A solution to the optimal power flow using genetic algorithm

Optimal power flow (OPF) is one of the main functions of power generation operation and control. It determines the optimal setting of generating units. It is therefore of great importance to solve this problem as quickly and accurately as possible. This paper presents the solution of the OPF using g...

Full description

Saved in:
Bibliographic Details
Published inApplied mathematics and computation Vol. 155; no. 2; pp. 391 - 405
Main Authors Osman, M.S., Abo-Sinna, M.A., Mousa, A.A.
Format Journal Article
LanguageEnglish
Published New York, NY Elsevier Inc 06.08.2004
Elsevier
Subjects
Online AccessGet full text
ISSN0096-3003
1873-5649
DOI10.1016/S0096-3003(03)00785-9

Cover

Loading…
Abstract Optimal power flow (OPF) is one of the main functions of power generation operation and control. It determines the optimal setting of generating units. It is therefore of great importance to solve this problem as quickly and accurately as possible. This paper presents the solution of the OPF using genetic algorithm technique. This paper proposes a new methodology for solving OPF. This methodology is divided into two parts. The first part employs the genetic algorithm (GA) to obtain a feasible solution subject to desired load convergence, while the other part employs GA to obtain the optimal solution. The main goal of this paper is to verify the viability of using genetic algorithm to solve the OPF problem simultaneously composed by the load flow and the economic dispatch problem. Six buses system are used to highlight the goodness of this solution technique.
AbstractList Optimal power flow (OPF) is one of the main functions of power generation operation and control. It determines the optimal setting of generating units. It is therefore of great importance to solve this problem as quickly and accurately as possible. This paper presents the solution of the OPF using genetic algorithm technique. This paper proposes a new methodology for solving OPF. This methodology is divided into two parts. The first part employs the genetic algorithm (GA) to obtain a feasible solution subject to desired load convergence, while the other part employs GA to obtain the optimal solution. The main goal of this paper is to verify the viability of using genetic algorithm to solve the OPF problem simultaneously composed by the load flow and the economic dispatch problem. Six buses system are used to highlight the goodness of this solution technique.
Author Osman, M.S.
Mousa, A.A.
Abo-Sinna, M.A.
Author_xml – sequence: 1
  givenname: M.S.
  surname: Osman
  fullname: Osman, M.S.
  organization: High technological Institute, 10th Ramadan city, Egypt
– sequence: 2
  givenname: M.A.
  surname: Abo-Sinna
  fullname: Abo-Sinna, M.A.
  email: mabosinna2000@yahoo.com
  organization: Department of Basic Engineering Science, Faculty Of Engineering, Moenoufia University, Shebin El-Kom, Egypt
– sequence: 3
  givenname: A.A.
  surname: Mousa
  fullname: Mousa, A.A.
  organization: Department of Basic Engineering Science, Faculty Of Engineering, Moenoufia University, Shebin El-Kom, Egypt
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16020269$$DView record in Pascal Francis
BookMark eNqFkE1LAzEQQINUsFZ_gpCLoIfVyWY3HyhIKX5BwYN6DjGbbSPbzZKkFv-9u1YUvBQG5vLeMLxDNGp9axE6IXBBgLDLZwDJMgpAz4CeA3BRZnIPjYngNCtZIUdo_IscoMMY36GnGCnG6HqKo2_WyfkWJ4_T0mLfJbfSDe78xgZcN36D19G1C7ywrU3OYN0sfHBpuTpC-7Vuoj3-2RP0enf7MnvI5k_3j7PpPDOU8pRxaqQWosyrmoIVggtuSl0U3OSCFbxmhEha0Jywt5oJw40ogEkNIHRZ5RboBJ1u73Y6Gt3UQbfGRdWF_s_wqQiDHHIme67ccib4GIOt_xBQQyr1nUoNHdQwQyo1eFf_POOSHpqkoF2z077Z2rZP8OFsUNE42xpbuWBNUpV3Oy58AVU2guQ
CODEN AMHCBQ
CitedBy_id crossref_primary_10_1007_s12667_012_0056_y
crossref_primary_10_1109_ACCESS_2020_3014046
crossref_primary_10_1016_j_ijepes_2011_10_021
crossref_primary_10_5897_JEEER2022_0659
crossref_primary_10_1111_exsy_12685
crossref_primary_10_1080_15325008_2011_631084
crossref_primary_10_1016_j_ijheatmasstransfer_2012_03_083
crossref_primary_10_1080_15567240500400929
crossref_primary_10_1016_j_energy_2012_07_053
crossref_primary_10_1016_j_ijepes_2015_11_026
crossref_primary_10_3934_math_2024322
crossref_primary_10_1016_j_engappai_2005_06_008
crossref_primary_10_1016_j_swevo_2014_06_002
crossref_primary_10_1080_15325008_2012_755229
crossref_primary_10_1109_TPWRS_2016_2569603
crossref_primary_10_1016_j_ijepes_2016_03_028
crossref_primary_10_1016_j_ijepes_2013_05_036
crossref_primary_10_1038_s41598_020_79838_2
crossref_primary_10_1007_s11708_013_0246_x
crossref_primary_10_1007_s11708_012_0188_8
crossref_primary_10_1109_TSG_2018_2861736
crossref_primary_10_1049_gtd2_12033
crossref_primary_10_1109_JSYST_2013_2265664
crossref_primary_10_1515_ijeeps_2015_0150
crossref_primary_10_3390_en16062756
crossref_primary_10_3923_ijscomp_2010_52_55
crossref_primary_10_1007_s00202_014_0315_0
crossref_primary_10_1016_j_ijepes_2012_06_055
crossref_primary_10_1007_s00500_020_05431_4
crossref_primary_10_1016_j_amc_2004_12_023
crossref_primary_10_1109_ACCESS_2024_3368383
crossref_primary_10_1002_etep_1633
crossref_primary_10_1049_iet_gtd_2011_0055
crossref_primary_10_1049_iet_rpg_2016_0897
crossref_primary_10_1016_j_amc_2007_08_088
crossref_primary_10_1109_ACCESS_2020_3002714
crossref_primary_10_1007_s00542_020_05046_7
crossref_primary_10_1016_j_epsr_2009_06_003
crossref_primary_10_3390_en11010188
crossref_primary_10_1109_JSYST_2013_2272236
crossref_primary_10_1007_s00202_016_0438_6
crossref_primary_10_1109_TPWRS_2022_3212925
crossref_primary_10_1016_j_epsr_2009_10_033
crossref_primary_10_1063_1_5113902
crossref_primary_10_1080_01430750_2024_2345839
crossref_primary_10_1016_j_asoc_2021_107727
crossref_primary_10_1016_j_amc_2005_05_017
crossref_primary_10_1109_ACCESS_2021_3087626
crossref_primary_10_1016_j_asej_2014_03_013
crossref_primary_10_1016_j_ijepes_2013_05_050
crossref_primary_10_1515_ijeeps_2015_0216
crossref_primary_10_4018_IJAMC_2022010110
crossref_primary_10_1080_01430750_2022_2163287
crossref_primary_10_1109_TIA_2018_2866575
crossref_primary_10_17482_uumfd_635957
crossref_primary_10_1016_j_amc_2006_05_095
crossref_primary_10_1109_TPWRS_2011_2175455
crossref_primary_10_1109_TPWRD_2011_2176964
crossref_primary_10_1007_s00202_016_0402_5
crossref_primary_10_1016_j_enconman_2008_06_014
crossref_primary_10_1016_j_enbuild_2003_11_001
crossref_primary_10_1371_journal_pone_0256050
crossref_primary_10_1016_j_ijepes_2015_05_011
crossref_primary_10_1007_s00521_016_2265_0
crossref_primary_10_1016_j_ijepes_2013_07_019
crossref_primary_10_1007_s00521_020_05455_9
crossref_primary_10_1109_TSG_2015_2406879
crossref_primary_10_1016_j_epsr_2013_11_003
crossref_primary_10_1016_j_ijthermalsci_2011_08_007
crossref_primary_10_1109_ACCESS_2021_3138972
crossref_primary_10_1109_TPWRS_2012_2211626
crossref_primary_10_1109_ACCESS_2019_2958279
crossref_primary_10_1177_0309524X221124000
crossref_primary_10_3390_en10050638
crossref_primary_10_1016_j_chaos_2016_01_007
crossref_primary_10_1016_j_conengprac_2020_104672
crossref_primary_10_1016_j_segan_2021_100497
crossref_primary_10_7763_IJCEE_2013_V5_687
crossref_primary_10_1080_01457632_2013_810461
crossref_primary_10_3390_su15010783
crossref_primary_10_1016_j_advengsoft_2007_02_003
crossref_primary_10_1016_j_rser_2003_10_004
crossref_primary_10_1016_j_epsr_2022_107796
crossref_primary_10_1016_j_enconman_2015_04_051
crossref_primary_10_1109_ACCESS_2020_2993762
Cites_doi 10.1162/evco.1996.4.1.1
10.1016/S0142-0615(02)00020-0
ContentType Journal Article
Copyright 2003 Elsevier Inc.
2004 INIST-CNRS
Copyright_xml – notice: 2003 Elsevier Inc.
– notice: 2004 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1016/S0096-3003(03)00785-9
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1873-5649
EndPage 405
ExternalDocumentID 16020269
10_1016_S0096_3003_03_00785_9
S0096300303007859
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
ADIYS
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLZ
HMJ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SES
SEW
SME
SPC
SPCBC
SSW
SSZ
T5K
TAE
TN5
VH1
VOH
WH7
WUQ
X6Y
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
ID FETCH-LOGICAL-c337t-73c9a8852df30e88787c5a447c28647f6119343216bf68c7c84069a008a5d2e03
IEDL.DBID .~1
ISSN 0096-3003
IngestDate Mon Jul 21 09:13:09 EDT 2025
Thu Apr 24 22:59:50 EDT 2025
Tue Jul 01 01:31:03 EDT 2025
Fri Feb 23 02:26:29 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Economic dispatch
Nonlinear programming
Genetic algorithms
Load flow
Non linear programming
Optimal power flow
Genetic algorithm
Applied mathematics
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-73c9a8852df30e88787c5a447c28647f6119343216bf68c7c84069a008a5d2e03
PageCount 15
ParticipantIDs pascalfrancis_primary_16020269
crossref_primary_10_1016_S0096_3003_03_00785_9
crossref_citationtrail_10_1016_S0096_3003_03_00785_9
elsevier_sciencedirect_doi_10_1016_S0096_3003_03_00785_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2004-08-06
PublicationDateYYYYMMDD 2004-08-06
PublicationDate_xml – month: 08
  year: 2004
  text: 2004-08-06
  day: 06
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle Applied mathematics and computation
PublicationYear 2004
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Gen, Cheng (BIB3) 2000
Roa-Sepulveda, Pavez-lazo (BIB8) 2003; 25
Goldberg (BIB1) 1989
Nagrath (BIB7) 1999
J.D. Weber, Implementation of a Newton-based optimal power flow into a power system simulation environment, Submitted in partial fulfillment of the requirements for the Degree of Master of Science in Electrical Engineering in the Graduate College of the University of Illinois at Urbana-Champaign; Urbana-Illinois. Available from
Michalewicz (BIB4) 1995
J. Gregory, Nonlinear programming FAQ, Usenet sci.answers. Available from
1997
1995
Stevenson (BIB9) 1982
Michalewicz, Schoenauer (BIB5) 1996; 4
Wood, Wollenberg (BIB11) 1996
Michalewicz (BIB6) 1996
Wood (10.1016/S0096-3003(03)00785-9_BIB11) 1996
Michalewicz (10.1016/S0096-3003(03)00785-9_BIB4) 1995
Stevenson (10.1016/S0096-3003(03)00785-9_BIB9) 1982
10.1016/S0096-3003(03)00785-9_BIB2
10.1016/S0096-3003(03)00785-9_BIB10
Michalewicz (10.1016/S0096-3003(03)00785-9_BIB6) 1996
Nagrath (10.1016/S0096-3003(03)00785-9_BIB7) 1999
Gen (10.1016/S0096-3003(03)00785-9_BIB3) 2000
Goldberg (10.1016/S0096-3003(03)00785-9_BIB1) 1989
Michalewicz (10.1016/S0096-3003(03)00785-9_BIB5) 1996; 4
Roa-Sepulveda (10.1016/S0096-3003(03)00785-9_BIB8) 2003; 25
References_xml – reference: J. Gregory, Nonlinear programming FAQ, Usenet sci.answers. Available from
– reference: J.D. Weber, Implementation of a Newton-based optimal power flow into a power system simulation environment, Submitted in partial fulfillment of the requirements for the Degree of Master of Science in Electrical Engineering in the Graduate College of the University of Illinois at Urbana-Champaign; Urbana-Illinois. Available from
– year: 1982
  ident: BIB9
  article-title: Elements of Power System Analysis
– start-page: 135
  year: 1995
  end-page: 155
  ident: BIB4
  article-title: A survey of constraint handling techniques in evolutionary computation methods
  publication-title: Proceeding of the Fourth Annual Conference on Evolutionary Programming
– year: 1989
  ident: BIB1
  article-title: Genetic Algorithms in Search, Optimization and Machine Learning
– year: 1999
  ident: BIB7
  article-title: Modern Power System Analysis
– year: 2000
  ident: BIB3
  article-title: Genetic Algorithms and Engineering Optimization
– year: 1996
  ident: BIB6
  article-title: Genetic Algorithms
– reference: (1997)
– volume: 4
  start-page: 1
  year: 1996
  end-page: 32
  ident: BIB5
  article-title: Evolutionary algorithms for constrained parameter optimization problems
  publication-title: Evolutionary Computation
– reference: , 1995
– year: 1996
  ident: BIB11
  article-title: Power Generation Operation and Control
– volume: 25
  start-page: 47
  year: 2003
  end-page: 57
  ident: BIB8
  article-title: A solution to the optimal power flow using simulated annealing
  publication-title: Electrical Power and Energy Systems
– ident: 10.1016/S0096-3003(03)00785-9_BIB2
– year: 1996
  ident: 10.1016/S0096-3003(03)00785-9_BIB6
– volume: 4
  start-page: 1
  issue: 1
  year: 1996
  ident: 10.1016/S0096-3003(03)00785-9_BIB5
  article-title: Evolutionary algorithms for constrained parameter optimization problems
  publication-title: Evolutionary Computation
  doi: 10.1162/evco.1996.4.1.1
– year: 1989
  ident: 10.1016/S0096-3003(03)00785-9_BIB1
– start-page: 135
  year: 1995
  ident: 10.1016/S0096-3003(03)00785-9_BIB4
  article-title: A survey of constraint handling techniques in evolutionary computation methods
– year: 1999
  ident: 10.1016/S0096-3003(03)00785-9_BIB7
– year: 1982
  ident: 10.1016/S0096-3003(03)00785-9_BIB9
– ident: 10.1016/S0096-3003(03)00785-9_BIB10
– volume: 25
  start-page: 47
  year: 2003
  ident: 10.1016/S0096-3003(03)00785-9_BIB8
  article-title: A solution to the optimal power flow using simulated annealing
  publication-title: Electrical Power and Energy Systems
  doi: 10.1016/S0142-0615(02)00020-0
– year: 1996
  ident: 10.1016/S0096-3003(03)00785-9_BIB11
– year: 2000
  ident: 10.1016/S0096-3003(03)00785-9_BIB3
SSID ssj0007614
Score 2.1568048
Snippet Optimal power flow (OPF) is one of the main functions of power generation operation and control. It determines the optimal setting of generating units. It is...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 391
SubjectTerms Calculus of variations and optimal control
Economic dispatch
Exact sciences and technology
Genetic algorithms
Load flow
Mathematical analysis
Mathematics
Nonlinear programming
Numerical analysis
Numerical analysis. Scientific computation
Numerical methods in mathematical programming
Numerical methods in mathematical programming, optimization and calculus of variations
Sciences and techniques of general use
Title A solution to the optimal power flow using genetic algorithm
URI https://dx.doi.org/10.1016/S0096-3003(03)00785-9
Volume 155
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La8JAEF6kvbSU0ie1D9lDD-1hNe4mmw30IlKxLXqq4C3srlkrqBFN6a2_vTMmaj0UoZDThpmEbyczs2HmG0LuA1c33DOcaZdY5nOumdGezyx8HcYZGWqDP_Q7Xdnu-a_9oF8izVUvDJZVFr4_9-lLb12s1Ao0a7PRCHt8I-SLAh-McS7AJj7fD5E_v_q9KfOAY3rOxBxhjZcnNl08uYbl4oMnHpdKWPRXfDqa6QWg5vJxF79iUOuEHBfJI23k73dKSsn0jBx21syri3Py1KAra6JZSuEOTcErTEBshgPRqBunXxSr3YcUbAdbGKkeD9P5KPuYXJBe6_m92WbFhARmhQgzFgobaaUCPnDCS8BfqNAGGlCwXEk_dLIO-ZkveF0aJ5UNrcJGVw1xXwcDnnjikuxN02lyRWgCB0nhjIocx3HUA2UhF0k0hy1UyDtXJv4Kl9gW9OE4xWIcb-rEAM4Y4YzxQjjjqEyqa7FZzp-xS0CtQI-3DCEGH79LtLK1SZsHSkiKuYyu_6_7hhzkNTuKefKW7GXzz-QO0pHMVJb2ViH7jZe3dvcH0RDW4A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4gHtQY4zPicw8e9LBadtvtNvFCiAQfcIKEW7O7dJEEKNEa_74ztIAcDIlJT9vMtPl2-s1sMw9CbgJXNdwznGmXWOZzrpnRns8sfB3GGRlqgz_0W23Z7PovvaBXIvV5LQymVRbcn3P6jK2LlYcCzYfpcIg1vhH2iwIORj8XRBtkE7tTgbFv1p5fm-0FIcNJPW_GHGGalyeWhTy5ktnirSfuZnpY9JeL2p3qTwDO5RMvfrmhxj7ZK-JHWstf8YCUkskh2Wktmq9-HpHHGp0bFM1SCndoCsQwBrEpzkSjbpR-U0x4H1AwH6xipHo0SD-G2fv4mHQbT516kxVDEpgVIsxYKGyklQp43wkvAcpQoQ2074eWK-mHTlYhRPMFr0rjpLKhVVjrqsH166DPE0-ckPIknSSnhCZwlhTOqMhxnEjdVxbCkURz2EWFrecqxJ_jEtuigzgOshjFy1QxgDNGOGO8EM44qpD7hdg0b6GxTkDNQY9XbCEGml8nerWyScsHSoiLuYzO_q_7mmw1O623-O25_XpOtvMUHsU8eUHK2cdXcgnRSWauCuv7AVCQ2ZE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+solution+to+the+optimal+power+flow+using+genetic+algorithm&rft.jtitle=Applied+mathematics+and+computation&rft.au=OSMAN%2C+M.+S&rft.au=ABO-SINNA%2C+M.+A&rft.au=MOUSA%2C+A.+A&rft.date=2004-08-06&rft.pub=Elsevier&rft.issn=0096-3003&rft.volume=155&rft.issue=2&rft.spage=391&rft.epage=405&rft_id=info:doi/10.1016%2FS0096-3003%2803%2900785-9&rft.externalDBID=n%2Fa&rft.externalDocID=16020269
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon