Spectroscopic techniques to probe magnetic anisotropy and spin-phonon coupling in metal complexes
Magnetism of molecular quantum materials such as single-molecule magnets (SMMs) has been actively studied for potential applications in the new generation of high-density data storage using SMMs and quantum information science. Magnetic anisotropy and spin-phonon coupling are two key properties of d...
Saved in:
Published in | Dalton transactions : an international journal of inorganic chemistry Vol. 53; no. 1; pp. 439 - 445 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
05.03.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1477-9226 1477-9234 1477-9234 |
DOI | 10.1039/d3dt03609j |
Cover
Abstract | Magnetism of molecular quantum materials such as single-molecule magnets (SMMs) has been actively studied for potential applications in the new generation of high-density data storage using SMMs and quantum information science. Magnetic anisotropy and spin-phonon coupling are two key properties of d- and f-metal complexes. Here, phonons refer to both intermolecular and intramolecular vibrations. Direct determination of magnetic anisotropy and experimental studies of spin-phonon coupling are critical to the understanding of molecular magnetism. This article discusses
our
recent approach in using three complementary techniques, far-IR and Raman magneto-spectroscopies (FIRMS and RaMS, respectively) and inelastic neutron scatterings (INS), to determine magnetic excited states. Spin-phonon couplings are observed in FIRMS and RaMS. DFT phonon calculations give energies and symmetries of phonons as well as calculated INS spectra which help identify magnetic peaks in experimental INS spectra.
Magnetic anisotropy and spin-phonon coupling are key properties of single-molecule magnets. The use of far-IR and Raman magneto-spectroscopies (FIRMS and RaMS), and inelastic neutron scattering (INS) to determine the magnetic properties is highlighted. |
---|---|
AbstractList | Magnetism of molecular quantum materials such as single-molecule magnets (SMMs) has been actively studied for potential applications in the new generation of high-density data storage using SMMs and quantum information science. Magnetic anisotropy and spin-phonon coupling are two key properties of d- and f-metal complexes. Here, phonons refer to both intermolecular and intramolecular vibrations. Direct determination of magnetic anisotropy and experimental studies of spin-phonon coupling are critical to the understanding of molecular magnetism. This article discusses
our
recent approach in using three complementary techniques, far-IR and Raman magneto-spectroscopies (FIRMS and RaMS, respectively) and inelastic neutron scatterings (INS), to determine magnetic excited states. Spin-phonon couplings are observed in FIRMS and RaMS. DFT phonon calculations give energies and symmetries of phonons as well as calculated INS spectra which help identify magnetic peaks in experimental INS spectra.
Magnetic anisotropy and spin-phonon coupling are key properties of single-molecule magnets. The use of far-IR and Raman magneto-spectroscopies (FIRMS and RaMS), and inelastic neutron scattering (INS) to determine the magnetic properties is highlighted. Magnetism of molecular quantum materials such as single-molecule magnets (SMMs) has been actively studied for potential applications in the new generation of high-density data storage using SMMs and quantum information science. Magnetic anisotropy and spin–phonon coupling are two key properties of d- and f-metal complexes. Here, phonons refer to both intermolecular and intramolecular vibrations. Direct determination of magnetic anisotropy and experimental studies of spin–phonon coupling are critical to the understanding of molecular magnetism. This article discusses our recent approach in using three complementary techniques, far-IR and Raman magneto-spectroscopies (FIRMS and RaMS, respectively) and inelastic neutron scatterings (INS), to determine magnetic excited states. Spin–phonon couplings are observed in FIRMS and RaMS. DFT phonon calculations give energies and symmetries of phonons as well as calculated INS spectra which help identify magnetic peaks in experimental INS spectra. Magnetism of molecular quantum materials such as single-molecule magnets (SMMs) has been actively studied for potential applications in the new generation of high-density data storage using SMMs and quantum information science. Magnetic anisotropy and spin-phonon coupling are two key properties of d- and f-metal complexes. Here, phonons refer to both intermolecular and intramolecular vibrations. Direct determination of magnetic anisotropy and experimental studies of spin-phonon coupling are critical to the understanding of molecular magnetism. This article discusses recent approach in using three complementary techniques, far-IR and Raman magneto-spectroscopies (FIRMS and RaMS, respectively) and inelastic neutron scatterings (INS), to determine magnetic excited states. Spin-phonon couplings are observed in FIRMS and RaMS. DFT phonon calculations give energies and symmetries of phonons as well as calculated INS spectra which help identify magnetic peaks in experimental INS spectra. Magnetism of molecular quantum materials such as single-molecule magnets (SMMs) has been actively studied for potential applications in the new generation of high-density data storage using SMMs and quantum information science. Magnetic anisotropy and spin-phonon coupling are two key properties of d- and f-metal complexes. Here, phonons refer to both intermolecular and intramolecular vibrations. Direct determination of magnetic anisotropy and experimental studies of spin-phonon coupling are critical to the understanding of molecular magnetism. This article discusses our recent approach in using three complementary techniques, far-IR and Raman magneto-spectroscopies (FIRMS and RaMS, respectively) and inelastic neutron scatterings (INS), to determine magnetic excited states. Spin-phonon couplings are observed in FIRMS and RaMS. DFT phonon calculations give energies and symmetries of phonons as well as calculated INS spectra which help identify magnetic peaks in experimental INS spectra.Magnetism of molecular quantum materials such as single-molecule magnets (SMMs) has been actively studied for potential applications in the new generation of high-density data storage using SMMs and quantum information science. Magnetic anisotropy and spin-phonon coupling are two key properties of d- and f-metal complexes. Here, phonons refer to both intermolecular and intramolecular vibrations. Direct determination of magnetic anisotropy and experimental studies of spin-phonon coupling are critical to the understanding of molecular magnetism. This article discusses our recent approach in using three complementary techniques, far-IR and Raman magneto-spectroscopies (FIRMS and RaMS, respectively) and inelastic neutron scatterings (INS), to determine magnetic excited states. Spin-phonon couplings are observed in FIRMS and RaMS. DFT phonon calculations give energies and symmetries of phonons as well as calculated INS spectra which help identify magnetic peaks in experimental INS spectra. Magnetism of molecular quantum materials such as single-molecule magnets (SMMs) has been actively studied for potential applications in the new generation of high-density data storage using SMMs and quantum information science. Magnetic anisotropy and spin–phonon coupling are two key properties of d- and f-metal complexes. Here, phonons refer to both intermolecular and intramolecular vibrations. Direct determination of magnetic anisotropy and experimental studies of spin–phonon coupling are critical to the understanding of molecular magnetism. This article discusses our recent approach in using three complementary techniques, far-IR and Raman magneto-spectroscopies (FIRMS and RaMS, respectively) and inelastic neutron scatterings (INS), to determine magnetic excited states. Spin–phonon couplings are observed in FIRMS and RaMS. DFT phonon calculations give energies and symmetries of phonons as well as calculated INS spectra which help identify magnetic peaks in experimental INS spectra. |
Author | Xue, Zi-Ling Watson-Sanders, Brandon D Hand, Adam T |
AuthorAffiliation | Department of Chemistry University of Tennessee |
AuthorAffiliation_xml | – sequence: 0 name: Department of Chemistry – sequence: 0 name: University of Tennessee |
Author_xml | – sequence: 1 givenname: Adam T surname: Hand fullname: Hand, Adam T – sequence: 2 givenname: Brandon D surname: Watson-Sanders fullname: Watson-Sanders, Brandon D – sequence: 3 givenname: Zi-Ling surname: Xue fullname: Xue, Zi-Ling |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38380640$$D View this record in MEDLINE/PubMed |
BookMark | eNptkctLxDAQxoMoPlYv3pWCFxGqaSZNN0fxLYIH9VxiOtUsbRKbFPS_N-v6gMVThslvZr6Zb4usWmeRkN2CHhcU5EkDTaQgqJytkM2CV1UuGfDV35iJDbIVwoxSxmjJ1skGTGFKBaebRD141HFwQTtvdBZRv1rzNmLIosv84J4x69WLxZg-lTXBJdZ_pLDJgjc2968uqcm0G31n7EtmbNZjVF3K9L7DdwzbZK1VXcCd73dCni4vHs-u87v7q5uz07tcA1QxF0opDZKKRnMhGONpKwnQComVQMFVhXQKrKVlo7HkRamprDBly7R5W3KYkMNF36R6vkCsexM0dp2y6MZQM8lkCbLgZUIPltCZGweb1CUKKgYC0qwJ2f-mxucem9oPplfDR_1zvATQBaDT_cKAba1NVNE4Gwdlurqg9dyf-hzOH7_8uU0lR0slP13_hfcW8BD0L_dnNnwCypiZ9g |
CitedBy_id | crossref_primary_10_1002_chem_202401545 crossref_primary_10_1038_s41467_025_57210_0 crossref_primary_10_1039_D4DT01509F crossref_primary_10_1002_chem_202400977 crossref_primary_10_1039_D5NJ00184F crossref_primary_10_1002_cplu_202400109 |
Cites_doi | 10.1002/chem.201203781 10.1039/D0DT01954B 10.1103/PhysRevB.101.174402 10.1017/CBO9780511619885 10.1002/chem.201705761 10.1021/ic500049w 10.1002/chem.201100581 10.1021/acs.inorgchem.2c04468 10.1039/c4sc00751d 10.1016/j.ccr.2017.03.015 10.1002/chem.201805090 10.1007/BF03161931 10.1039/b905745e 10.1039/D2CS00028H 10.1002/ejic.201500084 10.1002/anie.201304386 10.1103/PhysRevB.54.11169 10.1002/ejic.201801076 10.1007/s00723-020-01236-8 10.1007/430_2014_155 10.1038/nmat2133 10.1007/430_034 10.1039/C8SC03170C 10.1002/adfm.201801846 10.1039/D2DT03335F 10.1038/s41467-022-28352-2 10.1039/C6CC05473K 10.1002/chem.201801026 10.1002/chem.201604872 10.1002/asia.201701032 10.1021/om401107f 10.1016/j.ccr.2017.11.012 10.1103/PhysRevB.56.8819 10.1039/C9SC03133B 10.1039/c1cs15047b 10.1021/ja5051605 10.1063/5.0006361 10.1107/S0365110X62000870 10.1021/acs.inorgchem.5b00089 10.1021/acs.inorgchem.1c03173 10.1016/j.poly.2020.114488 10.1103/PhysRevB.59.1758 10.1039/c1sc00513h 10.1038/s41467-023-41014-1 10.1016/j.jmmm.2019.165475 10.1063/1.434200 10.1021/ja500793x 10.1002/jcc.23234 10.1021/jp001644w 10.1002/anie.201107453 10.1039/C6SC00318D 10.1007/978-3-662-45723-8 10.3390/magnetochemistry9040100 10.1038/ncomms5300 10.1016/S0301-0104(03)00124-1 10.1021/ic801727p 10.1039/C5SC03224E 10.1002/ejic.201801306 10.1039/b925028j 10.1142/5628 10.1039/C8DT01554F 10.1039/C005256F 10.1039/D3NJ02160B 10.1039/C7SC02832F 10.1039/c3cc42552e 10.1039/D2QI00275B 10.1039/C3SC53044B 10.1021/acs.inorgchem.9b02394 10.1039/C5CS00222B 10.1039/D2SC05797B 10.1063/1.1712038 10.1002/chem.202100845 10.1039/D2DT00121G 10.1021/acs.inorgchem.1c01474 10.1038/s41467-018-03706-x 10.1039/D0QI00785D 10.1002/ejic.201801088 10.1002/anie.201910299 10.1002/chem.201404218 10.1039/D2CC02068H 10.1039/C7CS00266A 10.1002/ejic.201501111 10.1039/C6DT01754A 10.1038/s41467-022-31909-w 10.1021/acs.jpclett.7b00479 10.1021/acs.inorgchem.0c01812 10.1039/C8CP01660G 10.1021/acs.inorgchem.9b02195 10.1088/0034-4885/35/3/304 10.1021/acs.inorgchem.5b00288 10.1016/j.ccr.2014.05.011 10.1021/jacs.6b02638 10.1021/jp8090842 10.1021/ic4028354 10.1126/science.aat7319 10.1039/C5CC07541F 10.1039/D0QI00319K 10.1039/D3DT00481C 10.1039/C4CS00439F 10.1016/j.ccr.2008.10.014 10.1021/acs.inorgchem.7b01861 10.1103/PhysRevLett.125.117203 10.1002/chem.201702894 10.1038/s41578-019-0146-8 10.1021/acs.inorgchem.6b01353 10.1021/acs.inorgchem.6b02312 10.1142/4870 10.1146/annurev-matsci-081420-042553 10.1016/j.ccr.2006.03.016 10.1007/s00706-022-02920-0 10.1039/C9DT00644C 10.1021/acs.inorgchem.9b02064 10.1038/ncomms14543 10.1016/j.ccr.2017.08.013 10.1021/acs.inorgchem.1c00647 10.1038/ncomms14620 10.1002/chem.201903635 10.1039/C6CS00565A 10.1039/C4DT03329A 10.1126/sciadv.aax7163 10.1039/D0DT03730C 10.1002/chem.202003052 10.1016/j.ccr.2017.03.018 10.1021/acs.inorgchem.0c00523 10.1002/chem.202003211 10.1016/j.nima.2009.03.204 10.1103/PhysRevB.102.054407 10.1021/acs.inorgchem.6b01544 10.1021/acs.inorgchem.3c00897 10.1063/5.0017118 10.1002/cphc.200300689 10.1038/nphys2431 10.1016/j.ccr.2023.215213 10.1126/sciadv.abn7880 10.1016/j.ccr.2022.214871 10.1038/ncomms10467 10.1103/PhysRevB.50.17953 10.1038/s41467-018-04896-0 10.1002/9783527694228.ch14 10.1039/D2CC06012D 10.1016/j.ccr.2021.213984 10.1021/acs.inorgchem.5b01505 10.1039/D1NJ01916C 10.1016/j.jmr.2011.09.046 10.1021/cr400018q 10.1039/c1cp22689d 10.1016/j.ccr.2004.03.001 10.1021/acs.inorgchem.2c02604 10.1002/chem.202100705 10.1021/ja8100038 10.1016/j.saa.2017.09.057 10.1007/978-3-031-31038-6_6 10.1063/1.1674688 10.1103/PhysRevB.89.174409 10.1038/nature23447 10.1002/adma.200700594 10.1021/acs.inorgchem.9b01719 10.1021/ja4089956 10.1021/acsomega.2c06119 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2024 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2024 |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1039/d3dt03609j |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1477-9234 |
EndPage | 445 |
ExternalDocumentID | 38380640 10_1039_D3DT03609J d3dt03609j |
Genre | Journal Article Review |
GroupedDBID | --- -DZ -JG -~X 0-7 0R~ 29F 4.4 53G 5GY 70~ 7~J AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFVBQ AGEGJ AGKEF AGRSR AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CS3 D0L DU5 EBS ECGLT EE0 EF- F5P GGIMP GNO H13 HZ~ H~N IDZ J3G J3H J3I M4U O9- R7B R7C RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UCJ UPT VH6 VQA WH7 AAYXX AFRZK AKMSF ALUYA CITATION R56 NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c337t-6aaac3906dc466224d3d933f69e76e64a7e0832f05dce5415c097ea7e5360f543 |
ISSN | 1477-9226 1477-9234 |
IngestDate | Fri Jul 11 16:24:37 EDT 2025 Sun Jun 29 12:54:44 EDT 2025 Thu Apr 03 07:02:10 EDT 2025 Tue Jul 01 04:27:35 EDT 2025 Thu Apr 24 23:08:21 EDT 2025 Tue Dec 17 20:58:03 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c337t-6aaac3906dc466224d3d933f69e76e64a7e0832f05dce5415c097ea7e5360f543 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-9276-9508 0000-0001-9672-2937 0000-0001-7401-9933 |
PMID | 38380640 |
PQID | 2937236308 |
PQPubID | 2047498 |
PageCount | 16 |
ParticipantIDs | crossref_citationtrail_10_1039_D3DT03609J proquest_miscellaneous_2929539145 pubmed_primary_38380640 crossref_primary_10_1039_D3DT03609J proquest_journals_2937236308 rsc_primary_d3dt03609j |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-05 |
PublicationDateYYYYMMDD | 2024-03-05 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Dalton transactions : an international journal of inorganic chemistry |
PublicationTitleAlternate | Dalton Trans |
PublicationYear | 2024 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Vonci (D3DT03609J/cit77/1) 2017; 56 van Slageren (D3DT03609J/cit98/1) 2010; 39 Feng (D3DT03609J/cit73/1) 2016; 52 Bernot (D3DT03609J/cit88/1) 2009; 131 Fang (D3DT03609J/cit91/1) 2019; 490 Klokishner (D3DT03609J/cit159/1) 2009; 113 D3DT03609J/cit130/1 Bogani (D3DT03609J/cit123/1) 2007; 19 Baker (D3DT03609J/cit144/1) 2012; 8 Perfetti (D3DT03609J/cit75/1) 2018; 28 Bacon (D3DT03609J/cit148/1) 1977 Feng (D3DT03609J/cit4/1) 2018; 24 Lu (D3DT03609J/cit18/1) 2017; 12 Widener (D3DT03609J/cit56/1) 2020; 36 Gatteschi (D3DT03609J/cit163/1) 2000; 104 Coronado (D3DT03609J/cit6/1) 2020; 5 Chen (D3DT03609J/cit41/1) 2021; 45 Chen (D3DT03609J/cit95/1) 2014; 136 Zhu (D3DT03609J/cit103/1) 2020; 7 Baker (D3DT03609J/cit170/1) 2015; 164 Kumar Sahu (D3DT03609J/cit12/1) 2023; 475 Pedersen (D3DT03609J/cit72/1) 2014; 5 Chakarawet (D3DT03609J/cit118/1) 2021; 60 Krzystek (D3DT03609J/cit38/1) 2006; 250 Parker (D3DT03609J/cit152/1) 2018; 190 Ungur (D3DT03609J/cit25/1) 2016; 55 Clark (D3DT03609J/cit137/1) 1982; 9 Copley (D3DT03609J/cit147/1) 2003; 292 Rechkemmer (D3DT03609J/cit48/1) 2016; 7 Bonde (D3DT03609J/cit76/1) 2022; 58 Layfield (D3DT03609J/cit22/1) 2014; 33 McAdams (D3DT03609J/cit23/1) 2017; 346 Cui (D3DT03609J/cit45/1) 2019; 48 Marin (D3DT03609J/cit100/1) 2021; 60 Hamilton (D3DT03609J/cit139/1) 1962; 15 Lunghi (D3DT03609J/cit107/1) 2023 Tregenna-Piggott (D3DT03609J/cit160/1) 2009; 48 Bone (D3DT03609J/cit40/1) 2020; 184 Coutinho (D3DT03609J/cit65/1) 2019; 25 Wolford (D3DT03609J/cit96/1) 2021; 50 Basler (D3DT03609J/cit162/1) 2003; 4 Lunghi (D3DT03609J/cit109/1) 2020; 153 Lunghi (D3DT03609J/cit110/1) 2022; 8 Gysler (D3DT03609J/cit52/1) 2016; 7 Pei (D3DT03609J/cit84/1) 2022; 13 Bonde (D3DT03609J/cit79/1) 2020; 59 Pointillart (D3DT03609J/cit86/1) 2020; 7 Sutter (D3DT03609J/cit13/1) 2022; 51 Zhang (D3DT03609J/cit17/1) 2015; 44 Hughey (D3DT03609J/cit58/1) 2020; 59 Krzystek (D3DT03609J/cit142/1) 2011; 213 Viciano-Chumillas (D3DT03609J/cit57/1) 2020; 26 Kresse (D3DT03609J/cit173/1) 1999; 59 Zhang (D3DT03609J/cit166/1) 2014; 136 Moseley (D3DT03609J/cit33/1) 2020; 59 Liddle (D3DT03609J/cit16/1) 2015; 44 Escalera-Moreno (D3DT03609J/cit122/1) 2020; 11 Cucinotta (D3DT03609J/cit89/1) 2012; 51 Georgiev (D3DT03609J/cit11/1) 2022; 7 Landart-Gereka (D3DT03609J/cit167/1) 2022; 9 Ferentinos (D3DT03609J/cit60/1) 2023; 52 Gao (D3DT03609J/cit3/1) 2015 Liu (D3DT03609J/cit19/1) 2018; 47 Lv (D3DT03609J/cit42/1) 2023; 47 Jia (D3DT03609J/cit104/1) 2019; 378 D3DT03609J/cit129/1 Xue (D3DT03609J/cit143/1) 2019; 2019 Hennion (D3DT03609J/cit161/1) 1997; 56 Dunstan (D3DT03609J/cit164/1) 2019; 2019 Rigamonti (D3DT03609J/cit82/1) 2018; 24 Seeger (D3DT03609J/cit151/1) 2009; 604 Raza (D3DT03609J/cit26/1) 2023; 490 Furrer (D3DT03609J/cit146/1) 2009 Zabala-Lekuona (D3DT03609J/cit7/1) 2021; 441 Long (D3DT03609J/cit138/1) 2002 Champion (D3DT03609J/cit141/1) 1977; 66 Liu (D3DT03609J/cit94/1) 2016; 138 Stavretis (D3DT03609J/cit125/1) 2015; 54 Vallejo (D3DT03609J/cit59/1) 2019; 58 Schnegg (D3DT03609J/cit67/1) 2009; 11 Garlatti (D3DT03609J/cit145/1) 2017; 8 Brackett (D3DT03609J/cit133/1) 1971; 54 Dreiser (D3DT03609J/cit157/1) 2013; 19 Kragskow (D3DT03609J/cit63/1) 2022; 13 Vonci (D3DT03609J/cit78/1) 2016; 52 Devkota (D3DT03609J/cit37/1) 2023; 62 Perfetti (D3DT03609J/cit64/1) 2019; 10 Sigrist (D3DT03609J/cit154/1) 2015; 2015 Landart-Gereka (D3DT03609J/cit61/1) 2023; 59 Krzystek (D3DT03609J/cit30/1) 2016; 45 Novitchi (D3DT03609J/cit93/1) 2017; 56 D3DT03609J/cit132/1 Sanvito (D3DT03609J/cit28/1) 2011; 40 Mayans (D3DT03609J/cit85/1) 2021; 60 Chen (D3DT03609J/cit101/1) 2023; 52 Kresse (D3DT03609J/cit169/1) 1996; 54 Chilton (D3DT03609J/cit177/1) 2013; 34 Dove (D3DT03609J/cit105/1) 1993 Lunghi (D3DT03609J/cit115/1) 2017; 8 Dunstan (D3DT03609J/cit69/1) 2019; 2019 Woodruff (D3DT03609J/cit15/1) 2013; 113 Gómez-Coca (D3DT03609J/cit165/1) 2014; 5 Wernsdorfer (D3DT03609J/cit92/1) 2001; 118 Nemykin (D3DT03609J/cit99/1) 2023; 62 Boča (D3DT03609J/cit9/1) 2023; 9 Sarkar (D3DT03609J/cit10/1) 2020; 26 Kumar (D3DT03609J/cit62/1) 2020; 59 D3DT03609J/cit128/1 Mitchell (D3DT03609J/cit106/1) 2005 Eaton (D3DT03609J/cit39/1) 1999; 16 Richards (D3DT03609J/cit135/1) 1967; 47 Haas (D3DT03609J/cit50/1) 2014; 89 Chen (D3DT03609J/cit126/1) 2016; 55 Marx (D3DT03609J/cit49/1) 2014; 5 Stavretis (D3DT03609J/cit124/1) 2018; 20 Blöchl (D3DT03609J/cit172/1) 1994; 50 Gatteschi (D3DT03609J/cit153/1) 2000; 104 Bogani (D3DT03609J/cit27/1) 2008; 7 Pedersen (D3DT03609J/cit168/1) 2017; 23 Chen (D3DT03609J/cit46/1) 2018; 47 Bunting (D3DT03609J/cit51/1) 2018; 362 Moseley (D3DT03609J/cit31/1) 2018; 9 Frost (D3DT03609J/cit1/1) 2016; 7 Mirzoyan (D3DT03609J/cit117/1) 2021; 27 Lunghi (D3DT03609J/cit108/1) 2019; 5 Stavretis (D3DT03609J/cit32/1) 2019; 2019 Goodwin (D3DT03609J/cit112/1) 2017; 548 Moseley (D3DT03609J/cit35/1) 2022; 61 Neese (D3DT03609J/cit2/1) 2011; 148 Hunter (D3DT03609J/cit127/1) 2014; 53 Rizzi (D3DT03609J/cit176/1) 2016 Bone (D3DT03609J/cit54/1) 2021; 27 Lv (D3DT03609J/cit43/1) 2022; 51 Bloor (D3DT03609J/cit47/1) 1972; 35 Colacio (D3DT03609J/cit71/1) 2013; 52 da Cunha (D3DT03609J/cit90/1) 2013; 135 Escalera-Moreno (D3DT03609J/cit114/1) 2017; 8 Boča (D3DT03609J/cit34/1) 2004; 248 Chilton (D3DT03609J/cit24/1) 2015; 54 D3DT03609J/cit131/1 Stavretis (D3DT03609J/cit53/1) 2019; 25 Rinehart (D3DT03609J/cit14/1) 2011; 2 Chilton (D3DT03609J/cit5/1) 2022; 52 Tin (D3DT03609J/cit55/1) 2020; 51 Singh (D3DT03609J/cit156/1) 2013; 49 Roessler (D3DT03609J/cit175/1) 2018; 47 Dunstan (D3DT03609J/cit113/1) 2023; 14 Pedersen (D3DT03609J/cit155/1) 2014; 53 McInnes (D3DT03609J/cit70/1) 2006 Cahier (D3DT03609J/cit83/1) 2017; 23 Sørensen (D3DT03609J/cit74/1) 2018; 9 Perfetti (D3DT03609J/cit87/1) 2017; 348 Ungur (D3DT03609J/cit29/1) 2011; 13 Perfetti (D3DT03609J/cit80/1) 2014; 20 Higdon (D3DT03609J/cit119/1) 2020; 152 Lunghi (D3DT03609J/cit111/1) 2017; 8 Chiesa (D3DT03609J/cit36/1) 2020; 101 Cohen-Tannoudji (D3DT03609J/cit174/1) 1977 Irländer (D3DT03609J/cit121/1) 2020; 102 Cotton (D3DT03609J/cit136/1) 1990 Tin (D3DT03609J/cit150/1) 2023; 14 Juráková (D3DT03609J/cit8/1) 2022; 153 Feltham (D3DT03609J/cit21/1) 2014; 276 Dreiser (D3DT03609J/cit158/1) 2011; 17 Perfetti (D3DT03609J/cit102/1) 2017 Piligkos (D3DT03609J/cit97/1) 2009; 253 Craig (D3DT03609J/cit20/1) 2015; 44 Gu (D3DT03609J/cit120/1) 2020; 125 Gnezdilov (D3DT03609J/cit140/1) 1991; 17 Misochko (D3DT03609J/cit68/1) 2019; 58 Blockmon (D3DT03609J/cit116/1) 2021; 60 Cui (D3DT03609J/cit44/1) 2020; 49 Perfetti (D3DT03609J/cit81/1) 2015; 54 Squires (D3DT03609J/cit149/1) 1978 Singh (D3DT03609J/cit171/1) 2017; 344 |
References_xml | – issn: 2009 publication-title: Neutron Scattering in Condensed Matter Physics doi: Furrer Mesot Strässle – issn: 2017 end-page: 345-368 publication-title: Molecular Magnetic Materials doi: Perfetti Pointillart Cador Sorace Ouahab – issn: 2002 volume-title: The Raman Effect. A Unified Treatment of the Theory of Raman Scattering by Molecules end-page: 289-302 publication-title: Normal and Resonance Electronic and Vibronic Raman Scattering doi: Long – issn: 1990 publication-title: Chemical Applications of Group Theory doi: Cotton – issn: 2006 volume-title: Single-Molecule Magnets and Related Phenomena end-page: 69-102 publication-title: Struct. Bond doi: McInnes – issn: 2023 end-page: 219-289 publication-title: Computational Modelling of Molecular Nanomagnets doi: Lunghi – issn: 1970 doi: Brackett – issn: 1978 publication-title: Introduction to the Theory of Thermal Neutron Scattering doi: Squires – issn: 2015 publication-title: Molecular Nanomagnets and Related Phenomena doi: Gao – issn: 2005 publication-title: Vibrational Spectroscopy with Neutrons: With Applications in Chemistry, Biology, Materials Science and Catalysis doi: Mitchell Parker Ramirez-Cuesta Tomkinson – issn: 1977 publication-title: Neutron Scattering in Chemistry doi: Bacon – issn: 2015 doi: Haas – issn: 1977 publication-title: Quantum Mechanics doi: Cohen-Tannoudji Laloe Diu – issn: 1993 publication-title: Introduction to Lattice Dynamics doi: Dove – volume: 19 start-page: 3693 year: 2013 ident: D3DT03609J/cit157/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201203781 – volume: 49 start-page: 14837 year: 2020 ident: D3DT03609J/cit44/1 publication-title: Dalton Trans. doi: 10.1039/D0DT01954B – ident: D3DT03609J/cit129/1 – volume-title: Introduction to the Theory of Thermal Neutron Scattering year: 1978 ident: D3DT03609J/cit149/1 – volume: 101 start-page: 174402 year: 2020 ident: D3DT03609J/cit36/1 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.101.174402 – volume-title: Introduction to Lattice Dynamics year: 1993 ident: D3DT03609J/cit105/1 doi: 10.1017/CBO9780511619885 – ident: D3DT03609J/cit131/1 – volume: 24 start-page: 7574 year: 2018 ident: D3DT03609J/cit4/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201705761 – volume: 53 start-page: 5013 year: 2014 ident: D3DT03609J/cit155/1 publication-title: Inorg. Chem. doi: 10.1021/ic500049w – volume: 17 start-page: 7492 year: 2011 ident: D3DT03609J/cit158/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201100581 – volume: 62 start-page: 5984 year: 2023 ident: D3DT03609J/cit37/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.2c04468 – volume: 5 start-page: 3287 year: 2014 ident: D3DT03609J/cit49/1 publication-title: Chem. Sci. doi: 10.1039/c4sc00751d – volume: 346 start-page: 216 year: 2017 ident: D3DT03609J/cit23/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2017.03.015 – ident: D3DT03609J/cit132/1 – volume: 25 start-page: 1758 year: 2019 ident: D3DT03609J/cit65/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201805090 – volume: 16 start-page: 161 year: 1999 ident: D3DT03609J/cit39/1 publication-title: Appl. Magn. Reson. doi: 10.1007/BF03161931 – volume: 11 start-page: 6820 year: 2009 ident: D3DT03609J/cit67/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b905745e – volume: 51 start-page: 3280 year: 2022 ident: D3DT03609J/cit13/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D2CS00028H – volume: 2015 start-page: 2683 year: 2015 ident: D3DT03609J/cit154/1 publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.201500084 – volume: 52 start-page: 9130 year: 2013 ident: D3DT03609J/cit71/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201304386 – volume: 54 start-page: 11169 year: 1996 ident: D3DT03609J/cit169/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.54.11169 – volume: 2019 start-page: 1065 year: 2019 ident: D3DT03609J/cit143/1 publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.201801076 – ident: D3DT03609J/cit128/1 – volume: 51 start-page: 1411 year: 2020 ident: D3DT03609J/cit55/1 publication-title: Appl. Magn. Reson. doi: 10.1007/s00723-020-01236-8 – volume: 164 start-page: 231 year: 2015 ident: D3DT03609J/cit170/1 publication-title: Struct. Bonding doi: 10.1007/430_2014_155 – volume: 7 start-page: 179 year: 2008 ident: D3DT03609J/cit27/1 publication-title: Nat. Mater. doi: 10.1038/nmat2133 – start-page: 69 volume-title: Struct. Bond year: 2006 ident: D3DT03609J/cit70/1 doi: 10.1007/430_034 – volume: 10 start-page: 2101 year: 2019 ident: D3DT03609J/cit64/1 publication-title: Chem. Sci. doi: 10.1039/C8SC03170C – volume: 28 start-page: 1801846 year: 2018 ident: D3DT03609J/cit75/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201801846 – volume: 9 start-page: 282 year: 1982 ident: D3DT03609J/cit137/1 publication-title: Adv. Infrared Raman Spectrosc. – volume: 52 start-page: 2036 year: 2023 ident: D3DT03609J/cit60/1 publication-title: Dalton Trans. doi: 10.1039/D2DT03335F – volume: 13 start-page: 825 year: 2022 ident: D3DT03609J/cit63/1 publication-title: Nat. Commun. doi: 10.1038/s41467-022-28352-2 – volume: 52 start-page: 12905 year: 2016 ident: D3DT03609J/cit73/1 publication-title: Chem. Commun. doi: 10.1039/C6CC05473K – volume: 24 start-page: 8857 year: 2018 ident: D3DT03609J/cit82/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201801026 – volume: 23 start-page: 3648 year: 2017 ident: D3DT03609J/cit83/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201604872 – volume: 17 start-page: 253 year: 1991 ident: D3DT03609J/cit140/1 publication-title: Fiz. Nizk. Temp. – volume: 12 start-page: 2772 year: 2017 ident: D3DT03609J/cit18/1 publication-title: Chem. – Asian J. doi: 10.1002/asia.201701032 – ident: D3DT03609J/cit130/1 – volume: 33 start-page: 1084 year: 2014 ident: D3DT03609J/cit22/1 publication-title: Organometallics doi: 10.1021/om401107f – volume: 378 start-page: 365 year: 2019 ident: D3DT03609J/cit104/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2017.11.012 – volume: 56 start-page: 8819 year: 1997 ident: D3DT03609J/cit161/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.56.8819 – volume: 11 start-page: 1593 year: 2020 ident: D3DT03609J/cit122/1 publication-title: Chem. Sci. doi: 10.1039/C9SC03133B – volume: 40 start-page: 3336 year: 2011 ident: D3DT03609J/cit28/1 publication-title: Chem. Soc. Rev. doi: 10.1039/c1cs15047b – volume: 136 start-page: 12213 year: 2014 ident: D3DT03609J/cit95/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5051605 – volume: 152 start-page: 204306 year: 2020 ident: D3DT03609J/cit119/1 publication-title: J. Chem. Phys. doi: 10.1063/5.0006361 – volume: 15 start-page: 353 year: 1962 ident: D3DT03609J/cit139/1 publication-title: Acta Crystallogr. doi: 10.1107/S0365110X62000870 – volume: 54 start-page: 2097 year: 2015 ident: D3DT03609J/cit24/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.5b00089 – volume: 60 start-page: 18553 year: 2021 ident: D3DT03609J/cit118/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.1c03173 – volume: 184 start-page: 114488 year: 2020 ident: D3DT03609J/cit40/1 publication-title: Polyhedron doi: 10.1016/j.poly.2020.114488 – volume: 59 start-page: 1758 year: 1999 ident: D3DT03609J/cit173/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.59.1758 – volume: 2 start-page: 2078 year: 2011 ident: D3DT03609J/cit14/1 publication-title: Chem. Sci. doi: 10.1039/c1sc00513h – volume: 14 start-page: 5454 year: 2023 ident: D3DT03609J/cit150/1 publication-title: Nat. Commun. doi: 10.1038/s41467-023-41014-1 – volume: 490 start-page: 165475 year: 2019 ident: D3DT03609J/cit91/1 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2019.165475 – volume: 66 start-page: 1819 year: 1977 ident: D3DT03609J/cit141/1 publication-title: J. Chem. Phys. doi: 10.1063/1.434200 – volume: 136 start-page: 4484 year: 2014 ident: D3DT03609J/cit166/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja500793x – volume: 34 start-page: 1164 year: 2013 ident: D3DT03609J/cit177/1 publication-title: J. Comput. Chem. doi: 10.1002/jcc.23234 – volume: 104 start-page: 9780 year: 2000 ident: D3DT03609J/cit163/1 publication-title: J. Phys. Chem. B doi: 10.1021/jp001644w – volume: 51 start-page: 1606 year: 2012 ident: D3DT03609J/cit89/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201107453 – volume: 7 start-page: 4347 year: 2016 ident: D3DT03609J/cit52/1 publication-title: Chem. Sci. doi: 10.1039/C6SC00318D – volume-title: Molecular Nanomagnets and Related Phenomena year: 2015 ident: D3DT03609J/cit3/1 doi: 10.1007/978-3-662-45723-8 – volume: 9 start-page: 100 year: 2023 ident: D3DT03609J/cit9/1 publication-title: Magnetochemistry doi: 10.3390/magnetochemistry9040100 – volume: 5 start-page: 4300 year: 2014 ident: D3DT03609J/cit165/1 publication-title: Nat. Commun. doi: 10.1038/ncomms5300 – volume: 292 start-page: 477 year: 2003 ident: D3DT03609J/cit147/1 publication-title: Chem. Phys. doi: 10.1016/S0301-0104(03)00124-1 – volume: 48 start-page: 128 year: 2009 ident: D3DT03609J/cit160/1 publication-title: Inorg. Chem. doi: 10.1021/ic801727p – volume: 7 start-page: 2470 year: 2016 ident: D3DT03609J/cit1/1 publication-title: Chem. Sci. doi: 10.1039/C5SC03224E – volume: 2019 start-page: 1090 year: 2019 ident: D3DT03609J/cit164/1 publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.201801306 – volume: 39 start-page: 4999 year: 2010 ident: D3DT03609J/cit98/1 publication-title: Dalton Trans. doi: 10.1039/b925028j – volume-title: Vibrational Spectroscopy with Neutrons: With Applications in Chemistry, Biology, Materials Science and Catalysis year: 2005 ident: D3DT03609J/cit106/1 doi: 10.1142/5628 – volume: 47 start-page: 10162 year: 2018 ident: D3DT03609J/cit46/1 publication-title: Dalton Trans. doi: 10.1039/C8DT01554F – volume: 148 start-page: 229 year: 2011 ident: D3DT03609J/cit2/1 publication-title: Faraday Discuss. doi: 10.1039/C005256F – volume: 47 start-page: 15553 year: 2023 ident: D3DT03609J/cit42/1 publication-title: New J. Chem. doi: 10.1039/D3NJ02160B – volume: 8 start-page: 6051 year: 2017 ident: D3DT03609J/cit111/1 publication-title: Chem. Sci. doi: 10.1039/C7SC02832F – volume: 49 start-page: 5583 year: 2013 ident: D3DT03609J/cit156/1 publication-title: Chem. Commun. doi: 10.1039/c3cc42552e – volume: 9 start-page: 2810 year: 2022 ident: D3DT03609J/cit167/1 publication-title: Inorg. Chem. Front. doi: 10.1039/D2QI00275B – volume: 104 start-page: 9780 year: 2000 ident: D3DT03609J/cit153/1 publication-title: J. Phys. Chem. B doi: 10.1021/jp001644w – volume: 5 start-page: 1650 year: 2014 ident: D3DT03609J/cit72/1 publication-title: Chem. Sci. doi: 10.1039/C3SC53044B – volume: 59 start-page: 2127 year: 2020 ident: D3DT03609J/cit58/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.9b02394 – volume: 44 start-page: 6655 year: 2015 ident: D3DT03609J/cit16/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00222B – volume: 14 start-page: 3990 year: 2023 ident: D3DT03609J/cit113/1 publication-title: Chem. Sci. doi: 10.1039/D2SC05797B – volume: 47 start-page: 1187 year: 1967 ident: D3DT03609J/cit135/1 publication-title: J. Chem. Phys. doi: 10.1063/1.1712038 – volume: 27 start-page: 9482 year: 2021 ident: D3DT03609J/cit117/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.202100845 – volume: 51 start-page: 7530 year: 2022 ident: D3DT03609J/cit43/1 publication-title: Dalton Trans. doi: 10.1039/D2DT00121G – volume: 60 start-page: 14096 year: 2021 ident: D3DT03609J/cit116/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.1c01474 – volume: 9 start-page: 1292 year: 2018 ident: D3DT03609J/cit74/1 publication-title: Nat. Commun. doi: 10.1038/s41467-018-03706-x – volume: 7 start-page: 3315 year: 2020 ident: D3DT03609J/cit103/1 publication-title: Inorg. Chem. Front. doi: 10.1039/D0QI00785D – volume: 2019 start-page: 1119 year: 2019 ident: D3DT03609J/cit32/1 publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.201801088 – volume: 60 start-page: 1728 year: 2021 ident: D3DT03609J/cit100/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201910299 – volume: 20 start-page: 14051 year: 2014 ident: D3DT03609J/cit80/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201404218 – volume: 58 start-page: 7431 year: 2022 ident: D3DT03609J/cit76/1 publication-title: Chem. Commun. doi: 10.1039/D2CC02068H – volume: 47 start-page: 2431 year: 2018 ident: D3DT03609J/cit19/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00266A – start-page: 192 year: 2016 ident: D3DT03609J/cit176/1 publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.201501111 – volume: 45 start-page: 16751 year: 2016 ident: D3DT03609J/cit30/1 publication-title: Dalton Trans. doi: 10.1039/C6DT01754A – volume: 13 start-page: 4506 year: 2022 ident: D3DT03609J/cit84/1 publication-title: Nat. Commun. doi: 10.1038/s41467-022-31909-w – volume: 8 start-page: 1695 year: 2017 ident: D3DT03609J/cit114/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.7b00479 – volume: 59 start-page: 16178 year: 2020 ident: D3DT03609J/cit62/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.0c01812 – volume: 20 start-page: 21119 year: 2018 ident: D3DT03609J/cit124/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C8CP01660G – volume: 58 start-page: 16434 year: 2019 ident: D3DT03609J/cit68/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.9b02195 – volume: 35 start-page: 1173 year: 1972 ident: D3DT03609J/cit47/1 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/35/3/304 – volume: 54 start-page: 3090 year: 2015 ident: D3DT03609J/cit81/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.5b00288 – volume-title: Neutron Scattering in Chemistry year: 1977 ident: D3DT03609J/cit148/1 – volume: 276 start-page: 1 year: 2014 ident: D3DT03609J/cit21/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2014.05.011 – volume: 138 start-page: 5441 year: 2016 ident: D3DT03609J/cit94/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b02638 – volume: 113 start-page: 8573 year: 2009 ident: D3DT03609J/cit159/1 publication-title: J. Phys. Chem. C doi: 10.1021/jp8090842 – volume: 53 start-page: 1955 year: 2014 ident: D3DT03609J/cit127/1 publication-title: Inorg. Chem. doi: 10.1021/ic4028354 – volume: 362 start-page: eaat7319 year: 2018 ident: D3DT03609J/cit51/1 publication-title: Science doi: 10.1126/science.aat7319 – volume: 52 start-page: 2091 year: 2016 ident: D3DT03609J/cit78/1 publication-title: Chem. Commun. doi: 10.1039/C5CC07541F – volume: 7 start-page: 2322 year: 2020 ident: D3DT03609J/cit86/1 publication-title: Inorg. Chem. Front. doi: 10.1039/D0QI00319K – volume: 52 start-page: 4643 year: 2023 ident: D3DT03609J/cit101/1 publication-title: Dalton Trans. doi: 10.1039/D3DT00481C – volume: 44 start-page: 2135 year: 2015 ident: D3DT03609J/cit20/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00439F – volume: 253 start-page: 2352 year: 2009 ident: D3DT03609J/cit97/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2008.10.014 – volume: 56 start-page: 14809 year: 2017 ident: D3DT03609J/cit93/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.7b01861 – volume: 125 start-page: 117203 year: 2020 ident: D3DT03609J/cit120/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.125.117203 – volume: 23 start-page: 11244 year: 2017 ident: D3DT03609J/cit168/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201702894 – volume: 5 start-page: 87 year: 2020 ident: D3DT03609J/cit6/1 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-019-0146-8 – volume: 55 start-page: 10043 year: 2016 ident: D3DT03609J/cit25/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.6b01353 – volume: 56 start-page: 378 year: 2017 ident: D3DT03609J/cit77/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.6b02312 – volume-title: Neutron Scattering in Condensed Matter Physics year: 2009 ident: D3DT03609J/cit146/1 doi: 10.1142/4870 – volume: 52 start-page: 79 year: 2022 ident: D3DT03609J/cit5/1 publication-title: Annu. Rev. Mater. Res. doi: 10.1146/annurev-matsci-081420-042553 – volume: 250 start-page: 2308 year: 2006 ident: D3DT03609J/cit38/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2006.03.016 – volume: 153 start-page: 1001 year: 2022 ident: D3DT03609J/cit8/1 publication-title: Monatsh. Chem. doi: 10.1007/s00706-022-02920-0 – volume: 48 start-page: 10743 year: 2019 ident: D3DT03609J/cit45/1 publication-title: Dalton Trans. doi: 10.1039/C9DT00644C – volume: 59 start-page: 235 year: 2020 ident: D3DT03609J/cit79/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.9b02064 – volume: 8 start-page: 14543 year: 2017 ident: D3DT03609J/cit145/1 publication-title: Nat. Commun. doi: 10.1038/ncomms14543 – volume-title: Quantum Mechanics year: 1977 ident: D3DT03609J/cit174/1 – volume: 348 start-page: 171 year: 2017 ident: D3DT03609J/cit87/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2017.08.013 – volume: 60 start-page: 8692 year: 2021 ident: D3DT03609J/cit85/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.1c00647 – volume: 8 start-page: 14620 year: 2017 ident: D3DT03609J/cit115/1 publication-title: Nat. Commun. doi: 10.1038/ncomms14620 – volume: 25 start-page: 15846 year: 2019 ident: D3DT03609J/cit53/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201903635 – volume: 47 start-page: 2534 year: 2018 ident: D3DT03609J/cit175/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00565A – volume: 44 start-page: 3923 year: 2015 ident: D3DT03609J/cit17/1 publication-title: Dalton Trans. doi: 10.1039/C4DT03329A – volume: 5 start-page: eaax7163 year: 2019 ident: D3DT03609J/cit108/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.aax7163 – volume: 36 start-page: 1149 year: 2020 ident: D3DT03609J/cit56/1 publication-title: Chin. J. Inorg. Chem. – volume: 50 start-page: 416 year: 2021 ident: D3DT03609J/cit96/1 publication-title: Dalton Trans. doi: 10.1039/D0DT03730C – volume: 26 start-page: 14242 year: 2020 ident: D3DT03609J/cit57/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.202003052 – volume: 344 start-page: 2 year: 2017 ident: D3DT03609J/cit171/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2017.03.018 – volume: 59 start-page: 5218 year: 2020 ident: D3DT03609J/cit33/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.0c00523 – volume: 26 start-page: 14036 year: 2020 ident: D3DT03609J/cit10/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.202003211 – volume: 604 start-page: 719 year: 2009 ident: D3DT03609J/cit151/1 publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A doi: 10.1016/j.nima.2009.03.204 – volume: 2019 start-page: 1090 year: 2019 ident: D3DT03609J/cit69/1 publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.201801306 – volume: 102 start-page: 054407 year: 2020 ident: D3DT03609J/cit121/1 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.102.054407 – volume: 55 start-page: 12603 year: 2016 ident: D3DT03609J/cit126/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.6b01544 – volume: 62 start-page: 10203 year: 2023 ident: D3DT03609J/cit99/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.3c00897 – volume: 153 start-page: 174113 year: 2020 ident: D3DT03609J/cit109/1 publication-title: J. Chem. Phys. doi: 10.1063/5.0017118 – volume: 4 start-page: 910 year: 2003 ident: D3DT03609J/cit162/1 publication-title: ChemPhysChem doi: 10.1002/cphc.200300689 – volume: 8 start-page: 906 year: 2012 ident: D3DT03609J/cit144/1 publication-title: Nat. Phys. doi: 10.1038/nphys2431 – volume: 490 start-page: 215213 year: 2023 ident: D3DT03609J/cit26/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2023.215213 – volume: 8 start-page: eabn7880 year: 2022 ident: D3DT03609J/cit110/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.abn7880 – volume: 475 start-page: 214871 year: 2023 ident: D3DT03609J/cit12/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2022.214871 – volume: 7 start-page: 10467 year: 2016 ident: D3DT03609J/cit48/1 publication-title: Nat. Commun. doi: 10.1038/ncomms10467 – volume: 50 start-page: 17953 year: 1994 ident: D3DT03609J/cit172/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.50.17953 – volume: 9 start-page: 2572 year: 2018 ident: D3DT03609J/cit31/1 publication-title: Nat. Commun. doi: 10.1038/s41467-018-04896-0 – start-page: 345 volume-title: Molecular Magnetic Materials year: 2017 ident: D3DT03609J/cit102/1 doi: 10.1002/9783527694228.ch14 – volume: 59 start-page: 952 year: 2023 ident: D3DT03609J/cit61/1 publication-title: Chem. Commun. doi: 10.1039/D2CC06012D – volume: 441 start-page: 213984 year: 2021 ident: D3DT03609J/cit7/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2021.213984 – volume-title: Chemical Applications of Group Theory year: 1990 ident: D3DT03609J/cit136/1 – volume: 54 start-page: 9790 year: 2015 ident: D3DT03609J/cit125/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.5b01505 – volume: 45 start-page: 16852 year: 2021 ident: D3DT03609J/cit41/1 publication-title: New J. Chem. doi: 10.1039/D1NJ01916C – volume: 213 start-page: 158 year: 2011 ident: D3DT03609J/cit142/1 publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2011.09.046 – volume: 113 start-page: 5110 year: 2013 ident: D3DT03609J/cit15/1 publication-title: Chem. Rev. doi: 10.1021/cr400018q – volume: 13 start-page: 20086 year: 2011 ident: D3DT03609J/cit29/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c1cp22689d – volume: 248 start-page: 757 year: 2004 ident: D3DT03609J/cit34/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2004.03.001 – volume: 61 start-page: 17123 year: 2022 ident: D3DT03609J/cit35/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.2c02604 – volume: 27 start-page: 11110 year: 2021 ident: D3DT03609J/cit54/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.202100705 – volume: 131 start-page: 5573 year: 2009 ident: D3DT03609J/cit88/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8100038 – volume: 190 start-page: 518 year: 2018 ident: D3DT03609J/cit152/1 publication-title: Spectrochim. Acta, Part A doi: 10.1016/j.saa.2017.09.057 – start-page: 219 volume-title: Computational Modelling of Molecular Nanomagnets year: 2023 ident: D3DT03609J/cit107/1 doi: 10.1007/978-3-031-31038-6_6 – start-page: 289 volume-title: Normal and Resonance Electronic and Vibronic Raman Scattering year: 2002 ident: D3DT03609J/cit138/1 – volume: 118 start-page: 99 year: 2001 ident: D3DT03609J/cit92/1 publication-title: Adv. Chem. Phys. – volume: 54 start-page: 4383 year: 1971 ident: D3DT03609J/cit133/1 publication-title: J. Chem. Phys. doi: 10.1063/1.1674688 – volume: 89 start-page: 174409 year: 2014 ident: D3DT03609J/cit50/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.89.174409 – volume: 548 start-page: 439 year: 2017 ident: D3DT03609J/cit112/1 publication-title: Nature doi: 10.1038/nature23447 – volume: 19 start-page: 3906 year: 2007 ident: D3DT03609J/cit123/1 publication-title: Adv. Mater. doi: 10.1002/adma.200700594 – volume: 58 start-page: 15726 year: 2019 ident: D3DT03609J/cit59/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.9b01719 – volume: 135 start-page: 16332 year: 2013 ident: D3DT03609J/cit90/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4089956 – volume: 7 start-page: 42664 year: 2022 ident: D3DT03609J/cit11/1 publication-title: ACS Omega doi: 10.1021/acsomega.2c06119 |
SSID | ssj0022052 |
Score | 2.469496 |
SecondaryResourceType | review_article |
Snippet | Magnetism of molecular quantum materials such as single-molecule magnets (SMMs) has been actively studied for potential applications in the new generation of... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 439 |
SubjectTerms | Coordination compounds Coupling (molecular) Couplings Data storage Magnetic anisotropy Magnetic properties Magnetism Magnets Mathematical analysis Phonons Quantum phenomena Spectra |
Title | Spectroscopic techniques to probe magnetic anisotropy and spin-phonon coupling in metal complexes |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38380640 https://www.proquest.com/docview/2937236308 https://www.proquest.com/docview/2929539145 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbKdoAL4tegbCAjuKAp4MY_Uh-ntdOYyjiQit4ix3Gmoi2t1lSa9tfz7NhJK3oYXNLItZzU76v97Pf8fQh9MgkYWrAkgg8SsUFuolwSE0kGw2RO1IDn9oDz90txPmUXMz7r9e43T5fU-Rd9v_Ncyf9YFcrArvaU7D9Ytm0UCuAe7AtXsDBcH2RjKx5fWzrKxXKuj1s6VkfaYJVibHLqVWUaTtb5agF1lw3f0mo5ryKblr6waejr5bU_2nJjakcYYjmD73x6oXddR8oKUFtNiSAwvnL7CapynBPdtuIWGUWjGqWPdRCW64Y8v6VdqJsuU_uXqmEBEP1sztw04FNWcKTLTJ6tm4jKPJqEadfvWsTMpW3xjYGW2dBx7DcyzY4yPzo3VMIBhWRjrAVXiuycBAi1HKoFLWqYnon83U11Ibx_-SM7m04mWTqepY_QfpwkNsS_fzJOv03a5XpMnF5T-1aB3JbKr13b2-7MX2sU8Fhug5KM81jSZ-ipX2rgkwY3z1HPVC_Q49NgiJdIbeEHd_jB9QI7_OCAH9zhB24LvIEfHPCD5xV2-MEtfl6h6dk4PT2PvORGpClN6kgopTT0qyg0EwLcO_ilktJSSJMII5hKDPjscUl4oQ0H508TmRgo5dAbJWf0AO3Bk80bhONYiZLLISllzvKCSZ0oKWQpDVcFLFL66HPouUx7Pnori3KdubwIKrMRHaWuly_66GNbd9mwsOysdRQMkHmorzJwZ5OYCkqGffSh_Ro62gbGVGUWa1snlpzKAeN99LoxXPsYOqRDG-3uowOwZFvcIeDtA5o9RE-6P8ER2qtv1-YdOLN1_t6j7g_pRqTW |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spectroscopic+techniques+to+probe+magnetic+anisotropy+and+spin-phonon+coupling+in+metal+complexes&rft.jtitle=Dalton+transactions+%3A+an+international+journal+of+inorganic+chemistry&rft.au=Hand%2C+Adam+T&rft.au=Watson-Sanders%2C+Brandon+D&rft.au=Xue%2C+Zi-Ling&rft.date=2024-03-05&rft.issn=1477-9234&rft.eissn=1477-9234&rft.volume=53&rft.issue=10&rft.spage=4390&rft_id=info:doi/10.1039%2Fd3dt03609j&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-9226&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-9226&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-9226&client=summon |