Phosphorene quantum dots: synthesis, properties and catalytic applications
Phosphorene quantum dots (PQDs) belong to a new class of zero-dimensional functional nanostructures with unique physicochemical and surface properties in comparison with few-layer phosphorene and other 2D analogues. Tunable band gap as a function of number of layers, ease of passivation and high car...
Saved in:
Published in | Nanoscale Vol. 14; no. 4; pp. 137 - 153 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
27.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Phosphorene quantum dots (PQDs) belong to a new class of zero-dimensional functional nanostructures with unique physicochemical and surface properties in comparison with few-layer phosphorene and other 2D analogues. Tunable band gap as a function of number of layers, ease of passivation and high carrier mobility of PQDs have attracted considerable attention in catalysis research due to which spectacular progress has been made in PQD research over the last few years. PQDs are now considered as promising catalytic materials for electrocatalytic water splitting and nitrogen reduction, lithium-sulfur batteries, solar light-driven energy devices and biocatalysis, either in pristine form or as an active component for constructing heterostructures with other 2D materials. In the light of these recent advances, it is worthwhile to review and consolidate PQD research in catalytic applications to understand the challenges ahead and suggest possible solutions. In this review, we systematically summarize various synthetic strategies including ultrasonic and electrochemical exfoliation, solvothermal treatment, blender breaking, milling, crushing and pulsed laser irradiation. Furthermore, the physiochemical properties of PQDs are discussed based on both experimental and theoretical perspectives. The potential applications of PQDs in catalysis with special emphasis on photocatalysis (solar light-driven energy devices) and electrocatalysis (oxygen evolution reactions and hydrogen evolution reactions) -are critically discussed along with the present status, challenges and future perspectives
Phosphorene quantum dots (PQDs) belong to a new class of zero-dimensional functional nanostructures with unique physicochemical and surface properties in comparison with few-layer phosphorene and other 2D analogues. |
---|---|
AbstractList | Phosphorene quantum dots (PQDs) belong to a new class of zero-dimensional functional nanostructures with unique physicochemical and surface properties in comparison with few-layer phosphorene and other 2D analogues. Tunable band gap as a function of number of layers, ease of passivation and high carrier mobility of PQDs have attracted considerable attention in catalysis research due to which spectacular progress has been made in PQD research over the last few years. PQDs are now considered as promising catalytic materials for electrocatalytic water splitting and nitrogen reduction, lithium–sulfur batteries, solar light–driven energy devices and biocatalysis, either in pristine form or as an active component for constructing heterostructures with other 2D materials. In the light of these recent advances, it is worthwhile to review and consolidate PQD research in catalytic applications to understand the challenges ahead and suggest possible solutions. In this review, we systematically summarize various synthetic strategies including ultrasonic and electrochemical exfoliation, solvothermal treatment, blender breaking, milling, crushing and pulsed laser irradiation. Furthermore, the physiochemical properties of PQDs are discussed based on both experimental and theoretical perspectives. The potential applications of PQDs in catalysis with special emphasis on photocatalysis (solar light–driven energy devices) and electrocatalysis (oxygen evolution reactions and hydrogen evolution reactions) -are critically discussed along with the present status, challenges and future perspectives Phosphorene quantum dots (PQDs) belong to a new class of zero-dimensional functional nanostructures with unique physicochemical and surface properties in comparison with few-layer phosphorene and other 2D analogues. Tunable band gap as a function of number of layers, ease of passivation and high carrier mobility of PQDs have attracted considerable attention in catalysis research due to which spectacular progress has been made in PQD research over the last few years. PQDs are now considered as promising catalytic materials for electrocatalytic water splitting and nitrogen reduction, lithium-sulfur batteries, solar light-driven energy devices and biocatalysis, either in pristine form or as an active component for constructing heterostructures with other 2D materials. In the light of these recent advances, it is worthwhile to review and consolidate PQD research in catalytic applications to understand the challenges ahead and suggest possible solutions. In this review, we systematically summarize various synthetic strategies including ultrasonic and electrochemical exfoliation, solvothermal treatment, blender breaking, milling, crushing and pulsed laser irradiation. Furthermore, the physiochemical properties of PQDs are discussed based on both experimental and theoretical perspectives. The potential applications of PQDs in catalysis with special emphasis on photocatalysis (solar light-driven energy devices) and electrocatalysis (oxygen evolution reactions and hydrogen evolution reactions) -are critically discussed along with the present status, challenges and future perspectives Phosphorene quantum dots (PQDs) belong to a new class of zero-dimensional functional nanostructures with unique physicochemical and surface properties in comparison with few-layer phosphorene and other 2D analogues. Phosphorene quantum dots (PQDs) belong to a new class of zero-dimensional functional nanostructures with unique physicochemical and surface properties in comparison with few-layer phosphorene and other 2D analogues. Tunable band gap as a function of number of layers, ease of passivation and high carrier mobility of PQDs have attracted considerable attention in catalysis research due to which spectacular progress has been made in PQD research over the last few years. PQDs are now considered as promising catalytic materials for electrocatalytic water splitting and nitrogen reduction, lithium-sulfur batteries, solar light-driven energy devices and biocatalysis, either in pristine form or as an active component for constructing heterostructures with other 2D materials. In the light of these recent advances, it is worthwhile to review and consolidate PQD research in catalytic applications to understand the challenges ahead and suggest possible solutions. In this review, we systematically summarize various synthetic strategies including ultrasonic and electrochemical exfoliation, solvothermal treatment, blender breaking, milling, crushing and pulsed laser irradiation. Furthermore, the physiochemical properties of PQDs are discussed based on both experimental and theoretical perspectives. The potential applications of PQDs in catalysis with special emphasis on photocatalysis (solar light-driven energy devices) and electrocatalysis (oxygen evolution reactions and hydrogen evolution reactions) -are critically discussed along with the present status, challenges and future perspectives. Phosphorene quantum dots (PQDs) belong to a new class of zero-dimensional functional nanostructures with unique physicochemical and surface properties in comparison with few-layer phosphorene and other 2D analogues. Tunable band gap as a function of number of layers, ease of passivation and high carrier mobility of PQDs have attracted considerable attention in catalysis research due to which spectacular progress has been made in PQD research over the last few years. PQDs are now considered as promising catalytic materials for electrocatalytic water splitting and nitrogen reduction, lithium-sulfur batteries, solar light-driven energy devices and biocatalysis, either in pristine form or as an active component for constructing heterostructures with other 2D materials. In the light of these recent advances, it is worthwhile to review and consolidate PQD research in catalytic applications to understand the challenges ahead and suggest possible solutions. In this review, we systematically summarize various synthetic strategies including ultrasonic and electrochemical exfoliation, solvothermal treatment, blender breaking, milling, crushing and pulsed laser irradiation. Furthermore, the physiochemical properties of PQDs are discussed based on both experimental and theoretical perspectives. The potential applications of PQDs in catalysis with special emphasis on photocatalysis (solar light-driven energy devices) and electrocatalysis (oxygen evolution reactions and hydrogen evolution reactions) -are critically discussed along with the present status, challenges and future perspectives.Phosphorene quantum dots (PQDs) belong to a new class of zero-dimensional functional nanostructures with unique physicochemical and surface properties in comparison with few-layer phosphorene and other 2D analogues. Tunable band gap as a function of number of layers, ease of passivation and high carrier mobility of PQDs have attracted considerable attention in catalysis research due to which spectacular progress has been made in PQD research over the last few years. PQDs are now considered as promising catalytic materials for electrocatalytic water splitting and nitrogen reduction, lithium-sulfur batteries, solar light-driven energy devices and biocatalysis, either in pristine form or as an active component for constructing heterostructures with other 2D materials. In the light of these recent advances, it is worthwhile to review and consolidate PQD research in catalytic applications to understand the challenges ahead and suggest possible solutions. In this review, we systematically summarize various synthetic strategies including ultrasonic and electrochemical exfoliation, solvothermal treatment, blender breaking, milling, crushing and pulsed laser irradiation. Furthermore, the physiochemical properties of PQDs are discussed based on both experimental and theoretical perspectives. The potential applications of PQDs in catalysis with special emphasis on photocatalysis (solar light-driven energy devices) and electrocatalysis (oxygen evolution reactions and hydrogen evolution reactions) -are critically discussed along with the present status, challenges and future perspectives. |
Author | Ozhukil Valappil, Manila Alwarappan, Subbiah Pillai, Vijayamohanan K |
AuthorAffiliation | CSIR-Central Electrochemical Research Institute Indian Institute of Science Education and Research |
AuthorAffiliation_xml | – name: Indian Institute of Science Education and Research – name: CSIR-Central Electrochemical Research Institute |
Author_xml | – sequence: 1 givenname: Manila surname: Ozhukil Valappil fullname: Ozhukil Valappil, Manila – sequence: 2 givenname: Subbiah surname: Alwarappan fullname: Alwarappan, Subbiah – sequence: 3 givenname: Vijayamohanan K surname: Pillai fullname: Pillai, Vijayamohanan K |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34994751$$D View this record in MEDLINE/PubMed |
BookMark | eNptkc1LAzEQxYNU7IdevCsLXkSsJpvstutN6rdFRfS8ZLMTmrpNtkn20P_e2NYKxdPMwO8Nj_e6qKWNBoQOCb4gmGaXJdEWDyjDXzuoE2OG-5QO4tZmT1kbdZ2bYpxmNKV7qE1ZlrFBQjro6W1iXD0xFjRE84Zr38yi0nh3FbmF9hNwyp1HtTU1WK_ARVyXkeCeVwuvRMTrulLhVEa7fbQreeXgYD176PPu9mP00B-_3j-Orsd9EWz5firLhElOBVBSlphLSCCGIaEEcy6EzDIpYmDA40JyVhRcDEWcFBhLBhkApj10uvobXM0bcD6fKSegqrgG07g8Tskwpixlw4CebKFT01gd3AUqMDRJQyQ9dLymmmIGZV5bNeN2kf-mFICzFSCscc6C3CAE5z8V5Dfk5X1ZwXOA8RYslF8m5C1X1f-So5XEOrF5_dcq_QY5e5PP |
CitedBy_id | crossref_primary_10_1063_5_0219794 crossref_primary_10_3390_polym15040947 crossref_primary_10_3390_molecules27092822 crossref_primary_10_1364_OL_507725 crossref_primary_10_1016_j_joule_2022_09_010 crossref_primary_10_1039_D2AY01040B crossref_primary_10_1134_S0018143924700073 crossref_primary_10_31857_S0023119324030069 crossref_primary_10_1088_1361_6463_acf0ce crossref_primary_10_1002_smll_202409735 crossref_primary_10_1016_j_ijhydene_2024_12_503 crossref_primary_10_1039_D2CS01018F crossref_primary_10_3390_pharmaceutics15122748 crossref_primary_10_1002_lpor_202200551 |
Cites_doi | 10.1021/acs.jpclett.6b00752 10.1038/srep27307 10.1039/D0CC03053H 10.1002/adfm.201201499 10.1016/j.elecom.2019.06.001 10.1002/anie.201605168 10.1021/acs.analchem.1c02742 10.1021/acs.jpclett.5b02457 10.3390/nano10010139 10.1038/s41467-018-06629-9 10.1073/pnas.1800069115 10.1039/C8CS00387D 10.1103/PhysRevB.96.035122 10.1002/anie.201607393 10.1016/0038-1098(84)90444-7 10.1039/C9TA02513H 10.1007/BF01567637 10.1021/acsami.9b05471 10.1007/s00604-019-3768-z 10.1016/j.commatsci.2017.01.009 10.1016/j.apmt.2020.100765 10.1021/acs.jpclett.9b00891 10.1002/anie.201912761 10.1021/acs.chemmater.8b00521 10.1021/acscatal.8b05081 10.1016/j.ensm.2019.02.028 10.1088/2053-1583/1/2/025001 10.1166/jnn.2019.16576 10.1039/D0CC00661K 10.3390/antibiotics7030067 10.1016/j.electacta.2007.12.006 10.1021/acs.jpclett.6b02843 10.1002/cphc.200300900 10.1063/1.2093935 10.1039/D0CC00805B 10.1007/s40843-018-9245-y 10.1039/C8CC07266C 10.1016/j.optcom.2017.05.081 10.1039/C9TA10487A 10.1039/C8NR09711A 10.1038/s41699-017-0023-5 10.1021/ja02184a002 10.1021/acs.jpcc.7b12649 10.1016/j.nanoen.2018.06.001 10.1088/2053-1583/3/2/025011 10.1002/anie.201511309 10.1002/advs.201800420 10.1016/j.nantod.2016.12.006 10.1002/aenm.201700396 10.1002/ppsc.201300375 10.1002/pssb.201700011 10.1007/s00604-020-4222-y 10.1002/smll.201803132 10.1002/ange.201409400 10.1016/j.snb.2017.05.017 10.1103/PhysRevLett.87.015003 10.3390/pharmaceutics11050242 10.1016/j.cej.2019.122297 10.1039/C4RA16805D 10.1021/jacs.5b06025 10.1126/sciadv.aay5661 10.1021/jp1094239 10.3390/nano9091266 10.1002/nano.202000118 10.1021/acs.chemmater.6b03592 10.1016/j.matlet.2017.01.052 10.1021/nn501226z 10.1073/pnas.1416581112 10.1039/C5EE03732H 10.1002/cey2.14 10.1002/smll.201907091 10.1039/C3NR05572H 10.1039/C8NR08227H 10.1016/j.cplett.2018.03.069 10.1038/nmat4299 10.1021/acsnano.5b05406 10.1002/anie.201506154 10.1039/C9CC06146K 10.1021/acs.jpclett.8b03600 10.1039/C8TA08374F 10.1002/admi.201902075 10.1021/acsanm.9b01786 10.1021/acsnano.8b06671 10.1038/natrevmats.2016.61 10.1039/D0AN01917H 10.1021/jp001761r 10.1021/acsomega.7b01058 10.1103/PhysRevLett.80.4076 10.1016/j.chemosphere.2011.03.001 10.1063/1.5118959 10.1016/j.bios.2020.112390 10.1002/anie.201908415 10.1016/j.apmt.2019.02.002 10.1103/PhysRevLett.114.046801 10.1039/C4CS00257A 10.1021/acsami.7b05824 10.1039/C9CY02278C 10.1039/C9RA10900E 10.1039/D0TB02101F 10.1016/j.apmt.2017.09.002 10.1016/j.talanta.2020.121712 10.1126/science.160.3831.994 10.1039/C9NR02530H 10.1021/acsami.8b11648 10.1107/S0365110X65004140 10.1063/1.4922551 10.1088/2053-1583/2/3/031002 10.1002/asia.201800482 10.1039/C7CC08211H 10.1088/2053-1591/ab6c09 10.1021/acssuschemeng.0c04819 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2022 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2022 |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
DOI | 10.1039/d1nr07340k |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2040-3372 |
EndPage | 153 |
ExternalDocumentID | 34994751 10_1039_D1NR07340K d1nr07340k |
Genre | Journal Article Review |
GroupedDBID | - 0-7 0R 29M 4.4 53G 705 7~J AAEMU AAGNR AAIWI AANOJ AAPBV ABDVN ABGFH ABRYZ ACGFS ACIWK ACLDK ADMRA ADSRN AENEX AFVBQ AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX DU5 EBS ECGLT EE0 EF- F5P HZ H~N J3I JG O-G O9- OK1 P2P RCNCU RIG RNS RPMJG RRC RSCEA --- 0R~ AAJAE AARTK AAWGC AAXHV AAYXX ABASK ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AGRSR AHGCF AKBGW AKMSF ALUYA ANUXI APEMP CITATION GGIMP H13 HZ~ RAOCF RVUXY -JG NPM 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c337t-6fd54fa3ce31dd0afe5e2e81310aaccf99fc2e4ea2bfa4bbac8c25b00f4e9ee03 |
ISSN | 2040-3364 2040-3372 |
IngestDate | Fri Jul 11 12:29:24 EDT 2025 Mon Jun 30 07:10:07 EDT 2025 Wed Feb 19 02:27:07 EST 2025 Thu Apr 24 23:07:57 EDT 2025 Tue Jul 01 01:14:17 EDT 2025 Sat Jan 29 04:20:47 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c337t-6fd54fa3ce31dd0afe5e2e81310aaccf99fc2e4ea2bfa4bbac8c25b00f4e9ee03 |
Notes | Prof. Vijayamohanan K Pillai is now the Chair and Dean (Research) at IIER-Tirupathi, AP, India. Prior to this position, he was the director of CSIR-Central Electrochemical Research Institute, Karaikudi, Tamil Nadu, India (2012-2018) and held additional director position at CSIR-National Chemical Laboratory (2015-2016), Pune, Maharashtra, India. His research interests include electrocatalysis, electrochemical energy storage systems, bio-electrochemistry, electrosynthesis of nanomaterials and quantum dots. Prof. Pillai has more than 260 research papers and 20 patents to his credit. Under his guidance, 24 students have received PhD degrees. Prof. Pillai is a recipient of many prestigious awards including Medals of the MRSI and CRSI. He is a J C Bose National Fellow and Fellow of the Indian Academy of Sciences. He is also in the editorial boards of several prestigious journals. Dr. Manila Ozhukil Valappil received her MSc (Applied Chemistry) from Cochin University of Science and Technology, Kerala, India. She obtained her PhD in Chemical Sciences (2020) from CSIR-Central Electrochemical Research Institute, Tamil Nadu, India. She is currently a postdoctoral research associate at the Department of Chemistry, University of Calgary, Canada. Her research interests revolve around materials electrochemistry. Dr Subbiah Alwarappan is now a Principal Scientist and Associate Professor at CSIR-Central Electrochemical Research institute. So far, he graduated over 25 researchers including PhD, MSc, MPhil and BTech students towards their thesis and mentored 6 Postdoctoral researchers. Prior to joining CSIR-CECRI, he worked in the United States (2006-2013) at various institutes (University of Iowa; Florida International University and University of South Florida). He graduated with a PhD degree from Macquarie University, Sydney, Australia (2003-2006) and was a recipient of IPRS fellowship from Australian Government. He published 92 research articles in the research area of electrochemical biosensors, photoelectrochemical sensors, biofuel cells, microelectrodes, electrocatalysts and electrosynthesis of quantum dots. He has also written 2 book chapters on biosensors and 1 book. He has 1 US patent to his credit. He is a Fellow of the Royal society of Chemistry and member of Indian National Young Academy of science (INYAS). ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-9559-8989 0000-0003-4839-4531 |
PMID | 34994751 |
PQID | 2623435669 |
PQPubID | 2047485 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_2618234648 rsc_primary_d1nr07340k crossref_primary_10_1039_D1NR07340K crossref_citationtrail_10_1039_D1NR07340K proquest_journals_2623435669 pubmed_primary_34994751 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-27 |
PublicationDateYYYYMMDD | 2022-01-27 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Nanoscale |
PublicationTitleAlternate | Nanoscale |
PublicationYear | 2022 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Fang (D1NR07340K/cit73/1) 2019; 7 Prasannachandran (D1NR07340K/cit23/1) 2020; 56 Zhao (D1NR07340K/cit47/1) 2020; 10 Hashimoto (D1NR07340K/cit74/1) 2019; 104 Gan (D1NR07340K/cit42/1) 2015; 106 Ren (D1NR07340K/cit21/1) 2017; 7 Rahman (D1NR07340K/cit102/1) 2016; 9 Lenzner (D1NR07340K/cit62/1) 1998; 80 Amaral (D1NR07340K/cit39/1) 2020; 3 Russo (D1NR07340K/cit63/1) 2014; 6 Ye (D1NR07340K/cit8/1) 2014; 8 Tian (D1NR07340K/cit30/1) 2018; 115 Vishnoi (D1NR07340K/cit91/1) 2018; 699 Ozhukil Valappil (D1NR07340K/cit82/1) 2018; 54 Arra (D1NR07340K/cit101/1) 2018; 122 Yuan (D1NR07340K/cit43/1) 2018; 54 Prasannachandran (D1NR07340K/cit77/1) 2018; 12 Wang (D1NR07340K/cit106/1) 2016; 3 Chichkov (D1NR07340K/cit65/1) 1996; 63 Ozhukil Valappil (D1NR07340K/cit81/1) 2019; 10 Cao (D1NR07340K/cit108/1) 2019; 11 Jiang (D1NR07340K/cit22/1) 2016; 55 Carvalho (D1NR07340K/cit2/1) 2016; 1 Zhu (D1NR07340K/cit13/1) 2017; 13 Guo (D1NR07340K/cit95/1) 2018; 406 Ahmed (D1NR07340K/cit88/1) 2017; 1 Zhang (D1NR07340K/cit31/1) 2015; 127 Pan (D1NR07340K/cit110/1) 2019; 9 Gao (D1NR07340K/cit18/1) 2020; 56 Jeschke (D1NR07340K/cit60/1) 2001; 87 Lei (D1NR07340K/cit25/1) 2018; 50 Gong (D1NR07340K/cit49/1) 2020; 6 Ge (D1NR07340K/cit67/1) 2019; 115 Zhou (D1NR07340K/cit100/1) 2017; 130 Brown (D1NR07340K/cit9/1) 1965; 19 Jiang (D1NR07340K/cit61/1) 2005; 87 Sun (D1NR07340K/cit41/1) 2015; 54 Xue (D1NR07340K/cit98/1) 2019; 10 Liu (D1NR07340K/cit75/1) 2019; 1 Deng (D1NR07340K/cit72/1) 2015; 5 Liu (D1NR07340K/cit11/1) 2014; 8 Bridgman (D1NR07340K/cit4/1) 1914; 36 Ma (D1NR07340K/cit69/1) 2004; 5 Sakthivel (D1NR07340K/cit19/1) 2020; 379 Chen (D1NR07340K/cit54/1) 2020; 56 Wang (D1NR07340K/cit32/1) 2020; 16 Chen (D1NR07340K/cit44/1) 2017; 8 Liu (D1NR07340K/cit114/1) 2019; 58 Ren (D1NR07340K/cit66/1) 2018; 13 Ozhukil Valappil (D1NR07340K/cit28/1) 2017; 9 Li (D1NR07340K/cit76/1) 2018; 30 Li (D1NR07340K/cit29/1) 2015; 2 Ge (D1NR07340K/cit89/1) 2021; 93 Tang (D1NR07340K/cit78/1) 2018; 5 Long (D1NR07340K/cit90/1) 2018; 14 Sportelli (D1NR07340K/cit68/1) 2018; 7 Cheng (D1NR07340K/cit112/1) 2019; 23 Batmunkh (D1NR07340K/cit113/1) 2019; 7 Castellanos-Gomez (D1NR07340K/cit10/1) 2014; 1 Zhou (D1NR07340K/cit87/1) 2016; 55 Wittig (D1NR07340K/cit7/1) 1968; 160 Gui (D1NR07340K/cit16/1) 2018; 47 Ling (D1NR07340K/cit12/1) 2015; 112 Tian (D1NR07340K/cit56/1) 2021; 2 Ge (D1NR07340K/cit83/1) 2016; 6 Yeh (D1NR07340K/cit14/1) 2016; 7 Ding (D1NR07340K/cit94/1) 2016; 10 Guo (D1NR07340K/cit96/1) 2019; 19 Ozhukil Valappil (D1NR07340K/cit79/1) 2020; 7 Lu (D1NR07340K/cit37/1) 2020; 8 Xu (D1NR07340K/cit103/1) 2018; 9 Lee (D1NR07340K/cit48/1) 2017; 2 Shi (D1NR07340K/cit17/1) 2019; 55 Du (D1NR07340K/cit59/1) 2020; 10 Kawamura (D1NR07340K/cit6/1) 1984; 49 Li (D1NR07340K/cit36/1) 2019; 15 Fu (D1NR07340K/cit34/1) 2019; 11 Huang (D1NR07340K/cit104/1) 2016; 28 Zheng (D1NR07340K/cit35/1) 2020; 8 Santagata (D1NR07340K/cit64/1) 2011; 115 Wu (D1NR07340K/cit57/1) 2017; 193 Niu (D1NR07340K/cit15/1) 2016; 7 Cabrera (D1NR07340K/cit71/1) 2008; 53 Zhu (D1NR07340K/cit24/1) 2018; 6 Han (D1NR07340K/cit26/1) 2018; 61 Qiao (D1NR07340K/cit33/1) 2020; 20 Wang (D1NR07340K/cit46/1) 2015; 137 Rodríguez-Sánchez (D1NR07340K/cit70/1) 2000; 104 Elbanna (D1NR07340K/cit111/1) 2019; 9 de Sousa (D1NR07340K/cit109/1) 2017; 96 Jiang (D1NR07340K/cit107/1) 2020; 165 Liu (D1NR07340K/cit5/1) 2015; 44 Peng (D1NR07340K/cit20/1) 2019; 11 Meng (D1NR07340K/cit45/1) 2017; 254 Ren (D1NR07340K/cit55/1) 2020; 145 Ren (D1NR07340K/cit52/1) 2020; 187 Li (D1NR07340K/cit53/1) 2021; 223 Yue (D1NR07340K/cit51/1) 2019; 186 Ziletti (D1NR07340K/cit105/1) 2015; 114 Zhu (D1NR07340K/cit92/1) 2012; 22 Gu (D1NR07340K/cit97/1) 2017; 250 Xu (D1NR07340K/cit50/1) 2020; 7 Zhu (D1NR07340K/cit93/1) 2014; 31 Luo (D1NR07340K/cit38/1) 2019; 11 Sofer (D1NR07340K/cit99/1) 2016; 55 Favron (D1NR07340K/cit86/1) 2015; 14 Batmunkh (D1NR07340K/cit58/1) 2019; 7 Ashley (D1NR07340K/cit1/1) 2011; 84 Zhang (D1NR07340K/cit40/1) 2020; 10 Li (D1NR07340K/cit84/1) 2017; 9 Meng (D1NR07340K/cit85/1) 2018; 10 Zhang (D1NR07340K/cit3/1) 2020; 59 Gui (D1NR07340K/cit27/1) 2018; 47 Yang (D1NR07340K/cit80/1) 2019; 11 |
References_xml | – volume: 7 start-page: 2087 year: 2016 ident: D1NR07340K/cit14/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b00752 – volume: 6 start-page: 27307 year: 2016 ident: D1NR07340K/cit83/1 publication-title: Sci. Rep. doi: 10.1038/srep27307 – volume: 56 start-page: 8623 year: 2020 ident: D1NR07340K/cit23/1 publication-title: Chem. Commun. doi: 10.1039/D0CC03053H – volume: 22 start-page: 4732 year: 2012 ident: D1NR07340K/cit92/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201201499 – volume: 104 start-page: 106475 year: 2019 ident: D1NR07340K/cit74/1 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2019.06.001 – volume: 55 start-page: 11437 year: 2016 ident: D1NR07340K/cit87/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201605168 – volume: 93 start-page: 13893 year: 2021 ident: D1NR07340K/cit89/1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.1c02742 – volume: 7 start-page: 370 year: 2016 ident: D1NR07340K/cit15/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b02457 – volume: 10 start-page: 139 year: 2020 ident: D1NR07340K/cit59/1 publication-title: Nanomaterials doi: 10.3390/nano10010139 – volume: 9 start-page: 4164 year: 2018 ident: D1NR07340K/cit103/1 publication-title: Nat. Commun. doi: 10.1038/s41467-018-06629-9 – volume: 115 start-page: 4345 year: 2018 ident: D1NR07340K/cit30/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1800069115 – volume: 47 start-page: 6795 year: 2018 ident: D1NR07340K/cit16/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00387D – volume: 96 start-page: 035122 year: 2017 ident: D1NR07340K/cit109/1 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.96.035122 – volume: 55 start-page: 13849 year: 2016 ident: D1NR07340K/cit22/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201607393 – volume: 49 start-page: 879 year: 1984 ident: D1NR07340K/cit6/1 publication-title: Solid State Commun. doi: 10.1016/0038-1098(84)90444-7 – volume: 7 start-page: 12974 year: 2019 ident: D1NR07340K/cit58/1 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA02513H – volume: 63 start-page: 109 year: 1996 ident: D1NR07340K/cit65/1 publication-title: Appl. Phys. A: Mater. Sci. Process. doi: 10.1007/BF01567637 – volume: 47 start-page: 6795 year: 2018 ident: D1NR07340K/cit27/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00387D – volume: 11 start-page: 24707 year: 2019 ident: D1NR07340K/cit20/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b05471 – volume: 186 start-page: 640 year: 2019 ident: D1NR07340K/cit51/1 publication-title: Microchim. Acta doi: 10.1007/s00604-019-3768-z – volume: 130 start-page: 56 year: 2017 ident: D1NR07340K/cit100/1 publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2017.01.009 – volume: 20 start-page: 100765 year: 2020 ident: D1NR07340K/cit33/1 publication-title: Appl. Mater. Today doi: 10.1016/j.apmt.2020.100765 – volume: 10 start-page: 3440 year: 2019 ident: D1NR07340K/cit98/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.9b00891 – volume: 59 start-page: 1074 year: 2020 ident: D1NR07340K/cit3/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201912761 – volume: 30 start-page: 2742 year: 2018 ident: D1NR07340K/cit76/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b00521 – volume: 9 start-page: 3618 year: 2019 ident: D1NR07340K/cit111/1 publication-title: ACS Catal. doi: 10.1021/acscatal.8b05081 – volume: 23 start-page: 684 year: 2019 ident: D1NR07340K/cit112/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.02.028 – volume: 1 start-page: 025001 year: 2014 ident: D1NR07340K/cit10/1 publication-title: 2D Mater. doi: 10.1088/2053-1583/1/2/025001 – volume: 19 start-page: 5762 year: 2019 ident: D1NR07340K/cit96/1 publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2019.16576 – volume: 56 start-page: 4680 year: 2020 ident: D1NR07340K/cit54/1 publication-title: Chem. Commun. doi: 10.1039/D0CC00661K – volume: 7 start-page: 67 year: 2018 ident: D1NR07340K/cit68/1 publication-title: Antibiotics doi: 10.3390/antibiotics7030067 – volume: 53 start-page: 3436 year: 2008 ident: D1NR07340K/cit71/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2007.12.006 – volume: 8 start-page: 591 year: 2017 ident: D1NR07340K/cit44/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b02843 – volume: 5 start-page: 68 year: 2004 ident: D1NR07340K/cit69/1 publication-title: ChemPhysChem doi: 10.1002/cphc.200300900 – volume: 87 start-page: 151104 year: 2005 ident: D1NR07340K/cit61/1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2093935 – volume: 56 start-page: 7777 year: 2020 ident: D1NR07340K/cit18/1 publication-title: Chem. Commun. doi: 10.1039/D0CC00805B – volume: 61 start-page: 1159 year: 2018 ident: D1NR07340K/cit26/1 publication-title: Sci. China Mater. doi: 10.1007/s40843-018-9245-y – volume: 54 start-page: 11733 year: 2018 ident: D1NR07340K/cit82/1 publication-title: Chem. Commun. doi: 10.1039/C8CC07266C – volume: 406 start-page: 91 year: 2018 ident: D1NR07340K/cit95/1 publication-title: Opt. Commun. doi: 10.1016/j.optcom.2017.05.081 – volume: 7 start-page: 25691 year: 2019 ident: D1NR07340K/cit73/1 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA10487A – volume: 11 start-page: 3527 year: 2019 ident: D1NR07340K/cit108/1 publication-title: Nanoscale doi: 10.1039/C8NR09711A – volume: 1 start-page: 18 year: 2017 ident: D1NR07340K/cit88/1 publication-title: npj 2D Mater. Appl. doi: 10.1038/s41699-017-0023-5 – volume: 36 start-page: 1344 year: 1914 ident: D1NR07340K/cit4/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja02184a002 – volume: 122 start-page: 7194 issue: 13 year: 2018 ident: D1NR07340K/cit101/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b12649 – volume: 50 start-page: 552 year: 2018 ident: D1NR07340K/cit25/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.06.001 – volume: 3 start-page: 025011 year: 2016 ident: D1NR07340K/cit106/1 publication-title: 2D Mater. doi: 10.1088/2053-1583/3/2/025011 – volume: 55 start-page: 3382 year: 2016 ident: D1NR07340K/cit99/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201511309 – volume: 5 start-page: 1800420 year: 2018 ident: D1NR07340K/cit78/1 publication-title: Adv. Sci. doi: 10.1002/advs.201800420 – volume: 13 start-page: 10 year: 2017 ident: D1NR07340K/cit13/1 publication-title: Nano Today doi: 10.1016/j.nantod.2016.12.006 – volume: 7 start-page: 1700396 year: 2017 ident: D1NR07340K/cit21/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700396 – volume: 31 start-page: 801 year: 2014 ident: D1NR07340K/cit93/1 publication-title: Part. Part. Syst. Charact. doi: 10.1002/ppsc.201300375 – volume: 254 start-page: 1700011 year: 2017 ident: D1NR07340K/cit45/1 publication-title: Phys. Status Solidi doi: 10.1002/pssb.201700011 – volume: 187 start-page: 229 year: 2020 ident: D1NR07340K/cit52/1 publication-title: Microchim. Acta doi: 10.1007/s00604-020-4222-y – volume: 14 start-page: 1803132 year: 2018 ident: D1NR07340K/cit90/1 publication-title: Small doi: 10.1002/smll.201803132 – volume: 127 start-page: 3724 year: 2015 ident: D1NR07340K/cit31/1 publication-title: Angew. Chemie doi: 10.1002/ange.201409400 – volume: 250 start-page: 601 year: 2017 ident: D1NR07340K/cit97/1 publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2017.05.017 – volume: 87 start-page: 015003 year: 2001 ident: D1NR07340K/cit60/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.87.015003 – volume: 11 start-page: 242 year: 2019 ident: D1NR07340K/cit38/1 publication-title: Pharmaceutics doi: 10.3390/pharmaceutics11050242 – volume: 379 start-page: 122297 year: 2020 ident: D1NR07340K/cit19/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122297 – volume: 5 start-page: 29704 year: 2015 ident: D1NR07340K/cit72/1 publication-title: RSC Adv. doi: 10.1039/C4RA16805D – volume: 137 start-page: 11376 year: 2015 ident: D1NR07340K/cit46/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b06025 – volume: 6 start-page: eaay5661 year: 2020 ident: D1NR07340K/cit49/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.aay5661 – volume: 115 start-page: 5160 year: 2011 ident: D1NR07340K/cit64/1 publication-title: J. Phys. Chem. C doi: 10.1021/jp1094239 – volume: 9 start-page: 1266 year: 2019 ident: D1NR07340K/cit110/1 publication-title: Nanomaterials doi: 10.3390/nano9091266 – volume: 2 start-page: 303 year: 2021 ident: D1NR07340K/cit56/1 publication-title: Nano Sel. doi: 10.1002/nano.202000118 – volume: 28 start-page: 8330 year: 2016 ident: D1NR07340K/cit104/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b03592 – volume: 193 start-page: 30 year: 2017 ident: D1NR07340K/cit57/1 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2017.01.052 – volume: 8 start-page: 4033 year: 2014 ident: D1NR07340K/cit8/1 publication-title: ACS Nano doi: 10.1021/nn501226z – volume: 112 start-page: 4523 year: 2015 ident: D1NR07340K/cit12/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1416581112 – volume: 9 start-page: 709 year: 2016 ident: D1NR07340K/cit102/1 publication-title: Energy Environ. Sci. doi: 10.1039/C5EE03732H – volume: 1 start-page: 173 year: 2019 ident: D1NR07340K/cit75/1 publication-title: Carbon Energy doi: 10.1002/cey2.14 – volume: 16 start-page: 1907091 year: 2020 ident: D1NR07340K/cit32/1 publication-title: Small doi: 10.1002/smll.201907091 – volume: 6 start-page: 2381 year: 2014 ident: D1NR07340K/cit63/1 publication-title: Nanoscale doi: 10.1039/C3NR05572H – volume: 11 start-page: 16 year: 2019 ident: D1NR07340K/cit80/1 publication-title: Nanoscale doi: 10.1039/C8NR08227H – volume: 699 start-page: 223 year: 2018 ident: D1NR07340K/cit91/1 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2018.03.069 – volume: 14 start-page: 826 year: 2015 ident: D1NR07340K/cit86/1 publication-title: Nat. Mater. doi: 10.1038/nmat4299 – volume: 10 start-page: 484 year: 2016 ident: D1NR07340K/cit94/1 publication-title: ACS Nano doi: 10.1021/acsnano.5b05406 – volume: 54 start-page: 11526 year: 2015 ident: D1NR07340K/cit41/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201506154 – volume: 55 start-page: 12531 year: 2019 ident: D1NR07340K/cit17/1 publication-title: Chem. Commun. doi: 10.1039/C9CC06146K – volume: 10 start-page: 973 year: 2019 ident: D1NR07340K/cit81/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.8b03600 – volume: 6 start-page: 21255 year: 2018 ident: D1NR07340K/cit24/1 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA08374F – volume: 7 start-page: 1902075 year: 2020 ident: D1NR07340K/cit50/1 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201902075 – volume: 3 start-page: 752 year: 2020 ident: D1NR07340K/cit39/1 publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.9b01786 – volume: 12 start-page: 11511 year: 2018 ident: D1NR07340K/cit77/1 publication-title: ACS Nano doi: 10.1021/acsnano.8b06671 – volume: 1 start-page: 16061 year: 2016 ident: D1NR07340K/cit2/1 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.61 – volume: 145 start-page: 8022 year: 2020 ident: D1NR07340K/cit55/1 publication-title: Analyst doi: 10.1039/D0AN01917H – volume: 104 start-page: 9683 year: 2000 ident: D1NR07340K/cit70/1 publication-title: J. Phys. Chem. B doi: 10.1021/jp001761r – volume: 2 start-page: 7096 year: 2017 ident: D1NR07340K/cit48/1 publication-title: ACS Omega doi: 10.1021/acsomega.7b01058 – volume: 80 start-page: 4076 year: 1998 ident: D1NR07340K/cit62/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.80.4076 – volume: 84 start-page: 737 year: 2011 ident: D1NR07340K/cit1/1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2011.03.001 – volume: 115 start-page: 092107 year: 2019 ident: D1NR07340K/cit67/1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5118959 – volume: 165 start-page: 112390 year: 2020 ident: D1NR07340K/cit107/1 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2020.112390 – volume: 58 start-page: 16439 year: 2019 ident: D1NR07340K/cit114/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201908415 – volume: 15 start-page: 297 year: 2019 ident: D1NR07340K/cit36/1 publication-title: Appl. Mater. Today doi: 10.1016/j.apmt.2019.02.002 – volume: 114 start-page: 046801 year: 2015 ident: D1NR07340K/cit105/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.046801 – volume: 44 start-page: 2732 year: 2015 ident: D1NR07340K/cit5/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00257A – volume: 9 start-page: 25098 year: 2017 ident: D1NR07340K/cit84/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b05824 – volume: 10 start-page: 1030 year: 2020 ident: D1NR07340K/cit40/1 publication-title: Catal. Sci. Technol. doi: 10.1039/C9CY02278C – volume: 10 start-page: 13379 year: 2020 ident: D1NR07340K/cit47/1 publication-title: RSC Adv. doi: 10.1039/C9RA10900E – volume: 8 start-page: 10650 year: 2020 ident: D1NR07340K/cit37/1 publication-title: J. Mater. Chem. B doi: 10.1039/D0TB02101F – volume: 9 start-page: 350 year: 2017 ident: D1NR07340K/cit28/1 publication-title: Appl. Mater. Today doi: 10.1016/j.apmt.2017.09.002 – volume: 223 start-page: 121712 year: 2021 ident: D1NR07340K/cit53/1 publication-title: Talanta doi: 10.1016/j.talanta.2020.121712 – volume: 160 start-page: 994 year: 1968 ident: D1NR07340K/cit7/1 publication-title: Science doi: 10.1126/science.160.3831.994 – volume: 11 start-page: 9133 year: 2019 ident: D1NR07340K/cit34/1 publication-title: Nanoscale doi: 10.1039/C9NR02530H – volume: 10 start-page: 31136 year: 2018 ident: D1NR07340K/cit85/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b11648 – volume: 7 start-page: 12974 year: 2019 ident: D1NR07340K/cit113/1 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA02513H – volume: 19 start-page: 684 year: 1965 ident: D1NR07340K/cit9/1 publication-title: Acta Crystallogr. doi: 10.1107/S0365110X65004140 – volume: 106 start-page: 233113 year: 2015 ident: D1NR07340K/cit42/1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4922551 – volume: 2 start-page: 031002 year: 2015 ident: D1NR07340K/cit29/1 publication-title: 2D Mater. doi: 10.1088/2053-1583/2/3/031002 – volume: 13 start-page: 1842 year: 2018 ident: D1NR07340K/cit66/1 publication-title: Chem. – Asian J. doi: 10.1002/asia.201800482 – volume: 54 start-page: 960 year: 2018 ident: D1NR07340K/cit43/1 publication-title: Chem. Commun. doi: 10.1039/C7CC08211H – volume: 8 start-page: 4033 year: 2014 ident: D1NR07340K/cit11/1 publication-title: ACS Nano doi: 10.1021/nn501226z – volume: 7 start-page: 014005 year: 2020 ident: D1NR07340K/cit79/1 publication-title: Mater. Res. Express doi: 10.1088/2053-1591/ab6c09 – volume: 8 start-page: 15906 year: 2020 ident: D1NR07340K/cit35/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.0c04819 |
SSID | ssj0069363 |
Score | 2.4516 |
SecondaryResourceType | review_article |
Snippet | Phosphorene quantum dots (PQDs) belong to a new class of zero-dimensional functional nanostructures with unique physicochemical and surface properties in... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 137 |
SubjectTerms | Carrier mobility Catalysis Chemical synthesis Heterostructures Hydrogen evolution reactions Lithium sulfur batteries Oxygen evolution reactions Phosphorene Physiochemistry Pulsed lasers Quantum dots Surface properties Two dimensional materials Water splitting |
Title | Phosphorene quantum dots: synthesis, properties and catalytic applications |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34994751 https://www.proquest.com/docview/2623435669 https://www.proquest.com/docview/2618234648 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELege4EHxNcgMFAQvKCRLbGdD_NWPqdVGxPaxt4ix7HVsiypmlao--s5x4mTaUMCXqLKdtrK98v57nL3O4TeRKGKua-kx6Mcg4OSSC_LCfcIzgISiJhFWFcjHxxGeyd0_yw863tsNtUly2xHXN5YV_I_UoUxkKuukv0HydovhQH4DPKFK0gYrn8l46NpVc-nlWal1NWRcHxcbIOX2WS51esSbLvaUAjMdch9oblTTR2bjtmsG6rWwfvroZ0KSreqQXxW7N8up6vzWbF9ygu4xwSOD3g5K6xaHxe_-ALm2ojqKstmfaz5SDc3ahIHTmc_-ZpfVFNegmqZDKMOWKdveKaI3ygnrDMRCTEM5DtyOBZf1a50gCI6UJWBIXtpT93AUAZfU-g-0XyoeVAuQBdR_7w_tmwyYT95G21g8BbwCG2MJx--_uiO5IiRpqWe_dMdTy1hu_3dVy2Ta-4GGB-LrilMY3wc30f3Wq_BHRsIPEC3ZPkQ3R1wST5C-wMwuC0YXA2G966Fwju3B4ILQHAtENwhEB6jky-fjz_ueW2jDE_Adi-9SOUhVZwISYI897mSocQygYfN51wIxZgSWFLJcaY4zTIuEoFDULiKSialTzbRqKxK-RS5nCd-qHCchEpQKUiSyCAQfk5ZrhTjsYPedpuUipZFXjczKdImm4Gw9FNw-L3Z0ImDXtu1c8OdcuOqrW6v0_bZqlMMVjkY8lHEHPTKToPm06-zeCmrlV4DvjGhEU0c9MTIyP4MAUeexmHgoE0Qmh3uhf3sTxPP0Z0e71totFys5AuwO5fZyxZVvwEQdIg7 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phosphorene+quantum+dots%3A+synthesis%2C+properties+and+catalytic+applications&rft.jtitle=Nanoscale&rft.au=Ozhukil+Valappil%2C+Manila&rft.au=Alwarappan%2C+Subbiah&rft.au=Pillai%2C+Vijayamohanan+K&rft.date=2022-01-27&rft.issn=2040-3364&rft.eissn=2040-3372&rft.volume=14&rft.issue=4&rft.spage=137&rft.epage=153&rft_id=info:doi/10.1039%2Fd1nr07340k&rft.externalDocID=d1nr07340k |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon |