Experimental and modelling of the vapor-liquid equilibria of [Cnmim]Br(n = 2, 3, 4) + H2O systems
•Vapor-liquid equilibrium (VLE) data of the three binary systems of [Cnmim]Br + H2O (n = 2, 3, 4) have been measured.•The NRTL and e-NRTL models can be well used for calculation of the investigated systems and the absolute average relative deviations (AARD %) are 2.69% and 2.97%.•The imidazolium-bas...
Saved in:
Published in | Fluid phase equilibria Vol. 565; p. 113654 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.02.2023
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Vapor-liquid equilibrium (VLE) data of the three binary systems of [Cnmim]Br + H2O (n = 2, 3, 4) have been measured.•The NRTL and e-NRTL models can be well used for calculation of the investigated systems and the absolute average relative deviations (AARD %) are 2.69% and 2.97%.•The imidazolium-based ILs proposed in this work can dramatically reduce the saturated vapor pressure of pure water, have the potential to be working pairs.
Mixtures of ionic liquids (ILs) and water are considered as promising working pair fluids for absorption refrigeration systems (ARS), and they have been the subject of intensive research in recent years. The performance of these mixtures as working fluids directly depends on the phase behavior and thermodynamic properties. In this work, the vapor-liquid equilibrium (VLE) data of three binary systems of 1-ethyl-3-methylimidazolium bromide and water ([C2mim]Br + H2O), 1-propyl-3-methylimidazolium bromide and water ([C3mim]Br + H2O) and 1-buthyl-3-methylimidazolium bromide and water ([C4mim]Br + H2O) have been measured by using the boiling method at pressures ranging from 7.96kPa to 50.10kPa and mole fractions of ILs ranging from 0.02 to 0.50. The thermodynamic models NRTL and e-NRTL are used to correlate the experimental data and a good agreement between the models and the data is obtained. It is found from VLE data that the addition of ILs in water leads to a dramatic decrease of the saturated vapor pressure of the system, and the systems exhibit a high deviation from Raoult's law. Therefore, the three IL + water binary systems have a great potential as working pairs for ARS. In addition, shorter alkyl chains of the IL cation leads to a stronger ability ([C2mim]Br+ > [C3mim]Br+ > [C4mim]Br+) to absorb water. |
---|---|
AbstractList | •Vapor-liquid equilibrium (VLE) data of the three binary systems of [Cnmim]Br + H2O (n = 2, 3, 4) have been measured.•The NRTL and e-NRTL models can be well used for calculation of the investigated systems and the absolute average relative deviations (AARD %) are 2.69% and 2.97%.•The imidazolium-based ILs proposed in this work can dramatically reduce the saturated vapor pressure of pure water, have the potential to be working pairs.
Mixtures of ionic liquids (ILs) and water are considered as promising working pair fluids for absorption refrigeration systems (ARS), and they have been the subject of intensive research in recent years. The performance of these mixtures as working fluids directly depends on the phase behavior and thermodynamic properties. In this work, the vapor-liquid equilibrium (VLE) data of three binary systems of 1-ethyl-3-methylimidazolium bromide and water ([C2mim]Br + H2O), 1-propyl-3-methylimidazolium bromide and water ([C3mim]Br + H2O) and 1-buthyl-3-methylimidazolium bromide and water ([C4mim]Br + H2O) have been measured by using the boiling method at pressures ranging from 7.96kPa to 50.10kPa and mole fractions of ILs ranging from 0.02 to 0.50. The thermodynamic models NRTL and e-NRTL are used to correlate the experimental data and a good agreement between the models and the data is obtained. It is found from VLE data that the addition of ILs in water leads to a dramatic decrease of the saturated vapor pressure of the system, and the systems exhibit a high deviation from Raoult's law. Therefore, the three IL + water binary systems have a great potential as working pairs for ARS. In addition, shorter alkyl chains of the IL cation leads to a stronger ability ([C2mim]Br+ > [C3mim]Br+ > [C4mim]Br+) to absorb water. |
ArticleNumber | 113654 |
Author | Cao, Jinxiang Ding, Yan Li, Jinlong Paricaud, Patrice Wang, Fang Guo, Yicang |
Author_xml | – sequence: 1 givenname: Yicang surname: Guo fullname: Guo, Yicang organization: UCP, ENSTA Paris, Institut Polytechnique de Paris, 828 Boulevard des Maréchaux, Palaiseau 91120, France – sequence: 2 givenname: Jinxiang surname: Cao fullname: Cao, Jinxiang organization: Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology and School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China – sequence: 3 givenname: Fang surname: Wang fullname: Wang, Fang organization: Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology and School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China – sequence: 4 givenname: Yan surname: Ding fullname: Ding, Yan organization: Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology and School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China – sequence: 5 givenname: Jinlong orcidid: 0000-0002-9698-1004 surname: Li fullname: Li, Jinlong email: lijinlong@cczu.edu.cn organization: Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology and School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China – sequence: 6 givenname: Patrice surname: Paricaud fullname: Paricaud, Patrice email: patrice.paricaud@ensta-paris.fr organization: UCP, ENSTA Paris, Institut Polytechnique de Paris, 828 Boulevard des Maréchaux, Palaiseau 91120, France |
BackLink | https://ensta-paris.hal.science/hal-04208022$$DView record in HAL |
BookMark | eNp9kL9u2zAQh4kiAWonfYIsHBvUcvhHoqnBQ2q4dQADWZKpCAiKOjY0KMolVaN5Gz-Ln6x03C4ZshyBH--7w31jdBb6AAhdUTKlhIqbzdT6366dMsLYlFIuqvIDGlE5q4uclGdoRPhMFlxS9hGNU9oQQmgl2AjB8s8WousgDNpjHVrc9S1478JP3Fs8PAPe6W0fC-9-5Q0YcvWuiU4fv38sQue6p6_xczjs54c9m2A-weX1Yf_lsF-xe5xe0gBdukTnVvsEn_69F-jx2_JhsSrW99_vFrfrwnA-GwphtDaS0JLKkhJRC9FIxk1NqRVNZUtLxSznTFoGtSGksbquSAOMVVKalvALdH2a-6y92uazdHxRvXZqdbtWx4yUjMisZEdzb33qNbFPKYJVxg16cH0YonZeUaKObtVGvbpVR7fq5Daz_A37f9n71PxEQVawcxBVMg6CgdZFMINqe_cu_xc0qJYx |
CitedBy_id | crossref_primary_10_1021_acs_iecr_4c01107 crossref_primary_10_1016_j_jct_2023_107144 crossref_primary_10_1016_j_nxener_2023_100038 crossref_primary_10_1016_j_energy_2024_131223 crossref_primary_10_1016_j_molliq_2025_127302 crossref_primary_10_1016_j_seppur_2025_131645 |
Cites_doi | 10.1021/je200341c 10.1021/acs.iecr.8b00442 10.1016/j.fluid.2007.04.010 10.1016/j.fluid.2005.03.016 10.1016/j.fluid.2019.05.003 10.1016/j.fluid.2005.01.002 10.1016/j.apenergy.2017.07.074 10.1016/j.applthermaleng.2016.01.135 10.1016/j.jct.2010.11.014 10.1016/j.jct.2019.01.004 10.1021/acs.jced.2c00033 10.1002/aic.690140124 10.1016/j.enconman.2018.04.060 10.5772/58982 10.1016/j.renene.2018.10.104 10.1021/je3007953 10.1016/j.ijrefrig.2017.09.021 10.1021/je00011a031 10.1016/j.ijrefrig.2017.12.011 10.1016/j.fluid.2020.112543 10.1016/j.ijrefrig.2015.10.007 10.1021/ie302850z 10.1002/aic.690280410 10.1021/je200600p 10.1016/S1004-9541(11)60008-6 10.1002/aic.690320311 10.1366/000370203321535051 10.1016/j.rser.2014.03.036 10.1016/j.fluid.2013.03.007 10.1016/j.applthermaleng.2015.10.107 10.1021/ie401297u 10.1021/je300132e 10.1021/je034210d 10.1016/j.fluid.2007.07.033 |
ContentType | Journal Article |
Copyright | 2022 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2022 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 1XC |
DOI | 10.1016/j.fluid.2022.113654 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1879-0224 |
ExternalDocumentID | oai_HAL_hal_04208022v1 10_1016_j_fluid_2022_113654 S0378381222002734 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABFNM ABMAC ABNUV ABTAH ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADECG ADEWK ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HLY HVGLF HZ~ IHE J1W KOM LX7 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SCE SDF SDG SDP SES SEW SPC SPCBC SSG SSK SSZ T5K WUQ XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 1XC |
ID | FETCH-LOGICAL-c337t-6caac8014184106966b823c911f6b5f4f16710628f2e9c00bfa950be22588cd03 |
IEDL.DBID | .~1 |
ISSN | 0378-3812 |
IngestDate | Wed Jun 11 06:20:24 EDT 2025 Tue Jul 01 01:23:41 EDT 2025 Thu Apr 24 23:04:55 EDT 2025 Fri Feb 23 02:42:12 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Ionic liquids NRTL Vapor-liquid equilibrium Working fluid e-NRTL |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c337t-6caac8014184106966b823c911f6b5f4f16710628f2e9c00bfa950be22588cd03 |
ORCID | 0000-0002-9698-1004 0000-0003-4028-7133 |
ParticipantIDs | hal_primary_oai_HAL_hal_04208022v1 crossref_citationtrail_10_1016_j_fluid_2022_113654 crossref_primary_10_1016_j_fluid_2022_113654 elsevier_sciencedirect_doi_10_1016_j_fluid_2022_113654 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2023 2023-02-00 2023-02 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: February 2023 |
PublicationDecade | 2020 |
PublicationTitle | Fluid phase equilibria |
PublicationYear | 2023 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Chen, Liang (bib0008) 2016; 99 Ouni, Zaytseva, Uusi-Kyyny, Pokki, Aittamaa (bib0027) 2005; 232 Królikowska, Paduszyński, Zawadzki (bib0018) 2019; 494 Bai, Chen, Xu, Sun, Zhang, He (bib0009) 2021 Wu, Li, Fan, Zheng, Dong (bib0023) 2011; 19 Abumandour, Mutelet, Alonso (bib0013) 2020 Liang, Chen, Guo, Tang (bib0016) 2015 Ren, Zhao, Zhang (bib0024) 2011; 43 Abumandour, Mutelet, Alonso (bib0021) 2017 Lu, Li, Peng, Liu (bib0035) 2019; 132 Cao, Chen, Lu, Xue, Mu (bib0030) 2013; 52 Parham, Khamooshi, Tematio, Yari, Atikol (bib0001) 2014; 34 López-Cortés, Iglesias-Silva, Ramos-Estrada, Rivera-Rojas (bib0003) 2020; 514 Królikowska, Grzeszyk, Skonieczny (bib0019) 2021 Kato, Gmehling (bib0026) 2005; 231 Qi, Zhang, Han, Wu, Li, Li (bib0037) 2019 Römich, Merkel, Valbonesi, Schaber, Sauer, Schubert (bib0042) 2012; 57 Kurihara, Nakamichi, Kojima (bib0034) 1993; 38 Yang, Ma, Yin (bib0033) 2011; 56 Xu, Wang (bib0006) 2016; 62 Seiler, Kühn, Ziegler, Wang (bib0031) 2013; 52 Kim, Park, Choi, Lee (bib0020) 2004; 49 Renon, Prausnitz (bib0038) 1968; 14 Wang, Becker, Infante Ferreira (bib0014) 2018; 87 Ferwati, Ahmad, Takalkar, Bicer (bib0004) 2021 Becker, Wang, Kabra, Jamali, Ramdin, Dubbeldam, Infante Ferreira, Vlugt (bib0010) 2018; 57 Wu, You, Zhang, Li (bib0011) 2018; 88 Chen, Britt, Boston, Evans (bib0040) 1982; 28 Gong, Shen, Lu, Meng, Li (bib0025) 2012; 57 Lemmon, Bell, Huber, McLinden (bib0036) 2018 Freire, Santos, Fernandes, Coutinho, Marrucho (bib0028) 2007; 261 Wang, Infante Ferreira (bib0007) 2017; 204 Takalkar, Sleiti (bib0017) 2021 Nie, Zheng, Dong, Li (bib0043) 2012; 57 Luo, Wang, Li, Wu, Su, Hu (bib0002) 2019; 134 A.J. Morrissey, J.P.J.C.E.R. O'Donnell, Design, ENDOTHERMIC SOLUTIONS AND THEIR APPLICATION IN ABSORPTION HEAT PUMPS, 64 (1986) 404–406. Tran, De Paoli Lacerda, Oliveira (bib0029) 2003; 57 Dong, Zheng, Li, Nie, Wu (bib0012) 2013; 348 Ding, Cao, Guo, Sun, Sun, Ye, Li, Peng (bib0032) 2022 Chen, Evans (bib0039) 1986; 32 Wang, Li, Wang, Li, Jiang (bib0044) 2007; 255 Abumandour, Mutelet, Alonso (bib0005) 2016; 94 Chen, Sun, Bai, Zhang (bib0015) 2018; 166 P. Paricaud, Thermodynamic Modelling of Electrolyte Solutions, AF6215 v1, Ed. Techn. de l'Ingénieur, (2022). Gong (10.1016/j.fluid.2022.113654_bib0025) 2012; 57 Luo (10.1016/j.fluid.2022.113654_bib0002) 2019; 134 Parham (10.1016/j.fluid.2022.113654_bib0001) 2014; 34 Kato (10.1016/j.fluid.2022.113654_bib0026) 2005; 231 Liang (10.1016/j.fluid.2022.113654_bib0016) 2015 Królikowska (10.1016/j.fluid.2022.113654_bib0018) 2019; 494 Cao (10.1016/j.fluid.2022.113654_bib0030) 2013; 52 Wu (10.1016/j.fluid.2022.113654_bib0011) 2018; 88 Dong (10.1016/j.fluid.2022.113654_bib0012) 2013; 348 Qi (10.1016/j.fluid.2022.113654_bib0037) 2019 Wang (10.1016/j.fluid.2022.113654_bib0014) 2018; 87 Chen (10.1016/j.fluid.2022.113654_bib0015) 2018; 166 Xu (10.1016/j.fluid.2022.113654_bib0006) 2016; 62 Abumandour (10.1016/j.fluid.2022.113654_bib0013) 2020 Chen (10.1016/j.fluid.2022.113654_bib0039) 1986; 32 10.1016/j.fluid.2022.113654_bib0041 Nie (10.1016/j.fluid.2022.113654_bib0043) 2012; 57 Ren (10.1016/j.fluid.2022.113654_bib0024) 2011; 43 Wang (10.1016/j.fluid.2022.113654_bib0044) 2007; 255 Tran (10.1016/j.fluid.2022.113654_bib0029) 2003; 57 Kurihara (10.1016/j.fluid.2022.113654_bib0034) 1993; 38 Kim (10.1016/j.fluid.2022.113654_bib0020) 2004; 49 Wu (10.1016/j.fluid.2022.113654_bib0023) 2011; 19 Ouni (10.1016/j.fluid.2022.113654_bib0027) 2005; 232 Chen (10.1016/j.fluid.2022.113654_bib0008) 2016; 99 Lu (10.1016/j.fluid.2022.113654_bib0035) 2019; 132 Bai (10.1016/j.fluid.2022.113654_bib0009) 2021 10.1016/j.fluid.2022.113654_bib0022 Abumandour (10.1016/j.fluid.2022.113654_bib0021) 2017 Wang (10.1016/j.fluid.2022.113654_bib0007) 2017; 204 Ding (10.1016/j.fluid.2022.113654_bib0032) 2022 Yang (10.1016/j.fluid.2022.113654_bib0033) 2011; 56 Römich (10.1016/j.fluid.2022.113654_bib0042) 2012; 57 Chen (10.1016/j.fluid.2022.113654_bib0040) 1982; 28 Ferwati (10.1016/j.fluid.2022.113654_bib0004) 2021 Lemmon (10.1016/j.fluid.2022.113654_bib0036) 2018 López-Cortés (10.1016/j.fluid.2022.113654_bib0003) 2020; 514 Abumandour (10.1016/j.fluid.2022.113654_bib0005) 2016; 94 Seiler (10.1016/j.fluid.2022.113654_bib0031) 2013; 52 Królikowska (10.1016/j.fluid.2022.113654_bib0019) 2021 Freire (10.1016/j.fluid.2022.113654_bib0028) 2007; 261 Renon (10.1016/j.fluid.2022.113654_bib0038) 1968; 14 Becker (10.1016/j.fluid.2022.113654_bib0010) 2018; 57 Takalkar (10.1016/j.fluid.2022.113654_bib0017) 2021 |
References_xml | – volume: 34 start-page: 430 year: 2014 end-page: 452 ident: bib0001 article-title: Absorption heat transformers – a comprehensive review publication-title: Renew. Sustain. Energy Rev. – volume: 261 start-page: 449 year: 2007 end-page: 454 ident: bib0028 article-title: An overview of the mutual solubilities of water–imidazolium-based ionic liquids systems publication-title: Fluid Phase Equilib. – year: 2021 ident: bib0017 article-title: Comprehensive performance analysis and optimization of 1,3-dimethylimidazolylium dimethylphosphate-water binary mixture for a single effect absorption refrigeration system publication-title: Front. Energy – reference: P. Paricaud, Thermodynamic Modelling of Electrolyte Solutions, AF6215 v1, Ed. Techn. de l'Ingénieur, (2022). – volume: 52 start-page: 2073 year: 2013 end-page: 2083 ident: bib0030 article-title: Water sorption in functionalized ionic liquids: kinetics and intermolecular interactions publication-title: Ind. Eng. Chem. Res. – volume: 231 start-page: 38 year: 2005 end-page: 43 ident: bib0026 article-title: Measurement and correlation of vapor–liquid equilibria of binary systems containing the ionic liquids [EMIM][(CF3SO2)2N], [BMIM][(CF3SO2)2N], [MMIM][(CH3)2PO4] and oxygenated organic compounds respectively water publication-title: Fluid Phase Equilib. – volume: 166 start-page: 433 year: 2018 end-page: 444 ident: bib0015 article-title: Numerical investigation of the thermal performance of compressor-assisted double-effect absorption refrigeration using [mmim]DMP/CH publication-title: Energy Convers. Manag. – volume: 132 start-page: 289 year: 2019 end-page: 294 ident: bib0035 article-title: Experimental determination of vapor liquid equilibrium for methanol + methyl propionate + 1-butyl-3-methylimidazo-lium bis(trifluoromethylsulfonyl)imide at atmospheric pressure publication-title: J. Chem. Thermodyn. – volume: 94 start-page: 579 year: 2016 end-page: 589 ident: bib0005 article-title: Performance of an absorption heat transformer using new working binary systems composed of {ionic liquid and water} publication-title: Appl. Therm. Eng. – volume: 99 start-page: 846 year: 2016 end-page: 856 ident: bib0008 article-title: Thermodynamic analysis of absorption heat transformers using [mmim]DMP/H 2 O and [mmim]DMP/CH 3 OH as working fluids publication-title: Appl. Therm. Eng. – start-page: 183 year: 2021 ident: bib0009 article-title: Investigation on the thermal performances of [Na(TX-7)]SCN/NH3 absorption systems based on physical properties measurement of the working fluid publication-title: Appl. Therm. Eng. – start-page: 181 year: 2020 ident: bib0013 article-title: Thermodynamic properties assessment of working mixtures {water + alkylphosphonate based ionic liquids} as innovative alternatives working pairs for absorption heat transformers publication-title: Appl. Therm. Eng. – volume: 514 year: 2020 ident: bib0003 article-title: A correlation for the viscosity of binary mixtures of ionic liquids with organic solvents and water publication-title: Fluid Phase Equilib. – volume: 87 start-page: 10 year: 2018 end-page: 25 ident: bib0014 article-title: Assessment of vapor–liquid equilibrium models for ionic liquid based working pairs in absorption cycles publication-title: Int. J. Refrig. – start-page: 547 year: 2021 ident: bib0019 article-title: Thermodynamic characterization of {1-ethyl-1-methyl-pyrrolidinium dimethylphosphate, [C1C2PYR][DMP], or 1-hydroxyethyl-1-methylpyrrolidinium dimethylphosphate, [C1C2OHPYR][DMP] (1) + ethanol (2)} binary systems publication-title: Fluid Phase Equilib. – start-page: 28 year: 2021 ident: bib0004 article-title: Energy and exergy analysis of parallel flow double effect H2O-[mmim][DMP] absorption refrigeration system for solar powered district cooling publication-title: Case Stud. Therm. Eng. – volume: 57 start-page: 5442 year: 2018 end-page: 5452 ident: bib0010 article-title: Absorption refrigeration cycles with ammonia-ionic liquid working pairs studied by molecular simulation publication-title: Ind. Eng. Chem. Res. – volume: 52 start-page: 16519 year: 2013 end-page: 16546 ident: bib0031 article-title: Sustainable cooling strategies using new chemical system solutions publication-title: Ind. Eng. Chem. Res. – volume: 57 start-page: 152 year: 2003 end-page: 157 ident: bib0029 article-title: Absorption of water by room-temperature ionic liquids: effect of anions on concentration and state of water publication-title: Appl. Spectrosc. – volume: 204 start-page: 819 year: 2017 end-page: 830 ident: bib0007 article-title: Absorption heat pump cycles with NH3 – ionic liquid working pairs publication-title: Appl. Energy – volume: 38 start-page: 446 year: 1993 end-page: 449 ident: bib0034 article-title: Isobaric vapor-liquid equilibria for methanol + ethanol + water and the three constituent binary systems publication-title: J. Chem. Eng. Data – start-page: 293 year: 2019 ident: bib0037 article-title: Vapor-liquid equilibrium experiment and process simulation of extractive distillation for separating diisopropyl ether-isopropyl alcohol using ionic liquid publication-title: J. Mol. Liq. – volume: 57 start-page: 3598 year: 2012 end-page: 3603 ident: bib0043 article-title: Thermodynamic properties of the water + 1-(2-Hydroxylethyl)-3-methylimidazolium chloride system publication-title: J. Chem. Eng. Data – volume: 62 start-page: 114 year: 2016 end-page: 136 ident: bib0006 article-title: Absorption refrigeration cycles: categorized based on the cycle construction publication-title: Int. J. Refrig. – volume: 14 start-page: 135 year: 1968 end-page: 144 ident: bib0038 article-title: Local compositions in thermodynamic excess functions for liquid mixtures publication-title: AlChE J. – volume: 28 start-page: 588 year: 1982 end-page: 596 ident: bib0040 article-title: Local composition model for excess Gibbs energy of electrolyte systems. Part I: Single solvent, single completely dissociated electrolyte systems publication-title: AlChE J. – year: 2015 ident: bib0016 article-title: Ionic liquids facilitate the development of absorption refrigeration publication-title: Ionic Liquids Curr. State Art – volume: 43 start-page: 576 year: 2011 end-page: 583 ident: bib0024 article-title: Vapor pressures, excess enthalpies, and specific heat capacities of the binary working pairs containing the ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate publication-title: J. Chem. Thermodyn. – reference: A.J. Morrissey, J.P.J.C.E.R. O'Donnell, Design, ENDOTHERMIC SOLUTIONS AND THEIR APPLICATION IN ABSORPTION HEAT PUMPS, 64 (1986) 404–406. – volume: 232 start-page: 90 year: 2005 end-page: 99 ident: bib0027 article-title: Vapour–liquid equilibrium for the 2-methylpropane+methanol, +ethanol, +2-propanol, +2-butanol and +2-methyl-2-propanol systems at 313.15K publication-title: Fluid Phase Equilib. – volume: 56 start-page: 3747 year: 2011 end-page: 3751 ident: bib0033 article-title: Organic salt effect of tetramethylammonium bicarbonate on the vapor–liquid equilibrium of the methanol–water system publication-title: J. Chem. Eng. Data – year: 2022 ident: bib0032 article-title: Measurement and correlation of density, viscosity, and surface tension for imidazolium bromide ionic liquids [CnMIM]Br (n = 2, 3, 4) aqueous solutions publication-title: J. Chem. Eng. Data – volume: 57 start-page: 2258 year: 2012 end-page: 2264 ident: bib0042 article-title: Thermodynamic properties of binary mixtures of water and room-temperature ionic liquids: vapor pressures, heat capacities, densities, and viscosities of water + 1-Ethyl-3-methylimidazolium acetate and water + diethylmethylammonium methane sulfonate publication-title: J. Chem. Eng. Data – volume: 255 start-page: 186 year: 2007 end-page: 192 ident: bib0044 article-title: Vapor pressure measurement for water, methanol, ethanol, and their binary mixtures in the presence of an ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate publication-title: Fluid Phase Equilib. – volume: 49 start-page: 1550 year: 2004 end-page: 1553 ident: bib0020 article-title: Vapor pressures of the 1-Butyl-3-methylimidazolium bromide + water, 1-Butyl-3-methylimidazolium tetrafluoroborate + water, and 1-(2-Hydroxyethyl)-3-methylimidazolium tetrafluoroborate + Water Systems publication-title: J. Chem. Eng. Data – volume: 19 start-page: 473 year: 2011 end-page: 477 ident: bib0023 article-title: Vapor pressure measurement of Water+1,3-dimethylimidazolium tetrafluoroborate system publication-title: Chin. J. Chem. Eng. – volume: 348 start-page: 1 year: 2013 end-page: 8 ident: bib0012 article-title: Suitability prediction and affinity regularity assessment of H publication-title: Fluid Phase Equilib. – volume: 88 start-page: 45 year: 2018 end-page: 57 ident: bib0011 article-title: Comparisons of different ionic liquids combined with trans-1,3,3,3-tetrafluoropropene (R1234ze(E)) as absorption working fluids publication-title: Int. J. Refrig. – volume: 494 start-page: 201 year: 2019 end-page: 211 ident: bib0018 article-title: Vapor + liquid) phase equilibria of an aqueous solution of bromide-based ionic liquids – measurements, correlations and application to absorption cycles publication-title: Fluid Phase Equilib. – year: 2018 ident: bib0036 article-title: Gaithersburg, NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0 – volume: 32 start-page: 444 year: 1986 end-page: 454 ident: bib0039 article-title: A local composition model for the excess Gibbs energy of aqueous electrolyte systems publication-title: AlChE J. – volume: 134 start-page: 147 year: 2019 end-page: 160 ident: bib0002 article-title: Thermodynamic properties and application of LiNO publication-title: Renew. Energy – year: 2017 ident: bib0021 article-title: Are ionic liquids suitable as new components in working mixtures for absorption heat transformers? publication-title: Prog. Dev. Ion. Liq. – volume: 57 start-page: 33 year: 2012 end-page: 39 ident: bib0025 article-title: Viscosity and density measurements for six binary mixtures of water (methanol or ethanol) with an ionic liquid ([BMIM][DMP] or [EMIM][DMP]) at atmospheric pressure in the temperature range of (293.15 to 333.15) K publication-title: J. Chem. Eng. Data – volume: 56 start-page: 3747 year: 2011 ident: 10.1016/j.fluid.2022.113654_bib0033 article-title: Organic salt effect of tetramethylammonium bicarbonate on the vapor–liquid equilibrium of the methanol–water system publication-title: J. Chem. Eng. Data doi: 10.1021/je200341c – start-page: 28 year: 2021 ident: 10.1016/j.fluid.2022.113654_bib0004 article-title: Energy and exergy analysis of parallel flow double effect H2O-[mmim][DMP] absorption refrigeration system for solar powered district cooling publication-title: Case Stud. Therm. Eng. – volume: 57 start-page: 5442 year: 2018 ident: 10.1016/j.fluid.2022.113654_bib0010 article-title: Absorption refrigeration cycles with ammonia-ionic liquid working pairs studied by molecular simulation publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.8b00442 – volume: 255 start-page: 186 year: 2007 ident: 10.1016/j.fluid.2022.113654_bib0044 article-title: Vapor pressure measurement for water, methanol, ethanol, and their binary mixtures in the presence of an ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate publication-title: Fluid Phase Equilib. doi: 10.1016/j.fluid.2007.04.010 – volume: 232 start-page: 90 year: 2005 ident: 10.1016/j.fluid.2022.113654_bib0027 article-title: Vapour–liquid equilibrium for the 2-methylpropane+methanol, +ethanol, +2-propanol, +2-butanol and +2-methyl-2-propanol systems at 313.15K publication-title: Fluid Phase Equilib. doi: 10.1016/j.fluid.2005.03.016 – volume: 494 start-page: 201 year: 2019 ident: 10.1016/j.fluid.2022.113654_bib0018 article-title: Vapor + liquid) phase equilibria of an aqueous solution of bromide-based ionic liquids – measurements, correlations and application to absorption cycles publication-title: Fluid Phase Equilib. doi: 10.1016/j.fluid.2019.05.003 – volume: 231 start-page: 38 year: 2005 ident: 10.1016/j.fluid.2022.113654_bib0026 article-title: Measurement and correlation of vapor–liquid equilibria of binary systems containing the ionic liquids [EMIM][(CF3SO2)2N], [BMIM][(CF3SO2)2N], [MMIM][(CH3)2PO4] and oxygenated organic compounds respectively water publication-title: Fluid Phase Equilib. doi: 10.1016/j.fluid.2005.01.002 – year: 2021 ident: 10.1016/j.fluid.2022.113654_bib0017 article-title: Comprehensive performance analysis and optimization of 1,3-dimethylimidazolylium dimethylphosphate-water binary mixture for a single effect absorption refrigeration system publication-title: Front. Energy – volume: 204 start-page: 819 year: 2017 ident: 10.1016/j.fluid.2022.113654_bib0007 article-title: Absorption heat pump cycles with NH3 – ionic liquid working pairs publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.07.074 – volume: 99 start-page: 846 year: 2016 ident: 10.1016/j.fluid.2022.113654_bib0008 article-title: Thermodynamic analysis of absorption heat transformers using [mmim]DMP/H 2 O and [mmim]DMP/CH 3 OH as working fluids publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.01.135 – volume: 43 start-page: 576 year: 2011 ident: 10.1016/j.fluid.2022.113654_bib0024 article-title: Vapor pressures, excess enthalpies, and specific heat capacities of the binary working pairs containing the ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate publication-title: J. Chem. Thermodyn. doi: 10.1016/j.jct.2010.11.014 – volume: 132 start-page: 289 year: 2019 ident: 10.1016/j.fluid.2022.113654_bib0035 article-title: Experimental determination of vapor liquid equilibrium for methanol + methyl propionate + 1-butyl-3-methylimidazo-lium bis(trifluoromethylsulfonyl)imide at atmospheric pressure publication-title: J. Chem. Thermodyn. doi: 10.1016/j.jct.2019.01.004 – ident: 10.1016/j.fluid.2022.113654_bib0041 – ident: 10.1016/j.fluid.2022.113654_bib0022 – year: 2022 ident: 10.1016/j.fluid.2022.113654_bib0032 article-title: Measurement and correlation of density, viscosity, and surface tension for imidazolium bromide ionic liquids [CnMIM]Br (n = 2, 3, 4) aqueous solutions publication-title: J. Chem. Eng. Data doi: 10.1021/acs.jced.2c00033 – volume: 14 start-page: 135 year: 1968 ident: 10.1016/j.fluid.2022.113654_bib0038 article-title: Local compositions in thermodynamic excess functions for liquid mixtures publication-title: AlChE J. doi: 10.1002/aic.690140124 – volume: 166 start-page: 433 year: 2018 ident: 10.1016/j.fluid.2022.113654_bib0015 article-title: Numerical investigation of the thermal performance of compressor-assisted double-effect absorption refrigeration using [mmim]DMP/CH3OH as working fluid publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2018.04.060 – year: 2015 ident: 10.1016/j.fluid.2022.113654_bib0016 article-title: Ionic liquids facilitate the development of absorption refrigeration publication-title: Ionic Liquids Curr. State Art doi: 10.5772/58982 – volume: 134 start-page: 147 year: 2019 ident: 10.1016/j.fluid.2022.113654_bib0002 article-title: Thermodynamic properties and application of LiNO3-[MMIM][DMP]/H2O ternary working pair publication-title: Renew. Energy doi: 10.1016/j.renene.2018.10.104 – volume: 57 start-page: 3598 year: 2012 ident: 10.1016/j.fluid.2022.113654_bib0043 article-title: Thermodynamic properties of the water + 1-(2-Hydroxylethyl)-3-methylimidazolium chloride system publication-title: J. Chem. Eng. Data doi: 10.1021/je3007953 – volume: 87 start-page: 10 year: 2018 ident: 10.1016/j.fluid.2022.113654_bib0014 article-title: Assessment of vapor–liquid equilibrium models for ionic liquid based working pairs in absorption cycles publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2017.09.021 – volume: 38 start-page: 446 year: 1993 ident: 10.1016/j.fluid.2022.113654_bib0034 article-title: Isobaric vapor-liquid equilibria for methanol + ethanol + water and the three constituent binary systems publication-title: J. Chem. Eng. Data doi: 10.1021/je00011a031 – volume: 88 start-page: 45 year: 2018 ident: 10.1016/j.fluid.2022.113654_bib0011 article-title: Comparisons of different ionic liquids combined with trans-1,3,3,3-tetrafluoropropene (R1234ze(E)) as absorption working fluids publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2017.12.011 – volume: 514 year: 2020 ident: 10.1016/j.fluid.2022.113654_bib0003 article-title: A correlation for the viscosity of binary mixtures of ionic liquids with organic solvents and water publication-title: Fluid Phase Equilib. doi: 10.1016/j.fluid.2020.112543 – volume: 62 start-page: 114 year: 2016 ident: 10.1016/j.fluid.2022.113654_bib0006 article-title: Absorption refrigeration cycles: categorized based on the cycle construction publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2015.10.007 – start-page: 183 year: 2021 ident: 10.1016/j.fluid.2022.113654_bib0009 article-title: Investigation on the thermal performances of [Na(TX-7)]SCN/NH3 absorption systems based on physical properties measurement of the working fluid publication-title: Appl. Therm. Eng. – start-page: 293 year: 2019 ident: 10.1016/j.fluid.2022.113654_bib0037 article-title: Vapor-liquid equilibrium experiment and process simulation of extractive distillation for separating diisopropyl ether-isopropyl alcohol using ionic liquid publication-title: J. Mol. Liq. – year: 2018 ident: 10.1016/j.fluid.2022.113654_bib0036 – volume: 52 start-page: 2073 year: 2013 ident: 10.1016/j.fluid.2022.113654_bib0030 article-title: Water sorption in functionalized ionic liquids: kinetics and intermolecular interactions publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie302850z – volume: 28 start-page: 588 year: 1982 ident: 10.1016/j.fluid.2022.113654_bib0040 article-title: Local composition model for excess Gibbs energy of electrolyte systems. Part I: Single solvent, single completely dissociated electrolyte systems publication-title: AlChE J. doi: 10.1002/aic.690280410 – volume: 57 start-page: 33 year: 2012 ident: 10.1016/j.fluid.2022.113654_bib0025 article-title: Viscosity and density measurements for six binary mixtures of water (methanol or ethanol) with an ionic liquid ([BMIM][DMP] or [EMIM][DMP]) at atmospheric pressure in the temperature range of (293.15 to 333.15) K publication-title: J. Chem. Eng. Data doi: 10.1021/je200600p – volume: 19 start-page: 473 year: 2011 ident: 10.1016/j.fluid.2022.113654_bib0023 article-title: Vapor pressure measurement of Water+1,3-dimethylimidazolium tetrafluoroborate system publication-title: Chin. J. Chem. Eng. doi: 10.1016/S1004-9541(11)60008-6 – start-page: 547 year: 2021 ident: 10.1016/j.fluid.2022.113654_bib0019 article-title: Thermodynamic characterization of {1-ethyl-1-methyl-pyrrolidinium dimethylphosphate, [C1C2PYR][DMP], or 1-hydroxyethyl-1-methylpyrrolidinium dimethylphosphate, [C1C2OHPYR][DMP] (1) + ethanol (2)} binary systems publication-title: Fluid Phase Equilib. – volume: 32 start-page: 444 year: 1986 ident: 10.1016/j.fluid.2022.113654_bib0039 article-title: A local composition model for the excess Gibbs energy of aqueous electrolyte systems publication-title: AlChE J. doi: 10.1002/aic.690320311 – volume: 57 start-page: 152 year: 2003 ident: 10.1016/j.fluid.2022.113654_bib0029 article-title: Absorption of water by room-temperature ionic liquids: effect of anions on concentration and state of water publication-title: Appl. Spectrosc. doi: 10.1366/000370203321535051 – volume: 34 start-page: 430 year: 2014 ident: 10.1016/j.fluid.2022.113654_bib0001 article-title: Absorption heat transformers – a comprehensive review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2014.03.036 – volume: 348 start-page: 1 year: 2013 ident: 10.1016/j.fluid.2022.113654_bib0012 article-title: Suitability prediction and affinity regularity assessment of H2O+imidazolium ionic liquid working pairs of absorption cycle by excess property criteria and UNIFAC model publication-title: Fluid Phase Equilib. doi: 10.1016/j.fluid.2013.03.007 – volume: 94 start-page: 579 year: 2016 ident: 10.1016/j.fluid.2022.113654_bib0005 article-title: Performance of an absorption heat transformer using new working binary systems composed of {ionic liquid and water} publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.10.107 – volume: 52 start-page: 16519 year: 2013 ident: 10.1016/j.fluid.2022.113654_bib0031 article-title: Sustainable cooling strategies using new chemical system solutions publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie401297u – volume: 57 start-page: 2258 year: 2012 ident: 10.1016/j.fluid.2022.113654_bib0042 article-title: Thermodynamic properties of binary mixtures of water and room-temperature ionic liquids: vapor pressures, heat capacities, densities, and viscosities of water + 1-Ethyl-3-methylimidazolium acetate and water + diethylmethylammonium methane sulfonate publication-title: J. Chem. Eng. Data doi: 10.1021/je300132e – year: 2017 ident: 10.1016/j.fluid.2022.113654_bib0021 article-title: Are ionic liquids suitable as new components in working mixtures for absorption heat transformers? publication-title: Prog. Dev. Ion. Liq. – start-page: 181 year: 2020 ident: 10.1016/j.fluid.2022.113654_bib0013 article-title: Thermodynamic properties assessment of working mixtures {water + alkylphosphonate based ionic liquids} as innovative alternatives working pairs for absorption heat transformers publication-title: Appl. Therm. Eng. – volume: 49 start-page: 1550 year: 2004 ident: 10.1016/j.fluid.2022.113654_bib0020 article-title: Vapor pressures of the 1-Butyl-3-methylimidazolium bromide + water, 1-Butyl-3-methylimidazolium tetrafluoroborate + water, and 1-(2-Hydroxyethyl)-3-methylimidazolium tetrafluoroborate + Water Systems publication-title: J. Chem. Eng. Data doi: 10.1021/je034210d – volume: 261 start-page: 449 year: 2007 ident: 10.1016/j.fluid.2022.113654_bib0028 article-title: An overview of the mutual solubilities of water–imidazolium-based ionic liquids systems publication-title: Fluid Phase Equilib. doi: 10.1016/j.fluid.2007.07.033 |
SSID | ssj0001562 |
Score | 2.4289935 |
Snippet | •Vapor-liquid equilibrium (VLE) data of the three binary systems of [Cnmim]Br + H2O (n = 2, 3, 4) have been measured.•The NRTL and e-NRTL models can be well... |
SourceID | hal crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 113654 |
SubjectTerms | Chemical engineering Chemical Sciences e-NRTL Ionic liquids NRTL Vapor-liquid equilibrium Working fluid |
Title | Experimental and modelling of the vapor-liquid equilibria of [Cnmim]Br(n = 2, 3, 4) + H2O systems |
URI | https://dx.doi.org/10.1016/j.fluid.2022.113654 https://ensta-paris.hal.science/hal-04208022 |
Volume | 565 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFLYKDMCAOEU5KgsxgGhoYiduOjCUqijcAyAhIRTZji2CSrhKR35Lf0t_Gc9OwjHAwBJFjh1bz_Y7ks_fQ2iTCzACXitxtHITxyeKOy3K4E4GQkgvCZTF5pyesejKP7oOriuoU56FMbDKQvfnOt1q66KkUUiz8ZSmjQuXNkOwN2DgcpIWc4Ldb5pVvvv-BfOA-CT_k2BgAFC7ZB6yGC_de0sNXSghNrdJ4P9mncbuyu-s1u4czKKZwmHE7XxMc6iisnk02SnztM2j6W-UggtIdb9R9mOeJdjmujGHzvGjxuDu4QEHn9vppc8wKqzgamH_3Dy-6WQP6cPt_stWNhrujYakjmkd-9uj4c5oGJFznBM_vy6iq4PuZSdyilQKjqS02XeY5FwaohgI6CAIhBhHhIRK0HSaiUD72mPgajASaqJa0nWF5q3AFQp2exjKxKVLaDx7zNQywrDhFWsKj2hGfEn9kBsvSkvwy3gYBLSKSCnCWBY84ybdRS8uAWX3sZV7bOQe53Kvovpno6ecZuPv6qycm_jHaonBEPzdcANm8rMLw60dtU9iU-YaoAHUHHgr_337Kpoy2ehzUPcaGu-_vKl18Fn6omYXZQ1NtA-Po7MPYVjpvw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTtwwFL3isaBdIKCtoLysqotWnTCJnXgyCxYwAqUw0EVBQkLIsh1bpBoChYEl3zLfMl_GtZPwWMCCTRQ5dmxd2_eRHJ8L8F0qNAJRNw-sCfMgpkYGXcbxTidK6ShPjMfmHBzy7DjeO0lOJqDXnIVxsMpa91c63WvruqRdS7N9VRTtvyHrpGhv0MBVJC2TMB3j9nVpDDbun3AeGKBUvxIcDgCrN9RDHuRlB7eF4wul1Cc3SeLXzNPkefOh1Rue3TmYrT1GslUNah4mTLkAM70mUdsCfHzGKfgJzM4zzn4iy5z4ZDfu1Dm5tAT9PXIn0ekOBsV_HBUxePW4f-ken_bKi-LibPv6RzkebY5HtEVYi8Q_x6Nf41FG_5CK-fnmMxzv7hz1sqDOpRBoxjrDgGsptWOKwYgOo0AMclRKmUZVZ7lKbGwjjr4Gp6mlpqvDUFnZTUJlcLunqc5D9gWmysvSLALBHW94R0XUchprFqfSuVFWo2Mm0yRhS0AbEQpdE427fBcD0SDK_gkvd-HkLiq5L0HrsdFVxbPxdnXezI14sVwEWoK3G37DmXzswpFrZ1t94cpChzTAmnfR1_e-fR1msqODvuj_Ptxfhg8uNX2F8F6BqeH1rVlFB2ao1vwCfQDHjetN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+and+modelling+of+the+vapor-liquid+equilibria+of+%5BCnmim%5DBr%28n%C2%A0%3D%C2%A02%2C+3%2C+4%29%C2%A0%2B%C2%A0H2O+systems&rft.jtitle=Fluid+phase+equilibria&rft.au=Guo%2C+Yicang&rft.au=Cao%2C+Jinxiang&rft.au=Wang%2C+Fang&rft.au=Ding%2C+Yan&rft.date=2023-02-01&rft.pub=Elsevier+B.V&rft.issn=0378-3812&rft.eissn=1879-0224&rft.volume=565&rft_id=info:doi/10.1016%2Fj.fluid.2022.113654&rft.externalDocID=S0378381222002734 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-3812&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-3812&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-3812&client=summon |