A numerical method for boundary value problems for singularly perturbed fourth-order ordinary differential equations
Singularly perturbed two-point boundary value problems (BVPs) for fourth-order ordinary differential equations (ODEs) with a small positive parameter multiplying the highest derivative are considered. A numerical method is suggested in this paper to solve such problems. In this method, the given BVP...
Saved in:
Published in | Applied mathematics and computation Vol. 129; no. 2; pp. 269 - 294 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York, NY
Elsevier Inc
10.07.2002
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0096-3003 1873-5649 |
DOI | 10.1016/S0096-3003(01)00040-6 |
Cover
Loading…
Abstract | Singularly perturbed two-point boundary value problems (BVPs) for fourth-order ordinary differential equations (ODEs) with a small positive parameter multiplying the highest derivative are considered. A numerical method is suggested in this paper to solve such problems. In this method, the given BVP is transformed into a system of two ODEs subject to suitable boundary conditions. Then the domain of definition of the differential equation (a closed interval) is divided into three non-overlapping sub-intervals, which we call them inner regions (boundary layers) and outer region. Then the DE is solved in these intervals separately. The solutions obtained in these regions are combined to give a solution in the entire interval. To obtain terminal boundary conditions (boundary values inside this interval) we use mostly zero-order asymptotic expansion of the solution of the BVP. First, linear equations are considered and then non-linear equations. To solve non-linear equations, Newton's method of quasi-linearization is applied. The present method is demonstrated by providing examples. The method is easy to implement and suitable for parallel computing. |
---|---|
AbstractList | Singularly perturbed two-point boundary value problems (BVPs) for fourth-order ordinary differential equations (ODEs) with a small positive parameter multiplying the highest derivative are considered. A numerical method is suggested in this paper to solve such problems. In this method, the given BVP is transformed into a system of two ODEs subject to suitable boundary conditions. Then the domain of definition of the differential equation (a closed interval) is divided into three non-overlapping sub-intervals, which we call them inner regions (boundary layers) and outer region. Then the DE is solved in these intervals separately. The solutions obtained in these regions are combined to give a solution in the entire interval. To obtain terminal boundary conditions (boundary values inside this interval) we use mostly zero-order asymptotic expansion of the solution of the BVP. First, linear equations are considered and then non-linear equations. To solve non-linear equations, Newton's method of quasi-linearization is applied. The present method is demonstrated by providing examples. The method is easy to implement and suitable for parallel computing. |
Author | Ramanujam, N. Shanthi, V. |
Author_xml | – sequence: 1 givenname: V. surname: Shanthi fullname: Shanthi, V. – sequence: 2 givenname: N. surname: Ramanujam fullname: Ramanujam, N. email: matram@bdu.ernet.in |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13712135$$DView record in Pascal Francis |
BookMark | eNqFkMFKJDEURcOgMK3OJwzURtBF6UulKlWNCxFxVBBc6KxDOnkZI9VJ-5IS_HvT3YOCGzfJIudccu8e2wkxIGO_OZxw4PL0AWAuawEgjoAfA0ALtfzBZnzoRd3Jdr7DZh_IT7aX0nOBesnbGcsXVZiWSN7osVpifoq2cpGqRZyC1fRWvepxwmpFcTHiMm3ekg__plHT-FatkPJEC1xLE-WnOpJFqsrpw9q23jkkDNmXeHyZdPYxpAO26_SY8Nf_e5_9_XP1eHlT391f315e3NVGiD7XEoweGnC2N6LthbDW2aZzYNoWUA_c9HPXGN5KdLzvOoNDZ3TpBVpaPjSt2GeH29yVTqWfIx2MT2pFflk-p7joecNFV7huyxmKKRG6TwTUemK1mVit91PA1WZiJYt39sUzPm8qZtJ-_NY-39pYJnj1SCoZj8Gg9YQmKxv9Nwnvhs-aBA |
CODEN | AMHCBQ |
CitedBy_id | crossref_primary_10_1016_j_mcm_2010_01_009 crossref_primary_10_1080_00207160_2014_902054 crossref_primary_10_1007_s12190_010_0434_3 crossref_primary_10_1016_j_amc_2010_09_059 crossref_primary_10_1080_00207160_2022_2148102 crossref_primary_10_1002_num_20666 crossref_primary_10_1016_S0096_3003_02_00053_X crossref_primary_10_1016_j_cam_2005_09_007 crossref_primary_10_1080_00207160_2012_706280 crossref_primary_10_1007_s40819_014_0004_8 crossref_primary_10_1016_S0096_3003_02_00654_9 crossref_primary_10_37863_umzh_v72i11_569 crossref_primary_10_1016_j_amc_2006_09_044 crossref_primary_10_1016_j_amc_2018_12_066 crossref_primary_10_1016_S0096_3003_01_00179_5 crossref_primary_10_1016_j_cam_2006_02_025 crossref_primary_10_1016_j_camwa_2004_06_015 crossref_primary_10_1080_00207160701478862 crossref_primary_10_1007_s12190_021_01560_7 crossref_primary_10_1186_s13661_015_0441_2 crossref_primary_10_1155_2013_614508 crossref_primary_10_1016_S0096_3003_01_00257_0 crossref_primary_10_3934_math_2023853 crossref_primary_10_1080_00207160701295712 crossref_primary_10_1002_num_21827 crossref_primary_10_14317_jami_2016_495 crossref_primary_10_1016_j_matcom_2021_01_005 crossref_primary_10_1007_s11253_021_01891_5 crossref_primary_10_26637_mjm301_006 crossref_primary_10_1139_cjp_2021_0224 crossref_primary_10_1002_num_21740 crossref_primary_10_1016_j_amc_2010_10_019 crossref_primary_10_1155_2012_626419 |
Cites_doi | 10.1016/S0096-3003(97)10056-X 10.1016/0096-3003(87)90001-4 10.1093/imanum/15.1.117 10.1016/0022-247X(88)90412-X 10.1007/BF01390214 10.1016/0096-3003(87)90003-8 10.1090/S0025-5718-1988-0935072-1 10.1016/0022-247X(82)90139-1 10.1016/0096-3003(87)90020-8 10.1093/imanum/7.4.459 10.1006/jdeq.1994.1076 10.1137/0513005 10.1016/0022-0396(90)90099-B 10.1137/0143065 10.1016/0898-1221(94)90078-7 10.1093/imanum/14.1.97 10.1016/0096-3003(93)90004-X |
ContentType | Journal Article |
Copyright | 2002 Elsevier Science Inc. 2002 INIST-CNRS |
Copyright_xml | – notice: 2002 Elsevier Science Inc. – notice: 2002 INIST-CNRS |
DBID | AAYXX CITATION IQODW |
DOI | 10.1016/S0096-3003(01)00040-6 |
DatabaseName | CrossRef Pascal-Francis |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1873-5649 |
EndPage | 294 |
ExternalDocumentID | 13712135 10_1016_S0096_3003_01_00040_6 S0096300301000406 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADGUI ADIYS ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLZ HMJ HVGLF HZ~ IHE J1W KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ RXW SBC SDF SDG SES SEW SME SPC SPCBC SSW SSZ T5K TAE TN5 VH1 VOH WH7 WUQ X6Y XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW |
ID | FETCH-LOGICAL-c337t-60ca820fd7c34733ddfd25f0c440ea81c79f2c146ef1755ce85ca0760a6d18243 |
IEDL.DBID | AIKHN |
ISSN | 0096-3003 |
IngestDate | Mon Jul 21 09:18:01 EDT 2025 Tue Jul 01 01:30:57 EDT 2025 Thu Apr 24 23:07:30 EDT 2025 Fri Feb 23 02:26:29 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Finite difference scheme Singularly perturbed problems Asymptotic expansion Fourth-order ordinary differential equation Exponentially fitted difference scheme Self-adjoint boundary value problem Boundary layer Difference scheme Boundary value problem Singular perturbation Fourth order equation Partial differential equation Self adjoint operator Finite difference method |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c337t-60ca820fd7c34733ddfd25f0c440ea81c79f2c146ef1755ce85ca0760a6d18243 |
PageCount | 26 |
ParticipantIDs | pascalfrancis_primary_13712135 crossref_primary_10_1016_S0096_3003_01_00040_6 crossref_citationtrail_10_1016_S0096_3003_01_00040_6 elsevier_sciencedirect_doi_10_1016_S0096_3003_01_00040_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2002-07-10 |
PublicationDateYYYYMMDD | 2002-07-10 |
PublicationDate_xml | – month: 07 year: 2002 text: 2002-07-10 day: 10 |
PublicationDecade | 2000 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY |
PublicationTitle | Applied mathematics and computation |
PublicationYear | 2002 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Semper (BIB29) 1994; 14 Sun, Stynes (BIB30) 1995; 15 Israeli, Ungarish (BIB7) 1984; 3a Jayakumar, Ramanujam (BIB8) 1993; 55 Feckan (BIB14) 1994; 3 O'Malley (BIB21) 1991 Howes (BIB5) 1982; 13 Doolan, Miller, Schilders (BIB2) 1980 Gartlend (BIB4) 1988; 51 Weili (BIB32) 1990; 88 Khadalbajoo, Reddy (BIB11) 1987; 21 Niederdrenk, Yserentant (BIB17) 1983; 41 Miller, O'Riordan, Shishkin (BIB15) 1996 Farrel (BIB3) 1987; 7 O'Malley (BIB20) 1990 Howes (BIB6) 1983; 43 Ramanujam, Srivartsava (BIB24) 1980; vol. 23, Numero 3, Decembro Ramanujam, Srivartsava (BIB23) 1979; 71 Jayakumar, Ramanujam (BIB9) 1994; 27 Nayfeh (BIB16) 1981 O'Malley (BIB19) 1974 Protter, Weinberger (BIB22) 1967 Sun, Stynes (BIB31) 1995; 15 Adams, Spreuer (BIB1) 1975; 55 Krishnamoorthy, Sen (BIB13) 1986 Natesan, Ramanujam (BIB18) 1998; 93 Roos, Stynes, Tobiska (BIB28) 1996 Khadalbajoo, Reddy (BIB10) 1987; 21 Roos, Stynes (BIB27) 1991; 228 Roberts (BIB25) 1982; 87 Khadalbajoo, Reddy (BIB12) 1987; 21 Roberts (BIB26) 1988; 133 Ramanujam (10.1016/S0096-3003(01)00040-6_BIB23) 1979; 71 Howes (10.1016/S0096-3003(01)00040-6_BIB5) 1982; 13 Israeli (10.1016/S0096-3003(01)00040-6_BIB7) 1984; 3a Roos (10.1016/S0096-3003(01)00040-6_BIB27) 1991; 228 Khadalbajoo (10.1016/S0096-3003(01)00040-6_BIB10) 1987; 21 O'Malley (10.1016/S0096-3003(01)00040-6_BIB20) 1990 Protter (10.1016/S0096-3003(01)00040-6_BIB22) 1967 Feckan (10.1016/S0096-3003(01)00040-6_BIB14) 1994; 3 O'Malley (10.1016/S0096-3003(01)00040-6_BIB19) 1974 Roos (10.1016/S0096-3003(01)00040-6_BIB28) 1996 Howes (10.1016/S0096-3003(01)00040-6_BIB6) 1983; 43 Krishnamoorthy (10.1016/S0096-3003(01)00040-6_BIB13) 1986 Sun (10.1016/S0096-3003(01)00040-6_BIB31) 1995; 15 Jayakumar (10.1016/S0096-3003(01)00040-6_BIB9) 1994; 27 Natesan (10.1016/S0096-3003(01)00040-6_BIB18) 1998; 93 Semper (10.1016/S0096-3003(01)00040-6_BIB29) 1994; 14 Khadalbajoo (10.1016/S0096-3003(01)00040-6_BIB11) 1987; 21 O'Malley (10.1016/S0096-3003(01)00040-6_BIB21) 1991 Weili (10.1016/S0096-3003(01)00040-6_BIB32) 1990; 88 Niederdrenk (10.1016/S0096-3003(01)00040-6_BIB17) 1983; 41 Doolan (10.1016/S0096-3003(01)00040-6_BIB2) 1980 Gartlend (10.1016/S0096-3003(01)00040-6_BIB4) 1988; 51 Sun (10.1016/S0096-3003(01)00040-6_BIB30) 1995; 15 Khadalbajoo (10.1016/S0096-3003(01)00040-6_BIB12) 1987; 21 Adams (10.1016/S0096-3003(01)00040-6_BIB1) 1975; 55 Nayfeh (10.1016/S0096-3003(01)00040-6_BIB16) 1981 Jayakumar (10.1016/S0096-3003(01)00040-6_BIB8) 1993; 55 Ramanujam (10.1016/S0096-3003(01)00040-6_BIB24) 1980; vol. 23, Numero 3, Decembro Farrel (10.1016/S0096-3003(01)00040-6_BIB3) 1987; 7 Miller (10.1016/S0096-3003(01)00040-6_BIB15) 1996 Roberts (10.1016/S0096-3003(01)00040-6_BIB25) 1982; 87 Roberts (10.1016/S0096-3003(01)00040-6_BIB26) 1988; 133 |
References_xml | – volume: 27 start-page: 83 year: 1994 end-page: 99 ident: BIB9 article-title: A numerical method for singular perturbation problems arising in chemical reactor theory publication-title: Comput. Math. Appl. – volume: vol. 23, Numero 3, Decembro year: 1980 ident: BIB24 article-title: Singular perturbation problems for systems of partial differential equations of parabolic type publication-title: Funkcialaj Ekvacioj – volume: 88 start-page: 265 year: 1990 end-page: 278 ident: BIB32 article-title: Singular perturbations of boundary value problems for a class of third order nonlinear ordinary differential equations publication-title: J. Diff. Eqs. – year: 1974 ident: BIB19 publication-title: Introduction to Singular Perturbations – volume: 93 start-page: 259 year: 1998 end-page: 275 ident: BIB18 article-title: A computational method for solving singularly perturbed turning point problems exhibiting twin boundary layers publication-title: Appl. Math. Comput. – year: 1991 ident: BIB21 publication-title: Singular Perturbation Methods for Ordinary Differential Equations – volume: 7 start-page: 459 year: 1987 end-page: 472 ident: BIB3 article-title: Sufficient conditions for uniform convergence of a class of difference schemes for a singular perturbation problems publication-title: IMAJ. Numer. Anal. – volume: 13 start-page: 61 year: 1982 end-page: 80 ident: BIB5 article-title: Differential inequalities of higher order and the asymptotic solution of nonlinear boundary value problems publication-title: SIAM J. Math. Anal. – year: 1981 ident: BIB16 publication-title: Introduction to Perturbation Methods – volume: 71 year: 1979 ident: BIB23 article-title: Singular perturbation problems for systems of PDEs of elliptic type publication-title: JMAA – year: 1967 ident: BIB22 publication-title: Maximum Principles in Differential Equations – volume: 21 start-page: 93 year: 1987 end-page: 110 ident: BIB10 article-title: Numerical treatment of singularly perturbed two-point boundary-value problems publication-title: Appl. Math. Comput. – volume: 51 start-page: 631 year: 1988 end-page: 657 ident: BIB4 article-title: Graded-mesh difference schemes for singularly perturbed two-point boundary value problems publication-title: Math. Comput. – volume: 3a start-page: 309 year: 1984 end-page: 324 ident: BIB7 article-title: Improvement of numerical solution of boundary layer problems by incorporation of asymptotic approximation publication-title: Numer. Math. – volume: 3 start-page: 79 year: 1994 end-page: 102 ident: BIB14 article-title: Singularly perturbed higher order boundary value problems publication-title: J. Differential Equations – volume: 15 start-page: 117 year: 1995 end-page: 139 ident: BIB30 article-title: Finite element methods for singularly perturbed higher order elliptic two point boundary value problems I: reaction-diffusion type publication-title: IMA J. Numer. Anal. – volume: 228 start-page: 30 year: 1991 end-page: 40 ident: BIB27 article-title: A uniformly convergent discretization method for a fourth order singular perturbation problem publication-title: Bonner Math. Schriften – volume: 55 start-page: 191 year: 1975 end-page: 193 ident: BIB1 article-title: Über das vorligen der Eigenschaft von monotoner Art bei fortschreitend bzw. nur als ganzes losbarem systemen publication-title: Z. Angew. Math. Mech. – volume: 55 start-page: 31 year: 1993 end-page: 48 ident: BIB8 article-title: A computational method for solving singular perturbation problems publication-title: Appl. Math. Comput. – volume: 133 start-page: 411 year: 1988 end-page: 436 ident: BIB26 article-title: Further examples of the boundary value technique in singular perturbation problems publication-title: J. Math. Anal. Appl. – year: 1986 ident: BIB13 publication-title: Numerical Algorithms–Computations in Science and Engineering – year: 1990 ident: BIB20 publication-title: Singular Perturbation Methods for Ordinary Differential Equations – year: 1996 ident: BIB28 article-title: Numerical methods for singularly perturbed differential equations- convection-diffusion and flow problems – volume: 21 start-page: 185 year: 1987 end-page: 199 ident: BIB11 article-title: Approximate methods for the numerical solution of singular perturbation problems publication-title: Appl. Math. Comput. – volume: 41 start-page: 223 year: 1983 end-page: 253 ident: BIB17 article-title: The uniform stability of singularly perturbed discrete and continuous boundary value problems publication-title: Numer. Math. – volume: 14 start-page: 97 year: 1994 end-page: 109 ident: BIB29 article-title: Locking in finite element approximation of long thin extensible beams publication-title: IMA J. Numer. Anal. – volume: 87 start-page: 489 year: 1982 end-page: 508 ident: BIB25 article-title: A boundary value technique for singular perturbation problems publication-title: J. Math. Anal. Appl. – volume: 15 start-page: 117 year: 1995 end-page: 139 ident: BIB31 article-title: Finite element methods for singularly perturbed higher order elliptic two point boundary value problems II: reaction-diffusion type publication-title: IMA J. Numer. Anal. – year: 1980 ident: BIB2 publication-title: Uniform Numerical Methods for Problems with Initial and Boundary Layers – year: 1996 ident: BIB15 publication-title: Fitted Numerical Methods for Singular Perturbation Problems. Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions – volume: 43 start-page: 993 year: 1983 end-page: 1004 ident: BIB6 article-title: The asymptotic solution of a class of third-order boundary value problem arising in the theory of thin film flow publication-title: SIAM J. Appl. Math. – volume: 21 start-page: 221 year: 1987 end-page: 232 ident: BIB12 article-title: Perturbation problems via deviating arguments publication-title: Appl. Math. Comput. – volume: 93 start-page: 259 year: 1998 ident: 10.1016/S0096-3003(01)00040-6_BIB18 article-title: A computational method for solving singularly perturbed turning point problems exhibiting twin boundary layers publication-title: Appl. Math. Comput. doi: 10.1016/S0096-3003(97)10056-X – year: 1974 ident: 10.1016/S0096-3003(01)00040-6_BIB19 – volume: 21 start-page: 185 year: 1987 ident: 10.1016/S0096-3003(01)00040-6_BIB11 article-title: Approximate methods for the numerical solution of singular perturbation problems publication-title: Appl. Math. Comput. doi: 10.1016/0096-3003(87)90001-4 – year: 1991 ident: 10.1016/S0096-3003(01)00040-6_BIB21 – volume: 15 start-page: 117 year: 1995 ident: 10.1016/S0096-3003(01)00040-6_BIB30 article-title: Finite element methods for singularly perturbed higher order elliptic two point boundary value problems I: reaction-diffusion type publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/15.1.117 – volume: 3a start-page: 309 year: 1984 ident: 10.1016/S0096-3003(01)00040-6_BIB7 article-title: Improvement of numerical solution of boundary layer problems by incorporation of asymptotic approximation publication-title: Numer. Math. – volume: 133 start-page: 411 year: 1988 ident: 10.1016/S0096-3003(01)00040-6_BIB26 article-title: Further examples of the boundary value technique in singular perturbation problems publication-title: J. Math. Anal. Appl. doi: 10.1016/0022-247X(88)90412-X – year: 1986 ident: 10.1016/S0096-3003(01)00040-6_BIB13 – year: 1996 ident: 10.1016/S0096-3003(01)00040-6_BIB15 – volume: 41 start-page: 223 year: 1983 ident: 10.1016/S0096-3003(01)00040-6_BIB17 article-title: The uniform stability of singularly perturbed discrete and continuous boundary value problems publication-title: Numer. Math. doi: 10.1007/BF01390214 – volume: 21 start-page: 221 year: 1987 ident: 10.1016/S0096-3003(01)00040-6_BIB12 article-title: Perturbation problems via deviating arguments publication-title: Appl. Math. Comput. doi: 10.1016/0096-3003(87)90003-8 – year: 1967 ident: 10.1016/S0096-3003(01)00040-6_BIB22 – volume: 228 start-page: 30 year: 1991 ident: 10.1016/S0096-3003(01)00040-6_BIB27 article-title: A uniformly convergent discretization method for a fourth order singular perturbation problem publication-title: Bonner Math. Schriften – volume: 51 start-page: 631 year: 1988 ident: 10.1016/S0096-3003(01)00040-6_BIB4 article-title: Graded-mesh difference schemes for singularly perturbed two-point boundary value problems publication-title: Math. Comput. doi: 10.1090/S0025-5718-1988-0935072-1 – volume: 87 start-page: 489 year: 1982 ident: 10.1016/S0096-3003(01)00040-6_BIB25 article-title: A boundary value technique for singular perturbation problems publication-title: J. Math. Anal. Appl. doi: 10.1016/0022-247X(82)90139-1 – volume: 21 start-page: 93 year: 1987 ident: 10.1016/S0096-3003(01)00040-6_BIB10 article-title: Numerical treatment of singularly perturbed two-point boundary-value problems publication-title: Appl. Math. Comput. doi: 10.1016/0096-3003(87)90020-8 – volume: 15 start-page: 117 year: 1995 ident: 10.1016/S0096-3003(01)00040-6_BIB31 article-title: Finite element methods for singularly perturbed higher order elliptic two point boundary value problems II: reaction-diffusion type publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/15.1.117 – volume: 7 start-page: 459 year: 1987 ident: 10.1016/S0096-3003(01)00040-6_BIB3 article-title: Sufficient conditions for uniform convergence of a class of difference schemes for a singular perturbation problems publication-title: IMAJ. Numer. Anal. doi: 10.1093/imanum/7.4.459 – volume: 71 issue: 1 year: 1979 ident: 10.1016/S0096-3003(01)00040-6_BIB23 article-title: Singular perturbation problems for systems of PDEs of elliptic type publication-title: JMAA – year: 1981 ident: 10.1016/S0096-3003(01)00040-6_BIB16 – year: 1990 ident: 10.1016/S0096-3003(01)00040-6_BIB20 – year: 1980 ident: 10.1016/S0096-3003(01)00040-6_BIB2 – volume: 3 start-page: 79 issue: 1 year: 1994 ident: 10.1016/S0096-3003(01)00040-6_BIB14 article-title: Singularly perturbed higher order boundary value problems publication-title: J. Differential Equations doi: 10.1006/jdeq.1994.1076 – volume: 13 start-page: 61 issue: 1 year: 1982 ident: 10.1016/S0096-3003(01)00040-6_BIB5 article-title: Differential inequalities of higher order and the asymptotic solution of nonlinear boundary value problems publication-title: SIAM J. Math. Anal. doi: 10.1137/0513005 – volume: vol. 23, Numero 3, Decembro year: 1980 ident: 10.1016/S0096-3003(01)00040-6_BIB24 article-title: Singular perturbation problems for systems of partial differential equations of parabolic type publication-title: Funkcialaj Ekvacioj – volume: 88 start-page: 265 issue: 2 year: 1990 ident: 10.1016/S0096-3003(01)00040-6_BIB32 article-title: Singular perturbations of boundary value problems for a class of third order nonlinear ordinary differential equations publication-title: J. Diff. Eqs. doi: 10.1016/0022-0396(90)90099-B – volume: 55 start-page: 191 year: 1975 ident: 10.1016/S0096-3003(01)00040-6_BIB1 article-title: Über das vorligen der Eigenschaft von monotoner Art bei fortschreitend bzw. nur als ganzes losbarem systemen publication-title: Z. Angew. Math. Mech. – volume: 43 start-page: 993 issue: 5 year: 1983 ident: 10.1016/S0096-3003(01)00040-6_BIB6 article-title: The asymptotic solution of a class of third-order boundary value problem arising in the theory of thin film flow publication-title: SIAM J. Appl. Math. doi: 10.1137/0143065 – year: 1996 ident: 10.1016/S0096-3003(01)00040-6_BIB28 – volume: 27 start-page: 83 issue: 5 year: 1994 ident: 10.1016/S0096-3003(01)00040-6_BIB9 article-title: A numerical method for singular perturbation problems arising in chemical reactor theory publication-title: Comput. Math. Appl. doi: 10.1016/0898-1221(94)90078-7 – volume: 14 start-page: 97 year: 1994 ident: 10.1016/S0096-3003(01)00040-6_BIB29 article-title: Locking in finite element approximation of long thin extensible beams publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/14.1.97 – volume: 55 start-page: 31 year: 1993 ident: 10.1016/S0096-3003(01)00040-6_BIB8 article-title: A computational method for solving singular perturbation problems publication-title: Appl. Math. Comput. doi: 10.1016/0096-3003(93)90004-X |
SSID | ssj0007614 |
Score | 1.8577747 |
Snippet | Singularly perturbed two-point boundary value problems (BVPs) for fourth-order ordinary differential equations (ODEs) with a small positive parameter... |
SourceID | pascalfrancis crossref elsevier |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 269 |
SubjectTerms | Asymptotic expansion Boundary layer Exact sciences and technology Exponentially fitted difference scheme Finite difference scheme Fourth-order ordinary differential equation Mathematical analysis Mathematics Numerical analysis Numerical analysis. Scientific computation Ordinary differential equations Partial differential equations, boundary value problems Sciences and techniques of general use Self-adjoint boundary value problem Singularly perturbed problems |
Title | A numerical method for boundary value problems for singularly perturbed fourth-order ordinary differential equations |
URI | https://dx.doi.org/10.1016/S0096-3003(01)00040-6 |
Volume | 129 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b8IwELYoLK2qqk-VPpCHDu0QSLDzGhEqoq1gKhJblDi2ioRoGsLA0t_eOzuBMlRIXSIl0TmRz7n7HPu-j5AHJhX3uVSWwhDIE-5isTJ8VzbrMpGkAMGx3nk09oYT_jp1pzXSr2phcFtlGftNTNfRurzSKXuzk81mWOMbIl8UjFAEJki73eiy0AvqpNF7eRuONwEZZuqGjDnEbV422xbymEb0xUfbedLtWN5fKeo4i5fQccooXvxKQ4NTclLiR9ozr3hGanJxTo5GG_LV5QUpenSxMgsxc2oUoilAU5poBaV8TZHgW9JSSmap7-EfA9yQOl_TTOaQhhKJRqu8-LA0OyeFoy7dpZWkCoSGOZVfhip8eUkmg-f3_tAqxRUswZhfWJ4tYsj-KvUF4z5jaarSrqtswbkt48ARfqi6AuKoVIAwXFQ3FTEu48VeCnMSzq5IffG5kNeEuqkIYglYQUrBZZgEAmBICkBLcAfO3CbhVX9GomQeRwGMebTdYgZuiNANke1E2g2R1yTtjVlmqDf2GQSVs6KdMRRBethn2tpx7vaBzEfSO_fm_23fkkMtIYNsnPYdqRf5St4DkimSFjlofzutcrz-AGZH7go |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b8IwELYQDG1VVX2q9EE9dGiHlICdByNCRVAeE0hsVuLYKhKiFMLAv--dnUAZKqQukZLonMjn3H2Ofd9HyDNTmgdcaUdjCOQx97BYGb4rl9WZjBOA4FjvPBj6nTH_mHiTAmnltTC4rTKL_Tamm2idXalmvVldTKdY49tAvigYoQhMkHa7hOxUvEhKzW6vM9wGZJipWzLmBm7zctmukMc2Yi6-uLVX047j_5WiThfRCjpOW8WLX2mofU7OMvxIm_YVL0hBzS_JyWBLvrq6ImmTztd2IWZGrUI0BWhKY6OgtNxQJPhWNJOSWZl7-McAN6TONnShlpCGYoVG62X66Rh2TgpHU7pLc0kVCA0zqr4tVfjqmozb76NWx8nEFRzJWJA6visjyP46CSTjAWNJopO6p13JuauisCaDhq5LiKNKA8LwUN1URriMF_kJzEk4uyHF-ddc3RLqJTKMFGAFpSRXjTiUAEMSAFqS1-DMKxOe96eQGfM4CmDMxG6LGbhBoBuEWxPGDcIvk7et2cJSbxwyCHNnib0xJCA9HDKt7Dl390AWIOmdd_f_tp_IUWc06It-d9i7J8dGTgaZOd0HUkyXa_UIqCaNK9mo_QEI6e_y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+numerical+method+for+boundary+value+problems+for+singularly+perturbed+fourth-order+ordinary+differential+equations&rft.jtitle=Applied+mathematics+and+computation&rft.au=Shanthi%2C+V.&rft.au=Ramanujam%2C+N.&rft.date=2002-07-10&rft.issn=0096-3003&rft.volume=129&rft.issue=2-3&rft.spage=269&rft.epage=294&rft_id=info:doi/10.1016%2FS0096-3003%2801%2900040-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S0096_3003_01_00040_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon |