A one-dimensional diffusive transport model to evaluate H2S generation in salt caverns hydrogen storage sites

Salt caverns are considered a potential hydrogen storage site given the ductility, tightness, and chemical inertness of halite. In addition, unlike porous media, salt caverns require less cushion gas and allow more cycles of injection and production within a year. However, hydrogen is an electron do...

Full description

Saved in:
Bibliographic Details
Published inGas Science and Engineering Vol. 126; p. 205336
Main Authors Minougou, Jean Donald, Gholami, Raoof, Poirier, Simon
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2024
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Salt caverns are considered a potential hydrogen storage site given the ductility, tightness, and chemical inertness of halite. In addition, unlike porous media, salt caverns require less cushion gas and allow more cycles of injection and production within a year. However, hydrogen is an electron donor for many hydrogenotrophic microorganisms including halophilic sulfate-reducing microbes (SRM) and hydrogen sulfide (H2S) can be generated in a cavern once sulfate and hydrogen become available in the aqueous phase. As salt deposits are often associated with large amounts of impurities such as anhydrite and gypsum, their dissolution during the leaching phase can release the required sulfate ions for SRMs to produce H2S once hydrogen diffuses and dissolves in the brine at the bottom of the cavern. In this study, a one-dimensional diffusive transport model was developed using PHREEQC to simulate sulfate reduction and H2S generation in a cavern at the gas-brine interface. The solution of Fick's diffusion equation was used to calculate the hydrogen concentration at each level of the 1D model while the kinetic rates of reactions were derived from reported experimental and field site observations of brine samples taken from salt caverns. The results obtained indicated that hydrogen consumption at the gas-brine interface can trigger H2S and methane formations. This is followed by a reduction in sulfate and carbonate concentration and a slight increase in pH due to the reduction of protons in the solution. It was also observed that the presence of Fe2+ ions can reduce the amount of the hydrogen sulfide production while Ca2+ ions slightly favour sulfate reduction due to the production of methane. Although the kinetic reaction rate of the reactions in the model is subject to a certain degree of uncertainty, the workflow and results this study can serve as a guide for the future storage of hydrogen in salt caverns. •A one-dimensional diffusive transport model was developed to evaluate sulfate reduction and H2S generation in a salt cavern.•Hydrogen consumption at the gas-brine interface can trigger H2S and methane formations.•Presence of Fe2+ ions in the brine can reduce the amount of the hydrogen sulfide production.•Presence of Ca2+ ions in the brine slightly favour sulfate reduction due to the production of methane.•The increase in pH by NaOH addition to the brine can reduce the H2S generation.
AbstractList Salt caverns are considered a potential hydrogen storage site given the ductility, tightness, and chemical inertness of halite. In addition, unlike porous media, salt caverns require less cushion gas and allow more cycles of injection and production within a year. However, hydrogen is an electron donor for many hydrogenotrophic microorganisms including halophilic sulfate-reducing microbes (SRM) and hydrogen sulfide (H2S) can be generated in a cavern once sulfate and hydrogen become available in the aqueous phase. As salt deposits are often associated with large amounts of impurities such as anhydrite and gypsum, their dissolution during the leaching phase can release the required sulfate ions for SRMs to produce H2S once hydrogen diffuses and dissolves in the brine at the bottom of the cavern. In this study, a one-dimensional diffusive transport model was developed using PHREEQC to simulate sulfate reduction and H2S generation in a cavern at the gas-brine interface. The solution of Fick's diffusion equation was used to calculate the hydrogen concentration at each level of the 1D model while the kinetic rates of reactions were derived from reported experimental and field site observations of brine samples taken from salt caverns. The results obtained indicated that hydrogen consumption at the gas-brine interface can trigger H2S and methane formations. This is followed by a reduction in sulfate and carbonate concentration and a slight increase in pH due to the reduction of protons in the solution. It was also observed that the presence of Fe2+ ions can reduce the amount of the hydrogen sulfide production while Ca2+ ions slightly favour sulfate reduction due to the production of methane. Although the kinetic reaction rate of the reactions in the model is subject to a certain degree of uncertainty, the workflow and results this study can serve as a guide for the future storage of hydrogen in salt caverns. •A one-dimensional diffusive transport model was developed to evaluate sulfate reduction and H2S generation in a salt cavern.•Hydrogen consumption at the gas-brine interface can trigger H2S and methane formations.•Presence of Fe2+ ions in the brine can reduce the amount of the hydrogen sulfide production.•Presence of Ca2+ ions in the brine slightly favour sulfate reduction due to the production of methane.•The increase in pH by NaOH addition to the brine can reduce the H2S generation.
Salt caverns are considered a potential hydrogen storage site given the ductility, tightness, and chemical inertness of halite. In addition, unlike porous media, salt caverns require less cushion gas and allow more cycles of injection and production within a year. However, hydrogen is an electron donor for many hydrogenotrophic microorganisms including halophilic sulfate-reducing microbes (SRM) and hydrogen sulfide (H2S) can be generated in a cavern once sulfate and hydrogen become available in the aqueous phase. As salt deposits are often associated with large amounts of impurities such as anhydrite and gypsum, their dissolution during the leaching phase can release the required sulfate ions for SRMs to produce H2S once hydrogen diffuses and dissolves in the brine at the bottom of the cavern. In this study, a one-dimensional diffusive transport model was developed using PHREEQC to simulate sulfate reduction and H2S generation in a cavern at the gas-brine interface. The solution of Fick's diffusion equation was used to calculate the hydrogen concentration at each level of the 1D model while the kinetic rates of reactions were derived from reported experimental and field site observations of brine samples taken from salt caverns. The results obtained indicated that hydrogen consumption at the gas-brine interface can trigger H2S and methane formations. This is followed by a reduction in sulfate and carbonate concentration and a slight increase in pH due to the reduction of protons in the solution. It was also observed that the presence of Fe2+ ions can reduce the amount of the hydrogen sulfide production while Ca2+ ions slightly favour sulfate reduction due to the production of methane. Although the kinetic reaction rate of the reactions in the model is subject to a certain degree of uncertainty, the workflow and results this study can serve as a guide for the future storage of hydrogen in salt caverns.
ArticleNumber 205336
Author Gholami, Raoof
Poirier, Simon
Minougou, Jean Donald
Author_xml – sequence: 1
  givenname: Jean Donald
  surname: Minougou
  fullname: Minougou, Jean Donald
  organization: Department of Energy Resources, University of Stavanger, Norway
– sequence: 2
  givenname: Raoof
  surname: Gholami
  fullname: Gholami, Raoof
  email: raoof.gholami@uis.no
  organization: Department of Energy Resources, University of Stavanger, Norway
– sequence: 3
  givenname: Simon
  orcidid: 0000-0003-0669-5117
  surname: Poirier
  fullname: Poirier, Simon
  organization: IFP Energies Nouvelles, France
BackLink https://ifp.hal.science/hal-04617904$$DView record in HAL
BookMark eNp9kE1PAyEQQInRxPrxC7xw9bB1gHW3HDw0jVqTJh7UM6EwW2m2YIBu0n8vtZoYD15gwswbZt4ZOfbBIyFXDMYMWHOzHq9XyeCYA6_LcStEc0RGXNaykjCRx7_iU3KZ0hoABBcSOIzIZkpLt8q6Dfrkgtc9ta7rtskNSHPUPn2EmOkmWOxpDhQH3W91RjrnL3SFHqPOBaPO06T7TI0eMPpE33c2hpKnKYeoV0iTy5guyEmn-4SX3_c5eXu4f53Nq8Xz49NsuqiMEG2umqY1yMqUHYj6lklrbDcBtNYIaDuz5LZhstElWraG6eUEpeDGAiBqybgV5-T60Pdd9-ojuo2OOxW0U_PpQu3foG5YK6EeWKmVh1oTQ0oRO2Vc_lqqrO96xUDtNau1-tKs9prVQXNhxR_257P_qbsDhUXB4DCqZBx6g9ZFNFnZ4P7lPwHMyZug
CitedBy_id crossref_primary_10_3390_en17236005
crossref_primary_10_1016_j_petsci_2024_08_015
crossref_primary_10_3390_en17205190
Cites_doi 10.2118/13554-PA
10.1186/s13568-022-01438-2
10.1016/j.ijhydene.2022.04.170
10.1016/j.aej.2022.03.046
10.1002/jobm.3620250311
10.1128/msystems.00954-22
10.1016/j.marpetgeo.2021.105442
10.3389/feart.2022.910666
10.1252/jcej.16we257
10.1016/j.rser.2019.01.051
10.1128/AEM.70.2.1231-1233.2004
10.1186/1746-1448-4-2
10.51354/mjen.953547
10.1016/j.ijhydene.2019.12.161
10.1038/s41598-023-37630-y
10.1088/1742-6596/1295/1/012060
10.3389/fmicb.2017.02575
10.1016/j.jngse.2017.09.007
10.1021/acs.jced.3c00085
10.1007/s007920050075
10.3389/fenrg.2023.1125619
10.1016/0016-7037(94)90089-2
10.1016/j.ijhydene.2015.01.123
10.3389/fbioe.2019.00034
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2024 Elsevier B.V.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
DOI 10.1016/j.jgsce.2024.205336
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2949-9089
2212-3865
ExternalDocumentID oai_HAL_hal_04617904v1
10_1016_j_jgsce_2024_205336
S2949908924001328
GroupedDBID 0R~
AALRI
AAXUO
ABJNI
ACRLP
AEIPS
AFJKZ
AIKHN
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ATOGT
BELTK
FDB
M41
ROL
SPC
SSE
SSR
AAYWO
AAYXX
AFXIZ
AGRNS
ANKPU
APXCP
BNPGV
CITATION
SSH
--K
--M
.~1
1B1
1XC
1~.
4.4
457
4G.
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AAOAW
AAQFI
AARJD
AATTM
ABMAC
ABQEM
ABQYD
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACLVX
ACRPL
ACSBN
ADBBV
ADEZE
ADMUD
ADNMO
AEBSH
AEKER
AENEX
AFTJW
AGCQF
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AKRWK
AXJTR
BKOJK
BLXMC
EBS
EFJIC
EJD
EP2
EP3
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
IMUCA
J1W
JARJE
KOM
MO0
N9A
O-L
O9-
OAUVE
OKI
OZT
P-8
P-9
P2P
PC.
Q38
SDF
SES
SPCBC
SSZ
T5K
~G-
ID FETCH-LOGICAL-c337t-667ce1003f034519dcdf80eddc307fcb2d6196afcbb7c1ab8e932cd00eea912d3
IEDL.DBID AIKHN
ISSN 2949-9089
1875-5100
IngestDate Fri May 09 12:21:18 EDT 2025
Thu Apr 24 23:05:41 EDT 2025
Tue Jul 01 03:30:05 EDT 2025
Sat Feb 01 16:09:33 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Hydrogen sulfide
Salt caverns
Hydrogen storage
Diffusive transport
PHREEQC
CHydrogen sulfide
PHREEQ
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-667ce1003f034519dcdf80eddc307fcb2d6196afcbb7c1ab8e932cd00eea912d3
ORCID 0000-0003-0669-5117
ParticipantIDs hal_primary_oai_HAL_hal_04617904v1
crossref_citationtrail_10_1016_j_jgsce_2024_205336
crossref_primary_10_1016_j_jgsce_2024_205336
elsevier_sciencedirect_doi_10_1016_j_jgsce_2024_205336
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2024
2024-06-00
2024-06
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: June 2024
PublicationDecade 2020
PublicationTitle Gas Science and Engineering
PublicationYear 2024
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Davis, Dubelco, Eisen, Ginsberg (bib8) 1973
Schiebahn, Grube, Robinius, Tietze, Kumar, Stolten (bib31) 2015; 40
Heinrich, Schmidt, Schramm, Mertineit (bib14) 2017; 208
Salo, Bomberg (bib30) 2022; 12
Schwab, Popp, Nowack, Bombach, Vogt, Richnow (bib32) 2022; 47
Caglayan, Weber, Heinrichs, Linßen, Robinius, Kukla, Stolten (bib3) 2020; 45
Réveillère, Azimi, Arnold (bib29) 2016
Schwartz, Postgate (bib35) 1985; 25
Wang, Jiang, Xie, Alain, Wang, Wang, Liu, Shao (bib41) 2022; 8
Vreeland, Piselli, McDonnough, Meyers (bib39) 1998; 2
Key (bib20) 2014
Crotogino, Donadei, Bünger, Landinger (bib7) 2010
Meer, Gerritse, Mauro, Harkes, Rijnaarts (bib23) 2000
House, Weiss (bib16) 2014
Schwab, Popp, Nowack, Bombach, Vogt, Richnow (bib33) 2022; 47
Schwab, Prinsen, Nowack, Popp, Noll, Vogt, Wagner (bib34) 2023; 11
Elsgaard, Isaksen, Jørgensen, Alayse, Jannasch (bib11) 1994; 58
Cord-Ruwisch, Kleinitz, Widdel (bib6) 1987; 39
Sudarno, Hardyanti, Serafina, Oktaviana (bib36) 2019; 1295
Dopffel, Mayers, Kedir, Alagic, An-Stepec, Djurhuus, Boldt, Beeder, Hoth (bib10) 2023; 13
Fheed, Świerczewska, Strzelecki, Radzik-Hotloś, Gebus-Czupyt (bib12) 2022; 136
Miyanaga, Hasegawa, Tanji (bib24) 2017; 50
Biehl, Reuning, Schoenherr, Lüders, Kukla (bib2) 2016; 100
Dolfing, Hubert (bib9) 2017; 8
Marín, Escalona, Cardozo (bib22) 2022
Oren (bib25) 2008; 4
Gillhaus, Crotogino, Albes, Leo (bib13) 2006; 2006
Parkhurst, Appelo (bib26) 2009
Portarapillo, Di Benedetto (bib27) 2021
Kelter, Emery, Wilensky (bib19) 2020
Kallmeyer, Boetius (bib18) 2004; 70
(bib17) 2018
Tarkowski (bib37) 2019; 105
Cheng, Feng, Guo, Chen, Tan, Shi, Luo (bib5) 2022; 10
Hemme, van Berk (bib15) 2017; 47
Wang, Peng, Fan, Li (bib40) 2022; 61
Laban (bib21) 2020
Wang, Zhou, Pan, Trusler (bib42) 2023; 68
Aksu, Morcalihakan (bib1) 2021; 9
Chen, Ottosen, Kofoed (bib4) 2019; 7
(bib43) 1958
Wang (10.1016/j.jgsce.2024.205336_bib41) 2022; 8
Tarkowski (10.1016/j.jgsce.2024.205336_bib37) 2019; 105
Wang (10.1016/j.jgsce.2024.205336_bib42) 2023; 68
Cord-Ruwisch (10.1016/j.jgsce.2024.205336_bib6) 1987; 39
Davis (10.1016/j.jgsce.2024.205336_bib8) 1973
Gillhaus (10.1016/j.jgsce.2024.205336_bib13) 2006; 2006
Chen (10.1016/j.jgsce.2024.205336_bib4) 2019; 7
Kelter (10.1016/j.jgsce.2024.205336_bib19)
Oren (10.1016/j.jgsce.2024.205336_bib25) 2008; 4
Caglayan (10.1016/j.jgsce.2024.205336_bib3) 2020; 45
Laban (10.1016/j.jgsce.2024.205336_bib21)
Key (10.1016/j.jgsce.2024.205336_bib20)
Parkhurst (10.1016/j.jgsce.2024.205336_bib26)
Biehl (10.1016/j.jgsce.2024.205336_bib2) 2016; 100
Sudarno (10.1016/j.jgsce.2024.205336_bib36) 2019; 1295
Portarapillo (10.1016/j.jgsce.2024.205336_bib27) 2021
Wang (10.1016/j.jgsce.2024.205336_bib40) 2022; 61
Marín (10.1016/j.jgsce.2024.205336_bib22)
Elsgaard (10.1016/j.jgsce.2024.205336_bib11) 1994; 58
Kallmeyer (10.1016/j.jgsce.2024.205336_bib18) 2004; 70
Schwartz (10.1016/j.jgsce.2024.205336_bib35) 1985; 25
Heinrich (10.1016/j.jgsce.2024.205336_bib14) 2017; 208
Meer (10.1016/j.jgsce.2024.205336_bib23) 2000
Réveillère (10.1016/j.jgsce.2024.205336_bib29) 2016
Vreeland (10.1016/j.jgsce.2024.205336_bib39) 1998; 2
Crotogino (10.1016/j.jgsce.2024.205336_bib7) 2010
Schwab (10.1016/j.jgsce.2024.205336_bib33) 2022; 47
Salo (10.1016/j.jgsce.2024.205336_bib30) 2022; 12
Fheed (10.1016/j.jgsce.2024.205336_bib12) 2022; 136
House (10.1016/j.jgsce.2024.205336_bib16) 2014
Aksu (10.1016/j.jgsce.2024.205336_bib1) 2021; 9
Schiebahn (10.1016/j.jgsce.2024.205336_bib31) 2015; 40
Schwab (10.1016/j.jgsce.2024.205336_bib34) 2023; 11
Dolfing (10.1016/j.jgsce.2024.205336_bib9) 2017; 8
Hemme (10.1016/j.jgsce.2024.205336_bib15) 2017; 47
(10.1016/j.jgsce.2024.205336_bib17) 2018
Miyanaga (10.1016/j.jgsce.2024.205336_bib24) 2017; 50
Schwab (10.1016/j.jgsce.2024.205336_bib32) 2022; 47
Dopffel (10.1016/j.jgsce.2024.205336_bib10) 2023; 13
Cheng (10.1016/j.jgsce.2024.205336_bib5) 2022; 10
References_xml – volume: 47
  start-page: 20684
  year: 2022
  end-page: 20694
  ident: bib32
  article-title: Structural analysis of microbiomes from salt caverns used for underground gas storage
  publication-title: Int. J. Hydrogen Energy
– year: 2020
  ident: bib19
  article-title: Learning about diffusion at two levels: agent-based microscale and equation-based macroscale
– volume: 10
  year: 2022
  ident: bib5
  article-title: Links of hydrogen sulfide content with fluid components and physical properties of carbonate gas reservoirs: a case study of the right bank of amu darya, Turkmenistan
  publication-title: Front. Earth Sci.
– volume: 136
  year: 2022
  ident: bib12
  article-title: Influence of substrate morphology on reef diagenesis: examples from the Zechstein limestone formation (SE wolsztyn ridge, W Poland)
  publication-title: Mar. Petrol. Geol.
– volume: 47
  start-page: 114
  year: 2017
  end-page: 123
  ident: bib15
  article-title: Potential risk of H2S generation and release in salt cavern gas storage
  publication-title: J. Nat. Gas Sci. Eng.
– volume: 61
  start-page: 9993
  year: 2022
  end-page: 10005
  ident: bib40
  article-title: Improved sulfate reduction efficiency of sulfate-reducing bacteria in sulfate-rich systems by acclimatization and multiple-grouting
  publication-title: Alex. Eng. J.
– volume: 8
  year: 2017
  ident: bib9
  article-title: Using thermodynamics to predict the outcomes of nitrate-based oil reservoir souring control interventions
  publication-title: Front. Microbiol.
– volume: 208
  start-page: 1811
  year: 2017
  end-page: 1831
  ident: bib14
  article-title: Magnetic and mineralogical properties of salt rocks from the Zechstein of the Northern German Basin
  publication-title: Geophys. J. Int.
– volume: 100
  start-page: 597
  year: 2016
  end-page: 621
  ident: bib2
  article-title: Impacts of hydrothermal dolomitization and thermochemical sulfate reduction on secondary porosity creation in deeply buried carbonates: a case study from the Lower Saxony Basin, northwest Germany
  publication-title: AAPG (Am. Assoc. Pet. Geol.) Bull.
– year: 2016
  ident: bib29
  article-title: Prevention of Stored Gas Humidification: Lessons Learnt and Review of Possibilities
– year: 2020
  ident: bib21
  article-title: Hydrogen Storage in Salt Caverns: chemical modelling and analysis of large-scale hydrogen storage in underground salt caverns
– year: 2009
  ident: bib26
  article-title: [WEB SITE]
– volume: 25
  start-page: 202
  year: 1985
  ident: bib35
  article-title: The sulfate-reducing bacteria
  publication-title: J. Basic Microbiol.
– volume: 105
  start-page: 86
  year: 2019
  end-page: 94
  ident: bib37
  article-title: Underground hydrogen storage: characteristics and prospects
  publication-title: Renew. Sustain. Energy Rev.
– year: 1958
  ident: bib43
  article-title: Ecology of sulfate reducing bacteria
– volume: 9
  start-page: 153
  year: 2021
  end-page: 159
  ident: bib1
  article-title: A cleaner application on hydrogen sulfide
  publication-title: MANAS J. Eng.
– volume: 40
  start-page: 4285
  year: 2015
  end-page: 4294
  ident: bib31
  article-title: Power to gas: technological overview, systems analysis and economic assessment for a case study in Germany
  publication-title: Int. J. Hydrogen Energy
– volume: 1295
  year: 2019
  ident: bib36
  article-title: Effect of iron and manganese concentration on the sulfate reducing process in acid mine drainage
  publication-title: J. Phys. Conf.
– start-page: 103
  year: 2014
  ident: bib16
  article-title: Review of microbially induced corrosion and comments on needs related to testing procedures
  publication-title: Proceedings of the 4th International Conference on the Durability of Concrete Structures, ICDCS 2014
– year: 2000
  ident: bib23
  article-title: Hydrogen as indicator for redox conditions and dechlorination
  publication-title: Groundwater 2000
– volume: 8
  year: 2022
  ident: bib41
  article-title: Disproportionation of inorganic sulfur compounds by mesophilic chemolithoautotrophic Campylobacterota
  publication-title: mSystems
– volume: 12
  start-page: 95
  year: 2022
  ident: bib30
  article-title: Sulfate-reducing bioreactors subjected to high sulfate loading rate or acidity: variations in microbial consortia
  publication-title: Amb. Express
– year: 2010
  ident: bib7
  article-title: Large-Scale Hydrogen Underground Storage for Securing Future Energy Supplies
– volume: 13
  year: 2023
  ident: bib10
  article-title: Microbial hydrogen consumption leads to a significant pH increase under high-saline-conditions: implications for hydrogen storage in salt caverns
  publication-title: Sci. Rep.
– year: 1973
  ident: bib8
  article-title: Microbiology
– year: 2014
  ident: bib20
  article-title: Factors that affect the rate of reactions
– volume: 70
  start-page: 1231
  year: 2004
  end-page: 1233
  ident: bib18
  article-title: Effects of temperature and pressure on sulfate reduction and anaerobic oxidation of methane in hydrothermal sediments of guaymas basin
  publication-title: Appl. Environ. Microbiol.
– volume: 58
  start-page: 3335
  year: 1994
  end-page: 3343
  ident: bib11
  article-title: Microbial sulfate reduction in deep-sea sediments at the Guaymas Basin hydrothermal vent area: influence of temperature and substrates
  publication-title: Geochem. Cosmochim. Acta
– volume: 50
  start-page: 850
  year: 2017
  end-page: 856
  ident: bib24
  article-title: Addition of sodium hydroxide to seawater inhibits sulfide production (souring) by microbes in oil field water
  publication-title: J. Chem. Eng. Jpn.
– volume: 7
  year: 2019
  ident: bib4
  article-title: How low can you go: methane production of methanobacterium congolense at low CO2 concentrations
  publication-title: Front. Bioeng. Biotechnol.
– year: 2022
  ident: bib22
  article-title: Compositional variation of the Zechstein group in the Norwegian north sea: implications for underground storage in salt caverns
– volume: 47
  start-page: 20684
  year: 2022
  end-page: 20694
  ident: bib33
  article-title: Structural analysis of microbiomes from salt caverns used for underground gas storage
  publication-title: Int. J. Hydrogen Energy
– start-page: 1
  year: 2021
  end-page: 22
  ident: bib27
  article-title: Risk Assessment of the Large-Scale Hydrogen Storage in Salt Caverns
– year: 2018
  ident: bib17
  article-title: IRENA. Renewable Capacity Statistics 2018
– volume: 4
  start-page: 2
  year: 2008
  ident: bib25
  article-title: Microbial life at high salt concentrations: phylogenetic and metabolic diversity
  publication-title: Saline Syst.
– volume: 39
  start-page: 97
  year: 1987
  end-page: 106
  ident: bib6
  article-title: SULFATE-REDUCING bacteria and their activities in oil production
  publication-title: JPT, J. Petrol. Technol.
– volume: 2006
  start-page: 257
  year: 2006
  ident: bib13
  publication-title: Compilation and Evaluation of Bedded Salt Deposits and Bedded Salt Cavern Characterisitcs Important to Successful Cavern Sealing and Abandonment
– volume: 68
  start-page: 1313
  year: 2023
  end-page: 1319
  ident: bib42
  article-title: Diffusion coefficients of N2O and H2 in water at temperatures between 298.15 and 423.15 K with pressures up to 30 MPa
  publication-title: J. Chem. Eng. Data
– volume: 11
  year: 2023
  ident: bib34
  article-title: Sulfate reduction and homoacetogenesis at various hypersaline conditions: implications for H2 underground gas storage
  publication-title: Front. Energy Res.
– volume: 2
  start-page: 321
  year: 1998
  end-page: 331
  ident: bib39
  article-title: Distribution and diversity of halophilic bacteria in a subsurface salt formation
  publication-title: Extremophiles
– volume: 45
  start-page: 6793
  year: 2020
  end-page: 6805
  ident: bib3
  article-title: Technical potential of salt caverns for hydrogen storage in Europe
  publication-title: Int. J. Hydrogen Energy
– volume: 39
  start-page: 97
  issue: 1
  year: 1987
  ident: 10.1016/j.jgsce.2024.205336_bib6
  article-title: SULFATE-REDUCING bacteria and their activities in oil production
  publication-title: JPT, J. Petrol. Technol.
  doi: 10.2118/13554-PA
– volume: 12
  start-page: 95
  year: 2022
  ident: 10.1016/j.jgsce.2024.205336_bib30
  article-title: Sulfate-reducing bioreactors subjected to high sulfate loading rate or acidity: variations in microbial consortia
  publication-title: Amb. Express
  doi: 10.1186/s13568-022-01438-2
– year: 1973
  ident: 10.1016/j.jgsce.2024.205336_bib8
– volume: 2006
  start-page: 257
  year: 2006
  ident: 10.1016/j.jgsce.2024.205336_bib13
– volume: 47
  start-page: 20684
  issue: 47
  year: 2022
  ident: 10.1016/j.jgsce.2024.205336_bib33
  article-title: Structural analysis of microbiomes from salt caverns used for underground gas storage
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2022.04.170
– volume: 61
  start-page: 9993
  issue: 12
  year: 2022
  ident: 10.1016/j.jgsce.2024.205336_bib40
  article-title: Improved sulfate reduction efficiency of sulfate-reducing bacteria in sulfate-rich systems by acclimatization and multiple-grouting
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2022.03.046
– year: 2018
  ident: 10.1016/j.jgsce.2024.205336_bib17
– volume: 25
  start-page: 202
  issue: 3
  year: 1985
  ident: 10.1016/j.jgsce.2024.205336_bib35
  article-title: The sulfate-reducing bacteria
  publication-title: J. Basic Microbiol.
  doi: 10.1002/jobm.3620250311
– ident: 10.1016/j.jgsce.2024.205336_bib20
– volume: 8
  issue: 1
  year: 2022
  ident: 10.1016/j.jgsce.2024.205336_bib41
  article-title: Disproportionation of inorganic sulfur compounds by mesophilic chemolithoautotrophic Campylobacterota
  publication-title: mSystems
  doi: 10.1128/msystems.00954-22
– volume: 136
  year: 2022
  ident: 10.1016/j.jgsce.2024.205336_bib12
  article-title: Influence of substrate morphology on reef diagenesis: examples from the Zechstein limestone formation (SE wolsztyn ridge, W Poland)
  publication-title: Mar. Petrol. Geol.
  doi: 10.1016/j.marpetgeo.2021.105442
– ident: 10.1016/j.jgsce.2024.205336_bib22
– volume: 47
  start-page: 20684
  issue: 47
  year: 2022
  ident: 10.1016/j.jgsce.2024.205336_bib32
  article-title: Structural analysis of microbiomes from salt caverns used for underground gas storage
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2022.04.170
– volume: 10
  year: 2022
  ident: 10.1016/j.jgsce.2024.205336_bib5
  article-title: Links of hydrogen sulfide content with fluid components and physical properties of carbonate gas reservoirs: a case study of the right bank of amu darya, Turkmenistan
  publication-title: Front. Earth Sci.
  doi: 10.3389/feart.2022.910666
– volume: 208
  start-page: 1811
  issue: 3
  year: 2017
  ident: 10.1016/j.jgsce.2024.205336_bib14
  article-title: Magnetic and mineralogical properties of salt rocks from the Zechstein of the Northern German Basin
  publication-title: Geophys. J. Int.
– volume: 50
  start-page: 850
  issue: 11
  year: 2017
  ident: 10.1016/j.jgsce.2024.205336_bib24
  article-title: Addition of sodium hydroxide to seawater inhibits sulfide production (souring) by microbes in oil field water
  publication-title: J. Chem. Eng. Jpn.
  doi: 10.1252/jcej.16we257
– volume: 105
  start-page: 86
  year: 2019
  ident: 10.1016/j.jgsce.2024.205336_bib37
  article-title: Underground hydrogen storage: characteristics and prospects
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2019.01.051
– volume: 70
  start-page: 1231
  issue: 2
  year: 2004
  ident: 10.1016/j.jgsce.2024.205336_bib18
  article-title: Effects of temperature and pressure on sulfate reduction and anaerobic oxidation of methane in hydrothermal sediments of guaymas basin
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.70.2.1231-1233.2004
– ident: 10.1016/j.jgsce.2024.205336_bib26
– volume: 4
  start-page: 2
  issue: 1
  year: 2008
  ident: 10.1016/j.jgsce.2024.205336_bib25
  article-title: Microbial life at high salt concentrations: phylogenetic and metabolic diversity
  publication-title: Saline Syst.
  doi: 10.1186/1746-1448-4-2
– volume: 9
  start-page: 153
  issue: 2
  year: 2021
  ident: 10.1016/j.jgsce.2024.205336_bib1
  article-title: A cleaner application on hydrogen sulfide
  publication-title: MANAS J. Eng.
  doi: 10.51354/mjen.953547
– year: 2000
  ident: 10.1016/j.jgsce.2024.205336_bib23
  article-title: Hydrogen as indicator for redox conditions and dechlorination
– start-page: 1
  year: 2021
  ident: 10.1016/j.jgsce.2024.205336_bib27
– year: 2016
  ident: 10.1016/j.jgsce.2024.205336_bib29
– volume: 45
  start-page: 6793
  issue: 11
  year: 2020
  ident: 10.1016/j.jgsce.2024.205336_bib3
  article-title: Technical potential of salt caverns for hydrogen storage in Europe
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.12.161
– volume: 13
  issue: 1
  year: 2023
  ident: 10.1016/j.jgsce.2024.205336_bib10
  article-title: Microbial hydrogen consumption leads to a significant pH increase under high-saline-conditions: implications for hydrogen storage in salt caverns
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-37630-y
– start-page: 103
  year: 2014
  ident: 10.1016/j.jgsce.2024.205336_bib16
  article-title: Review of microbially induced corrosion and comments on needs related to testing procedures
– volume: 1295
  issue: 1
  year: 2019
  ident: 10.1016/j.jgsce.2024.205336_bib36
  article-title: Effect of iron and manganese concentration on the sulfate reducing process in acid mine drainage
  publication-title: J. Phys. Conf.
  doi: 10.1088/1742-6596/1295/1/012060
– volume: 8
  year: 2017
  ident: 10.1016/j.jgsce.2024.205336_bib9
  article-title: Using thermodynamics to predict the outcomes of nitrate-based oil reservoir souring control interventions
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2017.02575
– volume: 47
  start-page: 114
  year: 2017
  ident: 10.1016/j.jgsce.2024.205336_bib15
  article-title: Potential risk of H2S generation and release in salt cavern gas storage
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2017.09.007
– volume: 68
  start-page: 1313
  issue: 6
  year: 2023
  ident: 10.1016/j.jgsce.2024.205336_bib42
  article-title: Diffusion coefficients of N2O and H2 in water at temperatures between 298.15 and 423.15 K with pressures up to 30 MPa
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/acs.jced.3c00085
– volume: 2
  start-page: 321
  issue: 3
  year: 1998
  ident: 10.1016/j.jgsce.2024.205336_bib39
  article-title: Distribution and diversity of halophilic bacteria in a subsurface salt formation
  publication-title: Extremophiles
  doi: 10.1007/s007920050075
– ident: 10.1016/j.jgsce.2024.205336_bib21
– volume: 11
  year: 2023
  ident: 10.1016/j.jgsce.2024.205336_bib34
  article-title: Sulfate reduction and homoacetogenesis at various hypersaline conditions: implications for H2 underground gas storage
  publication-title: Front. Energy Res.
  doi: 10.3389/fenrg.2023.1125619
– volume: 100
  start-page: 597
  year: 2016
  ident: 10.1016/j.jgsce.2024.205336_bib2
  article-title: Impacts of hydrothermal dolomitization and thermochemical sulfate reduction on secondary porosity creation in deeply buried carbonates: a case study from the Lower Saxony Basin, northwest Germany
  publication-title: AAPG (Am. Assoc. Pet. Geol.) Bull.
– volume: 58
  start-page: 3335
  issue: 16
  year: 1994
  ident: 10.1016/j.jgsce.2024.205336_bib11
  article-title: Microbial sulfate reduction in deep-sea sediments at the Guaymas Basin hydrothermal vent area: influence of temperature and substrates
  publication-title: Geochem. Cosmochim. Acta
  doi: 10.1016/0016-7037(94)90089-2
– year: 2010
  ident: 10.1016/j.jgsce.2024.205336_bib7
– ident: 10.1016/j.jgsce.2024.205336_bib19
– volume: 40
  start-page: 4285
  issue: 12
  year: 2015
  ident: 10.1016/j.jgsce.2024.205336_bib31
  article-title: Power to gas: technological overview, systems analysis and economic assessment for a case study in Germany
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.01.123
– volume: 7
  year: 2019
  ident: 10.1016/j.jgsce.2024.205336_bib4
  article-title: How low can you go: methane production of methanobacterium congolense at low CO2 concentrations
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2019.00034
SSID ssj0003239020
ssj0000070207
Score 2.3400536
Snippet Salt caverns are considered a potential hydrogen storage site given the ductility, tightness, and chemical inertness of halite. In addition, unlike porous...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 205336
SubjectTerms Diffusive transport
Earth Sciences
Hydrogen storage
Hydrogen sulfide
PHREEQC
Salt caverns
Sciences of the Universe
Title A one-dimensional diffusive transport model to evaluate H2S generation in salt caverns hydrogen storage sites
URI https://dx.doi.org/10.1016/j.jgsce.2024.205336
https://ifp.hal.science/hal-04617904
Volume 126
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7GduGCQIB4K0IciZampU2PFQIVBjswJrhVzWsbGtvEChL_HruPSRzYgVNbt24bJ7Ed1_1MyIXjJrfSOobGgQWK50w6LVhsrKelF0Wew3jHYz9Mh8H969Vri1w3_8JgWmWt-yudXmrrmtKtpdldTCbdgUBcFS5jzIKENZXcIB0B1pW3SSe566X9VajFBzIvARqRhSFPgz9UZnq9jZYaETMFxljA_Qn_slEb4ybaWlqf222yVbuNNKnebIe07GyXvCd0PrPMIEB_Ba5Bsd7JJ2ak06JBLadlsRtazGmN7G1pKgZ0VOJNY7fQyYwu82lBdY51d5d0_G0-5nCeYuYk6BuKX5iXe2R4e_N8nbK6fALTvh8VLAwjbT1ovuM-gsgYbZzk1hgN89ppJQwsnsIc9lSkvVxJC76cNpxbm8eeMP4-ac-gGQeEwszOrULsxNAE4HJJJ0wQm0hL5Tyn1CERjcAyXWOLY4mLadYkkb1lpZQzlHJWSfmQXK6YFhW0xvrLw6Ynsl8jJAPlv57xHPpt9QjE006ThwxpiDYfxTz48o7-e_djsolHVfbYCWkXH5_2FPyUQp3V4xC3vaeX3g_ntej8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ07T8MwEICtlg6wIBAg3liIEauJExJnrBBVSh9LqdTNil9tEbSIBiT-PXd5VGKAgS1y4iQ-2-fz5fIdITfOM5kV1jFcHFiovIwJpzlLjPW18OPYd-jvGI6idBI-Tu-mDXJf_wuDYZWV7i91eqGtq5J2Jc3222LRHnPkqngiwShI2FOJJmkhnQqGeavT66ejjasl4LCxLwCNWIVhnZo_VER6Pc_WGomZHH0sYP5Ev61RzXntbS1Wn-4e2a3MRtop32yfNOzygLx26GppmUFAfwnXoJjv5AMj0mleU8tpkeyG5itakb0tTfmYzgreNHYLXSzpOnvJqc4w7-6azr_M-wrOU4ycBH1D8Qvz-pBMug9P9ymr0icwHQRxzqIo1taH5jsvQIiM0cYJzxqjYV47rbiBzVOUwZGKtZ8pYcGW08bzrM0Sn5vgiGwtoRnHhMLMzqxCdmJkQjC5hOMmTEyshXK-U-qE8FpgUldscUxx8SLrILJnWUhZopRlKeUTcrup9FaiNf6-PKp7Qv4YIRKU_98Vr6HfNo9AnnbaGUgsQ9p8nHjhp3_637tfke30aTiQg96of0Z28EwZSXZOtvL3D3sBNkuuLqsx-Q2s4upI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+one-dimensional+diffusive+transport+model+to+evaluate+H2S+generation+in+salt+caverns+hydrogen+storage+sites&rft.jtitle=Gas+Science+and+Engineering&rft.au=Minougou%2C+Jean+Donald&rft.au=Gholami%2C+Raoof&rft.au=Poirier%2C+Simon&rft.date=2024-06-01&rft.pub=Elsevier+B.V&rft.issn=2949-9089&rft.eissn=2949-9089&rft.volume=126&rft_id=info:doi/10.1016%2Fj.jgsce.2024.205336&rft.externalDocID=S2949908924001328
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2949-9089&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2949-9089&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2949-9089&client=summon