Real-Time Implementation of AI-Based Face Mask Detection and Social Distancing Measuring System for COVID-19 Prevention
Since the infectious coronavirus disease (COVID-19) was first reported in Wuhan, it has become a public health problem in China and even around the world. This pandemic is having devastating effects on societies and economies around the world. The increase in the number of COVID-19 tests gives more...
Saved in:
Published in | Scientific programming Vol. 2021; pp. 1 - 21 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Hindawi
27.09.2021
John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Since the infectious coronavirus disease (COVID-19) was first reported in Wuhan, it has become a public health problem in China and even around the world. This pandemic is having devastating effects on societies and economies around the world. The increase in the number of COVID-19 tests gives more information about the epidemic spread, which may lead to the possibility of surrounding it to prevent further infections. However, wearing a face mask that prevents the transmission of droplets in the air and maintaining an appropriate physical distance between people, and reducing close contact with each other can still be beneficial in combating this pandemic. Therefore, this research paper focuses on implementing a Face Mask and Social Distancing Detection model as an embedded vision system. The pretrained models such as the MobileNet, ResNet Classifier, and VGG are used in our context. People violating social distancing or not wearing masks were detected. After implementing and deploying the models, the selected one achieved a confidence score of 100%. This paper also provides a comparative study of different face detection and face mask classification models. The system performance is evaluated in terms of precision, recall, F1-score, support, sensitivity, specificity, and accuracy that demonstrate the practical applicability. The system performs with F1-score of 99%, sensitivity of 99%, specificity of 99%, and an accuracy of 100%. Hence, this solution tracks the people with or without masks in a real-time scenario and ensures social distancing by generating an alarm if there is a violation in the scene or in public places. This can be used with the existing embedded camera infrastructure to enable these analytics which can be applied to various verticals, as well as in an office building or at airport terminals/gates. |
---|---|
AbstractList | Since the infectious coronavirus disease (COVID-19) was first reported in Wuhan, it has become a public health problem in China and even around the world. This pandemic is having devastating effects on societies and economies around the world. The increase in the number of COVID-19 tests gives more information about the epidemic spread, which may lead to the possibility of surrounding it to prevent further infections. However, wearing a face mask that prevents the transmission of droplets in the air and maintaining an appropriate physical distance between people, and reducing close contact with each other can still be beneficial in combating this pandemic. Therefore, this research paper focuses on implementing a Face Mask and Social Distancing Detection model as an embedded vision system. The pretrained models such as the MobileNet, ResNet Classifier, and VGG are used in our context. People violating social distancing or not wearing masks were detected. After implementing and deploying the models, the selected one achieved a confidence score of 100%. This paper also provides a comparative study of different face detection and face mask classification models. The system performance is evaluated in terms of precision, recall, F1-score, support, sensitivity, specificity, and accuracy that demonstrate the practical applicability. The system performs with F1-score of 99%, sensitivity of 99%, specificity of 99%, and an accuracy of 100%. Hence, this solution tracks the people with or without masks in a real-time scenario and ensures social distancing by generating an alarm if there is a violation in the scene or in public places. This can be used with the existing embedded camera infrastructure to enable these analytics which can be applied to various verticals, as well as in an office building or at airport terminals/gates. |
Author | Messaoud, Seifeddine Teboulbi, Safa Mtibaa, Abdellatif Hajjaji, Mohamed Ali |
Author_xml | – sequence: 1 givenname: Safa orcidid: 0000-0003-1142-2332 surname: Teboulbi fullname: Teboulbi, Safa organization: Université de MonastirLaboratoire d’Electronique et de MicroélectroniqueLR99ES30, 5000MonastirTunisiaum.rnu.tn – sequence: 2 givenname: Seifeddine orcidid: 0000-0001-5205-4914 surname: Messaoud fullname: Messaoud, Seifeddine organization: Université de MonastirLaboratoire d’Electronique et de MicroélectroniqueLR99ES30, 5000MonastirTunisiaum.rnu.tn – sequence: 3 givenname: Mohamed Ali orcidid: 0000-0002-6372-2831 surname: Hajjaji fullname: Hajjaji, Mohamed Ali organization: Université de MonastirLaboratoire d’Electronique et de MicroélectroniqueLR99ES30, 5000MonastirTunisiaum.rnu.tn – sequence: 4 givenname: Abdellatif orcidid: 0000-0001-5180-9975 surname: Mtibaa fullname: Mtibaa, Abdellatif organization: Université de MonastirLaboratoire d’Electronique et de MicroélectroniqueLR99ES30, 5000MonastirTunisiaum.rnu.tn |
BookMark | eNp9kE1PwkAQhjcGEwG9-QM28aiV_eh22yOCKAkEI2i8Net2qovtFneLhH9vEU4mepo3meedSZ4OatnKAkLnlFxTKkSPEUZ7MQ-JlMkRatNYiiChyUuryUTEQcLC8AR1vF8SQmNKSBttHkEVwcKUgMflqoASbK1qU1lc5bg_Dm6UhwyPlAY8Vf4DD6EG_bNXNsPzShtV4KHxtbLa2Dc8BeXXbpfmW19DifPK4cHseTwMaIIfHHw1D5r6KTrOVeHh7DC76Gl0uxjcB5PZ3XjQnwSac1kHkRKMRgIiyiMtQ85eSaZBR0wTAaBykUgmBOchzRMdJhnjwCBuXEgFocgo76KL_d2Vqz7X4Ot0Wa2dbV6mTMSNFBnJHcX2lHaV9w7yVJu9htopU6SUpDvB6U5wehDclK5-lVbOlMpt_8Iv9_i7sZnamP_pb7lQiMg |
CitedBy_id | crossref_primary_10_1007_s11042_023_14408_y crossref_primary_10_1038_s41598_024_78746_z crossref_primary_10_1155_2022_3169927 crossref_primary_10_26634_jit_10_2_18184 crossref_primary_10_1007_s00500_022_07700_w crossref_primary_10_1109_ACCESS_2024_3488797 crossref_primary_10_3389_fpsyg_2025_1486808 crossref_primary_10_1016_j_scs_2022_104064 crossref_primary_10_1080_29937574_2024_2429479 crossref_primary_10_1007_s11042_023_16192_1 crossref_primary_10_1145_3654667 crossref_primary_10_35341_afet_1284220 crossref_primary_10_1088_1755_1315_1055_1_012013 crossref_primary_10_1007_s12596_022_01053_1 crossref_primary_10_3389_fnbot_2022_1017748 crossref_primary_10_1007_s11042_022_12999_6 crossref_primary_10_1109_ACCESS_2023_3266586 crossref_primary_10_3390_s22010298 crossref_primary_10_61186_crpase_10_2_2900 |
Cites_doi | 10.1098/rsos.201095 10.3390/s20185236 10.1126/science.abf7921 10.1109/sta50679.2020.9329355 10.1109/access.2020.2984903 10.1007/s00521-020-05410-8 10.1109/access.2021.3061621 10.1038/s41591-020-0895-3 10.1108/PAR-10-2020-0189 10.1111/1475-5890.12232 10.1016/j.scs.2020.102600 10.1007/s11554-021-01070-6 10.1007/s10489-020-01902-1 10.1016/s0031-3203(96)00142-2 10.1057/s41599-019-0278-x 10.1007/978-981-33-4673-4_49 10.1155/2018/8196906 10.1109/icengtechnol.2017.8308186 10.1177/2472630320962002 10.1016/j.measurement.2020.108288 10.1007/s42979-021-00782-7 10.1016/j.compbiomed.2020.103792 10.1007/978-3-319-19390-8_16 10.1007/s10140-020-01886-y 10.1038/s41598-020-76550-z 10.1080/07391102.2020.1767212 10.1155/2020/8361989 10.20944/preprints202005.0151.v1 10.1155/2020/6688912 10.1098/rsos.210429 10.1109/sta50679.2020.9329302 10.1016/j.compbiomed.2020.103805 |
ContentType | Journal Article |
Copyright | Copyright © 2021 Safa Teboulbi et al. Copyright © 2021 Safa Teboulbi et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
Copyright_xml | – notice: Copyright © 2021 Safa Teboulbi et al. – notice: Copyright © 2021 Safa Teboulbi et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
DBID | RHU RHW RHX AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1155/2021/8340779 |
DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Technology Research Database |
Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science Public Health |
EISSN | 1875-919X |
Editor | Nazir, Shah |
Editor_xml | – sequence: 1 givenname: Shah surname: Nazir fullname: Nazir, Shah |
EndPage | 21 |
ExternalDocumentID | 10_1155_2021_8340779 |
GroupedDBID | .4S .DC 0R~ 4.4 5VS AAFWJ AAJEY ABDBF ABJNI ACGFS ADBBV AENEX ALMA_UNASSIGNED_HOLDINGS ARCSS ASPBG AVWKF BCNDV DU5 EAD EAP EBS EDO EMK EPL EST ESX GROUPED_DOAJ HZ~ I-F IAO IHR IOS KQ8 MIO MK~ ML~ MV1 NGNOM O9- OK1 RHU RHW RHX TUS 24P AAYXX ACCMX CITATION H13 7SC 7SP 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c337t-6a52165e6136c7432b0dcec62c05eeaf5972553341f9c49d23e2e81557ae45d13 |
IEDL.DBID | RHX |
ISSN | 1058-9244 |
IngestDate | Fri Jul 25 09:29:36 EDT 2025 Thu Apr 24 23:01:15 EDT 2025 Tue Jul 01 02:50:06 EDT 2025 Sun Jun 02 19:18:04 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c337t-6a52165e6136c7432b0dcec62c05eeaf5972553341f9c49d23e2e81557ae45d13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5205-4914 0000-0003-1142-2332 0000-0002-6372-2831 0000-0001-5180-9975 |
OpenAccessLink | https://dx.doi.org/10.1155/2021/8340779 |
PQID | 2580587671 |
PQPubID | 2046410 |
PageCount | 21 |
ParticipantIDs | proquest_journals_2580587671 crossref_citationtrail_10_1155_2021_8340779 crossref_primary_10_1155_2021_8340779 hindawi_primary_10_1155_2021_8340779 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-27 |
PublicationDateYYYYMMDD | 2021-09-27 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Scientific programming |
PublicationYear | 2021 |
Publisher | Hindawi John Wiley & Sons, Inc |
Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc |
References | 22 23 24 M. A. R. Ratul (38) 25 M. Grandini (33) 2020 28 29 S. Bouaafia (16) M. Coşkun (26) J. Wong (11) 2021; 33 l. Khriji (17) F. Sultana (27) 30 31 10 32 12 34 13 14 36 15 37 X. Zhang (4) 2020; 2020 39 18 19 Z. Karhan (40) L. Sarker (35) 2020 M. Razavi (5) 2021 1 2 Z. Wang (3) 2021 6 7 8 9 S. S. Paima (42) 41 20 21 43 |
References_xml | – ident: 7 doi: 10.1098/rsos.201095 – start-page: 195 ident: 38 article-title: RAM-Net: a residual attention MobileNet to detect COVID-19 cases from chest X-ray images – ident: 2 doi: 10.3390/s20185236 – ident: 10 doi: 10.1126/science.abf7921 – ident: 14 doi: 10.1109/sta50679.2020.9329355 – ident: 31 doi: 10.1109/access.2020.2984903 – start-page: 1 ident: 40 article-title: Covid-19 classification using deep learning in chest X-ray images – year: 2021 ident: 5 article-title: An automatic system to monitor the physical distance and face mask wearing of construction workers in COVID-19 pandemic – ident: 21 doi: 10.1007/s00521-020-05410-8 – ident: 41 doi: 10.1109/access.2021.3061621 – year: 2020 ident: 33 article-title: Metrics for multi-class classification: an overview – ident: 9 doi: 10.1038/s41591-020-0895-3 – start-page: 122 ident: 27 article-title: Advancements in image classification using convolutional neural network – volume: 33 start-page: 199 issue: 2 year: 2021 ident: 11 article-title: The economics and accounting for COVID-19 wage subsidy and other government grants publication-title: Pacific Accounting Review doi: 10.1108/PAR-10-2020-0189 – ident: 8 doi: 10.1111/1475-5890.12232 – ident: 22 doi: 10.1016/j.scs.2020.102600 – ident: 25 doi: 10.1007/s11554-021-01070-6 – start-page: 376 ident: 26 article-title: November). Face recognition based on convolutional neural network – ident: 37 doi: 10.1007/s10489-020-01902-1 – ident: 43 doi: 10.1016/s0031-3203(96)00142-2 – ident: 24 doi: 10.1057/s41599-019-0278-x – ident: 6 doi: 10.1007/978-981-33-4673-4_49 – year: 2021 ident: 3 article-title: Wearmask: fast In-browser face mask detection with serverless edge computing for COVID-19 – ident: 29 doi: 10.1155/2018/8196906 – start-page: 1 ident: 16 article-title: COVID-19 recognition based on deep transfer learning – ident: 30 doi: 10.1109/icengtechnol.2017.8308186 – ident: 32 – ident: 13 doi: 10.1177/2472630320962002 – ident: 1 doi: 10.1016/j.measurement.2020.108288 – ident: 34 doi: 10.1007/s42979-021-00782-7 – ident: 18 doi: 10.1016/j.compbiomed.2020.103792 – ident: 23 doi: 10.1007/978-3-319-19390-8_16 – ident: 20 doi: 10.1007/s10140-020-01886-y – start-page: 185 ident: 17 article-title: COVID-19 recognition based on patient’s coughing and breathing patterns analysis: deep learning approach – ident: 19 doi: 10.1038/s41598-020-76550-z – start-page: 217 ident: 42 article-title: Detection of COVID-19 from chest radiographs: comparison of four end-to-end trained deep learning models – ident: 36 doi: 10.1080/07391102.2020.1767212 – ident: 28 doi: 10.1155/2020/8361989 – year: 2020 ident: 35 article-title: Covid-densenet: a deep learning architecture to detect Covid-19 from chest radiology images doi: 10.20944/preprints202005.0151.v1 – volume: 2020 year: 2020 ident: 4 article-title: Predicting coronavirus pandemic in real-time using machine learning and big data streaming system publication-title: Complexity doi: 10.1155/2020/6688912 – ident: 12 doi: 10.1098/rsos.210429 – ident: 15 doi: 10.1109/sta50679.2020.9329302 – ident: 39 doi: 10.1016/j.compbiomed.2020.103805 |
SSID | ssj0018100 |
Score | 2.446391 |
Snippet | Since the infectious coronavirus disease (COVID-19) was first reported in Wuhan, it has become a public health problem in China and even around the world. This... |
SourceID | proquest crossref hindawi |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Accuracy Airport terminals Airports Comparative studies Coronaviruses COVID-19 vaccines Datasets Decision making Deep learning Disease control Disease transmission Face recognition Herd immunity Infections Masks Office buildings Pandemics Pneumonia Prevention Public health Real time Scientific papers Severe acute respiratory syndrome coronavirus 2 Shelter in place Viral diseases Vision systems |
Title | Real-Time Implementation of AI-Based Face Mask Detection and Social Distancing Measuring System for COVID-19 Prevention |
URI | https://dx.doi.org/10.1155/2021/8340779 https://www.proquest.com/docview/2580587671 |
Volume | 2021 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA1uIPjitzidIw_zSYJrmo_2cW6OTZiKqOytpEmKonbiJvv73rTpQIfoWwtJHu5Nes5pbk4QanNugHXQgKQ8EISxVBAFapkIFShDs1imtiiQvRbDB3Y14RNvkjRb3cIHtHPyPDiPQlAeMq6hGkwwJ8qHk-VmQRR0StMBDmsX4Kqqb__R9xvyrD85ybt4XvkEF7gy2EabnhDibpnBHbRm8120VV22gP3a20OLO6B0xJ3YwIWj75s_NJTjaYa7I3IBcGTwQGmLx2r2gvt2XlRZ5VjlBpencHHfscVcA1zhcfFz0D2VpuUY2Cvu3TyO-iSIceXsNM330cPg8r43JP7WBKLDUM4hyoDIglvAaaGBH9C0Y7TVguoOt1ZloCBARoSAXlmsWWxoaKmNIFhSWcZNEB6gej7N7SHCLIvSyGjIGTNMaRhJ0FQow7XOpOKmgc6qiCbaW4q7my1ek0JacJ64-Cc-_g10umz9Xlpp_NKu7ZPzR7NmlbnEr7tZQnkEs0AKGRz9b5RjtOFeXQUIlU1Un3982hOgGfO0hWqU3baKqfYFKeXI3w |
linkProvider | Hindawi Publishing |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-Time+Implementation+of+AI-Based+Face+Mask+Detection+and+Social+Distancing+Measuring+System+for+COVID-19+Prevention&rft.jtitle=Scientific+programming&rft.au=Teboulbi%2C+Safa&rft.au=Messaoud%2C+Seifeddine&rft.au=Hajjaji%2C+Mohamed+Ali&rft.au=Mtibaa%2C+Abdellatif&rft.date=2021-09-27&rft.pub=Hindawi&rft.issn=1058-9244&rft.eissn=1875-919X&rft.volume=2021&rft_id=info:doi/10.1155%2F2021%2F8340779&rft.externalDocID=10_1155_2021_8340779 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1058-9244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1058-9244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1058-9244&client=summon |