A solution to the optimal power flow using genetic algorithm
Optimal power flow (OPF) is one of the main functions of power generation operation and control. It determines the optimal setting of generating units. It is therefore of great importance to solve this problem as quickly and accurately as possible. This paper presents the solution of the OPF using g...
Saved in:
Published in | Applied mathematics and computation Vol. 155; no. 2; pp. 391 - 405 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
Elsevier Inc
06.08.2004
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0096-3003 1873-5649 |
DOI | 10.1016/S0096-3003(03)00785-9 |
Cover
Loading…
Abstract | Optimal power flow (OPF) is one of the main functions of power generation operation and control. It determines the optimal setting of generating units. It is therefore of great importance to solve this problem as quickly and accurately as possible. This paper presents the solution of the OPF using genetic algorithm technique. This paper proposes a new methodology for solving OPF. This methodology is divided into two parts. The first part employs the genetic algorithm (GA) to obtain a feasible solution subject to desired load convergence, while the other part employs GA to obtain the optimal solution. The main goal of this paper is to verify the viability of using genetic algorithm to solve the OPF problem simultaneously composed by the load flow and the economic dispatch problem. Six buses system are used to highlight the goodness of this solution technique. |
---|---|
AbstractList | Optimal power flow (OPF) is one of the main functions of power generation operation and control. It determines the optimal setting of generating units. It is therefore of great importance to solve this problem as quickly and accurately as possible. This paper presents the solution of the OPF using genetic algorithm technique. This paper proposes a new methodology for solving OPF. This methodology is divided into two parts. The first part employs the genetic algorithm (GA) to obtain a feasible solution subject to desired load convergence, while the other part employs GA to obtain the optimal solution. The main goal of this paper is to verify the viability of using genetic algorithm to solve the OPF problem simultaneously composed by the load flow and the economic dispatch problem. Six buses system are used to highlight the goodness of this solution technique. |
Author | Osman, M.S. Mousa, A.A. Abo-Sinna, M.A. |
Author_xml | – sequence: 1 givenname: M.S. surname: Osman fullname: Osman, M.S. organization: High technological Institute, 10th Ramadan city, Egypt – sequence: 2 givenname: M.A. surname: Abo-Sinna fullname: Abo-Sinna, M.A. email: mabosinna2000@yahoo.com organization: Department of Basic Engineering Science, Faculty Of Engineering, Moenoufia University, Shebin El-Kom, Egypt – sequence: 3 givenname: A.A. surname: Mousa fullname: Mousa, A.A. organization: Department of Basic Engineering Science, Faculty Of Engineering, Moenoufia University, Shebin El-Kom, Egypt |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16020269$$DView record in Pascal Francis |
BookMark | eNqFkE1LAzEQQINUsFZ_gpCLoIfVyWY3HyhIKX5BwYN6DjGbbSPbzZKkFv-9u1YUvBQG5vLeMLxDNGp9axE6IXBBgLDLZwDJMgpAz4CeA3BRZnIPjYngNCtZIUdo_IscoMMY36GnGCnG6HqKo2_WyfkWJ4_T0mLfJbfSDe78xgZcN36D19G1C7ywrU3OYN0sfHBpuTpC-7Vuoj3-2RP0enf7MnvI5k_3j7PpPDOU8pRxaqQWosyrmoIVggtuSl0U3OSCFbxmhEha0Jywt5oJw40ogEkNIHRZ5RboBJ1u73Y6Gt3UQbfGRdWF_s_wqQiDHHIme67ccib4GIOt_xBQQyr1nUoNHdQwQyo1eFf_POOSHpqkoF2z077Z2rZP8OFsUNE42xpbuWBNUpV3Oy58AVU2guQ |
CODEN | AMHCBQ |
CitedBy_id | crossref_primary_10_1007_s12667_012_0056_y crossref_primary_10_1109_ACCESS_2020_3014046 crossref_primary_10_1016_j_ijepes_2011_10_021 crossref_primary_10_5897_JEEER2022_0659 crossref_primary_10_1111_exsy_12685 crossref_primary_10_1080_15325008_2011_631084 crossref_primary_10_1016_j_ijheatmasstransfer_2012_03_083 crossref_primary_10_1080_15567240500400929 crossref_primary_10_1016_j_energy_2012_07_053 crossref_primary_10_1016_j_ijepes_2015_11_026 crossref_primary_10_3934_math_2024322 crossref_primary_10_1016_j_engappai_2005_06_008 crossref_primary_10_1016_j_swevo_2014_06_002 crossref_primary_10_1080_15325008_2012_755229 crossref_primary_10_1109_TPWRS_2016_2569603 crossref_primary_10_1016_j_ijepes_2016_03_028 crossref_primary_10_1016_j_ijepes_2013_05_036 crossref_primary_10_1038_s41598_020_79838_2 crossref_primary_10_1007_s11708_013_0246_x crossref_primary_10_1007_s11708_012_0188_8 crossref_primary_10_1109_TSG_2018_2861736 crossref_primary_10_1049_gtd2_12033 crossref_primary_10_1109_JSYST_2013_2265664 crossref_primary_10_1515_ijeeps_2015_0150 crossref_primary_10_3390_en16062756 crossref_primary_10_3923_ijscomp_2010_52_55 crossref_primary_10_1007_s00202_014_0315_0 crossref_primary_10_1016_j_ijepes_2012_06_055 crossref_primary_10_1007_s00500_020_05431_4 crossref_primary_10_1016_j_amc_2004_12_023 crossref_primary_10_1109_ACCESS_2024_3368383 crossref_primary_10_1002_etep_1633 crossref_primary_10_1049_iet_gtd_2011_0055 crossref_primary_10_1049_iet_rpg_2016_0897 crossref_primary_10_1016_j_amc_2007_08_088 crossref_primary_10_1109_ACCESS_2020_3002714 crossref_primary_10_1007_s00542_020_05046_7 crossref_primary_10_1016_j_epsr_2009_06_003 crossref_primary_10_3390_en11010188 crossref_primary_10_1109_JSYST_2013_2272236 crossref_primary_10_1007_s00202_016_0438_6 crossref_primary_10_1109_TPWRS_2022_3212925 crossref_primary_10_1016_j_epsr_2009_10_033 crossref_primary_10_1063_1_5113902 crossref_primary_10_1080_01430750_2024_2345839 crossref_primary_10_1016_j_asoc_2021_107727 crossref_primary_10_1016_j_amc_2005_05_017 crossref_primary_10_1109_ACCESS_2021_3087626 crossref_primary_10_1016_j_asej_2014_03_013 crossref_primary_10_1016_j_ijepes_2013_05_050 crossref_primary_10_1515_ijeeps_2015_0216 crossref_primary_10_4018_IJAMC_2022010110 crossref_primary_10_1080_01430750_2022_2163287 crossref_primary_10_1109_TIA_2018_2866575 crossref_primary_10_17482_uumfd_635957 crossref_primary_10_1016_j_amc_2006_05_095 crossref_primary_10_1109_TPWRS_2011_2175455 crossref_primary_10_1109_TPWRD_2011_2176964 crossref_primary_10_1007_s00202_016_0402_5 crossref_primary_10_1016_j_enconman_2008_06_014 crossref_primary_10_1016_j_enbuild_2003_11_001 crossref_primary_10_1371_journal_pone_0256050 crossref_primary_10_1016_j_ijepes_2015_05_011 crossref_primary_10_1007_s00521_016_2265_0 crossref_primary_10_1016_j_ijepes_2013_07_019 crossref_primary_10_1007_s00521_020_05455_9 crossref_primary_10_1109_TSG_2015_2406879 crossref_primary_10_1016_j_epsr_2013_11_003 crossref_primary_10_1016_j_ijthermalsci_2011_08_007 crossref_primary_10_1109_ACCESS_2021_3138972 crossref_primary_10_1109_TPWRS_2012_2211626 crossref_primary_10_1109_ACCESS_2019_2958279 crossref_primary_10_1177_0309524X221124000 crossref_primary_10_3390_en10050638 crossref_primary_10_1016_j_chaos_2016_01_007 crossref_primary_10_1016_j_conengprac_2020_104672 crossref_primary_10_1016_j_segan_2021_100497 crossref_primary_10_7763_IJCEE_2013_V5_687 crossref_primary_10_1080_01457632_2013_810461 crossref_primary_10_3390_su15010783 crossref_primary_10_1016_j_advengsoft_2007_02_003 crossref_primary_10_1016_j_rser_2003_10_004 crossref_primary_10_1016_j_epsr_2022_107796 crossref_primary_10_1016_j_enconman_2015_04_051 crossref_primary_10_1109_ACCESS_2020_2993762 |
Cites_doi | 10.1162/evco.1996.4.1.1 10.1016/S0142-0615(02)00020-0 |
ContentType | Journal Article |
Copyright | 2003 Elsevier Inc. 2004 INIST-CNRS |
Copyright_xml | – notice: 2003 Elsevier Inc. – notice: 2004 INIST-CNRS |
DBID | AAYXX CITATION IQODW |
DOI | 10.1016/S0096-3003(03)00785-9 |
DatabaseName | CrossRef Pascal-Francis |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1873-5649 |
EndPage | 405 |
ExternalDocumentID | 16020269 10_1016_S0096_3003_03_00785_9 S0096300303007859 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADGUI ADIYS ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLZ HMJ HVGLF HZ~ IHE J1W KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ RXW SBC SDF SDG SES SEW SME SPC SPCBC SSW SSZ T5K TAE TN5 VH1 VOH WH7 WUQ X6Y XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW |
ID | FETCH-LOGICAL-c337t-73c9a8852df30e88787c5a447c28647f6119343216bf68c7c84069a008a5d2e03 |
IEDL.DBID | .~1 |
ISSN | 0096-3003 |
IngestDate | Mon Jul 21 09:13:09 EDT 2025 Thu Apr 24 22:59:50 EDT 2025 Tue Jul 01 01:31:03 EDT 2025 Fri Feb 23 02:26:29 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Economic dispatch Nonlinear programming Genetic algorithms Load flow Non linear programming Optimal power flow Genetic algorithm Applied mathematics |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c337t-73c9a8852df30e88787c5a447c28647f6119343216bf68c7c84069a008a5d2e03 |
PageCount | 15 |
ParticipantIDs | pascalfrancis_primary_16020269 crossref_primary_10_1016_S0096_3003_03_00785_9 crossref_citationtrail_10_1016_S0096_3003_03_00785_9 elsevier_sciencedirect_doi_10_1016_S0096_3003_03_00785_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2004-08-06 |
PublicationDateYYYYMMDD | 2004-08-06 |
PublicationDate_xml | – month: 08 year: 2004 text: 2004-08-06 day: 06 |
PublicationDecade | 2000 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY |
PublicationTitle | Applied mathematics and computation |
PublicationYear | 2004 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Gen, Cheng (BIB3) 2000 Roa-Sepulveda, Pavez-lazo (BIB8) 2003; 25 Goldberg (BIB1) 1989 Nagrath (BIB7) 1999 J.D. Weber, Implementation of a Newton-based optimal power flow into a power system simulation environment, Submitted in partial fulfillment of the requirements for the Degree of Master of Science in Electrical Engineering in the Graduate College of the University of Illinois at Urbana-Champaign; Urbana-Illinois. Available from Michalewicz (BIB4) 1995 J. Gregory, Nonlinear programming FAQ, Usenet sci.answers. Available from 1997 1995 Stevenson (BIB9) 1982 Michalewicz, Schoenauer (BIB5) 1996; 4 Wood, Wollenberg (BIB11) 1996 Michalewicz (BIB6) 1996 Wood (10.1016/S0096-3003(03)00785-9_BIB11) 1996 Michalewicz (10.1016/S0096-3003(03)00785-9_BIB4) 1995 Stevenson (10.1016/S0096-3003(03)00785-9_BIB9) 1982 10.1016/S0096-3003(03)00785-9_BIB2 10.1016/S0096-3003(03)00785-9_BIB10 Michalewicz (10.1016/S0096-3003(03)00785-9_BIB6) 1996 Nagrath (10.1016/S0096-3003(03)00785-9_BIB7) 1999 Gen (10.1016/S0096-3003(03)00785-9_BIB3) 2000 Goldberg (10.1016/S0096-3003(03)00785-9_BIB1) 1989 Michalewicz (10.1016/S0096-3003(03)00785-9_BIB5) 1996; 4 Roa-Sepulveda (10.1016/S0096-3003(03)00785-9_BIB8) 2003; 25 |
References_xml | – reference: J. Gregory, Nonlinear programming FAQ, Usenet sci.answers. Available from – reference: J.D. Weber, Implementation of a Newton-based optimal power flow into a power system simulation environment, Submitted in partial fulfillment of the requirements for the Degree of Master of Science in Electrical Engineering in the Graduate College of the University of Illinois at Urbana-Champaign; Urbana-Illinois. Available from – year: 1982 ident: BIB9 article-title: Elements of Power System Analysis – start-page: 135 year: 1995 end-page: 155 ident: BIB4 article-title: A survey of constraint handling techniques in evolutionary computation methods publication-title: Proceeding of the Fourth Annual Conference on Evolutionary Programming – year: 1989 ident: BIB1 article-title: Genetic Algorithms in Search, Optimization and Machine Learning – year: 1999 ident: BIB7 article-title: Modern Power System Analysis – year: 2000 ident: BIB3 article-title: Genetic Algorithms and Engineering Optimization – year: 1996 ident: BIB6 article-title: Genetic Algorithms – reference: (1997) – volume: 4 start-page: 1 year: 1996 end-page: 32 ident: BIB5 article-title: Evolutionary algorithms for constrained parameter optimization problems publication-title: Evolutionary Computation – reference: , 1995 – year: 1996 ident: BIB11 article-title: Power Generation Operation and Control – volume: 25 start-page: 47 year: 2003 end-page: 57 ident: BIB8 article-title: A solution to the optimal power flow using simulated annealing publication-title: Electrical Power and Energy Systems – ident: 10.1016/S0096-3003(03)00785-9_BIB2 – year: 1996 ident: 10.1016/S0096-3003(03)00785-9_BIB6 – volume: 4 start-page: 1 issue: 1 year: 1996 ident: 10.1016/S0096-3003(03)00785-9_BIB5 article-title: Evolutionary algorithms for constrained parameter optimization problems publication-title: Evolutionary Computation doi: 10.1162/evco.1996.4.1.1 – year: 1989 ident: 10.1016/S0096-3003(03)00785-9_BIB1 – start-page: 135 year: 1995 ident: 10.1016/S0096-3003(03)00785-9_BIB4 article-title: A survey of constraint handling techniques in evolutionary computation methods – year: 1999 ident: 10.1016/S0096-3003(03)00785-9_BIB7 – year: 1982 ident: 10.1016/S0096-3003(03)00785-9_BIB9 – ident: 10.1016/S0096-3003(03)00785-9_BIB10 – volume: 25 start-page: 47 year: 2003 ident: 10.1016/S0096-3003(03)00785-9_BIB8 article-title: A solution to the optimal power flow using simulated annealing publication-title: Electrical Power and Energy Systems doi: 10.1016/S0142-0615(02)00020-0 – year: 1996 ident: 10.1016/S0096-3003(03)00785-9_BIB11 – year: 2000 ident: 10.1016/S0096-3003(03)00785-9_BIB3 |
SSID | ssj0007614 |
Score | 2.1568048 |
Snippet | Optimal power flow (OPF) is one of the main functions of power generation operation and control. It determines the optimal setting of generating units. It is... |
SourceID | pascalfrancis crossref elsevier |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 391 |
SubjectTerms | Calculus of variations and optimal control Economic dispatch Exact sciences and technology Genetic algorithms Load flow Mathematical analysis Mathematics Nonlinear programming Numerical analysis Numerical analysis. Scientific computation Numerical methods in mathematical programming Numerical methods in mathematical programming, optimization and calculus of variations Sciences and techniques of general use |
Title | A solution to the optimal power flow using genetic algorithm |
URI | https://dx.doi.org/10.1016/S0096-3003(03)00785-9 |
Volume | 155 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La8JAEF6kvbSU0ie1D9lDD-1hNe4mmw30IlKxLXqq4C3srlkrqBFN6a2_vTMmaj0UoZDThpmEbyczs2HmG0LuA1c33DOcaZdY5nOumdGezyx8HcYZGWqDP_Q7Xdnu-a_9oF8izVUvDJZVFr4_9-lLb12s1Ao0a7PRCHt8I-SLAh-McS7AJj7fD5E_v_q9KfOAY3rOxBxhjZcnNl08uYbl4oMnHpdKWPRXfDqa6QWg5vJxF79iUOuEHBfJI23k73dKSsn0jBx21syri3Py1KAra6JZSuEOTcErTEBshgPRqBunXxSr3YcUbAdbGKkeD9P5KPuYXJBe6_m92WbFhARmhQgzFgobaaUCPnDCS8BfqNAGGlCwXEk_dLIO-ZkveF0aJ5UNrcJGVw1xXwcDnnjikuxN02lyRWgCB0nhjIocx3HUA2UhF0k0hy1UyDtXJv4Kl9gW9OE4xWIcb-rEAM4Y4YzxQjjjqEyqa7FZzp-xS0CtQI-3DCEGH79LtLK1SZsHSkiKuYyu_6_7hhzkNTuKefKW7GXzz-QO0pHMVJb2ViH7jZe3dvcH0RDW4A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4gHtQY4zPicw8e9LBadtvtNvFCiAQfcIKEW7O7dJEEKNEa_74ztIAcDIlJT9vMtPl2-s1sMw9CbgJXNdwznGmXWOZzrpnRns8sfB3GGRlqgz_0W23Z7PovvaBXIvV5LQymVRbcn3P6jK2LlYcCzYfpcIg1vhH2iwIORj8XRBtkE7tTgbFv1p5fm-0FIcNJPW_GHGGalyeWhTy5ktnirSfuZnpY9JeL2p3qTwDO5RMvfrmhxj7ZK-JHWstf8YCUkskh2Wktmq9-HpHHGp0bFM1SCndoCsQwBrEpzkSjbpR-U0x4H1AwH6xipHo0SD-G2fv4mHQbT516kxVDEpgVIsxYKGyklQp43wkvAcpQoQ2074eWK-mHTlYhRPMFr0rjpLKhVVjrqsH166DPE0-ckPIknSSnhCZwlhTOqMhxnEjdVxbCkURz2EWFrecqxJ_jEtuigzgOshjFy1QxgDNGOGO8EM44qpD7hdg0b6GxTkDNQY9XbCEGml8nerWyScsHSoiLuYzO_q_7mmw1O623-O25_XpOtvMUHsU8eUHK2cdXcgnRSWauCuv7AVCQ2ZE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+solution+to+the+optimal+power+flow+using+genetic+algorithm&rft.jtitle=Applied+mathematics+and+computation&rft.au=OSMAN%2C+M.+S&rft.au=ABO-SINNA%2C+M.+A&rft.au=MOUSA%2C+A.+A&rft.date=2004-08-06&rft.pub=Elsevier&rft.issn=0096-3003&rft.volume=155&rft.issue=2&rft.spage=391&rft.epage=405&rft_id=info:doi/10.1016%2FS0096-3003%2803%2900785-9&rft.externalDBID=n%2Fa&rft.externalDocID=16020269 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon |