Phosphorene quantum dots: synthesis, properties and catalytic applications

Phosphorene quantum dots (PQDs) belong to a new class of zero-dimensional functional nanostructures with unique physicochemical and surface properties in comparison with few-layer phosphorene and other 2D analogues. Tunable band gap as a function of number of layers, ease of passivation and high car...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 14; no. 4; pp. 137 - 153
Main Authors Ozhukil Valappil, Manila, Alwarappan, Subbiah, Pillai, Vijayamohanan K
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 27.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Phosphorene quantum dots (PQDs) belong to a new class of zero-dimensional functional nanostructures with unique physicochemical and surface properties in comparison with few-layer phosphorene and other 2D analogues. Tunable band gap as a function of number of layers, ease of passivation and high carrier mobility of PQDs have attracted considerable attention in catalysis research due to which spectacular progress has been made in PQD research over the last few years. PQDs are now considered as promising catalytic materials for electrocatalytic water splitting and nitrogen reduction, lithium-sulfur batteries, solar light-driven energy devices and biocatalysis, either in pristine form or as an active component for constructing heterostructures with other 2D materials. In the light of these recent advances, it is worthwhile to review and consolidate PQD research in catalytic applications to understand the challenges ahead and suggest possible solutions. In this review, we systematically summarize various synthetic strategies including ultrasonic and electrochemical exfoliation, solvothermal treatment, blender breaking, milling, crushing and pulsed laser irradiation. Furthermore, the physiochemical properties of PQDs are discussed based on both experimental and theoretical perspectives. The potential applications of PQDs in catalysis with special emphasis on photocatalysis (solar light-driven energy devices) and electrocatalysis (oxygen evolution reactions and hydrogen evolution reactions) -are critically discussed along with the present status, challenges and future perspectives Phosphorene quantum dots (PQDs) belong to a new class of zero-dimensional functional nanostructures with unique physicochemical and surface properties in comparison with few-layer phosphorene and other 2D analogues.
AbstractList Phosphorene quantum dots (PQDs) belong to a new class of zero-dimensional functional nanostructures with unique physicochemical and surface properties in comparison with few-layer phosphorene and other 2D analogues. Tunable band gap as a function of number of layers, ease of passivation and high carrier mobility of PQDs have attracted considerable attention in catalysis research due to which spectacular progress has been made in PQD research over the last few years. PQDs are now considered as promising catalytic materials for electrocatalytic water splitting and nitrogen reduction, lithium–sulfur batteries, solar light–driven energy devices and biocatalysis, either in pristine form or as an active component for constructing heterostructures with other 2D materials. In the light of these recent advances, it is worthwhile to review and consolidate PQD research in catalytic applications to understand the challenges ahead and suggest possible solutions. In this review, we systematically summarize various synthetic strategies including ultrasonic and electrochemical exfoliation, solvothermal treatment, blender breaking, milling, crushing and pulsed laser irradiation. Furthermore, the physiochemical properties of PQDs are discussed based on both experimental and theoretical perspectives. The potential applications of PQDs in catalysis with special emphasis on photocatalysis (solar light–driven energy devices) and electrocatalysis (oxygen evolution reactions and hydrogen evolution reactions) -are critically discussed along with the present status, challenges and future perspectives
Phosphorene quantum dots (PQDs) belong to a new class of zero-dimensional functional nanostructures with unique physicochemical and surface properties in comparison with few-layer phosphorene and other 2D analogues. Tunable band gap as a function of number of layers, ease of passivation and high carrier mobility of PQDs have attracted considerable attention in catalysis research due to which spectacular progress has been made in PQD research over the last few years. PQDs are now considered as promising catalytic materials for electrocatalytic water splitting and nitrogen reduction, lithium-sulfur batteries, solar light-driven energy devices and biocatalysis, either in pristine form or as an active component for constructing heterostructures with other 2D materials. In the light of these recent advances, it is worthwhile to review and consolidate PQD research in catalytic applications to understand the challenges ahead and suggest possible solutions. In this review, we systematically summarize various synthetic strategies including ultrasonic and electrochemical exfoliation, solvothermal treatment, blender breaking, milling, crushing and pulsed laser irradiation. Furthermore, the physiochemical properties of PQDs are discussed based on both experimental and theoretical perspectives. The potential applications of PQDs in catalysis with special emphasis on photocatalysis (solar light-driven energy devices) and electrocatalysis (oxygen evolution reactions and hydrogen evolution reactions) -are critically discussed along with the present status, challenges and future perspectives Phosphorene quantum dots (PQDs) belong to a new class of zero-dimensional functional nanostructures with unique physicochemical and surface properties in comparison with few-layer phosphorene and other 2D analogues.
Phosphorene quantum dots (PQDs) belong to a new class of zero-dimensional functional nanostructures with unique physicochemical and surface properties in comparison with few-layer phosphorene and other 2D analogues. Tunable band gap as a function of number of layers, ease of passivation and high carrier mobility of PQDs have attracted considerable attention in catalysis research due to which spectacular progress has been made in PQD research over the last few years. PQDs are now considered as promising catalytic materials for electrocatalytic water splitting and nitrogen reduction, lithium-sulfur batteries, solar light-driven energy devices and biocatalysis, either in pristine form or as an active component for constructing heterostructures with other 2D materials. In the light of these recent advances, it is worthwhile to review and consolidate PQD research in catalytic applications to understand the challenges ahead and suggest possible solutions. In this review, we systematically summarize various synthetic strategies including ultrasonic and electrochemical exfoliation, solvothermal treatment, blender breaking, milling, crushing and pulsed laser irradiation. Furthermore, the physiochemical properties of PQDs are discussed based on both experimental and theoretical perspectives. The potential applications of PQDs in catalysis with special emphasis on photocatalysis (solar light-driven energy devices) and electrocatalysis (oxygen evolution reactions and hydrogen evolution reactions) -are critically discussed along with the present status, challenges and future perspectives.
Phosphorene quantum dots (PQDs) belong to a new class of zero-dimensional functional nanostructures with unique physicochemical and surface properties in comparison with few-layer phosphorene and other 2D analogues. Tunable band gap as a function of number of layers, ease of passivation and high carrier mobility of PQDs have attracted considerable attention in catalysis research due to which spectacular progress has been made in PQD research over the last few years. PQDs are now considered as promising catalytic materials for electrocatalytic water splitting and nitrogen reduction, lithium-sulfur batteries, solar light-driven energy devices and biocatalysis, either in pristine form or as an active component for constructing heterostructures with other 2D materials. In the light of these recent advances, it is worthwhile to review and consolidate PQD research in catalytic applications to understand the challenges ahead and suggest possible solutions. In this review, we systematically summarize various synthetic strategies including ultrasonic and electrochemical exfoliation, solvothermal treatment, blender breaking, milling, crushing and pulsed laser irradiation. Furthermore, the physiochemical properties of PQDs are discussed based on both experimental and theoretical perspectives. The potential applications of PQDs in catalysis with special emphasis on photocatalysis (solar light-driven energy devices) and electrocatalysis (oxygen evolution reactions and hydrogen evolution reactions) -are critically discussed along with the present status, challenges and future perspectives.Phosphorene quantum dots (PQDs) belong to a new class of zero-dimensional functional nanostructures with unique physicochemical and surface properties in comparison with few-layer phosphorene and other 2D analogues. Tunable band gap as a function of number of layers, ease of passivation and high carrier mobility of PQDs have attracted considerable attention in catalysis research due to which spectacular progress has been made in PQD research over the last few years. PQDs are now considered as promising catalytic materials for electrocatalytic water splitting and nitrogen reduction, lithium-sulfur batteries, solar light-driven energy devices and biocatalysis, either in pristine form or as an active component for constructing heterostructures with other 2D materials. In the light of these recent advances, it is worthwhile to review and consolidate PQD research in catalytic applications to understand the challenges ahead and suggest possible solutions. In this review, we systematically summarize various synthetic strategies including ultrasonic and electrochemical exfoliation, solvothermal treatment, blender breaking, milling, crushing and pulsed laser irradiation. Furthermore, the physiochemical properties of PQDs are discussed based on both experimental and theoretical perspectives. The potential applications of PQDs in catalysis with special emphasis on photocatalysis (solar light-driven energy devices) and electrocatalysis (oxygen evolution reactions and hydrogen evolution reactions) -are critically discussed along with the present status, challenges and future perspectives.
Author Ozhukil Valappil, Manila
Alwarappan, Subbiah
Pillai, Vijayamohanan K
AuthorAffiliation CSIR-Central Electrochemical Research Institute
Indian Institute of Science Education and Research
AuthorAffiliation_xml – name: Indian Institute of Science Education and Research
– name: CSIR-Central Electrochemical Research Institute
Author_xml – sequence: 1
  givenname: Manila
  surname: Ozhukil Valappil
  fullname: Ozhukil Valappil, Manila
– sequence: 2
  givenname: Subbiah
  surname: Alwarappan
  fullname: Alwarappan, Subbiah
– sequence: 3
  givenname: Vijayamohanan K
  surname: Pillai
  fullname: Pillai, Vijayamohanan K
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34994751$$D View this record in MEDLINE/PubMed
BookMark eNptkc1LAzEQxYNU7IdevCsLXkSsJpvstutN6rdFRfS8ZLMTmrpNtkn20P_e2NYKxdPMwO8Nj_e6qKWNBoQOCb4gmGaXJdEWDyjDXzuoE2OG-5QO4tZmT1kbdZ2bYpxmNKV7qE1ZlrFBQjro6W1iXD0xFjRE84Zr38yi0nh3FbmF9hNwyp1HtTU1WK_ARVyXkeCeVwuvRMTrulLhVEa7fbQreeXgYD176PPu9mP00B-_3j-Orsd9EWz5firLhElOBVBSlphLSCCGIaEEcy6EzDIpYmDA40JyVhRcDEWcFBhLBhkApj10uvobXM0bcD6fKSegqrgG07g8Tskwpixlw4CebKFT01gd3AUqMDRJQyQ9dLymmmIGZV5bNeN2kf-mFICzFSCscc6C3CAE5z8V5Dfk5X1ZwXOA8RYslF8m5C1X1f-So5XEOrF5_dcq_QY5e5PP
CitedBy_id crossref_primary_10_1063_5_0219794
crossref_primary_10_3390_polym15040947
crossref_primary_10_3390_molecules27092822
crossref_primary_10_1364_OL_507725
crossref_primary_10_1016_j_joule_2022_09_010
crossref_primary_10_1039_D2AY01040B
crossref_primary_10_1134_S0018143924700073
crossref_primary_10_31857_S0023119324030069
crossref_primary_10_1088_1361_6463_acf0ce
crossref_primary_10_1002_smll_202409735
crossref_primary_10_1016_j_ijhydene_2024_12_503
crossref_primary_10_1039_D2CS01018F
crossref_primary_10_3390_pharmaceutics15122748
crossref_primary_10_1002_lpor_202200551
Cites_doi 10.1021/acs.jpclett.6b00752
10.1038/srep27307
10.1039/D0CC03053H
10.1002/adfm.201201499
10.1016/j.elecom.2019.06.001
10.1002/anie.201605168
10.1021/acs.analchem.1c02742
10.1021/acs.jpclett.5b02457
10.3390/nano10010139
10.1038/s41467-018-06629-9
10.1073/pnas.1800069115
10.1039/C8CS00387D
10.1103/PhysRevB.96.035122
10.1002/anie.201607393
10.1016/0038-1098(84)90444-7
10.1039/C9TA02513H
10.1007/BF01567637
10.1021/acsami.9b05471
10.1007/s00604-019-3768-z
10.1016/j.commatsci.2017.01.009
10.1016/j.apmt.2020.100765
10.1021/acs.jpclett.9b00891
10.1002/anie.201912761
10.1021/acs.chemmater.8b00521
10.1021/acscatal.8b05081
10.1016/j.ensm.2019.02.028
10.1088/2053-1583/1/2/025001
10.1166/jnn.2019.16576
10.1039/D0CC00661K
10.3390/antibiotics7030067
10.1016/j.electacta.2007.12.006
10.1021/acs.jpclett.6b02843
10.1002/cphc.200300900
10.1063/1.2093935
10.1039/D0CC00805B
10.1007/s40843-018-9245-y
10.1039/C8CC07266C
10.1016/j.optcom.2017.05.081
10.1039/C9TA10487A
10.1039/C8NR09711A
10.1038/s41699-017-0023-5
10.1021/ja02184a002
10.1021/acs.jpcc.7b12649
10.1016/j.nanoen.2018.06.001
10.1088/2053-1583/3/2/025011
10.1002/anie.201511309
10.1002/advs.201800420
10.1016/j.nantod.2016.12.006
10.1002/aenm.201700396
10.1002/ppsc.201300375
10.1002/pssb.201700011
10.1007/s00604-020-4222-y
10.1002/smll.201803132
10.1002/ange.201409400
10.1016/j.snb.2017.05.017
10.1103/PhysRevLett.87.015003
10.3390/pharmaceutics11050242
10.1016/j.cej.2019.122297
10.1039/C4RA16805D
10.1021/jacs.5b06025
10.1126/sciadv.aay5661
10.1021/jp1094239
10.3390/nano9091266
10.1002/nano.202000118
10.1021/acs.chemmater.6b03592
10.1016/j.matlet.2017.01.052
10.1021/nn501226z
10.1073/pnas.1416581112
10.1039/C5EE03732H
10.1002/cey2.14
10.1002/smll.201907091
10.1039/C3NR05572H
10.1039/C8NR08227H
10.1016/j.cplett.2018.03.069
10.1038/nmat4299
10.1021/acsnano.5b05406
10.1002/anie.201506154
10.1039/C9CC06146K
10.1021/acs.jpclett.8b03600
10.1039/C8TA08374F
10.1002/admi.201902075
10.1021/acsanm.9b01786
10.1021/acsnano.8b06671
10.1038/natrevmats.2016.61
10.1039/D0AN01917H
10.1021/jp001761r
10.1021/acsomega.7b01058
10.1103/PhysRevLett.80.4076
10.1016/j.chemosphere.2011.03.001
10.1063/1.5118959
10.1016/j.bios.2020.112390
10.1002/anie.201908415
10.1016/j.apmt.2019.02.002
10.1103/PhysRevLett.114.046801
10.1039/C4CS00257A
10.1021/acsami.7b05824
10.1039/C9CY02278C
10.1039/C9RA10900E
10.1039/D0TB02101F
10.1016/j.apmt.2017.09.002
10.1016/j.talanta.2020.121712
10.1126/science.160.3831.994
10.1039/C9NR02530H
10.1021/acsami.8b11648
10.1107/S0365110X65004140
10.1063/1.4922551
10.1088/2053-1583/2/3/031002
10.1002/asia.201800482
10.1039/C7CC08211H
10.1088/2053-1591/ab6c09
10.1021/acssuschemeng.0c04819
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2022
Copyright_xml – notice: Copyright Royal Society of Chemistry 2022
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
DOI 10.1039/d1nr07340k
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database

CrossRef
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-3372
EndPage 153
ExternalDocumentID 34994751
10_1039_D1NR07340K
d1nr07340k
Genre Journal Article
Review
GroupedDBID -
0-7
0R
29M
4.4
53G
705
7~J
AAEMU
AAGNR
AAIWI
AANOJ
AAPBV
ABDVN
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFVBQ
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
DU5
EBS
ECGLT
EE0
EF-
F5P
HZ
H~N
J3I
JG
O-G
O9-
OK1
P2P
RCNCU
RIG
RNS
RPMJG
RRC
RSCEA
---
0R~
AAJAE
AARTK
AAWGC
AAXHV
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AGRSR
AHGCF
AKBGW
AKMSF
ALUYA
ANUXI
APEMP
CITATION
GGIMP
H13
HZ~
RAOCF
RVUXY
-JG
NPM
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
ID FETCH-LOGICAL-c337t-6fd54fa3ce31dd0afe5e2e81310aaccf99fc2e4ea2bfa4bbac8c25b00f4e9ee03
ISSN 2040-3364
2040-3372
IngestDate Fri Jul 11 12:29:24 EDT 2025
Mon Jun 30 07:10:07 EDT 2025
Wed Feb 19 02:27:07 EST 2025
Thu Apr 24 23:07:57 EDT 2025
Tue Jul 01 01:14:17 EDT 2025
Sat Jan 29 04:20:47 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c337t-6fd54fa3ce31dd0afe5e2e81310aaccf99fc2e4ea2bfa4bbac8c25b00f4e9ee03
Notes Prof. Vijayamohanan K Pillai is now the Chair and Dean (Research) at IIER-Tirupathi, AP, India. Prior to this position, he was the director of CSIR-Central Electrochemical Research Institute, Karaikudi, Tamil Nadu, India (2012-2018) and held additional director position at CSIR-National Chemical Laboratory (2015-2016), Pune, Maharashtra, India. His research interests include electrocatalysis, electrochemical energy storage systems, bio-electrochemistry, electrosynthesis of nanomaterials and quantum dots. Prof. Pillai has more than 260 research papers and 20 patents to his credit. Under his guidance, 24 students have received PhD degrees. Prof. Pillai is a recipient of many prestigious awards including Medals of the MRSI and CRSI. He is a J C Bose National Fellow and Fellow of the Indian Academy of Sciences. He is also in the editorial boards of several prestigious journals.
Dr. Manila Ozhukil Valappil received her MSc (Applied Chemistry) from Cochin University of Science and Technology, Kerala, India. She obtained her PhD in Chemical Sciences (2020) from CSIR-Central Electrochemical Research Institute, Tamil Nadu, India. She is currently a postdoctoral research associate at the Department of Chemistry, University of Calgary, Canada. Her research interests revolve around materials electrochemistry.
Dr Subbiah Alwarappan is now a Principal Scientist and Associate Professor at CSIR-Central Electrochemical Research institute. So far, he graduated over 25 researchers including PhD, MSc, MPhil and BTech students towards their thesis and mentored 6 Postdoctoral researchers. Prior to joining CSIR-CECRI, he worked in the United States (2006-2013) at various institutes (University of Iowa; Florida International University and University of South Florida). He graduated with a PhD degree from Macquarie University, Sydney, Australia (2003-2006) and was a recipient of IPRS fellowship from Australian Government. He published 92 research articles in the research area of electrochemical biosensors, photoelectrochemical sensors, biofuel cells, microelectrodes, electrocatalysts and electrosynthesis of quantum dots. He has also written 2 book chapters on biosensors and 1 book. He has 1 US patent to his credit. He is a Fellow of the Royal society of Chemistry and member of Indian National Young Academy of science (INYAS).
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-9559-8989
0000-0003-4839-4531
PMID 34994751
PQID 2623435669
PQPubID 2047485
PageCount 17
ParticipantIDs proquest_miscellaneous_2618234648
rsc_primary_d1nr07340k
crossref_primary_10_1039_D1NR07340K
crossref_citationtrail_10_1039_D1NR07340K
proquest_journals_2623435669
pubmed_primary_34994751
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-27
PublicationDateYYYYMMDD 2022-01-27
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-27
  day: 27
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Nanoscale
PublicationTitleAlternate Nanoscale
PublicationYear 2022
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Fang (D1NR07340K/cit73/1) 2019; 7
Prasannachandran (D1NR07340K/cit23/1) 2020; 56
Zhao (D1NR07340K/cit47/1) 2020; 10
Hashimoto (D1NR07340K/cit74/1) 2019; 104
Gan (D1NR07340K/cit42/1) 2015; 106
Ren (D1NR07340K/cit21/1) 2017; 7
Rahman (D1NR07340K/cit102/1) 2016; 9
Lenzner (D1NR07340K/cit62/1) 1998; 80
Amaral (D1NR07340K/cit39/1) 2020; 3
Russo (D1NR07340K/cit63/1) 2014; 6
Ye (D1NR07340K/cit8/1) 2014; 8
Tian (D1NR07340K/cit30/1) 2018; 115
Vishnoi (D1NR07340K/cit91/1) 2018; 699
Ozhukil Valappil (D1NR07340K/cit82/1) 2018; 54
Arra (D1NR07340K/cit101/1) 2018; 122
Yuan (D1NR07340K/cit43/1) 2018; 54
Prasannachandran (D1NR07340K/cit77/1) 2018; 12
Wang (D1NR07340K/cit106/1) 2016; 3
Chichkov (D1NR07340K/cit65/1) 1996; 63
Ozhukil Valappil (D1NR07340K/cit81/1) 2019; 10
Cao (D1NR07340K/cit108/1) 2019; 11
Jiang (D1NR07340K/cit22/1) 2016; 55
Carvalho (D1NR07340K/cit2/1) 2016; 1
Zhu (D1NR07340K/cit13/1) 2017; 13
Guo (D1NR07340K/cit95/1) 2018; 406
Ahmed (D1NR07340K/cit88/1) 2017; 1
Zhang (D1NR07340K/cit31/1) 2015; 127
Pan (D1NR07340K/cit110/1) 2019; 9
Gao (D1NR07340K/cit18/1) 2020; 56
Jeschke (D1NR07340K/cit60/1) 2001; 87
Lei (D1NR07340K/cit25/1) 2018; 50
Gong (D1NR07340K/cit49/1) 2020; 6
Ge (D1NR07340K/cit67/1) 2019; 115
Zhou (D1NR07340K/cit100/1) 2017; 130
Brown (D1NR07340K/cit9/1) 1965; 19
Jiang (D1NR07340K/cit61/1) 2005; 87
Sun (D1NR07340K/cit41/1) 2015; 54
Xue (D1NR07340K/cit98/1) 2019; 10
Liu (D1NR07340K/cit75/1) 2019; 1
Deng (D1NR07340K/cit72/1) 2015; 5
Liu (D1NR07340K/cit11/1) 2014; 8
Bridgman (D1NR07340K/cit4/1) 1914; 36
Ma (D1NR07340K/cit69/1) 2004; 5
Sakthivel (D1NR07340K/cit19/1) 2020; 379
Chen (D1NR07340K/cit54/1) 2020; 56
Wang (D1NR07340K/cit32/1) 2020; 16
Chen (D1NR07340K/cit44/1) 2017; 8
Liu (D1NR07340K/cit114/1) 2019; 58
Ren (D1NR07340K/cit66/1) 2018; 13
Ozhukil Valappil (D1NR07340K/cit28/1) 2017; 9
Li (D1NR07340K/cit76/1) 2018; 30
Li (D1NR07340K/cit29/1) 2015; 2
Ge (D1NR07340K/cit89/1) 2021; 93
Tang (D1NR07340K/cit78/1) 2018; 5
Long (D1NR07340K/cit90/1) 2018; 14
Sportelli (D1NR07340K/cit68/1) 2018; 7
Cheng (D1NR07340K/cit112/1) 2019; 23
Batmunkh (D1NR07340K/cit113/1) 2019; 7
Castellanos-Gomez (D1NR07340K/cit10/1) 2014; 1
Zhou (D1NR07340K/cit87/1) 2016; 55
Wittig (D1NR07340K/cit7/1) 1968; 160
Gui (D1NR07340K/cit16/1) 2018; 47
Ling (D1NR07340K/cit12/1) 2015; 112
Tian (D1NR07340K/cit56/1) 2021; 2
Ge (D1NR07340K/cit83/1) 2016; 6
Yeh (D1NR07340K/cit14/1) 2016; 7
Ding (D1NR07340K/cit94/1) 2016; 10
Guo (D1NR07340K/cit96/1) 2019; 19
Ozhukil Valappil (D1NR07340K/cit79/1) 2020; 7
Lu (D1NR07340K/cit37/1) 2020; 8
Xu (D1NR07340K/cit103/1) 2018; 9
Lee (D1NR07340K/cit48/1) 2017; 2
Shi (D1NR07340K/cit17/1) 2019; 55
Du (D1NR07340K/cit59/1) 2020; 10
Kawamura (D1NR07340K/cit6/1) 1984; 49
Li (D1NR07340K/cit36/1) 2019; 15
Fu (D1NR07340K/cit34/1) 2019; 11
Huang (D1NR07340K/cit104/1) 2016; 28
Zheng (D1NR07340K/cit35/1) 2020; 8
Santagata (D1NR07340K/cit64/1) 2011; 115
Wu (D1NR07340K/cit57/1) 2017; 193
Niu (D1NR07340K/cit15/1) 2016; 7
Cabrera (D1NR07340K/cit71/1) 2008; 53
Zhu (D1NR07340K/cit24/1) 2018; 6
Han (D1NR07340K/cit26/1) 2018; 61
Qiao (D1NR07340K/cit33/1) 2020; 20
Wang (D1NR07340K/cit46/1) 2015; 137
Rodríguez-Sánchez (D1NR07340K/cit70/1) 2000; 104
Elbanna (D1NR07340K/cit111/1) 2019; 9
de Sousa (D1NR07340K/cit109/1) 2017; 96
Jiang (D1NR07340K/cit107/1) 2020; 165
Liu (D1NR07340K/cit5/1) 2015; 44
Peng (D1NR07340K/cit20/1) 2019; 11
Meng (D1NR07340K/cit45/1) 2017; 254
Ren (D1NR07340K/cit55/1) 2020; 145
Ren (D1NR07340K/cit52/1) 2020; 187
Li (D1NR07340K/cit53/1) 2021; 223
Yue (D1NR07340K/cit51/1) 2019; 186
Ziletti (D1NR07340K/cit105/1) 2015; 114
Zhu (D1NR07340K/cit92/1) 2012; 22
Gu (D1NR07340K/cit97/1) 2017; 250
Xu (D1NR07340K/cit50/1) 2020; 7
Zhu (D1NR07340K/cit93/1) 2014; 31
Luo (D1NR07340K/cit38/1) 2019; 11
Sofer (D1NR07340K/cit99/1) 2016; 55
Favron (D1NR07340K/cit86/1) 2015; 14
Batmunkh (D1NR07340K/cit58/1) 2019; 7
Ashley (D1NR07340K/cit1/1) 2011; 84
Zhang (D1NR07340K/cit40/1) 2020; 10
Li (D1NR07340K/cit84/1) 2017; 9
Meng (D1NR07340K/cit85/1) 2018; 10
Zhang (D1NR07340K/cit3/1) 2020; 59
Gui (D1NR07340K/cit27/1) 2018; 47
Yang (D1NR07340K/cit80/1) 2019; 11
References_xml – volume: 7
  start-page: 2087
  year: 2016
  ident: D1NR07340K/cit14/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b00752
– volume: 6
  start-page: 27307
  year: 2016
  ident: D1NR07340K/cit83/1
  publication-title: Sci. Rep.
  doi: 10.1038/srep27307
– volume: 56
  start-page: 8623
  year: 2020
  ident: D1NR07340K/cit23/1
  publication-title: Chem. Commun.
  doi: 10.1039/D0CC03053H
– volume: 22
  start-page: 4732
  year: 2012
  ident: D1NR07340K/cit92/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201201499
– volume: 104
  start-page: 106475
  year: 2019
  ident: D1NR07340K/cit74/1
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2019.06.001
– volume: 55
  start-page: 11437
  year: 2016
  ident: D1NR07340K/cit87/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201605168
– volume: 93
  start-page: 13893
  year: 2021
  ident: D1NR07340K/cit89/1
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.1c02742
– volume: 7
  start-page: 370
  year: 2016
  ident: D1NR07340K/cit15/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b02457
– volume: 10
  start-page: 139
  year: 2020
  ident: D1NR07340K/cit59/1
  publication-title: Nanomaterials
  doi: 10.3390/nano10010139
– volume: 9
  start-page: 4164
  year: 2018
  ident: D1NR07340K/cit103/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06629-9
– volume: 115
  start-page: 4345
  year: 2018
  ident: D1NR07340K/cit30/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1800069115
– volume: 47
  start-page: 6795
  year: 2018
  ident: D1NR07340K/cit16/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00387D
– volume: 96
  start-page: 035122
  year: 2017
  ident: D1NR07340K/cit109/1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.96.035122
– volume: 55
  start-page: 13849
  year: 2016
  ident: D1NR07340K/cit22/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201607393
– volume: 49
  start-page: 879
  year: 1984
  ident: D1NR07340K/cit6/1
  publication-title: Solid State Commun.
  doi: 10.1016/0038-1098(84)90444-7
– volume: 7
  start-page: 12974
  year: 2019
  ident: D1NR07340K/cit58/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA02513H
– volume: 63
  start-page: 109
  year: 1996
  ident: D1NR07340K/cit65/1
  publication-title: Appl. Phys. A: Mater. Sci. Process.
  doi: 10.1007/BF01567637
– volume: 47
  start-page: 6795
  year: 2018
  ident: D1NR07340K/cit27/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00387D
– volume: 11
  start-page: 24707
  year: 2019
  ident: D1NR07340K/cit20/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b05471
– volume: 186
  start-page: 640
  year: 2019
  ident: D1NR07340K/cit51/1
  publication-title: Microchim. Acta
  doi: 10.1007/s00604-019-3768-z
– volume: 130
  start-page: 56
  year: 2017
  ident: D1NR07340K/cit100/1
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2017.01.009
– volume: 20
  start-page: 100765
  year: 2020
  ident: D1NR07340K/cit33/1
  publication-title: Appl. Mater. Today
  doi: 10.1016/j.apmt.2020.100765
– volume: 10
  start-page: 3440
  year: 2019
  ident: D1NR07340K/cit98/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.9b00891
– volume: 59
  start-page: 1074
  year: 2020
  ident: D1NR07340K/cit3/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201912761
– volume: 30
  start-page: 2742
  year: 2018
  ident: D1NR07340K/cit76/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b00521
– volume: 9
  start-page: 3618
  year: 2019
  ident: D1NR07340K/cit111/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b05081
– volume: 23
  start-page: 684
  year: 2019
  ident: D1NR07340K/cit112/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.02.028
– volume: 1
  start-page: 025001
  year: 2014
  ident: D1NR07340K/cit10/1
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/1/2/025001
– volume: 19
  start-page: 5762
  year: 2019
  ident: D1NR07340K/cit96/1
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2019.16576
– volume: 56
  start-page: 4680
  year: 2020
  ident: D1NR07340K/cit54/1
  publication-title: Chem. Commun.
  doi: 10.1039/D0CC00661K
– volume: 7
  start-page: 67
  year: 2018
  ident: D1NR07340K/cit68/1
  publication-title: Antibiotics
  doi: 10.3390/antibiotics7030067
– volume: 53
  start-page: 3436
  year: 2008
  ident: D1NR07340K/cit71/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2007.12.006
– volume: 8
  start-page: 591
  year: 2017
  ident: D1NR07340K/cit44/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b02843
– volume: 5
  start-page: 68
  year: 2004
  ident: D1NR07340K/cit69/1
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.200300900
– volume: 87
  start-page: 151104
  year: 2005
  ident: D1NR07340K/cit61/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2093935
– volume: 56
  start-page: 7777
  year: 2020
  ident: D1NR07340K/cit18/1
  publication-title: Chem. Commun.
  doi: 10.1039/D0CC00805B
– volume: 61
  start-page: 1159
  year: 2018
  ident: D1NR07340K/cit26/1
  publication-title: Sci. China Mater.
  doi: 10.1007/s40843-018-9245-y
– volume: 54
  start-page: 11733
  year: 2018
  ident: D1NR07340K/cit82/1
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC07266C
– volume: 406
  start-page: 91
  year: 2018
  ident: D1NR07340K/cit95/1
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2017.05.081
– volume: 7
  start-page: 25691
  year: 2019
  ident: D1NR07340K/cit73/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA10487A
– volume: 11
  start-page: 3527
  year: 2019
  ident: D1NR07340K/cit108/1
  publication-title: Nanoscale
  doi: 10.1039/C8NR09711A
– volume: 1
  start-page: 18
  year: 2017
  ident: D1NR07340K/cit88/1
  publication-title: npj 2D Mater. Appl.
  doi: 10.1038/s41699-017-0023-5
– volume: 36
  start-page: 1344
  year: 1914
  ident: D1NR07340K/cit4/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja02184a002
– volume: 122
  start-page: 7194
  issue: 13
  year: 2018
  ident: D1NR07340K/cit101/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b12649
– volume: 50
  start-page: 552
  year: 2018
  ident: D1NR07340K/cit25/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.06.001
– volume: 3
  start-page: 025011
  year: 2016
  ident: D1NR07340K/cit106/1
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/3/2/025011
– volume: 55
  start-page: 3382
  year: 2016
  ident: D1NR07340K/cit99/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201511309
– volume: 5
  start-page: 1800420
  year: 2018
  ident: D1NR07340K/cit78/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201800420
– volume: 13
  start-page: 10
  year: 2017
  ident: D1NR07340K/cit13/1
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2016.12.006
– volume: 7
  start-page: 1700396
  year: 2017
  ident: D1NR07340K/cit21/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700396
– volume: 31
  start-page: 801
  year: 2014
  ident: D1NR07340K/cit93/1
  publication-title: Part. Part. Syst. Charact.
  doi: 10.1002/ppsc.201300375
– volume: 254
  start-page: 1700011
  year: 2017
  ident: D1NR07340K/cit45/1
  publication-title: Phys. Status Solidi
  doi: 10.1002/pssb.201700011
– volume: 187
  start-page: 229
  year: 2020
  ident: D1NR07340K/cit52/1
  publication-title: Microchim. Acta
  doi: 10.1007/s00604-020-4222-y
– volume: 14
  start-page: 1803132
  year: 2018
  ident: D1NR07340K/cit90/1
  publication-title: Small
  doi: 10.1002/smll.201803132
– volume: 127
  start-page: 3724
  year: 2015
  ident: D1NR07340K/cit31/1
  publication-title: Angew. Chemie
  doi: 10.1002/ange.201409400
– volume: 250
  start-page: 601
  year: 2017
  ident: D1NR07340K/cit97/1
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2017.05.017
– volume: 87
  start-page: 015003
  year: 2001
  ident: D1NR07340K/cit60/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.87.015003
– volume: 11
  start-page: 242
  year: 2019
  ident: D1NR07340K/cit38/1
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics11050242
– volume: 379
  start-page: 122297
  year: 2020
  ident: D1NR07340K/cit19/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122297
– volume: 5
  start-page: 29704
  year: 2015
  ident: D1NR07340K/cit72/1
  publication-title: RSC Adv.
  doi: 10.1039/C4RA16805D
– volume: 137
  start-page: 11376
  year: 2015
  ident: D1NR07340K/cit46/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b06025
– volume: 6
  start-page: eaay5661
  year: 2020
  ident: D1NR07340K/cit49/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aay5661
– volume: 115
  start-page: 5160
  year: 2011
  ident: D1NR07340K/cit64/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp1094239
– volume: 9
  start-page: 1266
  year: 2019
  ident: D1NR07340K/cit110/1
  publication-title: Nanomaterials
  doi: 10.3390/nano9091266
– volume: 2
  start-page: 303
  year: 2021
  ident: D1NR07340K/cit56/1
  publication-title: Nano Sel.
  doi: 10.1002/nano.202000118
– volume: 28
  start-page: 8330
  year: 2016
  ident: D1NR07340K/cit104/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b03592
– volume: 193
  start-page: 30
  year: 2017
  ident: D1NR07340K/cit57/1
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2017.01.052
– volume: 8
  start-page: 4033
  year: 2014
  ident: D1NR07340K/cit8/1
  publication-title: ACS Nano
  doi: 10.1021/nn501226z
– volume: 112
  start-page: 4523
  year: 2015
  ident: D1NR07340K/cit12/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1416581112
– volume: 9
  start-page: 709
  year: 2016
  ident: D1NR07340K/cit102/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE03732H
– volume: 1
  start-page: 173
  year: 2019
  ident: D1NR07340K/cit75/1
  publication-title: Carbon Energy
  doi: 10.1002/cey2.14
– volume: 16
  start-page: 1907091
  year: 2020
  ident: D1NR07340K/cit32/1
  publication-title: Small
  doi: 10.1002/smll.201907091
– volume: 6
  start-page: 2381
  year: 2014
  ident: D1NR07340K/cit63/1
  publication-title: Nanoscale
  doi: 10.1039/C3NR05572H
– volume: 11
  start-page: 16
  year: 2019
  ident: D1NR07340K/cit80/1
  publication-title: Nanoscale
  doi: 10.1039/C8NR08227H
– volume: 699
  start-page: 223
  year: 2018
  ident: D1NR07340K/cit91/1
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2018.03.069
– volume: 14
  start-page: 826
  year: 2015
  ident: D1NR07340K/cit86/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4299
– volume: 10
  start-page: 484
  year: 2016
  ident: D1NR07340K/cit94/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b05406
– volume: 54
  start-page: 11526
  year: 2015
  ident: D1NR07340K/cit41/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201506154
– volume: 55
  start-page: 12531
  year: 2019
  ident: D1NR07340K/cit17/1
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC06146K
– volume: 10
  start-page: 973
  year: 2019
  ident: D1NR07340K/cit81/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.8b03600
– volume: 6
  start-page: 21255
  year: 2018
  ident: D1NR07340K/cit24/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA08374F
– volume: 7
  start-page: 1902075
  year: 2020
  ident: D1NR07340K/cit50/1
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201902075
– volume: 3
  start-page: 752
  year: 2020
  ident: D1NR07340K/cit39/1
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.9b01786
– volume: 12
  start-page: 11511
  year: 2018
  ident: D1NR07340K/cit77/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b06671
– volume: 1
  start-page: 16061
  year: 2016
  ident: D1NR07340K/cit2/1
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.61
– volume: 145
  start-page: 8022
  year: 2020
  ident: D1NR07340K/cit55/1
  publication-title: Analyst
  doi: 10.1039/D0AN01917H
– volume: 104
  start-page: 9683
  year: 2000
  ident: D1NR07340K/cit70/1
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp001761r
– volume: 2
  start-page: 7096
  year: 2017
  ident: D1NR07340K/cit48/1
  publication-title: ACS Omega
  doi: 10.1021/acsomega.7b01058
– volume: 80
  start-page: 4076
  year: 1998
  ident: D1NR07340K/cit62/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.80.4076
– volume: 84
  start-page: 737
  year: 2011
  ident: D1NR07340K/cit1/1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2011.03.001
– volume: 115
  start-page: 092107
  year: 2019
  ident: D1NR07340K/cit67/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5118959
– volume: 165
  start-page: 112390
  year: 2020
  ident: D1NR07340K/cit107/1
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2020.112390
– volume: 58
  start-page: 16439
  year: 2019
  ident: D1NR07340K/cit114/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201908415
– volume: 15
  start-page: 297
  year: 2019
  ident: D1NR07340K/cit36/1
  publication-title: Appl. Mater. Today
  doi: 10.1016/j.apmt.2019.02.002
– volume: 114
  start-page: 046801
  year: 2015
  ident: D1NR07340K/cit105/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.046801
– volume: 44
  start-page: 2732
  year: 2015
  ident: D1NR07340K/cit5/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00257A
– volume: 9
  start-page: 25098
  year: 2017
  ident: D1NR07340K/cit84/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b05824
– volume: 10
  start-page: 1030
  year: 2020
  ident: D1NR07340K/cit40/1
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C9CY02278C
– volume: 10
  start-page: 13379
  year: 2020
  ident: D1NR07340K/cit47/1
  publication-title: RSC Adv.
  doi: 10.1039/C9RA10900E
– volume: 8
  start-page: 10650
  year: 2020
  ident: D1NR07340K/cit37/1
  publication-title: J. Mater. Chem. B
  doi: 10.1039/D0TB02101F
– volume: 9
  start-page: 350
  year: 2017
  ident: D1NR07340K/cit28/1
  publication-title: Appl. Mater. Today
  doi: 10.1016/j.apmt.2017.09.002
– volume: 223
  start-page: 121712
  year: 2021
  ident: D1NR07340K/cit53/1
  publication-title: Talanta
  doi: 10.1016/j.talanta.2020.121712
– volume: 160
  start-page: 994
  year: 1968
  ident: D1NR07340K/cit7/1
  publication-title: Science
  doi: 10.1126/science.160.3831.994
– volume: 11
  start-page: 9133
  year: 2019
  ident: D1NR07340K/cit34/1
  publication-title: Nanoscale
  doi: 10.1039/C9NR02530H
– volume: 10
  start-page: 31136
  year: 2018
  ident: D1NR07340K/cit85/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b11648
– volume: 7
  start-page: 12974
  year: 2019
  ident: D1NR07340K/cit113/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA02513H
– volume: 19
  start-page: 684
  year: 1965
  ident: D1NR07340K/cit9/1
  publication-title: Acta Crystallogr.
  doi: 10.1107/S0365110X65004140
– volume: 106
  start-page: 233113
  year: 2015
  ident: D1NR07340K/cit42/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4922551
– volume: 2
  start-page: 031002
  year: 2015
  ident: D1NR07340K/cit29/1
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/2/3/031002
– volume: 13
  start-page: 1842
  year: 2018
  ident: D1NR07340K/cit66/1
  publication-title: Chem. – Asian J.
  doi: 10.1002/asia.201800482
– volume: 54
  start-page: 960
  year: 2018
  ident: D1NR07340K/cit43/1
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC08211H
– volume: 8
  start-page: 4033
  year: 2014
  ident: D1NR07340K/cit11/1
  publication-title: ACS Nano
  doi: 10.1021/nn501226z
– volume: 7
  start-page: 014005
  year: 2020
  ident: D1NR07340K/cit79/1
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/ab6c09
– volume: 8
  start-page: 15906
  year: 2020
  ident: D1NR07340K/cit35/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.0c04819
SSID ssj0069363
Score 2.4516
SecondaryResourceType review_article
Snippet Phosphorene quantum dots (PQDs) belong to a new class of zero-dimensional functional nanostructures with unique physicochemical and surface properties in...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 137
SubjectTerms Carrier mobility
Catalysis
Chemical synthesis
Heterostructures
Hydrogen evolution reactions
Lithium sulfur batteries
Oxygen evolution reactions
Phosphorene
Physiochemistry
Pulsed lasers
Quantum dots
Surface properties
Two dimensional materials
Water splitting
Title Phosphorene quantum dots: synthesis, properties and catalytic applications
URI https://www.ncbi.nlm.nih.gov/pubmed/34994751
https://www.proquest.com/docview/2623435669
https://www.proquest.com/docview/2618234648
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELege4EHxNcgMFAQvKCRLbGdD_NWPqdVGxPaxt4ix7HVsiypmlao--s5x4mTaUMCXqLKdtrK98v57nL3O4TeRKGKua-kx6Mcg4OSSC_LCfcIzgISiJhFWFcjHxxGeyd0_yw863tsNtUly2xHXN5YV_I_UoUxkKuukv0HydovhQH4DPKFK0gYrn8l46NpVc-nlWal1NWRcHxcbIOX2WS51esSbLvaUAjMdch9oblTTR2bjtmsG6rWwfvroZ0KSreqQXxW7N8up6vzWbF9ygu4xwSOD3g5K6xaHxe_-ALm2ojqKstmfaz5SDc3ahIHTmc_-ZpfVFNegmqZDKMOWKdveKaI3ygnrDMRCTEM5DtyOBZf1a50gCI6UJWBIXtpT93AUAZfU-g-0XyoeVAuQBdR_7w_tmwyYT95G21g8BbwCG2MJx--_uiO5IiRpqWe_dMdTy1hu_3dVy2Ta-4GGB-LrilMY3wc30f3Wq_BHRsIPEC3ZPkQ3R1wST5C-wMwuC0YXA2G966Fwju3B4ILQHAtENwhEB6jky-fjz_ueW2jDE_Adi-9SOUhVZwISYI897mSocQygYfN51wIxZgSWFLJcaY4zTIuEoFDULiKSialTzbRqKxK-RS5nCd-qHCchEpQKUiSyCAQfk5ZrhTjsYPedpuUipZFXjczKdImm4Gw9FNw-L3Z0ImDXtu1c8OdcuOqrW6v0_bZqlMMVjkY8lHEHPTKToPm06-zeCmrlV4DvjGhEU0c9MTIyP4MAUeexmHgoE0Qmh3uhf3sTxPP0Z0e71totFys5AuwO5fZyxZVvwEQdIg7
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phosphorene+quantum+dots%3A+synthesis%2C+properties+and+catalytic+applications&rft.jtitle=Nanoscale&rft.au=Ozhukil+Valappil%2C+Manila&rft.au=Alwarappan%2C+Subbiah&rft.au=Pillai%2C+Vijayamohanan+K&rft.date=2022-01-27&rft.issn=2040-3364&rft.eissn=2040-3372&rft.volume=14&rft.issue=4&rft.spage=137&rft.epage=153&rft_id=info:doi/10.1039%2Fd1nr07340k&rft.externalDocID=d1nr07340k
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon