Cholesky decomposition and well-posedness of Cauchy problem for Fokker-Planck equations with unbounded coefficients
This paper explores the well-posedness of the Cauchy problem for the Fokker-Planck equation associated with the partial differential operator $ L $ with low regularity condition. To address uniqueness, we apply a recently developed superposition principle for unbounded coefficients, which reduces th...
Saved in:
Published in | AIMS mathematics Vol. 10; no. 6; pp. 13555 - 13574 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2473-6988 2473-6988 |
DOI | 10.3934/math.2025610 |
Cover
Abstract | This paper explores the well-posedness of the Cauchy problem for the Fokker-Planck equation associated with the partial differential operator $ L $ with low regularity condition. To address uniqueness, we apply a recently developed superposition principle for unbounded coefficients, which reduces the uniqueness problem for the Fokker-Planck equation to the uniqueness of solutions to the martingale problem. Using the Cholesky decomposition algorithm, a standard tool in numerical linear algebra, we construct a lower triangular matrix of functions $ \sigma $ with suitable regularity such that $ A = \sigma \sigma^T $. This formulation allows us to connect the uniqueness of solutions to the martingale problem with the uniqueness of weak solutions to Itô-SDEs. For existence, we rely on established results concerning sub-Markovian semigroups, which enable us to confirm the existence of solutions to the Fokker-Planck equation under general growth conditions expressed as inequalities. Additionally, by imposing further growth conditions on the coefficients, also expressed as inequalities, we establish the ergodicity of the solutions. This work demonstrates the interplay between stochastic analysis and numerical linear algebra in addressing problems related to partial differential equations. |
---|---|
AbstractList | This paper explores the well-posedness of the Cauchy problem for the Fokker-Planck equation associated with the partial differential operator $ L $ with low regularity condition. To address uniqueness, we apply a recently developed superposition principle for unbounded coefficients, which reduces the uniqueness problem for the Fokker-Planck equation to the uniqueness of solutions to the martingale problem. Using the Cholesky decomposition algorithm, a standard tool in numerical linear algebra, we construct a lower triangular matrix of functions $ \sigma $ with suitable regularity such that $ A = \sigma \sigma^T $. This formulation allows us to connect the uniqueness of solutions to the martingale problem with the uniqueness of weak solutions to Itô-SDEs. For existence, we rely on established results concerning sub-Markovian semigroups, which enable us to confirm the existence of solutions to the Fokker-Planck equation under general growth conditions expressed as inequalities. Additionally, by imposing further growth conditions on the coefficients, also expressed as inequalities, we establish the ergodicity of the solutions. This work demonstrates the interplay between stochastic analysis and numerical linear algebra in addressing problems related to partial differential equations. |
Author | Lee, Haesung |
Author_xml | – sequence: 1 givenname: Haesung surname: Lee fullname: Lee, Haesung |
BookMark | eNpNkM1KxDAUhYMoOOrsfIA8gNX8NUmXMvgHgi50XdLkxtZ2kjFpkXl7O84gru7hg_NxOWfoOMQACF1Scs0rLm7WZmyvGWGlpOQILZhQvJCV1sf_8ila5vxJCGGUCabEAuVVGwfI_RY7sHG9ibkbuxiwCQ5_wzAUMwEXIGccPV6ZybZbvEmxGWCNfUz4PvY9pOJ1MMH2GL4ms-tn_N2NLZ5CE6fgwGEbwfvOdhDGfIFOvBkyLA_3HL3f372tHovnl4en1e1zYTlX4_yw1X6OlpZcVMxro0ERSrSSnhguifGNkFxRoY3XovIllYwQ5VxjZ6b5OXrae100n_UmdWuTtnU0Xf0LYvqoTRo7O0CtrFO6lL6B0gteykZQZ2ijZ62sWFnNrqu9y6aYcwL_56Ok3u1f7_avD_vzH_KZe9I |
Cites_doi | 10.1103/PhysRevE.90.032118 10.1016/j.crma.2010.01.001 10.1090/surv/207 10.1007/s10884-020-09828-5 10.1007/978-0-387-68918-0 10.1070/SM9427 10.1215/kjm/1250523691 10.1007/3-540-28999-2 10.2748/tmj.20200218 10.1016/j.jfa.2007.09.020 10.1137/S0040585X97T991507 10.1214/16-EJP4453 10.1081/PDE-100107815 10.1112/blms/bdm046 10.1137/S0040585X97985212 10.1006/jmaa.1997.5326 10.1186/s13661-025-02056-0 10.1016/j.probengmech.2022.103201 10.1016/0304-4149(82)90051-5 10.1214/EJP.v16-887 10.1016/j.jfa.2019.03.014 10.1016/j.jmaa.2021.125778 |
ContentType | Journal Article |
CorporateAuthor | Department of Mathematics and Big Data Science, Kumoh National Institute of Technology, Gumi, Gyeongsangbuk-do 39177, Republic of Korea |
CorporateAuthor_xml | – name: Department of Mathematics and Big Data Science, Kumoh National Institute of Technology, Gumi, Gyeongsangbuk-do 39177, Republic of Korea |
DBID | AAYXX CITATION DOA |
DOI | 10.3934/math.2025610 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 13574 |
ExternalDocumentID | oai_doaj_org_article_7cd7856fbe5f4356b41da1b884969259 10_3934_math_2025610 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
ID | FETCH-LOGICAL-c337t-69c8fc33c153492f8a8e7010876f0a360afb4637148af849f5162007ddbc14883 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Mon Sep 01 19:40:26 EDT 2025 Thu Jul 03 08:20:35 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c337t-69c8fc33c153492f8a8e7010876f0a360afb4637148af849f5162007ddbc14883 |
OpenAccessLink | https://doaj.org/article/7cd7856fbe5f4356b41da1b884969259 |
PageCount | 20 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7cd7856fbe5f4356b41da1b884969259 crossref_primary_10_3934_math_2025610 |
PublicationCentury | 2000 |
PublicationDate | 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2025 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/math.2025610-6 key-10.3934/math.2025610-7 key-10.3934/math.2025610-4 key-10.3934/math.2025610-5 key-10.3934/math.2025610-2 key-10.3934/math.2025610-3 key-10.3934/math.2025610-1 key-10.3934/math.2025610-10 key-10.3934/math.2025610-30 key-10.3934/math.2025610-17 key-10.3934/math.2025610-18 key-10.3934/math.2025610-15 key-10.3934/math.2025610-16 key-10.3934/math.2025610-13 key-10.3934/math.2025610-14 key-10.3934/math.2025610-11 key-10.3934/math.2025610-12 key-10.3934/math.2025610-19 key-10.3934/math.2025610-20 key-10.3934/math.2025610-21 key-10.3934/math.2025610-28 key-10.3934/math.2025610-29 key-10.3934/math.2025610-26 key-10.3934/math.2025610-27 key-10.3934/math.2025610-24 key-10.3934/math.2025610-25 key-10.3934/math.2025610-8 key-10.3934/math.2025610-22 key-10.3934/math.2025610-9 key-10.3934/math.2025610-23 |
References_xml | – ident: key-10.3934/math.2025610-3 doi: 10.1103/PhysRevE.90.032118 – ident: key-10.3934/math.2025610-24 doi: 10.1016/j.crma.2010.01.001 – ident: key-10.3934/math.2025610-13 – ident: key-10.3934/math.2025610-15 – ident: key-10.3934/math.2025610-5 doi: 10.1090/surv/207 – ident: key-10.3934/math.2025610-9 doi: 10.1007/s10884-020-09828-5 – ident: key-10.3934/math.2025610-1 doi: 10.1007/978-0-387-68918-0 – ident: key-10.3934/math.2025610-6 doi: 10.1070/SM9427 – ident: key-10.3934/math.2025610-29 doi: 10.1215/kjm/1250523691 – ident: key-10.3934/math.2025610-26 – ident: key-10.3934/math.2025610-27 doi: 10.1007/3-540-28999-2 – ident: key-10.3934/math.2025610-17 doi: 10.2748/tmj.20200218 – ident: key-10.3934/math.2025610-22 – ident: key-10.3934/math.2025610-12 doi: 10.1016/j.jfa.2007.09.020 – ident: key-10.3934/math.2025610-10 doi: 10.1137/S0040585X97T991507 – ident: key-10.3934/math.2025610-28 doi: 10.1214/16-EJP4453 – ident: key-10.3934/math.2025610-4 doi: 10.1081/PDE-100107815 – ident: key-10.3934/math.2025610-14 – ident: key-10.3934/math.2025610-16 – ident: key-10.3934/math.2025610-7 doi: 10.1112/blms/bdm046 – ident: key-10.3934/math.2025610-25 doi: 10.1137/S0040585X97985212 – ident: key-10.3934/math.2025610-11 doi: 10.1006/jmaa.1997.5326 – ident: key-10.3934/math.2025610-19 – ident: key-10.3934/math.2025610-20 doi: 10.1186/s13661-025-02056-0 – ident: key-10.3934/math.2025610-21 doi: 10.1016/j.probengmech.2022.103201 – ident: key-10.3934/math.2025610-23 – ident: key-10.3934/math.2025610-2 doi: 10.1016/0304-4149(82)90051-5 – ident: key-10.3934/math.2025610-30 doi: 10.1214/EJP.v16-887 – ident: key-10.3934/math.2025610-8 doi: 10.1016/j.jfa.2019.03.014 – ident: key-10.3934/math.2025610-18 doi: 10.1016/j.jmaa.2021.125778 |
SSID | ssj0002124274 |
Score | 2.2789912 |
Snippet | This paper explores the well-posedness of the Cauchy problem for the Fokker-Planck equation associated with the partial differential operator $ L $ with low... |
SourceID | doaj crossref |
SourceType | Open Website Index Database |
StartPage | 13555 |
SubjectTerms | cholesky decomposition diffusion equations fokker-planck equations inequalities martingale problems semigroups |
Title | Cholesky decomposition and well-posedness of Cauchy problem for Fokker-Planck equations with unbounded coefficients |
URI | https://doaj.org/article/7cd7856fbe5f4356b41da1b884969259 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09a8MwEBUlUzuUftL0Cw3tKOIPWZbHNjSEQjo1kM1IOomCwWnjZMi_753thnTq0s0I25gnc_fufH6PsQcskZUORgqIJQiZm0hoiAsRjMJkmYRUO_rfefampnP5usgWe1ZfNBPWyQN3wI1yB7nOVLA-C5jalZUxmNhqLQtVIHen6BsV0V4xRTEYA7LEequbdE-LVI6Q_9G3h4T4wq8ctCfV3-aUyQk77skgf-oe4pQd-PqMHc12SqrNOWvGZGDbVFsOnsa_-xkrbmrg1HcTuOKB4hVfBj42G_ex5b1LDEdCyifLqvIrQeZEruL-q5P2bjg1YPmmtmSr5IG7pW_FJGiu4oLNJy_v46nojRKES9N8LVThdMBDh-FLFknQRvscCy2MdCEyqYpMsFKRNp82AYELWayoRwlgHa7p9JIN6mXtrxgniyoHFjN7AOklXgkWKUOSgcs1Aj9kjz_QlZ-dHkaJdQRBXBLEZQ_xkD0TrrtzSMW6XcC9Lfu9Lf_a2-v_uMkNO6Rn6tomt2ywXm38HRKJtb1v35lvCHTHyw |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cholesky+decomposition+and+well-posedness+of+Cauchy+problem+for+Fokker-Planck+equations+with+unbounded+coefficients&rft.jtitle=AIMS+mathematics&rft.au=Haesung+Lee&rft.date=2025-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=10&rft.issue=6&rft.spage=13555&rft.epage=13574&rft_id=info:doi/10.3934%2Fmath.2025610&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7cd7856fbe5f4356b41da1b884969259 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |