Towards efficient terbium-based solution-processed OLEDs: Hole mobility increase by the ligand design
•The brightest solution-processed terbium-based OLED was obtained.•The approach towards emitter hole mobility increase by the ligand design was developed.•Recently studied material PO4 was used as a host able to both increase electron mobility and sensitize terbium luminescence.•The role of charge c...
Saved in:
Published in | Journal of alloys and compounds Vol. 887; p. 161319 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
20.12.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The brightest solution-processed terbium-based OLED was obtained.•The approach towards emitter hole mobility increase by the ligand design was developed.•Recently studied material PO4 was used as a host able to both increase electron mobility and sensitize terbium luminescence.•The role of charge carrier mobility was directly demonstrated.
The approach towards the increase of the terbium electroluminescence efficiency by the increase of the transport properties was further developed. Therefore, terbium-based emitters, containing anionic ligands, able to both increase the hole mobility and to sensitize terbium luminescence, were purposefully obtained within the composite films, containing the recently studied host material PO4, able to increase electron-transport properties and also to ensure terbium luminescence. As a result, the luminance of 332 cd/m2 was reached, which is one of the highest results for solution-processed OLEDs based on terbium complexes. |
---|---|
AbstractList | •The brightest solution-processed terbium-based OLED was obtained.•The approach towards emitter hole mobility increase by the ligand design was developed.•Recently studied material PO4 was used as a host able to both increase electron mobility and sensitize terbium luminescence.•The role of charge carrier mobility was directly demonstrated.
The approach towards the increase of the terbium electroluminescence efficiency by the increase of the transport properties was further developed. Therefore, terbium-based emitters, containing anionic ligands, able to both increase the hole mobility and to sensitize terbium luminescence, were purposefully obtained within the composite films, containing the recently studied host material PO4, able to increase electron-transport properties and also to ensure terbium luminescence. As a result, the luminance of 332 cd/m2 was reached, which is one of the highest results for solution-processed OLEDs based on terbium complexes. The approach towards the increase of the terbium electroluminescence efficiency by the increase of the transport properties was further developed. Therefore, terbium-based emitters, containing anionic ligands, able to both increase the hole mobility and to sensitize terbium luminescence, were purposefully obtained within the composite films, containing the recently studied host material PO4, able to increase electron-transport properties and also to ensure terbium luminescence. As a result, the luminance of 332 cd/m2 was reached, which is one of the highest results for solution-processed OLEDs based on terbium complexes. |
ArticleNumber | 161319 |
Author | Aslandukov, Andrey N. Medved'ko, Aleksei V. Goloveshkin, Alexander S. Tameev, Alexey R. Vashchenko, Andrey A. Latipov, Egor V. Aleksandrov, Alexey E. Kozlov, Makarii I. Utochnikova, Valentina V. Lypenko, Dmitri A. |
Author_xml | – sequence: 1 givenname: Makarii I. surname: Kozlov fullname: Kozlov, Makarii I. organization: M.V. Lomonosov Moscow State University, 1/3 Leninskye Gory, Moscow 119991, Russia – sequence: 2 givenname: Andrey N. surname: Aslandukov fullname: Aslandukov, Andrey N. organization: M.V. Lomonosov Moscow State University, 1/3 Leninskye Gory, Moscow 119991, Russia – sequence: 3 givenname: Andrey A. surname: Vashchenko fullname: Vashchenko, Andrey A. organization: P.N. Lebedev Physical Institute, Leninsky Prosp. 53, Moscow 119992, Russia – sequence: 4 givenname: Aleksei V. surname: Medved'ko fullname: Medved'ko, Aleksei V. organization: N.D. Zelinsky Institute of Organic Chemistry RAS, Leninskiy Prosp. 47, Moscow 119991, Russia – sequence: 5 givenname: Alexey E. surname: Aleksandrov fullname: Aleksandrov, Alexey E. organization: Frumkin Institute of Physical chemistry and Electrochemistry, Leninsky Prosp. 31/4, Moscow 119071, Russia – sequence: 6 givenname: Egor V. surname: Latipov fullname: Latipov, Egor V. organization: M.V. Lomonosov Moscow State University, 1/3 Leninskye Gory, Moscow 119991, Russia – sequence: 7 givenname: Alexander S. surname: Goloveshkin fullname: Goloveshkin, Alexander S. organization: A.N. Nesmeyanov Institute of Organoelement Compounds, Vavilova St. 28, Moscow 119334, Russia – sequence: 8 givenname: Dmitri A. surname: Lypenko fullname: Lypenko, Dmitri A. organization: Frumkin Institute of Physical chemistry and Electrochemistry, Leninsky Prosp. 31/4, Moscow 119071, Russia – sequence: 9 givenname: Alexey R. surname: Tameev fullname: Tameev, Alexey R. organization: Frumkin Institute of Physical chemistry and Electrochemistry, Leninsky Prosp. 31/4, Moscow 119071, Russia – sequence: 10 givenname: Valentina V. surname: Utochnikova fullname: Utochnikova, Valentina V. email: utochnikova@gmail.com, valentina@inorg.chem.msu.ru organization: M.V. Lomonosov Moscow State University, 1/3 Leninskye Gory, Moscow 119991, Russia |
BookMark | eNqFkE1LAzEQhoMoWKs_QQh43ppsNulGDyJ-VSj0oueQj1nNst3UJFX6792lnrz0NDDM887Mc4aO-9ADQpeUzCih4rqdtbrrbFjPSlLSGRWUUXmEJrSes6ISQh6jCZElL2pW16foLKWWEEIloxMEb-FHR5cwNI23HvqMM0Tjt-vC6AQOp9Btsw99sYnBQhpbq-XTY7rBi9ABXgfjO5932Pc2wkBgs8P5E3DnP3TvsIPkP_pzdNLoLsHFX52i9-ent4dFsVy9vD7cLwvL2DwXQhJnoG5k44ypHOWgy4rThgoiXckNnRvOTC0sASMqJkRlqJZNDVVVcc4lm6Krfe5w7NcWUlZt2MZ-WKlKLoUUgjEyTN3up2wMKUVolPVZj0_mqH2nKFGjV9WqP69q9Kr2Xgea_6M30a913B3k7vYcDAK-PUSVRt8WnI9gs3LBH0j4BVrJl-I |
CitedBy_id | crossref_primary_10_1007_s12596_023_01511_4 crossref_primary_10_1016_j_jallcom_2022_164983 crossref_primary_10_1039_D3CP02082G crossref_primary_10_1002_adom_202200952 crossref_primary_10_1002_adfm_202419599 crossref_primary_10_1016_j_jallcom_2021_163481 crossref_primary_10_1002_aoc_7836 crossref_primary_10_1039_D2DT02446B crossref_primary_10_1039_D1DT02269E |
Cites_doi | 10.1016/j.jlumin.2007.10.008 10.1107/S0021889802019878 10.1103/PhysRev.127.131 10.1039/C8DT02911C 10.1002/adfm.201603719 10.1016/j.orgel.2011.11.024 10.1016/j.tsf.2013.11.035 10.1146/annurev.biophys.093008.131321 10.1016/j.ccr.2015.02.018 10.1002/aenm.201300954 10.1016/j.ccr.2016.09.012 10.1016/bs.hpcre.2021.05.001 10.3390/molecules24071412 10.1016/j.optmat.2017.02.052 10.1016/j.dyepig.2019.107604 10.1002/ejic.201403071 10.1016/j.orgel.2017.01.026 10.1002/adom.201801536 10.1016/j.jlumin.2018.09.027 10.1016/j.mencom.2019.03.035 10.1002/adma.202004072 10.2116/analsci.7.543 10.1002/adma.19970090308 10.1016/j.mser.2010.01.001 10.1016/j.jlumin.2016.04.017 10.1016/j.jlumin.2018.05.022 10.1002/bio.3423 10.1039/C9DT03823J |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. Copyright Elsevier BV Dec 20, 2021 |
Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright Elsevier BV Dec 20, 2021 |
DBID | AAYXX CITATION 8BQ 8FD JG9 |
DOI | 10.1016/j.jallcom.2021.161319 |
DatabaseName | CrossRef METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Physics |
EISSN | 1873-4669 |
ExternalDocumentID | 10_1016_j_jallcom_2021_161319 S0925838821027286 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO ABFNM ABJNI ABMAC ABXRA ACDAQ ACGFS ACIWK ACNCT ACRLP ADBBV ADEZE AEBSH AEIPS AEKER AENEX AEZYN AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPCBC SPD SSH SSM SSZ T5K TWZ XPP ZMT ~G- 29J AAQXK AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SEW SMS SPC T9H WUQ 8BQ 8FD AFXIZ EFKBS JG9 |
ID | FETCH-LOGICAL-c337t-690dbe8f9fdbb4d15ea2451f1609d25b17b53b86c0eb643664b1a9f8e44455593 |
IEDL.DBID | .~1 |
ISSN | 0925-8388 |
IngestDate | Sun Jul 13 05:31:52 EDT 2025 Tue Jul 01 03:33:31 EDT 2025 Thu Apr 24 23:10:26 EDT 2025 Sun Apr 06 06:54:58 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Thin films Solution-processed OLED Rare earth compounds Aromatic carboxylates Luminescence Charge carrier mobility |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c337t-690dbe8f9fdbb4d15ea2451f1609d25b17b53b86c0eb643664b1a9f8e44455593 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2596966330 |
PQPubID | 2045454 |
ParticipantIDs | proquest_journals_2596966330 crossref_citationtrail_10_1016_j_jallcom_2021_161319 crossref_primary_10_1016_j_jallcom_2021_161319 elsevier_sciencedirect_doi_10_1016_j_jallcom_2021_161319 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-20 |
PublicationDateYYYYMMDD | 2021-12-20 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Journal of alloys and compounds |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Bruker, TOPAS 4.2 User Manual, 2009. Utochnikova, Abramovich, Latipov, Dalinger, Goloveshkin, Vashchenko, Kalyakina, Vatsadze, Schepers, Bräse, Kuzmina (bib17) 2019; 205 Zhang, Li, Yue, Li, Hong, Li (bib20) 2008; 128 Taydakov, Akkuzina, Avetisov, Khomyakov, Saifutyarov, Avetissov (bib10) 2016; 177 Armin, Juska, Ullah, Velusamy, Burn, Meredith, Pivrikas (bib30) 2014; 4 Kalyakina, Utochnikova, Sokolova, Vaschenko, Lepnev, Van Deun, Trigub, Zubavichus, Hoffmann, Mühl, Kuzmina (bib16) 2016; 28 Coelho (bib21) 2003; 36 Utochnikova (bib7) 2021 Koden (bib1) 2016 Grishko, Utochnikova, Averin, Mironov, Kuzmina (bib12) 2015; 2015 H. Monjushiro, Ultraviolet Measured Photoelectron in Air Yield Spectra of Thin Gold Films, vol. 7, 1991. Tsujimura (bib2) 2017 Kane (bib24) 1962; 127 Malov, Ghosh, Nair, Maslov, Katin, Unni, Tameev (bib31) 2019; 29 Kanai, Honda, Ishii, Ouchi, Seki (bib27) 2012; 13 Kozlov, Aslandukov, Vashchenko, Medvedko, Aleksandrov, Grzibovskis, Goloveshkin, Lepnev, Tameev, Vembris, Utochnikova (bib14) 2019; 48 Zinna, Pasini, Galeotti, Botta, Di Bari, Giovanella (bib9) 2017; 27 Mal, Pietraszkiewicz, Pietraszkiewicz (bib33) 2018; 33 Koshelev, Chikineva, Kozhevnikova (Khudoleeva), Medvedko, Vashchenko, Goloveshkin, Tsymbarenko, Averin, Meschkov, Schepers, Vatsadze, Utochnikova (bib11) 2019; 170 De Mello, Wittmann, Friend (bib23) 1997; 9 Utochnikova, Grishko, Koshelev, Averin, Lepnev, Kuzmina (bib13) 2017; 74 Kim, Hong, Choe, Lee, Ryu, Seo, Yang, Han, Baek, Choi, Kang (bib5) 2020 Aslandukov, Utochnikova, Goriachiy, Vashchenko, Tsymbarenko, Hoffmann, Pietraszkiewicz, Kuzmina (bib19) 2018; 47 Otting (bib34) 2010; 39 Ibrahim-Ouali, Dumur (bib8) 2019; 24 Yuan, Tang, Du, Hu, Yu, Jiang, Liao, Lee (bib3) 2019; 7 Ikeda, Oda, Matsumoto, Yoshioka, Fukushima, Yoshiura, Yasuda, Hatakeyama (bib6) 2020; 32 Ow-yang, Jia, Aytun, Zamboni, Turak, Saritas, Shigesato (bib25) 2014; 559 Gao (bib28) 2010; 68 Platt (bib32) 2017; 340 Utochnikova, Solodukhin, Aslandukov, Marciniak, Bushmarinov, Vashchenko, Kuzmina (bib18) 2017; 44 Xu, Sun, An, Wei, Liu (bib4) 2015; 293–294 Silinsh, Capek (bib29) 1995; 32 Utochnikova, Latipov, Dalinger, Nelyubina, Vashchenko, Hoffmann, Kalyakina, Vatsadze, Schepers, Bräse, Kuzmina (bib15) 2018; 202 Armin (10.1016/j.jallcom.2021.161319_bib30) 2014; 4 Otting (10.1016/j.jallcom.2021.161319_bib34) 2010; 39 10.1016/j.jallcom.2021.161319_bib26 10.1016/j.jallcom.2021.161319_bib22 Koshelev (10.1016/j.jallcom.2021.161319_bib11) 2019; 170 Kanai (10.1016/j.jallcom.2021.161319_bib27) 2012; 13 Kim (10.1016/j.jallcom.2021.161319_bib5) 2020 Utochnikova (10.1016/j.jallcom.2021.161319_bib7) 2021 Kalyakina (10.1016/j.jallcom.2021.161319_bib16) 2016; 28 De Mello (10.1016/j.jallcom.2021.161319_bib23) 1997; 9 Aslandukov (10.1016/j.jallcom.2021.161319_bib19) 2018; 47 Ibrahim-Ouali (10.1016/j.jallcom.2021.161319_bib8) 2019; 24 Utochnikova (10.1016/j.jallcom.2021.161319_bib13) 2017; 74 Koden (10.1016/j.jallcom.2021.161319_bib1) 2016 Coelho (10.1016/j.jallcom.2021.161319_bib21) 2003; 36 Gao (10.1016/j.jallcom.2021.161319_bib28) 2010; 68 Grishko (10.1016/j.jallcom.2021.161319_bib12) 2015; 2015 Tsujimura (10.1016/j.jallcom.2021.161319_bib2) 2017 Ow-yang (10.1016/j.jallcom.2021.161319_bib25) 2014; 559 Taydakov (10.1016/j.jallcom.2021.161319_bib10) 2016; 177 Utochnikova (10.1016/j.jallcom.2021.161319_bib15) 2018; 202 Kozlov (10.1016/j.jallcom.2021.161319_bib14) 2019; 48 Kane (10.1016/j.jallcom.2021.161319_bib24) 1962; 127 Ikeda (10.1016/j.jallcom.2021.161319_bib6) 2020; 32 Platt (10.1016/j.jallcom.2021.161319_bib32) 2017; 340 Utochnikova (10.1016/j.jallcom.2021.161319_bib17) 2019; 205 Yuan (10.1016/j.jallcom.2021.161319_bib3) 2019; 7 Zhang (10.1016/j.jallcom.2021.161319_bib20) 2008; 128 Silinsh (10.1016/j.jallcom.2021.161319_bib29) 1995; 32 Xu (10.1016/j.jallcom.2021.161319_bib4) 2015; 293–294 Utochnikova (10.1016/j.jallcom.2021.161319_bib18) 2017; 44 Zinna (10.1016/j.jallcom.2021.161319_bib9) 2017; 27 Malov (10.1016/j.jallcom.2021.161319_bib31) 2019; 29 Mal (10.1016/j.jallcom.2021.161319_bib33) 2018; 33 |
References_xml | – volume: 28 start-page: 319 year: 2016 end-page: 329 ident: bib16 article-title: OLED thin film fabrication from poorly soluble terbium o-phenoxybenzoate through soluble mixed-ligand complexes publication-title: Org. Electron. Phys. Mater. Appl. – start-page: 53 year: 2020 end-page: 56 ident: bib5 article-title: Lifetime improvement of tadf-oleds publication-title: Dig. Tech. Pap. – SID Int. Symp. – volume: 340 start-page: 62 year: 2017 end-page: 78 ident: bib32 article-title: Lanthanide phosphine oxide complexes publication-title: Coord. Chem. Rev – reference: H. Monjushiro, Ultraviolet Measured Photoelectron in Air Yield Spectra of Thin Gold Films, vol. 7, 1991. – volume: 36 start-page: 86 year: 2003 end-page: 95 ident: bib21 article-title: Indexing of powder diffraction patterns by iterative use of singular value decomposition publication-title: J. Appl. Crystallogr. – volume: 177 start-page: 31 year: 2016 end-page: 39 ident: bib10 article-title: Effective electroluminescent materials for OLED applications based on lanthanide 1.3-diketonates bearing pyrazole moiety publication-title: J. Lumin. – volume: 7 year: 2019 ident: bib3 article-title: The design of fused amine/carbonyl system for efficient thermally activated delayed fluorescence: novel multiple resonance core and electron acceptor publication-title: Adv. Opt. Mater. – year: 2021 ident: bib7 article-title: Lanthanide complexes as OLED emitters publication-title: Handbook on the Physics and Chemistry of Rare Earths – volume: 205 start-page: 429 year: 2019 end-page: 439 ident: bib17 article-title: Brightly luminescent lanthanide pyrazolecarboxylates: synthesis, luminescent properties and influence of ligand isomerism publication-title: J. Lumin. – volume: 293–294 start-page: 228 year: 2015 end-page: 249 ident: bib4 article-title: Electroluminescence from europium(III) complexes publication-title: Coord. Chem. Rev. – volume: 44 start-page: 85 year: 2017 end-page: 93 ident: bib18 article-title: Lanthanide tetrafluorobenzoates as emitters for OLEDs: new approach for host selection publication-title: Org. Electron. – volume: 27 year: 2017 ident: bib9 article-title: Design of lanthanide-based OLEDs with remarkable circularly polarized electroluminescence publication-title: Adv. Funct. Mater. – volume: 9 start-page: 230 year: 1997 end-page: 232 ident: bib23 article-title: An improved experimental determination of external photoluminescence quantum efficiency publication-title: Adv. Mater. – volume: 32 year: 2020 ident: bib6 article-title: Solution-processable pure green thermally activated delayed fluorescence emitter based on the multiple resonance effect publication-title: Adv. Mater. – volume: 202 start-page: 38 year: 2018 end-page: 46 ident: bib15 article-title: Lanthanide pyrazolecarboxylates for OLEDs and bioimaging publication-title: J. Lumin. – volume: 128 start-page: 620 year: 2008 end-page: 624 ident: bib20 article-title: A terbium (III) complex with triphenylamine-functionalized ligand for organic electroluminescent device publication-title: J. Lumin. – volume: 127 start-page: 131 year: 1962 end-page: 141 ident: bib24 article-title: Theory of photoelectric emission from semicoductors publication-title: Phys. Rev. – volume: 13 start-page: 309 year: 2012 end-page: 319 ident: bib27 article-title: Interface electronic structure between organic semiconductor film and electrode metal probed by photoelectron yield spectroscopy publication-title: Org. Electron. – volume: 33 start-page: 370 year: 2018 end-page: 375 ident: bib33 article-title: Luminescent studies of binuclear ternary europium(III) pyridineoxide tetrazolate complexes containing bis-phosphine oxide as auxiliary co-ligands publication-title: Luminescence – volume: 29 start-page: 218 year: 2019 end-page: 219 ident: bib31 article-title: Hole mobility in thieno[3,2-b]thiophene oligomers publication-title: Mendeleev Commun. – volume: 170 year: 2019 ident: bib11 article-title: On the design of new europium heteroaromatic carboxylates for OLED application publication-title: Dyes Pigments – volume: 559 start-page: 58 year: 2014 end-page: 63 ident: bib25 article-title: Work function tuning of tin-doped indium oxide electrodes with solution-processed lithium fluoride publication-title: Thin Solid Films – volume: 48 start-page: 17298 year: 2019 end-page: 17309 ident: bib14 article-title: On the development of a new approach to the design of lanthanide-based materials for solution-processed OLEDs publication-title: Dalton Trans. – volume: 68 start-page: 39 year: 2010 end-page: 87 ident: bib28 article-title: Surface analytical studies of interfaces in organic semiconductor devices publication-title: Mater. Sci. Eng. R – volume: 32 year: 1995 ident: bib29 article-title: Organic molecular crystals: interaction, localization, and transport phenomena publication-title: Choice Rev. Online – volume: 4 year: 2014 ident: bib30 article-title: Balanced carrier mobilities: not a necessary condition for high-efficiency thin organic solar cells as determined by MIS-CELIV publication-title: Adv. Energy Mater. – year: 2016 ident: bib1 article-title: OLED Displays and Lighting – volume: 39 start-page: 387 year: 2010 end-page: 405 ident: bib34 article-title: Protein NMR using paramagnetic ions publication-title: Annu. Rev. Biophys. – volume: 24 start-page: 1412 year: 2019 ident: bib8 article-title: Recent advances on metal-based near-infrared and infrared emitting OLEDs publication-title: Molecules – reference: Bruker, TOPAS 4.2 User Manual, 2009. – volume: 2015 start-page: 1660 year: 2015 end-page: 1664 ident: bib12 article-title: Unusual luminescence properties of heterometallic REE terephthalates publication-title: Eur. J. Inorg. Chem. – year: 2017 ident: bib2 article-title: OLED Display Fundamentals and Applications – volume: 74 start-page: 201 year: 2017 end-page: 208 ident: bib13 article-title: Lanthanide heterometallic terephthalates: concentration quenching and the principles of the “multiphotonic emission publication-title: Opt. Mater. – volume: 47 start-page: 16350 year: 2018 end-page: 16357 ident: bib19 article-title: The development of a new approach toward lanthanide-based OLED fabrication: new host materials for Tb-based emitters publication-title: Dalton Trans. – volume: 128 start-page: 620 year: 2008 ident: 10.1016/j.jallcom.2021.161319_bib20 article-title: A terbium (III) complex with triphenylamine-functionalized ligand for organic electroluminescent device publication-title: J. Lumin. doi: 10.1016/j.jlumin.2007.10.008 – volume: 36 start-page: 86 year: 2003 ident: 10.1016/j.jallcom.2021.161319_bib21 article-title: Indexing of powder diffraction patterns by iterative use of singular value decomposition publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889802019878 – volume: 127 start-page: 131 year: 1962 ident: 10.1016/j.jallcom.2021.161319_bib24 article-title: Theory of photoelectric emission from semicoductors publication-title: Phys. Rev. doi: 10.1103/PhysRev.127.131 – volume: 47 start-page: 16350 year: 2018 ident: 10.1016/j.jallcom.2021.161319_bib19 article-title: The development of a new approach toward lanthanide-based OLED fabrication: new host materials for Tb-based emitters publication-title: Dalton Trans. doi: 10.1039/C8DT02911C – volume: 32 year: 1995 ident: 10.1016/j.jallcom.2021.161319_bib29 article-title: Organic molecular crystals: interaction, localization, and transport phenomena publication-title: Choice Rev. Online – volume: 27 year: 2017 ident: 10.1016/j.jallcom.2021.161319_bib9 article-title: Design of lanthanide-based OLEDs with remarkable circularly polarized electroluminescence publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201603719 – volume: 13 start-page: 309 year: 2012 ident: 10.1016/j.jallcom.2021.161319_bib27 article-title: Interface electronic structure between organic semiconductor film and electrode metal probed by photoelectron yield spectroscopy publication-title: Org. Electron. doi: 10.1016/j.orgel.2011.11.024 – volume: 559 start-page: 58 year: 2014 ident: 10.1016/j.jallcom.2021.161319_bib25 article-title: Work function tuning of tin-doped indium oxide electrodes with solution-processed lithium fluoride publication-title: Thin Solid Films doi: 10.1016/j.tsf.2013.11.035 – volume: 39 start-page: 387 year: 2010 ident: 10.1016/j.jallcom.2021.161319_bib34 article-title: Protein NMR using paramagnetic ions publication-title: Annu. Rev. Biophys. doi: 10.1146/annurev.biophys.093008.131321 – volume: 293–294 start-page: 228 year: 2015 ident: 10.1016/j.jallcom.2021.161319_bib4 article-title: Electroluminescence from europium(III) complexes publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2015.02.018 – volume: 4 year: 2014 ident: 10.1016/j.jallcom.2021.161319_bib30 article-title: Balanced carrier mobilities: not a necessary condition for high-efficiency thin organic solar cells as determined by MIS-CELIV publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201300954 – volume: 340 start-page: 62 year: 2017 ident: 10.1016/j.jallcom.2021.161319_bib32 article-title: Lanthanide phosphine oxide complexes publication-title: Coord. Chem. Rev doi: 10.1016/j.ccr.2016.09.012 – year: 2021 ident: 10.1016/j.jallcom.2021.161319_bib7 article-title: Lanthanide complexes as OLED emitters doi: 10.1016/bs.hpcre.2021.05.001 – volume: 24 start-page: 1412 year: 2019 ident: 10.1016/j.jallcom.2021.161319_bib8 article-title: Recent advances on metal-based near-infrared and infrared emitting OLEDs publication-title: Molecules doi: 10.3390/molecules24071412 – volume: 74 start-page: 201 year: 2017 ident: 10.1016/j.jallcom.2021.161319_bib13 article-title: Lanthanide heterometallic terephthalates: concentration quenching and the principles of the “multiphotonic emission publication-title: Opt. Mater. doi: 10.1016/j.optmat.2017.02.052 – year: 2016 ident: 10.1016/j.jallcom.2021.161319_bib1 – volume: 170 year: 2019 ident: 10.1016/j.jallcom.2021.161319_bib11 article-title: On the design of new europium heteroaromatic carboxylates for OLED application publication-title: Dyes Pigments doi: 10.1016/j.dyepig.2019.107604 – volume: 2015 start-page: 1660 year: 2015 ident: 10.1016/j.jallcom.2021.161319_bib12 article-title: Unusual luminescence properties of heterometallic REE terephthalates publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.201403071 – volume: 44 start-page: 85 year: 2017 ident: 10.1016/j.jallcom.2021.161319_bib18 article-title: Lanthanide tetrafluorobenzoates as emitters for OLEDs: new approach for host selection publication-title: Org. Electron. doi: 10.1016/j.orgel.2017.01.026 – volume: 28 start-page: 319 year: 2016 ident: 10.1016/j.jallcom.2021.161319_bib16 article-title: OLED thin film fabrication from poorly soluble terbium o-phenoxybenzoate through soluble mixed-ligand complexes publication-title: Org. Electron. Phys. Mater. Appl. – volume: 7 year: 2019 ident: 10.1016/j.jallcom.2021.161319_bib3 article-title: The design of fused amine/carbonyl system for efficient thermally activated delayed fluorescence: novel multiple resonance core and electron acceptor publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201801536 – volume: 205 start-page: 429 year: 2019 ident: 10.1016/j.jallcom.2021.161319_bib17 article-title: Brightly luminescent lanthanide pyrazolecarboxylates: synthesis, luminescent properties and influence of ligand isomerism publication-title: J. Lumin. doi: 10.1016/j.jlumin.2018.09.027 – volume: 29 start-page: 218 year: 2019 ident: 10.1016/j.jallcom.2021.161319_bib31 article-title: Hole mobility in thieno[3,2-b]thiophene oligomers publication-title: Mendeleev Commun. doi: 10.1016/j.mencom.2019.03.035 – volume: 32 year: 2020 ident: 10.1016/j.jallcom.2021.161319_bib6 article-title: Solution-processable pure green thermally activated delayed fluorescence emitter based on the multiple resonance effect publication-title: Adv. Mater. doi: 10.1002/adma.202004072 – ident: 10.1016/j.jallcom.2021.161319_bib26 doi: 10.2116/analsci.7.543 – volume: 9 start-page: 230 year: 1997 ident: 10.1016/j.jallcom.2021.161319_bib23 article-title: An improved experimental determination of external photoluminescence quantum efficiency publication-title: Adv. Mater. doi: 10.1002/adma.19970090308 – ident: 10.1016/j.jallcom.2021.161319_bib22 – volume: 68 start-page: 39 year: 2010 ident: 10.1016/j.jallcom.2021.161319_bib28 article-title: Surface analytical studies of interfaces in organic semiconductor devices publication-title: Mater. Sci. Eng. R doi: 10.1016/j.mser.2010.01.001 – volume: 177 start-page: 31 year: 2016 ident: 10.1016/j.jallcom.2021.161319_bib10 article-title: Effective electroluminescent materials for OLED applications based on lanthanide 1.3-diketonates bearing pyrazole moiety publication-title: J. Lumin. doi: 10.1016/j.jlumin.2016.04.017 – year: 2017 ident: 10.1016/j.jallcom.2021.161319_bib2 – volume: 202 start-page: 38 year: 2018 ident: 10.1016/j.jallcom.2021.161319_bib15 article-title: Lanthanide pyrazolecarboxylates for OLEDs and bioimaging publication-title: J. Lumin. doi: 10.1016/j.jlumin.2018.05.022 – volume: 33 start-page: 370 year: 2018 ident: 10.1016/j.jallcom.2021.161319_bib33 article-title: Luminescent studies of binuclear ternary europium(III) pyridineoxide tetrazolate complexes containing bis-phosphine oxide as auxiliary co-ligands publication-title: Luminescence doi: 10.1002/bio.3423 – start-page: 53 year: 2020 ident: 10.1016/j.jallcom.2021.161319_bib5 article-title: Lifetime improvement of tadf-oleds – volume: 48 start-page: 17298 year: 2019 ident: 10.1016/j.jallcom.2021.161319_bib14 article-title: On the development of a new approach to the design of lanthanide-based materials for solution-processed OLEDs publication-title: Dalton Trans. doi: 10.1039/C9DT03823J |
SSID | ssj0001931 |
Score | 2.4199293 |
Snippet | •The brightest solution-processed terbium-based OLED was obtained.•The approach towards emitter hole mobility increase by the ligand design was... The approach towards the increase of the terbium electroluminescence efficiency by the increase of the transport properties was further developed. Therefore,... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 161319 |
SubjectTerms | Aromatic carboxylates Charge carrier mobility Electroluminescence Electron transport Emitters Hole mobility Ligands Luminescence Rare earth compounds Solution-processed OLED Terbium Thin films Transport properties |
Title | Towards efficient terbium-based solution-processed OLEDs: Hole mobility increase by the ligand design |
URI | https://dx.doi.org/10.1016/j.jallcom.2021.161319 https://www.proquest.com/docview/2596966330 |
Volume | 887 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRQg4IFhAFErlA1fvJn7kwa1aWi0PlQOt1Jtlxw7KKs2uyPbQC7-dGSehgJAqcYxlR5FnPPON8vkbgLe6rKWVuuK5FCVXtdO8kNbyOtNlWeWeRKuIbXGWrS7Ux0t9uQfL6S4M0SrH2D_E9Bitx5HFuJuLbdMsvialoH9-BRUtuShIdlupnLx8_uOW5oEAJXbNw8mcZt_e4lms52vbtkQaEZjp5oh9JAnu_Ds__RWpY_o5fQKPR9zIjodPewp7oZvBg-XUrm0Gj35TFpzB_cjsrPpnEM4jMbZnIYpFYI5htJXN9RWnDObZ5Hx8O9wZwKEvn0_e9-_YatMGdrWJ9Nkb1nQEMPvA3A1D1Mja5pvtPPORAvIcLk5PzpcrPvZW4JWU-Y5jUexdKOqy9s4pn-pghdJpnWZJ6YV2ae60dEVWJcEhaMky5VJb1kVQSmmsQuQL2O82XXgJzAvrpZB15hFKitza4CsEbUJ4iwHEJwegph011Sg8Tv0vWjMxzNZmNIQhQ5jBEAcw_7VsOyhv3LWgmMxl_nAhg9nhrqWHk3nNeIZ7g4VhhsWglMmr_3_za3hIT0SAEckh7O--X4c3CGN27ij66RHcO_7waXX2E7hG8Zg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VrVDLoYIF1EIBH7h6N_FXEm7V0iqly3JgK_Vm2bGDskqzq2Z76L-vnTgFKqRKXJ1MFHmcmTfKmzcAn3lWUkV5gRNKMsxKzXFKlcKl4FlWJMaLVnm2xULkl-zbFb_agdnQC-NplSH29zG9i9ZhZRp2c7qpqunPKCP-n1_qi5aEpOIZ7Hp1Kj6C3ZPzi3zxEJAdRukG57n7sTf43cgzXU1Wqq49b4S4ZDdx8Id6zZ1_p6hHwbrLQGcv4SBAR3TSv90r2LHNGPZmw8S2Mbz4Q1xwDM87cmfRvga77LixLbKdXoRLM8jvZnV7jX0SM2g4f3jTtw24pR_z06_tF5Sva4uu1x2D9g5VjceYrUX6DjngiOrql2oMMh0L5A1cnp0uZzkO4xVwQWmyxa4uNtqmZVYarZmJuVWE8biMRZQZwnWcaE51KorIaodbhGA6VlmZWsYYd4UIfQujZt3YQ0CGKEMJLYVxaJIkSllTONxGiFEuhpjoCNiwo7II2uN-BEYtB5LZSgZHSO8I2TviCCYPZptefOMpg3Rwl_zrFEmXIJ4yPR7cK8Nn3EpXGwpXD1Iavfv_J3-CvXz5fS7n54uL97Dvr3g-DImOYbS9ubUfHKrZ6o_h1N4DASj0SQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+efficient+terbium-based+solution-processed+OLEDs%3A+Hole+mobility+increase+by+the+ligand+design&rft.jtitle=Journal+of+alloys+and+compounds&rft.au=Kozlov%2C+Makarii+I.&rft.au=Aslandukov%2C+Andrey+N.&rft.au=Vashchenko%2C+Andrey+A.&rft.au=Medved%27ko%2C+Aleksei+V.&rft.date=2021-12-20&rft.pub=Elsevier+B.V&rft.issn=0925-8388&rft.volume=887&rft_id=info:doi/10.1016%2Fj.jallcom.2021.161319&rft.externalDocID=S0925838821027286 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-8388&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-8388&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-8388&client=summon |