Spectroscopic techniques to probe magnetic anisotropy and spin-phonon coupling in metal complexes

Magnetism of molecular quantum materials such as single-molecule magnets (SMMs) has been actively studied for potential applications in the new generation of high-density data storage using SMMs and quantum information science. Magnetic anisotropy and spin-phonon coupling are two key properties of d...

Full description

Saved in:
Bibliographic Details
Published inDalton transactions : an international journal of inorganic chemistry Vol. 53; no. 1; pp. 439 - 445
Main Authors Hand, Adam T, Watson-Sanders, Brandon D, Xue, Zi-Ling
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 05.03.2024
Subjects
Online AccessGet full text
ISSN1477-9226
1477-9234
1477-9234
DOI10.1039/d3dt03609j

Cover

Abstract Magnetism of molecular quantum materials such as single-molecule magnets (SMMs) has been actively studied for potential applications in the new generation of high-density data storage using SMMs and quantum information science. Magnetic anisotropy and spin-phonon coupling are two key properties of d- and f-metal complexes. Here, phonons refer to both intermolecular and intramolecular vibrations. Direct determination of magnetic anisotropy and experimental studies of spin-phonon coupling are critical to the understanding of molecular magnetism. This article discusses our recent approach in using three complementary techniques, far-IR and Raman magneto-spectroscopies (FIRMS and RaMS, respectively) and inelastic neutron scatterings (INS), to determine magnetic excited states. Spin-phonon couplings are observed in FIRMS and RaMS. DFT phonon calculations give energies and symmetries of phonons as well as calculated INS spectra which help identify magnetic peaks in experimental INS spectra. Magnetic anisotropy and spin-phonon coupling are key properties of single-molecule magnets. The use of far-IR and Raman magneto-spectroscopies (FIRMS and RaMS), and inelastic neutron scattering (INS) to determine the magnetic properties is highlighted.
AbstractList Magnetism of molecular quantum materials such as single-molecule magnets (SMMs) has been actively studied for potential applications in the new generation of high-density data storage using SMMs and quantum information science. Magnetic anisotropy and spin-phonon coupling are two key properties of d- and f-metal complexes. Here, phonons refer to both intermolecular and intramolecular vibrations. Direct determination of magnetic anisotropy and experimental studies of spin-phonon coupling are critical to the understanding of molecular magnetism. This article discusses our recent approach in using three complementary techniques, far-IR and Raman magneto-spectroscopies (FIRMS and RaMS, respectively) and inelastic neutron scatterings (INS), to determine magnetic excited states. Spin-phonon couplings are observed in FIRMS and RaMS. DFT phonon calculations give energies and symmetries of phonons as well as calculated INS spectra which help identify magnetic peaks in experimental INS spectra. Magnetic anisotropy and spin-phonon coupling are key properties of single-molecule magnets. The use of far-IR and Raman magneto-spectroscopies (FIRMS and RaMS), and inelastic neutron scattering (INS) to determine the magnetic properties is highlighted.
Magnetism of molecular quantum materials such as single-molecule magnets (SMMs) has been actively studied for potential applications in the new generation of high-density data storage using SMMs and quantum information science. Magnetic anisotropy and spin–phonon coupling are two key properties of d- and f-metal complexes. Here, phonons refer to both intermolecular and intramolecular vibrations. Direct determination of magnetic anisotropy and experimental studies of spin–phonon coupling are critical to the understanding of molecular magnetism. This article discusses our recent approach in using three complementary techniques, far-IR and Raman magneto-spectroscopies (FIRMS and RaMS, respectively) and inelastic neutron scatterings (INS), to determine magnetic excited states. Spin–phonon couplings are observed in FIRMS and RaMS. DFT phonon calculations give energies and symmetries of phonons as well as calculated INS spectra which help identify magnetic peaks in experimental INS spectra.
Magnetism of molecular quantum materials such as single-molecule magnets (SMMs) has been actively studied for potential applications in the new generation of high-density data storage using SMMs and quantum information science. Magnetic anisotropy and spin-phonon coupling are two key properties of d- and f-metal complexes. Here, phonons refer to both intermolecular and intramolecular vibrations. Direct determination of magnetic anisotropy and experimental studies of spin-phonon coupling are critical to the understanding of molecular magnetism. This article discusses recent approach in using three complementary techniques, far-IR and Raman magneto-spectroscopies (FIRMS and RaMS, respectively) and inelastic neutron scatterings (INS), to determine magnetic excited states. Spin-phonon couplings are observed in FIRMS and RaMS. DFT phonon calculations give energies and symmetries of phonons as well as calculated INS spectra which help identify magnetic peaks in experimental INS spectra.
Magnetism of molecular quantum materials such as single-molecule magnets (SMMs) has been actively studied for potential applications in the new generation of high-density data storage using SMMs and quantum information science. Magnetic anisotropy and spin-phonon coupling are two key properties of d- and f-metal complexes. Here, phonons refer to both intermolecular and intramolecular vibrations. Direct determination of magnetic anisotropy and experimental studies of spin-phonon coupling are critical to the understanding of molecular magnetism. This article discusses our recent approach in using three complementary techniques, far-IR and Raman magneto-spectroscopies (FIRMS and RaMS, respectively) and inelastic neutron scatterings (INS), to determine magnetic excited states. Spin-phonon couplings are observed in FIRMS and RaMS. DFT phonon calculations give energies and symmetries of phonons as well as calculated INS spectra which help identify magnetic peaks in experimental INS spectra.Magnetism of molecular quantum materials such as single-molecule magnets (SMMs) has been actively studied for potential applications in the new generation of high-density data storage using SMMs and quantum information science. Magnetic anisotropy and spin-phonon coupling are two key properties of d- and f-metal complexes. Here, phonons refer to both intermolecular and intramolecular vibrations. Direct determination of magnetic anisotropy and experimental studies of spin-phonon coupling are critical to the understanding of molecular magnetism. This article discusses our recent approach in using three complementary techniques, far-IR and Raman magneto-spectroscopies (FIRMS and RaMS, respectively) and inelastic neutron scatterings (INS), to determine magnetic excited states. Spin-phonon couplings are observed in FIRMS and RaMS. DFT phonon calculations give energies and symmetries of phonons as well as calculated INS spectra which help identify magnetic peaks in experimental INS spectra.
Magnetism of molecular quantum materials such as single-molecule magnets (SMMs) has been actively studied for potential applications in the new generation of high-density data storage using SMMs and quantum information science. Magnetic anisotropy and spin–phonon coupling are two key properties of d- and f-metal complexes. Here, phonons refer to both intermolecular and intramolecular vibrations. Direct determination of magnetic anisotropy and experimental studies of spin–phonon coupling are critical to the understanding of molecular magnetism. This article discusses our recent approach in using three complementary techniques, far-IR and Raman magneto-spectroscopies (FIRMS and RaMS, respectively) and inelastic neutron scatterings (INS), to determine magnetic excited states. Spin–phonon couplings are observed in FIRMS and RaMS. DFT phonon calculations give energies and symmetries of phonons as well as calculated INS spectra which help identify magnetic peaks in experimental INS spectra.
Author Xue, Zi-Ling
Watson-Sanders, Brandon D
Hand, Adam T
AuthorAffiliation Department of Chemistry
University of Tennessee
AuthorAffiliation_xml – sequence: 0
  name: Department of Chemistry
– sequence: 0
  name: University of Tennessee
Author_xml – sequence: 1
  givenname: Adam T
  surname: Hand
  fullname: Hand, Adam T
– sequence: 2
  givenname: Brandon D
  surname: Watson-Sanders
  fullname: Watson-Sanders, Brandon D
– sequence: 3
  givenname: Zi-Ling
  surname: Xue
  fullname: Xue, Zi-Ling
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38380640$$D View this record in MEDLINE/PubMed
BookMark eNptkctLxDAQxoMoPlYv3pWCFxGqaSZNN0fxLYIH9VxiOtUsbRKbFPS_N-v6gMVThslvZr6Zb4usWmeRkN2CHhcU5EkDTaQgqJytkM2CV1UuGfDV35iJDbIVwoxSxmjJ1skGTGFKBaebRD141HFwQTtvdBZRv1rzNmLIosv84J4x69WLxZg-lTXBJdZ_pLDJgjc2968uqcm0G31n7EtmbNZjVF3K9L7DdwzbZK1VXcCd73dCni4vHs-u87v7q5uz07tcA1QxF0opDZKKRnMhGONpKwnQComVQMFVhXQKrKVlo7HkRamprDBly7R5W3KYkMNF36R6vkCsexM0dp2y6MZQM8lkCbLgZUIPltCZGweb1CUKKgYC0qwJ2f-mxucem9oPplfDR_1zvATQBaDT_cKAba1NVNE4Gwdlurqg9dyf-hzOH7_8uU0lR0slP13_hfcW8BD0L_dnNnwCypiZ9g
CitedBy_id crossref_primary_10_1002_chem_202401545
crossref_primary_10_1038_s41467_025_57210_0
crossref_primary_10_1039_D4DT01509F
crossref_primary_10_1002_chem_202400977
crossref_primary_10_1039_D5NJ00184F
crossref_primary_10_1002_cplu_202400109
Cites_doi 10.1002/chem.201203781
10.1039/D0DT01954B
10.1103/PhysRevB.101.174402
10.1017/CBO9780511619885
10.1002/chem.201705761
10.1021/ic500049w
10.1002/chem.201100581
10.1021/acs.inorgchem.2c04468
10.1039/c4sc00751d
10.1016/j.ccr.2017.03.015
10.1002/chem.201805090
10.1007/BF03161931
10.1039/b905745e
10.1039/D2CS00028H
10.1002/ejic.201500084
10.1002/anie.201304386
10.1103/PhysRevB.54.11169
10.1002/ejic.201801076
10.1007/s00723-020-01236-8
10.1007/430_2014_155
10.1038/nmat2133
10.1007/430_034
10.1039/C8SC03170C
10.1002/adfm.201801846
10.1039/D2DT03335F
10.1038/s41467-022-28352-2
10.1039/C6CC05473K
10.1002/chem.201801026
10.1002/chem.201604872
10.1002/asia.201701032
10.1021/om401107f
10.1016/j.ccr.2017.11.012
10.1103/PhysRevB.56.8819
10.1039/C9SC03133B
10.1039/c1cs15047b
10.1021/ja5051605
10.1063/5.0006361
10.1107/S0365110X62000870
10.1021/acs.inorgchem.5b00089
10.1021/acs.inorgchem.1c03173
10.1016/j.poly.2020.114488
10.1103/PhysRevB.59.1758
10.1039/c1sc00513h
10.1038/s41467-023-41014-1
10.1016/j.jmmm.2019.165475
10.1063/1.434200
10.1021/ja500793x
10.1002/jcc.23234
10.1021/jp001644w
10.1002/anie.201107453
10.1039/C6SC00318D
10.1007/978-3-662-45723-8
10.3390/magnetochemistry9040100
10.1038/ncomms5300
10.1016/S0301-0104(03)00124-1
10.1021/ic801727p
10.1039/C5SC03224E
10.1002/ejic.201801306
10.1039/b925028j
10.1142/5628
10.1039/C8DT01554F
10.1039/C005256F
10.1039/D3NJ02160B
10.1039/C7SC02832F
10.1039/c3cc42552e
10.1039/D2QI00275B
10.1039/C3SC53044B
10.1021/acs.inorgchem.9b02394
10.1039/C5CS00222B
10.1039/D2SC05797B
10.1063/1.1712038
10.1002/chem.202100845
10.1039/D2DT00121G
10.1021/acs.inorgchem.1c01474
10.1038/s41467-018-03706-x
10.1039/D0QI00785D
10.1002/ejic.201801088
10.1002/anie.201910299
10.1002/chem.201404218
10.1039/D2CC02068H
10.1039/C7CS00266A
10.1002/ejic.201501111
10.1039/C6DT01754A
10.1038/s41467-022-31909-w
10.1021/acs.jpclett.7b00479
10.1021/acs.inorgchem.0c01812
10.1039/C8CP01660G
10.1021/acs.inorgchem.9b02195
10.1088/0034-4885/35/3/304
10.1021/acs.inorgchem.5b00288
10.1016/j.ccr.2014.05.011
10.1021/jacs.6b02638
10.1021/jp8090842
10.1021/ic4028354
10.1126/science.aat7319
10.1039/C5CC07541F
10.1039/D0QI00319K
10.1039/D3DT00481C
10.1039/C4CS00439F
10.1016/j.ccr.2008.10.014
10.1021/acs.inorgchem.7b01861
10.1103/PhysRevLett.125.117203
10.1002/chem.201702894
10.1038/s41578-019-0146-8
10.1021/acs.inorgchem.6b01353
10.1021/acs.inorgchem.6b02312
10.1142/4870
10.1146/annurev-matsci-081420-042553
10.1016/j.ccr.2006.03.016
10.1007/s00706-022-02920-0
10.1039/C9DT00644C
10.1021/acs.inorgchem.9b02064
10.1038/ncomms14543
10.1016/j.ccr.2017.08.013
10.1021/acs.inorgchem.1c00647
10.1038/ncomms14620
10.1002/chem.201903635
10.1039/C6CS00565A
10.1039/C4DT03329A
10.1126/sciadv.aax7163
10.1039/D0DT03730C
10.1002/chem.202003052
10.1016/j.ccr.2017.03.018
10.1021/acs.inorgchem.0c00523
10.1002/chem.202003211
10.1016/j.nima.2009.03.204
10.1103/PhysRevB.102.054407
10.1021/acs.inorgchem.6b01544
10.1021/acs.inorgchem.3c00897
10.1063/5.0017118
10.1002/cphc.200300689
10.1038/nphys2431
10.1016/j.ccr.2023.215213
10.1126/sciadv.abn7880
10.1016/j.ccr.2022.214871
10.1038/ncomms10467
10.1103/PhysRevB.50.17953
10.1038/s41467-018-04896-0
10.1002/9783527694228.ch14
10.1039/D2CC06012D
10.1016/j.ccr.2021.213984
10.1021/acs.inorgchem.5b01505
10.1039/D1NJ01916C
10.1016/j.jmr.2011.09.046
10.1021/cr400018q
10.1039/c1cp22689d
10.1016/j.ccr.2004.03.001
10.1021/acs.inorgchem.2c02604
10.1002/chem.202100705
10.1021/ja8100038
10.1016/j.saa.2017.09.057
10.1007/978-3-031-31038-6_6
10.1063/1.1674688
10.1103/PhysRevB.89.174409
10.1038/nature23447
10.1002/adma.200700594
10.1021/acs.inorgchem.9b01719
10.1021/ja4089956
10.1021/acsomega.2c06119
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2024
Copyright_xml – notice: Copyright Royal Society of Chemistry 2024
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/d3dt03609j
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
PubMed
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1477-9234
EndPage 445
ExternalDocumentID 38380640
10_1039_D3DT03609J
d3dt03609j
Genre Journal Article
Review
GroupedDBID ---
-DZ
-JG
-~X
0-7
0R~
29F
4.4
53G
5GY
70~
7~J
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFVBQ
AGEGJ
AGKEF
AGRSR
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CS3
D0L
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3G
J3H
J3I
M4U
O9-
R7B
R7C
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UCJ
UPT
VH6
VQA
WH7
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
R56
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c337t-6aaac3906dc466224d3d933f69e76e64a7e0832f05dce5415c097ea7e5360f543
ISSN 1477-9226
1477-9234
IngestDate Fri Jul 11 16:24:37 EDT 2025
Sun Jun 29 12:54:44 EDT 2025
Thu Apr 03 07:02:10 EDT 2025
Tue Jul 01 04:27:35 EDT 2025
Thu Apr 24 23:08:21 EDT 2025
Tue Dec 17 20:58:03 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c337t-6aaac3906dc466224d3d933f69e76e64a7e0832f05dce5415c097ea7e5360f543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-9276-9508
0000-0001-9672-2937
0000-0001-7401-9933
PMID 38380640
PQID 2937236308
PQPubID 2047498
PageCount 16
ParticipantIDs crossref_citationtrail_10_1039_D3DT03609J
proquest_miscellaneous_2929539145
pubmed_primary_38380640
crossref_primary_10_1039_D3DT03609J
proquest_journals_2937236308
rsc_primary_d3dt03609j
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-05
PublicationDateYYYYMMDD 2024-03-05
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-05
  day: 05
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Dalton transactions : an international journal of inorganic chemistry
PublicationTitleAlternate Dalton Trans
PublicationYear 2024
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Vonci (D3DT03609J/cit77/1) 2017; 56
van Slageren (D3DT03609J/cit98/1) 2010; 39
Feng (D3DT03609J/cit73/1) 2016; 52
Bernot (D3DT03609J/cit88/1) 2009; 131
Fang (D3DT03609J/cit91/1) 2019; 490
Klokishner (D3DT03609J/cit159/1) 2009; 113
D3DT03609J/cit130/1
Bogani (D3DT03609J/cit123/1) 2007; 19
Baker (D3DT03609J/cit144/1) 2012; 8
Perfetti (D3DT03609J/cit75/1) 2018; 28
Bacon (D3DT03609J/cit148/1) 1977
Feng (D3DT03609J/cit4/1) 2018; 24
Lu (D3DT03609J/cit18/1) 2017; 12
Widener (D3DT03609J/cit56/1) 2020; 36
Gatteschi (D3DT03609J/cit163/1) 2000; 104
Coronado (D3DT03609J/cit6/1) 2020; 5
Chen (D3DT03609J/cit41/1) 2021; 45
Chen (D3DT03609J/cit95/1) 2014; 136
Zhu (D3DT03609J/cit103/1) 2020; 7
Baker (D3DT03609J/cit170/1) 2015; 164
Kumar Sahu (D3DT03609J/cit12/1) 2023; 475
Pedersen (D3DT03609J/cit72/1) 2014; 5
Chakarawet (D3DT03609J/cit118/1) 2021; 60
Krzystek (D3DT03609J/cit38/1) 2006; 250
Parker (D3DT03609J/cit152/1) 2018; 190
Ungur (D3DT03609J/cit25/1) 2016; 55
Clark (D3DT03609J/cit137/1) 1982; 9
Copley (D3DT03609J/cit147/1) 2003; 292
Rechkemmer (D3DT03609J/cit48/1) 2016; 7
Bonde (D3DT03609J/cit76/1) 2022; 58
Layfield (D3DT03609J/cit22/1) 2014; 33
McAdams (D3DT03609J/cit23/1) 2017; 346
Cui (D3DT03609J/cit45/1) 2019; 48
Marin (D3DT03609J/cit100/1) 2021; 60
Hamilton (D3DT03609J/cit139/1) 1962; 15
Lunghi (D3DT03609J/cit107/1) 2023
Tregenna-Piggott (D3DT03609J/cit160/1) 2009; 48
Bone (D3DT03609J/cit40/1) 2020; 184
Coutinho (D3DT03609J/cit65/1) 2019; 25
Wolford (D3DT03609J/cit96/1) 2021; 50
Basler (D3DT03609J/cit162/1) 2003; 4
Lunghi (D3DT03609J/cit109/1) 2020; 153
Lunghi (D3DT03609J/cit110/1) 2022; 8
Gysler (D3DT03609J/cit52/1) 2016; 7
Pei (D3DT03609J/cit84/1) 2022; 13
Bonde (D3DT03609J/cit79/1) 2020; 59
Pointillart (D3DT03609J/cit86/1) 2020; 7
Sutter (D3DT03609J/cit13/1) 2022; 51
Zhang (D3DT03609J/cit17/1) 2015; 44
Hughey (D3DT03609J/cit58/1) 2020; 59
Krzystek (D3DT03609J/cit142/1) 2011; 213
Viciano-Chumillas (D3DT03609J/cit57/1) 2020; 26
Kresse (D3DT03609J/cit173/1) 1999; 59
Zhang (D3DT03609J/cit166/1) 2014; 136
Moseley (D3DT03609J/cit33/1) 2020; 59
Liddle (D3DT03609J/cit16/1) 2015; 44
Escalera-Moreno (D3DT03609J/cit122/1) 2020; 11
Cucinotta (D3DT03609J/cit89/1) 2012; 51
Georgiev (D3DT03609J/cit11/1) 2022; 7
Landart-Gereka (D3DT03609J/cit167/1) 2022; 9
Ferentinos (D3DT03609J/cit60/1) 2023; 52
Gao (D3DT03609J/cit3/1) 2015
Liu (D3DT03609J/cit19/1) 2018; 47
Lv (D3DT03609J/cit42/1) 2023; 47
Jia (D3DT03609J/cit104/1) 2019; 378
D3DT03609J/cit129/1
Xue (D3DT03609J/cit143/1) 2019; 2019
Hennion (D3DT03609J/cit161/1) 1997; 56
Dunstan (D3DT03609J/cit164/1) 2019; 2019
Rigamonti (D3DT03609J/cit82/1) 2018; 24
Seeger (D3DT03609J/cit151/1) 2009; 604
Raza (D3DT03609J/cit26/1) 2023; 490
Furrer (D3DT03609J/cit146/1) 2009
Zabala-Lekuona (D3DT03609J/cit7/1) 2021; 441
Long (D3DT03609J/cit138/1) 2002
Champion (D3DT03609J/cit141/1) 1977; 66
Liu (D3DT03609J/cit94/1) 2016; 138
Stavretis (D3DT03609J/cit125/1) 2015; 54
Vallejo (D3DT03609J/cit59/1) 2019; 58
Schnegg (D3DT03609J/cit67/1) 2009; 11
Garlatti (D3DT03609J/cit145/1) 2017; 8
Brackett (D3DT03609J/cit133/1) 1971; 54
Dreiser (D3DT03609J/cit157/1) 2013; 19
Kragskow (D3DT03609J/cit63/1) 2022; 13
Vonci (D3DT03609J/cit78/1) 2016; 52
Devkota (D3DT03609J/cit37/1) 2023; 62
Perfetti (D3DT03609J/cit64/1) 2019; 10
Sigrist (D3DT03609J/cit154/1) 2015; 2015
Landart-Gereka (D3DT03609J/cit61/1) 2023; 59
Krzystek (D3DT03609J/cit30/1) 2016; 45
Novitchi (D3DT03609J/cit93/1) 2017; 56
D3DT03609J/cit132/1
Sanvito (D3DT03609J/cit28/1) 2011; 40
Mayans (D3DT03609J/cit85/1) 2021; 60
Chen (D3DT03609J/cit101/1) 2023; 52
Kresse (D3DT03609J/cit169/1) 1996; 54
Chilton (D3DT03609J/cit177/1) 2013; 34
Dove (D3DT03609J/cit105/1) 1993
Lunghi (D3DT03609J/cit115/1) 2017; 8
Dunstan (D3DT03609J/cit69/1) 2019; 2019
Woodruff (D3DT03609J/cit15/1) 2013; 113
Gómez-Coca (D3DT03609J/cit165/1) 2014; 5
Wernsdorfer (D3DT03609J/cit92/1) 2001; 118
Nemykin (D3DT03609J/cit99/1) 2023; 62
Boča (D3DT03609J/cit9/1) 2023; 9
Sarkar (D3DT03609J/cit10/1) 2020; 26
Kumar (D3DT03609J/cit62/1) 2020; 59
D3DT03609J/cit128/1
Mitchell (D3DT03609J/cit106/1) 2005
Eaton (D3DT03609J/cit39/1) 1999; 16
Richards (D3DT03609J/cit135/1) 1967; 47
Haas (D3DT03609J/cit50/1) 2014; 89
Chen (D3DT03609J/cit126/1) 2016; 55
Marx (D3DT03609J/cit49/1) 2014; 5
Stavretis (D3DT03609J/cit124/1) 2018; 20
Blöchl (D3DT03609J/cit172/1) 1994; 50
Gatteschi (D3DT03609J/cit153/1) 2000; 104
Bogani (D3DT03609J/cit27/1) 2008; 7
Pedersen (D3DT03609J/cit168/1) 2017; 23
Chen (D3DT03609J/cit46/1) 2018; 47
Bunting (D3DT03609J/cit51/1) 2018; 362
Moseley (D3DT03609J/cit31/1) 2018; 9
Frost (D3DT03609J/cit1/1) 2016; 7
Mirzoyan (D3DT03609J/cit117/1) 2021; 27
Lunghi (D3DT03609J/cit108/1) 2019; 5
Stavretis (D3DT03609J/cit32/1) 2019; 2019
Goodwin (D3DT03609J/cit112/1) 2017; 548
Moseley (D3DT03609J/cit35/1) 2022; 61
Neese (D3DT03609J/cit2/1) 2011; 148
Hunter (D3DT03609J/cit127/1) 2014; 53
Rizzi (D3DT03609J/cit176/1) 2016
Bone (D3DT03609J/cit54/1) 2021; 27
Lv (D3DT03609J/cit43/1) 2022; 51
Bloor (D3DT03609J/cit47/1) 1972; 35
Colacio (D3DT03609J/cit71/1) 2013; 52
da Cunha (D3DT03609J/cit90/1) 2013; 135
Escalera-Moreno (D3DT03609J/cit114/1) 2017; 8
Boča (D3DT03609J/cit34/1) 2004; 248
Chilton (D3DT03609J/cit24/1) 2015; 54
D3DT03609J/cit131/1
Stavretis (D3DT03609J/cit53/1) 2019; 25
Rinehart (D3DT03609J/cit14/1) 2011; 2
Chilton (D3DT03609J/cit5/1) 2022; 52
Tin (D3DT03609J/cit55/1) 2020; 51
Singh (D3DT03609J/cit156/1) 2013; 49
Roessler (D3DT03609J/cit175/1) 2018; 47
Dunstan (D3DT03609J/cit113/1) 2023; 14
Pedersen (D3DT03609J/cit155/1) 2014; 53
McInnes (D3DT03609J/cit70/1) 2006
Cahier (D3DT03609J/cit83/1) 2017; 23
Sørensen (D3DT03609J/cit74/1) 2018; 9
Perfetti (D3DT03609J/cit87/1) 2017; 348
Ungur (D3DT03609J/cit29/1) 2011; 13
Perfetti (D3DT03609J/cit80/1) 2014; 20
Higdon (D3DT03609J/cit119/1) 2020; 152
Lunghi (D3DT03609J/cit111/1) 2017; 8
Chiesa (D3DT03609J/cit36/1) 2020; 101
Cohen-Tannoudji (D3DT03609J/cit174/1) 1977
Irländer (D3DT03609J/cit121/1) 2020; 102
Cotton (D3DT03609J/cit136/1) 1990
Tin (D3DT03609J/cit150/1) 2023; 14
Juráková (D3DT03609J/cit8/1) 2022; 153
Feltham (D3DT03609J/cit21/1) 2014; 276
Dreiser (D3DT03609J/cit158/1) 2011; 17
Perfetti (D3DT03609J/cit102/1) 2017
Piligkos (D3DT03609J/cit97/1) 2009; 253
Craig (D3DT03609J/cit20/1) 2015; 44
Gu (D3DT03609J/cit120/1) 2020; 125
Gnezdilov (D3DT03609J/cit140/1) 1991; 17
Misochko (D3DT03609J/cit68/1) 2019; 58
Blockmon (D3DT03609J/cit116/1) 2021; 60
Cui (D3DT03609J/cit44/1) 2020; 49
Perfetti (D3DT03609J/cit81/1) 2015; 54
Squires (D3DT03609J/cit149/1) 1978
Singh (D3DT03609J/cit171/1) 2017; 344
References_xml – issn: 2009
  publication-title: Neutron Scattering in Condensed Matter Physics
  doi: Furrer Mesot Strässle
– issn: 2017
  end-page: 345-368
  publication-title: Molecular Magnetic Materials
  doi: Perfetti Pointillart Cador Sorace Ouahab
– issn: 2002
  volume-title: The Raman Effect. A Unified Treatment of the Theory of Raman Scattering by Molecules
  end-page: 289-302
  publication-title: Normal and Resonance Electronic and Vibronic Raman Scattering
  doi: Long
– issn: 1990
  publication-title: Chemical Applications of Group Theory
  doi: Cotton
– issn: 2006
  volume-title: Single-Molecule Magnets and Related Phenomena
  end-page: 69-102
  publication-title: Struct. Bond
  doi: McInnes
– issn: 2023
  end-page: 219-289
  publication-title: Computational Modelling of Molecular Nanomagnets
  doi: Lunghi
– issn: 1970
  doi: Brackett
– issn: 1978
  publication-title: Introduction to the Theory of Thermal Neutron Scattering
  doi: Squires
– issn: 2015
  publication-title: Molecular Nanomagnets and Related Phenomena
  doi: Gao
– issn: 2005
  publication-title: Vibrational Spectroscopy with Neutrons: With Applications in Chemistry, Biology, Materials Science and Catalysis
  doi: Mitchell Parker Ramirez-Cuesta Tomkinson
– issn: 1977
  publication-title: Neutron Scattering in Chemistry
  doi: Bacon
– issn: 2015
  doi: Haas
– issn: 1977
  publication-title: Quantum Mechanics
  doi: Cohen-Tannoudji Laloe Diu
– issn: 1993
  publication-title: Introduction to Lattice Dynamics
  doi: Dove
– volume: 19
  start-page: 3693
  year: 2013
  ident: D3DT03609J/cit157/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201203781
– volume: 49
  start-page: 14837
  year: 2020
  ident: D3DT03609J/cit44/1
  publication-title: Dalton Trans.
  doi: 10.1039/D0DT01954B
– ident: D3DT03609J/cit129/1
– volume-title: Introduction to the Theory of Thermal Neutron Scattering
  year: 1978
  ident: D3DT03609J/cit149/1
– volume: 101
  start-page: 174402
  year: 2020
  ident: D3DT03609J/cit36/1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.101.174402
– volume-title: Introduction to Lattice Dynamics
  year: 1993
  ident: D3DT03609J/cit105/1
  doi: 10.1017/CBO9780511619885
– ident: D3DT03609J/cit131/1
– volume: 24
  start-page: 7574
  year: 2018
  ident: D3DT03609J/cit4/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201705761
– volume: 53
  start-page: 5013
  year: 2014
  ident: D3DT03609J/cit155/1
  publication-title: Inorg. Chem.
  doi: 10.1021/ic500049w
– volume: 17
  start-page: 7492
  year: 2011
  ident: D3DT03609J/cit158/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201100581
– volume: 62
  start-page: 5984
  year: 2023
  ident: D3DT03609J/cit37/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.2c04468
– volume: 5
  start-page: 3287
  year: 2014
  ident: D3DT03609J/cit49/1
  publication-title: Chem. Sci.
  doi: 10.1039/c4sc00751d
– volume: 346
  start-page: 216
  year: 2017
  ident: D3DT03609J/cit23/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2017.03.015
– ident: D3DT03609J/cit132/1
– volume: 25
  start-page: 1758
  year: 2019
  ident: D3DT03609J/cit65/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201805090
– volume: 16
  start-page: 161
  year: 1999
  ident: D3DT03609J/cit39/1
  publication-title: Appl. Magn. Reson.
  doi: 10.1007/BF03161931
– volume: 11
  start-page: 6820
  year: 2009
  ident: D3DT03609J/cit67/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b905745e
– volume: 51
  start-page: 3280
  year: 2022
  ident: D3DT03609J/cit13/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D2CS00028H
– volume: 2015
  start-page: 2683
  year: 2015
  ident: D3DT03609J/cit154/1
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/ejic.201500084
– volume: 52
  start-page: 9130
  year: 2013
  ident: D3DT03609J/cit71/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201304386
– volume: 54
  start-page: 11169
  year: 1996
  ident: D3DT03609J/cit169/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.54.11169
– volume: 2019
  start-page: 1065
  year: 2019
  ident: D3DT03609J/cit143/1
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/ejic.201801076
– ident: D3DT03609J/cit128/1
– volume: 51
  start-page: 1411
  year: 2020
  ident: D3DT03609J/cit55/1
  publication-title: Appl. Magn. Reson.
  doi: 10.1007/s00723-020-01236-8
– volume: 164
  start-page: 231
  year: 2015
  ident: D3DT03609J/cit170/1
  publication-title: Struct. Bonding
  doi: 10.1007/430_2014_155
– volume: 7
  start-page: 179
  year: 2008
  ident: D3DT03609J/cit27/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2133
– start-page: 69
  volume-title: Struct. Bond
  year: 2006
  ident: D3DT03609J/cit70/1
  doi: 10.1007/430_034
– volume: 10
  start-page: 2101
  year: 2019
  ident: D3DT03609J/cit64/1
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC03170C
– volume: 28
  start-page: 1801846
  year: 2018
  ident: D3DT03609J/cit75/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201801846
– volume: 9
  start-page: 282
  year: 1982
  ident: D3DT03609J/cit137/1
  publication-title: Adv. Infrared Raman Spectrosc.
– volume: 52
  start-page: 2036
  year: 2023
  ident: D3DT03609J/cit60/1
  publication-title: Dalton Trans.
  doi: 10.1039/D2DT03335F
– volume: 13
  start-page: 825
  year: 2022
  ident: D3DT03609J/cit63/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-28352-2
– volume: 52
  start-page: 12905
  year: 2016
  ident: D3DT03609J/cit73/1
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC05473K
– volume: 24
  start-page: 8857
  year: 2018
  ident: D3DT03609J/cit82/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201801026
– volume: 23
  start-page: 3648
  year: 2017
  ident: D3DT03609J/cit83/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201604872
– volume: 17
  start-page: 253
  year: 1991
  ident: D3DT03609J/cit140/1
  publication-title: Fiz. Nizk. Temp.
– volume: 12
  start-page: 2772
  year: 2017
  ident: D3DT03609J/cit18/1
  publication-title: Chem. – Asian J.
  doi: 10.1002/asia.201701032
– ident: D3DT03609J/cit130/1
– volume: 33
  start-page: 1084
  year: 2014
  ident: D3DT03609J/cit22/1
  publication-title: Organometallics
  doi: 10.1021/om401107f
– volume: 378
  start-page: 365
  year: 2019
  ident: D3DT03609J/cit104/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2017.11.012
– volume: 56
  start-page: 8819
  year: 1997
  ident: D3DT03609J/cit161/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.56.8819
– volume: 11
  start-page: 1593
  year: 2020
  ident: D3DT03609J/cit122/1
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC03133B
– volume: 40
  start-page: 3336
  year: 2011
  ident: D3DT03609J/cit28/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c1cs15047b
– volume: 136
  start-page: 12213
  year: 2014
  ident: D3DT03609J/cit95/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5051605
– volume: 152
  start-page: 204306
  year: 2020
  ident: D3DT03609J/cit119/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0006361
– volume: 15
  start-page: 353
  year: 1962
  ident: D3DT03609J/cit139/1
  publication-title: Acta Crystallogr.
  doi: 10.1107/S0365110X62000870
– volume: 54
  start-page: 2097
  year: 2015
  ident: D3DT03609J/cit24/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.5b00089
– volume: 60
  start-page: 18553
  year: 2021
  ident: D3DT03609J/cit118/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.1c03173
– volume: 184
  start-page: 114488
  year: 2020
  ident: D3DT03609J/cit40/1
  publication-title: Polyhedron
  doi: 10.1016/j.poly.2020.114488
– volume: 59
  start-page: 1758
  year: 1999
  ident: D3DT03609J/cit173/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.59.1758
– volume: 2
  start-page: 2078
  year: 2011
  ident: D3DT03609J/cit14/1
  publication-title: Chem. Sci.
  doi: 10.1039/c1sc00513h
– volume: 14
  start-page: 5454
  year: 2023
  ident: D3DT03609J/cit150/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-41014-1
– volume: 490
  start-page: 165475
  year: 2019
  ident: D3DT03609J/cit91/1
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2019.165475
– volume: 66
  start-page: 1819
  year: 1977
  ident: D3DT03609J/cit141/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.434200
– volume: 136
  start-page: 4484
  year: 2014
  ident: D3DT03609J/cit166/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja500793x
– volume: 34
  start-page: 1164
  year: 2013
  ident: D3DT03609J/cit177/1
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.23234
– volume: 104
  start-page: 9780
  year: 2000
  ident: D3DT03609J/cit163/1
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp001644w
– volume: 51
  start-page: 1606
  year: 2012
  ident: D3DT03609J/cit89/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201107453
– volume: 7
  start-page: 4347
  year: 2016
  ident: D3DT03609J/cit52/1
  publication-title: Chem. Sci.
  doi: 10.1039/C6SC00318D
– volume-title: Molecular Nanomagnets and Related Phenomena
  year: 2015
  ident: D3DT03609J/cit3/1
  doi: 10.1007/978-3-662-45723-8
– volume: 9
  start-page: 100
  year: 2023
  ident: D3DT03609J/cit9/1
  publication-title: Magnetochemistry
  doi: 10.3390/magnetochemistry9040100
– volume: 5
  start-page: 4300
  year: 2014
  ident: D3DT03609J/cit165/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5300
– volume: 292
  start-page: 477
  year: 2003
  ident: D3DT03609J/cit147/1
  publication-title: Chem. Phys.
  doi: 10.1016/S0301-0104(03)00124-1
– volume: 48
  start-page: 128
  year: 2009
  ident: D3DT03609J/cit160/1
  publication-title: Inorg. Chem.
  doi: 10.1021/ic801727p
– volume: 7
  start-page: 2470
  year: 2016
  ident: D3DT03609J/cit1/1
  publication-title: Chem. Sci.
  doi: 10.1039/C5SC03224E
– volume: 2019
  start-page: 1090
  year: 2019
  ident: D3DT03609J/cit164/1
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/ejic.201801306
– volume: 39
  start-page: 4999
  year: 2010
  ident: D3DT03609J/cit98/1
  publication-title: Dalton Trans.
  doi: 10.1039/b925028j
– volume-title: Vibrational Spectroscopy with Neutrons: With Applications in Chemistry, Biology, Materials Science and Catalysis
  year: 2005
  ident: D3DT03609J/cit106/1
  doi: 10.1142/5628
– volume: 47
  start-page: 10162
  year: 2018
  ident: D3DT03609J/cit46/1
  publication-title: Dalton Trans.
  doi: 10.1039/C8DT01554F
– volume: 148
  start-page: 229
  year: 2011
  ident: D3DT03609J/cit2/1
  publication-title: Faraday Discuss.
  doi: 10.1039/C005256F
– volume: 47
  start-page: 15553
  year: 2023
  ident: D3DT03609J/cit42/1
  publication-title: New J. Chem.
  doi: 10.1039/D3NJ02160B
– volume: 8
  start-page: 6051
  year: 2017
  ident: D3DT03609J/cit111/1
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC02832F
– volume: 49
  start-page: 5583
  year: 2013
  ident: D3DT03609J/cit156/1
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc42552e
– volume: 9
  start-page: 2810
  year: 2022
  ident: D3DT03609J/cit167/1
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/D2QI00275B
– volume: 104
  start-page: 9780
  year: 2000
  ident: D3DT03609J/cit153/1
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp001644w
– volume: 5
  start-page: 1650
  year: 2014
  ident: D3DT03609J/cit72/1
  publication-title: Chem. Sci.
  doi: 10.1039/C3SC53044B
– volume: 59
  start-page: 2127
  year: 2020
  ident: D3DT03609J/cit58/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.9b02394
– volume: 44
  start-page: 6655
  year: 2015
  ident: D3DT03609J/cit16/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00222B
– volume: 14
  start-page: 3990
  year: 2023
  ident: D3DT03609J/cit113/1
  publication-title: Chem. Sci.
  doi: 10.1039/D2SC05797B
– volume: 47
  start-page: 1187
  year: 1967
  ident: D3DT03609J/cit135/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1712038
– volume: 27
  start-page: 9482
  year: 2021
  ident: D3DT03609J/cit117/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.202100845
– volume: 51
  start-page: 7530
  year: 2022
  ident: D3DT03609J/cit43/1
  publication-title: Dalton Trans.
  doi: 10.1039/D2DT00121G
– volume: 60
  start-page: 14096
  year: 2021
  ident: D3DT03609J/cit116/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.1c01474
– volume: 9
  start-page: 1292
  year: 2018
  ident: D3DT03609J/cit74/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03706-x
– volume: 7
  start-page: 3315
  year: 2020
  ident: D3DT03609J/cit103/1
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/D0QI00785D
– volume: 2019
  start-page: 1119
  year: 2019
  ident: D3DT03609J/cit32/1
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/ejic.201801088
– volume: 60
  start-page: 1728
  year: 2021
  ident: D3DT03609J/cit100/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201910299
– volume: 20
  start-page: 14051
  year: 2014
  ident: D3DT03609J/cit80/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201404218
– volume: 58
  start-page: 7431
  year: 2022
  ident: D3DT03609J/cit76/1
  publication-title: Chem. Commun.
  doi: 10.1039/D2CC02068H
– volume: 47
  start-page: 2431
  year: 2018
  ident: D3DT03609J/cit19/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00266A
– start-page: 192
  year: 2016
  ident: D3DT03609J/cit176/1
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/ejic.201501111
– volume: 45
  start-page: 16751
  year: 2016
  ident: D3DT03609J/cit30/1
  publication-title: Dalton Trans.
  doi: 10.1039/C6DT01754A
– volume: 13
  start-page: 4506
  year: 2022
  ident: D3DT03609J/cit84/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-31909-w
– volume: 8
  start-page: 1695
  year: 2017
  ident: D3DT03609J/cit114/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.7b00479
– volume: 59
  start-page: 16178
  year: 2020
  ident: D3DT03609J/cit62/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.0c01812
– volume: 20
  start-page: 21119
  year: 2018
  ident: D3DT03609J/cit124/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C8CP01660G
– volume: 58
  start-page: 16434
  year: 2019
  ident: D3DT03609J/cit68/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.9b02195
– volume: 35
  start-page: 1173
  year: 1972
  ident: D3DT03609J/cit47/1
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/35/3/304
– volume: 54
  start-page: 3090
  year: 2015
  ident: D3DT03609J/cit81/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.5b00288
– volume-title: Neutron Scattering in Chemistry
  year: 1977
  ident: D3DT03609J/cit148/1
– volume: 276
  start-page: 1
  year: 2014
  ident: D3DT03609J/cit21/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2014.05.011
– volume: 138
  start-page: 5441
  year: 2016
  ident: D3DT03609J/cit94/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b02638
– volume: 113
  start-page: 8573
  year: 2009
  ident: D3DT03609J/cit159/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp8090842
– volume: 53
  start-page: 1955
  year: 2014
  ident: D3DT03609J/cit127/1
  publication-title: Inorg. Chem.
  doi: 10.1021/ic4028354
– volume: 362
  start-page: eaat7319
  year: 2018
  ident: D3DT03609J/cit51/1
  publication-title: Science
  doi: 10.1126/science.aat7319
– volume: 52
  start-page: 2091
  year: 2016
  ident: D3DT03609J/cit78/1
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC07541F
– volume: 7
  start-page: 2322
  year: 2020
  ident: D3DT03609J/cit86/1
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/D0QI00319K
– volume: 52
  start-page: 4643
  year: 2023
  ident: D3DT03609J/cit101/1
  publication-title: Dalton Trans.
  doi: 10.1039/D3DT00481C
– volume: 44
  start-page: 2135
  year: 2015
  ident: D3DT03609J/cit20/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00439F
– volume: 253
  start-page: 2352
  year: 2009
  ident: D3DT03609J/cit97/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2008.10.014
– volume: 56
  start-page: 14809
  year: 2017
  ident: D3DT03609J/cit93/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.7b01861
– volume: 125
  start-page: 117203
  year: 2020
  ident: D3DT03609J/cit120/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.117203
– volume: 23
  start-page: 11244
  year: 2017
  ident: D3DT03609J/cit168/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201702894
– volume: 5
  start-page: 87
  year: 2020
  ident: D3DT03609J/cit6/1
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-019-0146-8
– volume: 55
  start-page: 10043
  year: 2016
  ident: D3DT03609J/cit25/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.6b01353
– volume: 56
  start-page: 378
  year: 2017
  ident: D3DT03609J/cit77/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.6b02312
– volume-title: Neutron Scattering in Condensed Matter Physics
  year: 2009
  ident: D3DT03609J/cit146/1
  doi: 10.1142/4870
– volume: 52
  start-page: 79
  year: 2022
  ident: D3DT03609J/cit5/1
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev-matsci-081420-042553
– volume: 250
  start-page: 2308
  year: 2006
  ident: D3DT03609J/cit38/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2006.03.016
– volume: 153
  start-page: 1001
  year: 2022
  ident: D3DT03609J/cit8/1
  publication-title: Monatsh. Chem.
  doi: 10.1007/s00706-022-02920-0
– volume: 48
  start-page: 10743
  year: 2019
  ident: D3DT03609J/cit45/1
  publication-title: Dalton Trans.
  doi: 10.1039/C9DT00644C
– volume: 59
  start-page: 235
  year: 2020
  ident: D3DT03609J/cit79/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.9b02064
– volume: 8
  start-page: 14543
  year: 2017
  ident: D3DT03609J/cit145/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14543
– volume-title: Quantum Mechanics
  year: 1977
  ident: D3DT03609J/cit174/1
– volume: 348
  start-page: 171
  year: 2017
  ident: D3DT03609J/cit87/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2017.08.013
– volume: 60
  start-page: 8692
  year: 2021
  ident: D3DT03609J/cit85/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.1c00647
– volume: 8
  start-page: 14620
  year: 2017
  ident: D3DT03609J/cit115/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14620
– volume: 25
  start-page: 15846
  year: 2019
  ident: D3DT03609J/cit53/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201903635
– volume: 47
  start-page: 2534
  year: 2018
  ident: D3DT03609J/cit175/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00565A
– volume: 44
  start-page: 3923
  year: 2015
  ident: D3DT03609J/cit17/1
  publication-title: Dalton Trans.
  doi: 10.1039/C4DT03329A
– volume: 5
  start-page: eaax7163
  year: 2019
  ident: D3DT03609J/cit108/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aax7163
– volume: 36
  start-page: 1149
  year: 2020
  ident: D3DT03609J/cit56/1
  publication-title: Chin. J. Inorg. Chem.
– volume: 50
  start-page: 416
  year: 2021
  ident: D3DT03609J/cit96/1
  publication-title: Dalton Trans.
  doi: 10.1039/D0DT03730C
– volume: 26
  start-page: 14242
  year: 2020
  ident: D3DT03609J/cit57/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.202003052
– volume: 344
  start-page: 2
  year: 2017
  ident: D3DT03609J/cit171/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2017.03.018
– volume: 59
  start-page: 5218
  year: 2020
  ident: D3DT03609J/cit33/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.0c00523
– volume: 26
  start-page: 14036
  year: 2020
  ident: D3DT03609J/cit10/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.202003211
– volume: 604
  start-page: 719
  year: 2009
  ident: D3DT03609J/cit151/1
  publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A
  doi: 10.1016/j.nima.2009.03.204
– volume: 2019
  start-page: 1090
  year: 2019
  ident: D3DT03609J/cit69/1
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/ejic.201801306
– volume: 102
  start-page: 054407
  year: 2020
  ident: D3DT03609J/cit121/1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.102.054407
– volume: 55
  start-page: 12603
  year: 2016
  ident: D3DT03609J/cit126/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.6b01544
– volume: 62
  start-page: 10203
  year: 2023
  ident: D3DT03609J/cit99/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.3c00897
– volume: 153
  start-page: 174113
  year: 2020
  ident: D3DT03609J/cit109/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0017118
– volume: 4
  start-page: 910
  year: 2003
  ident: D3DT03609J/cit162/1
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.200300689
– volume: 8
  start-page: 906
  year: 2012
  ident: D3DT03609J/cit144/1
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2431
– volume: 490
  start-page: 215213
  year: 2023
  ident: D3DT03609J/cit26/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2023.215213
– volume: 8
  start-page: eabn7880
  year: 2022
  ident: D3DT03609J/cit110/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abn7880
– volume: 475
  start-page: 214871
  year: 2023
  ident: D3DT03609J/cit12/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2022.214871
– volume: 7
  start-page: 10467
  year: 2016
  ident: D3DT03609J/cit48/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10467
– volume: 50
  start-page: 17953
  year: 1994
  ident: D3DT03609J/cit172/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.50.17953
– volume: 9
  start-page: 2572
  year: 2018
  ident: D3DT03609J/cit31/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04896-0
– start-page: 345
  volume-title: Molecular Magnetic Materials
  year: 2017
  ident: D3DT03609J/cit102/1
  doi: 10.1002/9783527694228.ch14
– volume: 59
  start-page: 952
  year: 2023
  ident: D3DT03609J/cit61/1
  publication-title: Chem. Commun.
  doi: 10.1039/D2CC06012D
– volume: 441
  start-page: 213984
  year: 2021
  ident: D3DT03609J/cit7/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2021.213984
– volume-title: Chemical Applications of Group Theory
  year: 1990
  ident: D3DT03609J/cit136/1
– volume: 54
  start-page: 9790
  year: 2015
  ident: D3DT03609J/cit125/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.5b01505
– volume: 45
  start-page: 16852
  year: 2021
  ident: D3DT03609J/cit41/1
  publication-title: New J. Chem.
  doi: 10.1039/D1NJ01916C
– volume: 213
  start-page: 158
  year: 2011
  ident: D3DT03609J/cit142/1
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2011.09.046
– volume: 113
  start-page: 5110
  year: 2013
  ident: D3DT03609J/cit15/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr400018q
– volume: 13
  start-page: 20086
  year: 2011
  ident: D3DT03609J/cit29/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c1cp22689d
– volume: 248
  start-page: 757
  year: 2004
  ident: D3DT03609J/cit34/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2004.03.001
– volume: 61
  start-page: 17123
  year: 2022
  ident: D3DT03609J/cit35/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.2c02604
– volume: 27
  start-page: 11110
  year: 2021
  ident: D3DT03609J/cit54/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.202100705
– volume: 131
  start-page: 5573
  year: 2009
  ident: D3DT03609J/cit88/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8100038
– volume: 190
  start-page: 518
  year: 2018
  ident: D3DT03609J/cit152/1
  publication-title: Spectrochim. Acta, Part A
  doi: 10.1016/j.saa.2017.09.057
– start-page: 219
  volume-title: Computational Modelling of Molecular Nanomagnets
  year: 2023
  ident: D3DT03609J/cit107/1
  doi: 10.1007/978-3-031-31038-6_6
– start-page: 289
  volume-title: Normal and Resonance Electronic and Vibronic Raman Scattering
  year: 2002
  ident: D3DT03609J/cit138/1
– volume: 118
  start-page: 99
  year: 2001
  ident: D3DT03609J/cit92/1
  publication-title: Adv. Chem. Phys.
– volume: 54
  start-page: 4383
  year: 1971
  ident: D3DT03609J/cit133/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1674688
– volume: 89
  start-page: 174409
  year: 2014
  ident: D3DT03609J/cit50/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.89.174409
– volume: 548
  start-page: 439
  year: 2017
  ident: D3DT03609J/cit112/1
  publication-title: Nature
  doi: 10.1038/nature23447
– volume: 19
  start-page: 3906
  year: 2007
  ident: D3DT03609J/cit123/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200700594
– volume: 58
  start-page: 15726
  year: 2019
  ident: D3DT03609J/cit59/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.9b01719
– volume: 135
  start-page: 16332
  year: 2013
  ident: D3DT03609J/cit90/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4089956
– volume: 7
  start-page: 42664
  year: 2022
  ident: D3DT03609J/cit11/1
  publication-title: ACS Omega
  doi: 10.1021/acsomega.2c06119
SSID ssj0022052
Score 2.469496
SecondaryResourceType review_article
Snippet Magnetism of molecular quantum materials such as single-molecule magnets (SMMs) has been actively studied for potential applications in the new generation of...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 439
SubjectTerms Coordination compounds
Coupling (molecular)
Couplings
Data storage
Magnetic anisotropy
Magnetic properties
Magnetism
Magnets
Mathematical analysis
Phonons
Quantum phenomena
Spectra
Title Spectroscopic techniques to probe magnetic anisotropy and spin-phonon coupling in metal complexes
URI https://www.ncbi.nlm.nih.gov/pubmed/38380640
https://www.proquest.com/docview/2937236308
https://www.proquest.com/docview/2929539145
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbKdoAL4tegbCAjuKAp4MY_Uh-ntdOYyjiQit4ix3Gmoi2t1lSa9tfz7NhJK3oYXNLItZzU76v97Pf8fQh9MgkYWrAkgg8SsUFuolwSE0kGw2RO1IDn9oDz90txPmUXMz7r9e43T5fU-Rd9v_Ncyf9YFcrArvaU7D9Ytm0UCuAe7AtXsDBcH2RjKx5fWzrKxXKuj1s6VkfaYJVibHLqVWUaTtb5agF1lw3f0mo5ryKblr6waejr5bU_2nJjakcYYjmD73x6oXddR8oKUFtNiSAwvnL7CapynBPdtuIWGUWjGqWPdRCW64Y8v6VdqJsuU_uXqmEBEP1sztw04FNWcKTLTJ6tm4jKPJqEadfvWsTMpW3xjYGW2dBx7DcyzY4yPzo3VMIBhWRjrAVXiuycBAi1HKoFLWqYnon83U11Ibx_-SM7m04mWTqepY_QfpwkNsS_fzJOv03a5XpMnF5T-1aB3JbKr13b2-7MX2sU8Fhug5KM81jSZ-ipX2rgkwY3z1HPVC_Q49NgiJdIbeEHd_jB9QI7_OCAH9zhB24LvIEfHPCD5xV2-MEtfl6h6dk4PT2PvORGpClN6kgopTT0qyg0EwLcO_ilktJSSJMII5hKDPjscUl4oQ0H508TmRgo5dAbJWf0AO3Bk80bhONYiZLLISllzvKCSZ0oKWQpDVcFLFL66HPouUx7Pnori3KdubwIKrMRHaWuly_66GNbd9mwsOysdRQMkHmorzJwZ5OYCkqGffSh_Ro62gbGVGUWa1snlpzKAeN99LoxXPsYOqRDG-3uowOwZFvcIeDtA5o9RE-6P8ER2qtv1-YdOLN1_t6j7g_pRqTW
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spectroscopic+techniques+to+probe+magnetic+anisotropy+and+spin-phonon+coupling+in+metal+complexes&rft.jtitle=Dalton+transactions+%3A+an+international+journal+of+inorganic+chemistry&rft.au=Hand%2C+Adam+T&rft.au=Watson-Sanders%2C+Brandon+D&rft.au=Xue%2C+Zi-Ling&rft.date=2024-03-05&rft.issn=1477-9234&rft.eissn=1477-9234&rft.volume=53&rft.issue=10&rft.spage=4390&rft_id=info:doi/10.1039%2Fd3dt03609j&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-9226&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-9226&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-9226&client=summon