLxyIZGiXlb7bI0SO2rM_2cnWQNFSEhcbc3Knt35dmZ35huEfnKlmGZEJ9pnIUARKks00zrhxqRGOGGFgnPI27EYTdnVjM-20LCrhYG0yoj9G0xfo3V8MojaHCyrCmp8aZGWZEaARZQBDm8DOxXvoe2zy-vR-OkyIcDvhjqTwk0_mT0X8gzuQxw7B37nECmSbE13Cs3f396iXoH1ege62EO70XXEZ5uv20dbrj5An18QCn5Bv-_cn0WsJqpx4zGcyydzSAzCqm4Wwel2K1zVOHa_CcgEae8GfhtXi4AtK5Ba_m3aJuBWqyqDF419mLvVVzS9OJ8MR0nsnpAYSvM2yZmyhBnmy5IFn0Cnea68tdTk3FhHXO65zYSwmpfEFyEoFcLrUoHFe21STb-hXt3U7jvCVJUhEOS5JsIxWoSo2apg5x7adhTe-0PEOoVJE6nFocPFXHY5ZPcy6lmCnmVKZdDzIfr1JLbccGu8J1B0syH_WyQy4P97ov1u9mS00pUkQMtLy4IVPz4-8inaGU1ub-TN5fj6CH2CN5BdkPE-6rX_HtxxcFpafRIX5SO0hOys |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Segmentation+of+cell-level+anomalies+in+electroluminescence+images+of+photovoltaic+modules&rft.jtitle=Solar+energy&rft.au=Otamendi%2C+Urtzi&rft.au=Martinez%2C+I%C3%B1igo&rft.au=Quartulli%2C+Marco&rft.au=Olaizola%2C+Igor+G.&rft.date=2021-05-15&rft.pub=Elsevier+Ltd&rft.issn=0038-092X&rft.eissn=1471-1257&rft.volume=220&rft.spage=914&rft.epage=926&rft_id=info:doi/10.1016%2Fj.solener.2021.03.058&rft.externalDocID=S0038092X21002462 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-092X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-092X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-092X&client=summon |