Cholesky decomposition and well-posedness of Cauchy problem for Fokker-Planck equations with unbounded coefficients

This paper explores the well-posedness of the Cauchy problem for the Fokker-Planck equation associated with the partial differential operator $ L $ with low regularity condition. To address uniqueness, we apply a recently developed superposition principle for unbounded coefficients, which reduces th...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 10; no. 6; pp. 13555 - 13574
Main Author Lee, Haesung
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2025
Subjects
Online AccessGet full text
ISSN2473-6988
2473-6988
DOI10.3934/math.2025610

Cover

Abstract This paper explores the well-posedness of the Cauchy problem for the Fokker-Planck equation associated with the partial differential operator $ L $ with low regularity condition. To address uniqueness, we apply a recently developed superposition principle for unbounded coefficients, which reduces the uniqueness problem for the Fokker-Planck equation to the uniqueness of solutions to the martingale problem. Using the Cholesky decomposition algorithm, a standard tool in numerical linear algebra, we construct a lower triangular matrix of functions $ \sigma $ with suitable regularity such that $ A = \sigma \sigma^T $. This formulation allows us to connect the uniqueness of solutions to the martingale problem with the uniqueness of weak solutions to Itô-SDEs. For existence, we rely on established results concerning sub-Markovian semigroups, which enable us to confirm the existence of solutions to the Fokker-Planck equation under general growth conditions expressed as inequalities. Additionally, by imposing further growth conditions on the coefficients, also expressed as inequalities, we establish the ergodicity of the solutions. This work demonstrates the interplay between stochastic analysis and numerical linear algebra in addressing problems related to partial differential equations.
AbstractList This paper explores the well-posedness of the Cauchy problem for the Fokker-Planck equation associated with the partial differential operator $ L $ with low regularity condition. To address uniqueness, we apply a recently developed superposition principle for unbounded coefficients, which reduces the uniqueness problem for the Fokker-Planck equation to the uniqueness of solutions to the martingale problem. Using the Cholesky decomposition algorithm, a standard tool in numerical linear algebra, we construct a lower triangular matrix of functions $ \sigma $ with suitable regularity such that $ A = \sigma \sigma^T $. This formulation allows us to connect the uniqueness of solutions to the martingale problem with the uniqueness of weak solutions to Itô-SDEs. For existence, we rely on established results concerning sub-Markovian semigroups, which enable us to confirm the existence of solutions to the Fokker-Planck equation under general growth conditions expressed as inequalities. Additionally, by imposing further growth conditions on the coefficients, also expressed as inequalities, we establish the ergodicity of the solutions. This work demonstrates the interplay between stochastic analysis and numerical linear algebra in addressing problems related to partial differential equations.
Author Lee, Haesung
Author_xml – sequence: 1
  givenname: Haesung
  surname: Lee
  fullname: Lee, Haesung
BookMark eNpNkM1KxDAUhYMoOOrsfIA8gNX8NUmXMvgHgi50XdLkxtZ2kjFpkXl7O84gru7hg_NxOWfoOMQACF1Scs0rLm7WZmyvGWGlpOQILZhQvJCV1sf_8ila5vxJCGGUCabEAuVVGwfI_RY7sHG9ibkbuxiwCQ5_wzAUMwEXIGccPV6ZybZbvEmxGWCNfUz4PvY9pOJ1MMH2GL4ms-tn_N2NLZ5CE6fgwGEbwfvOdhDGfIFOvBkyLA_3HL3f372tHovnl4en1e1zYTlX4_yw1X6OlpZcVMxro0ERSrSSnhguifGNkFxRoY3XovIllYwQ5VxjZ6b5OXrae100n_UmdWuTtnU0Xf0LYvqoTRo7O0CtrFO6lL6B0gteykZQZ2ijZ62sWFnNrqu9y6aYcwL_56Ok3u1f7_avD_vzH_KZe9I
Cites_doi 10.1103/PhysRevE.90.032118
10.1016/j.crma.2010.01.001
10.1090/surv/207
10.1007/s10884-020-09828-5
10.1007/978-0-387-68918-0
10.1070/SM9427
10.1215/kjm/1250523691
10.1007/3-540-28999-2
10.2748/tmj.20200218
10.1016/j.jfa.2007.09.020
10.1137/S0040585X97T991507
10.1214/16-EJP4453
10.1081/PDE-100107815
10.1112/blms/bdm046
10.1137/S0040585X97985212
10.1006/jmaa.1997.5326
10.1186/s13661-025-02056-0
10.1016/j.probengmech.2022.103201
10.1016/0304-4149(82)90051-5
10.1214/EJP.v16-887
10.1016/j.jfa.2019.03.014
10.1016/j.jmaa.2021.125778
ContentType Journal Article
CorporateAuthor Department of Mathematics and Big Data Science, Kumoh National Institute of Technology, Gumi, Gyeongsangbuk-do 39177, Republic of Korea
CorporateAuthor_xml – name: Department of Mathematics and Big Data Science, Kumoh National Institute of Technology, Gumi, Gyeongsangbuk-do 39177, Republic of Korea
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2025610
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 13574
ExternalDocumentID oai_doaj_org_article_7cd7856fbe5f4356b41da1b884969259
10_3934_math_2025610
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c337t-69c8fc33c153492f8a8e7010876f0a360afb4637148af849f5162007ddbc14883
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Mon Sep 01 19:40:26 EDT 2025
Thu Jul 03 08:20:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-69c8fc33c153492f8a8e7010876f0a360afb4637148af849f5162007ddbc14883
OpenAccessLink https://doaj.org/article/7cd7856fbe5f4356b41da1b884969259
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_7cd7856fbe5f4356b41da1b884969259
crossref_primary_10_3934_math_2025610
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2025
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2025610-6
key-10.3934/math.2025610-7
key-10.3934/math.2025610-4
key-10.3934/math.2025610-5
key-10.3934/math.2025610-2
key-10.3934/math.2025610-3
key-10.3934/math.2025610-1
key-10.3934/math.2025610-10
key-10.3934/math.2025610-30
key-10.3934/math.2025610-17
key-10.3934/math.2025610-18
key-10.3934/math.2025610-15
key-10.3934/math.2025610-16
key-10.3934/math.2025610-13
key-10.3934/math.2025610-14
key-10.3934/math.2025610-11
key-10.3934/math.2025610-12
key-10.3934/math.2025610-19
key-10.3934/math.2025610-20
key-10.3934/math.2025610-21
key-10.3934/math.2025610-28
key-10.3934/math.2025610-29
key-10.3934/math.2025610-26
key-10.3934/math.2025610-27
key-10.3934/math.2025610-24
key-10.3934/math.2025610-25
key-10.3934/math.2025610-8
key-10.3934/math.2025610-22
key-10.3934/math.2025610-9
key-10.3934/math.2025610-23
References_xml – ident: key-10.3934/math.2025610-3
  doi: 10.1103/PhysRevE.90.032118
– ident: key-10.3934/math.2025610-24
  doi: 10.1016/j.crma.2010.01.001
– ident: key-10.3934/math.2025610-13
– ident: key-10.3934/math.2025610-15
– ident: key-10.3934/math.2025610-5
  doi: 10.1090/surv/207
– ident: key-10.3934/math.2025610-9
  doi: 10.1007/s10884-020-09828-5
– ident: key-10.3934/math.2025610-1
  doi: 10.1007/978-0-387-68918-0
– ident: key-10.3934/math.2025610-6
  doi: 10.1070/SM9427
– ident: key-10.3934/math.2025610-29
  doi: 10.1215/kjm/1250523691
– ident: key-10.3934/math.2025610-26
– ident: key-10.3934/math.2025610-27
  doi: 10.1007/3-540-28999-2
– ident: key-10.3934/math.2025610-17
  doi: 10.2748/tmj.20200218
– ident: key-10.3934/math.2025610-22
– ident: key-10.3934/math.2025610-12
  doi: 10.1016/j.jfa.2007.09.020
– ident: key-10.3934/math.2025610-10
  doi: 10.1137/S0040585X97T991507
– ident: key-10.3934/math.2025610-28
  doi: 10.1214/16-EJP4453
– ident: key-10.3934/math.2025610-4
  doi: 10.1081/PDE-100107815
– ident: key-10.3934/math.2025610-14
– ident: key-10.3934/math.2025610-16
– ident: key-10.3934/math.2025610-7
  doi: 10.1112/blms/bdm046
– ident: key-10.3934/math.2025610-25
  doi: 10.1137/S0040585X97985212
– ident: key-10.3934/math.2025610-11
  doi: 10.1006/jmaa.1997.5326
– ident: key-10.3934/math.2025610-19
– ident: key-10.3934/math.2025610-20
  doi: 10.1186/s13661-025-02056-0
– ident: key-10.3934/math.2025610-21
  doi: 10.1016/j.probengmech.2022.103201
– ident: key-10.3934/math.2025610-23
– ident: key-10.3934/math.2025610-2
  doi: 10.1016/0304-4149(82)90051-5
– ident: key-10.3934/math.2025610-30
  doi: 10.1214/EJP.v16-887
– ident: key-10.3934/math.2025610-8
  doi: 10.1016/j.jfa.2019.03.014
– ident: key-10.3934/math.2025610-18
  doi: 10.1016/j.jmaa.2021.125778
SSID ssj0002124274
Score 2.2789912
Snippet This paper explores the well-posedness of the Cauchy problem for the Fokker-Planck equation associated with the partial differential operator $ L $ with low...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 13555
SubjectTerms cholesky decomposition
diffusion equations
fokker-planck equations
inequalities
martingale problems
semigroups
Title Cholesky decomposition and well-posedness of Cauchy problem for Fokker-Planck equations with unbounded coefficients
URI https://doaj.org/article/7cd7856fbe5f4356b41da1b884969259
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09a8MwEBUlUzuUftL0Cw3tKOIPWZbHNjSEQjo1kM1IOomCwWnjZMi_753thnTq0s0I25gnc_fufH6PsQcskZUORgqIJQiZm0hoiAsRjMJkmYRUO_rfefampnP5usgWe1ZfNBPWyQN3wI1yB7nOVLA-C5jalZUxmNhqLQtVIHen6BsV0V4xRTEYA7LEequbdE-LVI6Q_9G3h4T4wq8ctCfV3-aUyQk77skgf-oe4pQd-PqMHc12SqrNOWvGZGDbVFsOnsa_-xkrbmrg1HcTuOKB4hVfBj42G_ex5b1LDEdCyifLqvIrQeZEruL-q5P2bjg1YPmmtmSr5IG7pW_FJGiu4oLNJy_v46nojRKES9N8LVThdMBDh-FLFknQRvscCy2MdCEyqYpMsFKRNp82AYELWayoRwlgHa7p9JIN6mXtrxgniyoHFjN7AOklXgkWKUOSgcs1Aj9kjz_QlZ-dHkaJdQRBXBLEZQ_xkD0TrrtzSMW6XcC9Lfu9Lf_a2-v_uMkNO6Rn6tomt2ywXm38HRKJtb1v35lvCHTHyw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cholesky+decomposition+and+well-posedness+of+Cauchy+problem+for+Fokker-Planck+equations+with+unbounded+coefficients&rft.jtitle=AIMS+mathematics&rft.au=Haesung+Lee&rft.date=2025-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=10&rft.issue=6&rft.spage=13555&rft.epage=13574&rft_id=info:doi/10.3934%2Fmath.2025610&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7cd7856fbe5f4356b41da1b884969259
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon