A numerical method for boundary value problems for singularly perturbed fourth-order ordinary differential equations

Singularly perturbed two-point boundary value problems (BVPs) for fourth-order ordinary differential equations (ODEs) with a small positive parameter multiplying the highest derivative are considered. A numerical method is suggested in this paper to solve such problems. In this method, the given BVP...

Full description

Saved in:
Bibliographic Details
Published inApplied mathematics and computation Vol. 129; no. 2; pp. 269 - 294
Main Authors Shanthi, V., Ramanujam, N.
Format Journal Article
LanguageEnglish
Published New York, NY Elsevier Inc 10.07.2002
Elsevier
Subjects
Online AccessGet full text
ISSN0096-3003
1873-5649
DOI10.1016/S0096-3003(01)00040-6

Cover

Loading…
Abstract Singularly perturbed two-point boundary value problems (BVPs) for fourth-order ordinary differential equations (ODEs) with a small positive parameter multiplying the highest derivative are considered. A numerical method is suggested in this paper to solve such problems. In this method, the given BVP is transformed into a system of two ODEs subject to suitable boundary conditions. Then the domain of definition of the differential equation (a closed interval) is divided into three non-overlapping sub-intervals, which we call them inner regions (boundary layers) and outer region. Then the DE is solved in these intervals separately. The solutions obtained in these regions are combined to give a solution in the entire interval. To obtain terminal boundary conditions (boundary values inside this interval) we use mostly zero-order asymptotic expansion of the solution of the BVP. First, linear equations are considered and then non-linear equations. To solve non-linear equations, Newton's method of quasi-linearization is applied. The present method is demonstrated by providing examples. The method is easy to implement and suitable for parallel computing.
AbstractList Singularly perturbed two-point boundary value problems (BVPs) for fourth-order ordinary differential equations (ODEs) with a small positive parameter multiplying the highest derivative are considered. A numerical method is suggested in this paper to solve such problems. In this method, the given BVP is transformed into a system of two ODEs subject to suitable boundary conditions. Then the domain of definition of the differential equation (a closed interval) is divided into three non-overlapping sub-intervals, which we call them inner regions (boundary layers) and outer region. Then the DE is solved in these intervals separately. The solutions obtained in these regions are combined to give a solution in the entire interval. To obtain terminal boundary conditions (boundary values inside this interval) we use mostly zero-order asymptotic expansion of the solution of the BVP. First, linear equations are considered and then non-linear equations. To solve non-linear equations, Newton's method of quasi-linearization is applied. The present method is demonstrated by providing examples. The method is easy to implement and suitable for parallel computing.
Author Ramanujam, N.
Shanthi, V.
Author_xml – sequence: 1
  givenname: V.
  surname: Shanthi
  fullname: Shanthi, V.
– sequence: 2
  givenname: N.
  surname: Ramanujam
  fullname: Ramanujam, N.
  email: matram@bdu.ernet.in
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13712135$$DView record in Pascal Francis
BookMark eNqFkMFKJDEURcOgMK3OJwzURtBF6UulKlWNCxFxVBBc6KxDOnkZI9VJ-5IS_HvT3YOCGzfJIudccu8e2wkxIGO_OZxw4PL0AWAuawEgjoAfA0ALtfzBZnzoRd3Jdr7DZh_IT7aX0nOBesnbGcsXVZiWSN7osVpifoq2cpGqRZyC1fRWvepxwmpFcTHiMm3ekg__plHT-FatkPJEC1xLE-WnOpJFqsrpw9q23jkkDNmXeHyZdPYxpAO26_SY8Nf_e5_9_XP1eHlT391f315e3NVGiD7XEoweGnC2N6LthbDW2aZzYNoWUA_c9HPXGN5KdLzvOoNDZ3TpBVpaPjSt2GeH29yVTqWfIx2MT2pFflk-p7joecNFV7huyxmKKRG6TwTUemK1mVit91PA1WZiJYt39sUzPm8qZtJ-_NY-39pYJnj1SCoZj8Gg9YQmKxv9Nwnvhs-aBA
CODEN AMHCBQ
CitedBy_id crossref_primary_10_1016_j_mcm_2010_01_009
crossref_primary_10_1080_00207160_2014_902054
crossref_primary_10_1007_s12190_010_0434_3
crossref_primary_10_1016_j_amc_2010_09_059
crossref_primary_10_1080_00207160_2022_2148102
crossref_primary_10_1002_num_20666
crossref_primary_10_1016_S0096_3003_02_00053_X
crossref_primary_10_1016_j_cam_2005_09_007
crossref_primary_10_1080_00207160_2012_706280
crossref_primary_10_1007_s40819_014_0004_8
crossref_primary_10_1016_S0096_3003_02_00654_9
crossref_primary_10_37863_umzh_v72i11_569
crossref_primary_10_1016_j_amc_2006_09_044
crossref_primary_10_1016_j_amc_2018_12_066
crossref_primary_10_1016_S0096_3003_01_00179_5
crossref_primary_10_1016_j_cam_2006_02_025
crossref_primary_10_1016_j_camwa_2004_06_015
crossref_primary_10_1080_00207160701478862
crossref_primary_10_1007_s12190_021_01560_7
crossref_primary_10_1186_s13661_015_0441_2
crossref_primary_10_1155_2013_614508
crossref_primary_10_1016_S0096_3003_01_00257_0
crossref_primary_10_3934_math_2023853
crossref_primary_10_1080_00207160701295712
crossref_primary_10_1002_num_21827
crossref_primary_10_14317_jami_2016_495
crossref_primary_10_1016_j_matcom_2021_01_005
crossref_primary_10_1007_s11253_021_01891_5
crossref_primary_10_26637_mjm301_006
crossref_primary_10_1139_cjp_2021_0224
crossref_primary_10_1002_num_21740
crossref_primary_10_1016_j_amc_2010_10_019
crossref_primary_10_1155_2012_626419
Cites_doi 10.1016/S0096-3003(97)10056-X
10.1016/0096-3003(87)90001-4
10.1093/imanum/15.1.117
10.1016/0022-247X(88)90412-X
10.1007/BF01390214
10.1016/0096-3003(87)90003-8
10.1090/S0025-5718-1988-0935072-1
10.1016/0022-247X(82)90139-1
10.1016/0096-3003(87)90020-8
10.1093/imanum/7.4.459
10.1006/jdeq.1994.1076
10.1137/0513005
10.1016/0022-0396(90)90099-B
10.1137/0143065
10.1016/0898-1221(94)90078-7
10.1093/imanum/14.1.97
10.1016/0096-3003(93)90004-X
ContentType Journal Article
Copyright 2002 Elsevier Science Inc.
2002 INIST-CNRS
Copyright_xml – notice: 2002 Elsevier Science Inc.
– notice: 2002 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1016/S0096-3003(01)00040-6
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1873-5649
EndPage 294
ExternalDocumentID 13712135
10_1016_S0096_3003_01_00040_6
S0096300301000406
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
ADIYS
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLZ
HMJ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SES
SEW
SME
SPC
SPCBC
SSW
SSZ
T5K
TAE
TN5
VH1
VOH
WH7
WUQ
X6Y
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
ID FETCH-LOGICAL-c337t-60ca820fd7c34733ddfd25f0c440ea81c79f2c146ef1755ce85ca0760a6d18243
IEDL.DBID AIKHN
ISSN 0096-3003
IngestDate Mon Jul 21 09:18:01 EDT 2025
Tue Jul 01 01:30:57 EDT 2025
Thu Apr 24 23:07:30 EDT 2025
Fri Feb 23 02:26:29 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Finite difference scheme
Singularly perturbed problems
Asymptotic expansion
Fourth-order ordinary differential equation
Exponentially fitted difference scheme
Self-adjoint boundary value problem
Boundary layer
Difference scheme
Boundary value problem
Singular perturbation
Fourth order equation
Partial differential equation
Self adjoint operator
Finite difference method
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-60ca820fd7c34733ddfd25f0c440ea81c79f2c146ef1755ce85ca0760a6d18243
PageCount 26
ParticipantIDs pascalfrancis_primary_13712135
crossref_primary_10_1016_S0096_3003_01_00040_6
crossref_citationtrail_10_1016_S0096_3003_01_00040_6
elsevier_sciencedirect_doi_10_1016_S0096_3003_01_00040_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2002-07-10
PublicationDateYYYYMMDD 2002-07-10
PublicationDate_xml – month: 07
  year: 2002
  text: 2002-07-10
  day: 10
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle Applied mathematics and computation
PublicationYear 2002
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Semper (BIB29) 1994; 14
Sun, Stynes (BIB30) 1995; 15
Israeli, Ungarish (BIB7) 1984; 3a
Jayakumar, Ramanujam (BIB8) 1993; 55
Feckan (BIB14) 1994; 3
O'Malley (BIB21) 1991
Howes (BIB5) 1982; 13
Doolan, Miller, Schilders (BIB2) 1980
Gartlend (BIB4) 1988; 51
Weili (BIB32) 1990; 88
Khadalbajoo, Reddy (BIB11) 1987; 21
Niederdrenk, Yserentant (BIB17) 1983; 41
Miller, O'Riordan, Shishkin (BIB15) 1996
Farrel (BIB3) 1987; 7
O'Malley (BIB20) 1990
Howes (BIB6) 1983; 43
Ramanujam, Srivartsava (BIB24) 1980; vol. 23, Numero 3, Decembro
Ramanujam, Srivartsava (BIB23) 1979; 71
Jayakumar, Ramanujam (BIB9) 1994; 27
Nayfeh (BIB16) 1981
O'Malley (BIB19) 1974
Protter, Weinberger (BIB22) 1967
Sun, Stynes (BIB31) 1995; 15
Adams, Spreuer (BIB1) 1975; 55
Krishnamoorthy, Sen (BIB13) 1986
Natesan, Ramanujam (BIB18) 1998; 93
Roos, Stynes, Tobiska (BIB28) 1996
Khadalbajoo, Reddy (BIB10) 1987; 21
Roos, Stynes (BIB27) 1991; 228
Roberts (BIB25) 1982; 87
Khadalbajoo, Reddy (BIB12) 1987; 21
Roberts (BIB26) 1988; 133
Ramanujam (10.1016/S0096-3003(01)00040-6_BIB23) 1979; 71
Howes (10.1016/S0096-3003(01)00040-6_BIB5) 1982; 13
Israeli (10.1016/S0096-3003(01)00040-6_BIB7) 1984; 3a
Roos (10.1016/S0096-3003(01)00040-6_BIB27) 1991; 228
Khadalbajoo (10.1016/S0096-3003(01)00040-6_BIB10) 1987; 21
O'Malley (10.1016/S0096-3003(01)00040-6_BIB20) 1990
Protter (10.1016/S0096-3003(01)00040-6_BIB22) 1967
Feckan (10.1016/S0096-3003(01)00040-6_BIB14) 1994; 3
O'Malley (10.1016/S0096-3003(01)00040-6_BIB19) 1974
Roos (10.1016/S0096-3003(01)00040-6_BIB28) 1996
Howes (10.1016/S0096-3003(01)00040-6_BIB6) 1983; 43
Krishnamoorthy (10.1016/S0096-3003(01)00040-6_BIB13) 1986
Sun (10.1016/S0096-3003(01)00040-6_BIB31) 1995; 15
Jayakumar (10.1016/S0096-3003(01)00040-6_BIB9) 1994; 27
Natesan (10.1016/S0096-3003(01)00040-6_BIB18) 1998; 93
Semper (10.1016/S0096-3003(01)00040-6_BIB29) 1994; 14
Khadalbajoo (10.1016/S0096-3003(01)00040-6_BIB11) 1987; 21
O'Malley (10.1016/S0096-3003(01)00040-6_BIB21) 1991
Weili (10.1016/S0096-3003(01)00040-6_BIB32) 1990; 88
Niederdrenk (10.1016/S0096-3003(01)00040-6_BIB17) 1983; 41
Doolan (10.1016/S0096-3003(01)00040-6_BIB2) 1980
Gartlend (10.1016/S0096-3003(01)00040-6_BIB4) 1988; 51
Sun (10.1016/S0096-3003(01)00040-6_BIB30) 1995; 15
Khadalbajoo (10.1016/S0096-3003(01)00040-6_BIB12) 1987; 21
Adams (10.1016/S0096-3003(01)00040-6_BIB1) 1975; 55
Nayfeh (10.1016/S0096-3003(01)00040-6_BIB16) 1981
Jayakumar (10.1016/S0096-3003(01)00040-6_BIB8) 1993; 55
Ramanujam (10.1016/S0096-3003(01)00040-6_BIB24) 1980; vol. 23, Numero 3, Decembro
Farrel (10.1016/S0096-3003(01)00040-6_BIB3) 1987; 7
Miller (10.1016/S0096-3003(01)00040-6_BIB15) 1996
Roberts (10.1016/S0096-3003(01)00040-6_BIB25) 1982; 87
Roberts (10.1016/S0096-3003(01)00040-6_BIB26) 1988; 133
References_xml – volume: 27
  start-page: 83
  year: 1994
  end-page: 99
  ident: BIB9
  article-title: A numerical method for singular perturbation problems arising in chemical reactor theory
  publication-title: Comput. Math. Appl.
– volume: vol. 23, Numero 3, Decembro
  year: 1980
  ident: BIB24
  article-title: Singular perturbation problems for systems of partial differential equations of parabolic type
  publication-title: Funkcialaj Ekvacioj
– volume: 88
  start-page: 265
  year: 1990
  end-page: 278
  ident: BIB32
  article-title: Singular perturbations of boundary value problems for a class of third order nonlinear ordinary differential equations
  publication-title: J. Diff. Eqs.
– year: 1974
  ident: BIB19
  publication-title: Introduction to Singular Perturbations
– volume: 93
  start-page: 259
  year: 1998
  end-page: 275
  ident: BIB18
  article-title: A computational method for solving singularly perturbed turning point problems exhibiting twin boundary layers
  publication-title: Appl. Math. Comput.
– year: 1991
  ident: BIB21
  publication-title: Singular Perturbation Methods for Ordinary Differential Equations
– volume: 7
  start-page: 459
  year: 1987
  end-page: 472
  ident: BIB3
  article-title: Sufficient conditions for uniform convergence of a class of difference schemes for a singular perturbation problems
  publication-title: IMAJ. Numer. Anal.
– volume: 13
  start-page: 61
  year: 1982
  end-page: 80
  ident: BIB5
  article-title: Differential inequalities of higher order and the asymptotic solution of nonlinear boundary value problems
  publication-title: SIAM J. Math. Anal.
– year: 1981
  ident: BIB16
  publication-title: Introduction to Perturbation Methods
– volume: 71
  year: 1979
  ident: BIB23
  article-title: Singular perturbation problems for systems of PDEs of elliptic type
  publication-title: JMAA
– year: 1967
  ident: BIB22
  publication-title: Maximum Principles in Differential Equations
– volume: 21
  start-page: 93
  year: 1987
  end-page: 110
  ident: BIB10
  article-title: Numerical treatment of singularly perturbed two-point boundary-value problems
  publication-title: Appl. Math. Comput.
– volume: 51
  start-page: 631
  year: 1988
  end-page: 657
  ident: BIB4
  article-title: Graded-mesh difference schemes for singularly perturbed two-point boundary value problems
  publication-title: Math. Comput.
– volume: 3a
  start-page: 309
  year: 1984
  end-page: 324
  ident: BIB7
  article-title: Improvement of numerical solution of boundary layer problems by incorporation of asymptotic approximation
  publication-title: Numer. Math.
– volume: 3
  start-page: 79
  year: 1994
  end-page: 102
  ident: BIB14
  article-title: Singularly perturbed higher order boundary value problems
  publication-title: J. Differential Equations
– volume: 15
  start-page: 117
  year: 1995
  end-page: 139
  ident: BIB30
  article-title: Finite element methods for singularly perturbed higher order elliptic two point boundary value problems I: reaction-diffusion type
  publication-title: IMA J. Numer. Anal.
– volume: 228
  start-page: 30
  year: 1991
  end-page: 40
  ident: BIB27
  article-title: A uniformly convergent discretization method for a fourth order singular perturbation problem
  publication-title: Bonner Math. Schriften
– volume: 55
  start-page: 191
  year: 1975
  end-page: 193
  ident: BIB1
  article-title: Über das vorligen der Eigenschaft von monotoner Art bei fortschreitend bzw. nur als ganzes losbarem systemen
  publication-title: Z. Angew. Math. Mech.
– volume: 55
  start-page: 31
  year: 1993
  end-page: 48
  ident: BIB8
  article-title: A computational method for solving singular perturbation problems
  publication-title: Appl. Math. Comput.
– volume: 133
  start-page: 411
  year: 1988
  end-page: 436
  ident: BIB26
  article-title: Further examples of the boundary value technique in singular perturbation problems
  publication-title: J. Math. Anal. Appl.
– year: 1986
  ident: BIB13
  publication-title: Numerical Algorithms–Computations in Science and Engineering
– year: 1990
  ident: BIB20
  publication-title: Singular Perturbation Methods for Ordinary Differential Equations
– year: 1996
  ident: BIB28
  article-title: Numerical methods for singularly perturbed differential equations- convection-diffusion and flow problems
– volume: 21
  start-page: 185
  year: 1987
  end-page: 199
  ident: BIB11
  article-title: Approximate methods for the numerical solution of singular perturbation problems
  publication-title: Appl. Math. Comput.
– volume: 41
  start-page: 223
  year: 1983
  end-page: 253
  ident: BIB17
  article-title: The uniform stability of singularly perturbed discrete and continuous boundary value problems
  publication-title: Numer. Math.
– volume: 14
  start-page: 97
  year: 1994
  end-page: 109
  ident: BIB29
  article-title: Locking in finite element approximation of long thin extensible beams
  publication-title: IMA J. Numer. Anal.
– volume: 87
  start-page: 489
  year: 1982
  end-page: 508
  ident: BIB25
  article-title: A boundary value technique for singular perturbation problems
  publication-title: J. Math. Anal. Appl.
– volume: 15
  start-page: 117
  year: 1995
  end-page: 139
  ident: BIB31
  article-title: Finite element methods for singularly perturbed higher order elliptic two point boundary value problems II: reaction-diffusion type
  publication-title: IMA J. Numer. Anal.
– year: 1980
  ident: BIB2
  publication-title: Uniform Numerical Methods for Problems with Initial and Boundary Layers
– year: 1996
  ident: BIB15
  publication-title: Fitted Numerical Methods for Singular Perturbation Problems. Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions
– volume: 43
  start-page: 993
  year: 1983
  end-page: 1004
  ident: BIB6
  article-title: The asymptotic solution of a class of third-order boundary value problem arising in the theory of thin film flow
  publication-title: SIAM J. Appl. Math.
– volume: 21
  start-page: 221
  year: 1987
  end-page: 232
  ident: BIB12
  article-title: Perturbation problems via deviating arguments
  publication-title: Appl. Math. Comput.
– volume: 93
  start-page: 259
  year: 1998
  ident: 10.1016/S0096-3003(01)00040-6_BIB18
  article-title: A computational method for solving singularly perturbed turning point problems exhibiting twin boundary layers
  publication-title: Appl. Math. Comput.
  doi: 10.1016/S0096-3003(97)10056-X
– year: 1974
  ident: 10.1016/S0096-3003(01)00040-6_BIB19
– volume: 21
  start-page: 185
  year: 1987
  ident: 10.1016/S0096-3003(01)00040-6_BIB11
  article-title: Approximate methods for the numerical solution of singular perturbation problems
  publication-title: Appl. Math. Comput.
  doi: 10.1016/0096-3003(87)90001-4
– year: 1991
  ident: 10.1016/S0096-3003(01)00040-6_BIB21
– volume: 15
  start-page: 117
  year: 1995
  ident: 10.1016/S0096-3003(01)00040-6_BIB30
  article-title: Finite element methods for singularly perturbed higher order elliptic two point boundary value problems I: reaction-diffusion type
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/15.1.117
– volume: 3a
  start-page: 309
  year: 1984
  ident: 10.1016/S0096-3003(01)00040-6_BIB7
  article-title: Improvement of numerical solution of boundary layer problems by incorporation of asymptotic approximation
  publication-title: Numer. Math.
– volume: 133
  start-page: 411
  year: 1988
  ident: 10.1016/S0096-3003(01)00040-6_BIB26
  article-title: Further examples of the boundary value technique in singular perturbation problems
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(88)90412-X
– year: 1986
  ident: 10.1016/S0096-3003(01)00040-6_BIB13
– year: 1996
  ident: 10.1016/S0096-3003(01)00040-6_BIB15
– volume: 41
  start-page: 223
  year: 1983
  ident: 10.1016/S0096-3003(01)00040-6_BIB17
  article-title: The uniform stability of singularly perturbed discrete and continuous boundary value problems
  publication-title: Numer. Math.
  doi: 10.1007/BF01390214
– volume: 21
  start-page: 221
  year: 1987
  ident: 10.1016/S0096-3003(01)00040-6_BIB12
  article-title: Perturbation problems via deviating arguments
  publication-title: Appl. Math. Comput.
  doi: 10.1016/0096-3003(87)90003-8
– year: 1967
  ident: 10.1016/S0096-3003(01)00040-6_BIB22
– volume: 228
  start-page: 30
  year: 1991
  ident: 10.1016/S0096-3003(01)00040-6_BIB27
  article-title: A uniformly convergent discretization method for a fourth order singular perturbation problem
  publication-title: Bonner Math. Schriften
– volume: 51
  start-page: 631
  year: 1988
  ident: 10.1016/S0096-3003(01)00040-6_BIB4
  article-title: Graded-mesh difference schemes for singularly perturbed two-point boundary value problems
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-1988-0935072-1
– volume: 87
  start-page: 489
  year: 1982
  ident: 10.1016/S0096-3003(01)00040-6_BIB25
  article-title: A boundary value technique for singular perturbation problems
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(82)90139-1
– volume: 21
  start-page: 93
  year: 1987
  ident: 10.1016/S0096-3003(01)00040-6_BIB10
  article-title: Numerical treatment of singularly perturbed two-point boundary-value problems
  publication-title: Appl. Math. Comput.
  doi: 10.1016/0096-3003(87)90020-8
– volume: 15
  start-page: 117
  year: 1995
  ident: 10.1016/S0096-3003(01)00040-6_BIB31
  article-title: Finite element methods for singularly perturbed higher order elliptic two point boundary value problems II: reaction-diffusion type
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/15.1.117
– volume: 7
  start-page: 459
  year: 1987
  ident: 10.1016/S0096-3003(01)00040-6_BIB3
  article-title: Sufficient conditions for uniform convergence of a class of difference schemes for a singular perturbation problems
  publication-title: IMAJ. Numer. Anal.
  doi: 10.1093/imanum/7.4.459
– volume: 71
  issue: 1
  year: 1979
  ident: 10.1016/S0096-3003(01)00040-6_BIB23
  article-title: Singular perturbation problems for systems of PDEs of elliptic type
  publication-title: JMAA
– year: 1981
  ident: 10.1016/S0096-3003(01)00040-6_BIB16
– year: 1990
  ident: 10.1016/S0096-3003(01)00040-6_BIB20
– year: 1980
  ident: 10.1016/S0096-3003(01)00040-6_BIB2
– volume: 3
  start-page: 79
  issue: 1
  year: 1994
  ident: 10.1016/S0096-3003(01)00040-6_BIB14
  article-title: Singularly perturbed higher order boundary value problems
  publication-title: J. Differential Equations
  doi: 10.1006/jdeq.1994.1076
– volume: 13
  start-page: 61
  issue: 1
  year: 1982
  ident: 10.1016/S0096-3003(01)00040-6_BIB5
  article-title: Differential inequalities of higher order and the asymptotic solution of nonlinear boundary value problems
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/0513005
– volume: vol. 23, Numero 3, Decembro
  year: 1980
  ident: 10.1016/S0096-3003(01)00040-6_BIB24
  article-title: Singular perturbation problems for systems of partial differential equations of parabolic type
  publication-title: Funkcialaj Ekvacioj
– volume: 88
  start-page: 265
  issue: 2
  year: 1990
  ident: 10.1016/S0096-3003(01)00040-6_BIB32
  article-title: Singular perturbations of boundary value problems for a class of third order nonlinear ordinary differential equations
  publication-title: J. Diff. Eqs.
  doi: 10.1016/0022-0396(90)90099-B
– volume: 55
  start-page: 191
  year: 1975
  ident: 10.1016/S0096-3003(01)00040-6_BIB1
  article-title: Über das vorligen der Eigenschaft von monotoner Art bei fortschreitend bzw. nur als ganzes losbarem systemen
  publication-title: Z. Angew. Math. Mech.
– volume: 43
  start-page: 993
  issue: 5
  year: 1983
  ident: 10.1016/S0096-3003(01)00040-6_BIB6
  article-title: The asymptotic solution of a class of third-order boundary value problem arising in the theory of thin film flow
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/0143065
– year: 1996
  ident: 10.1016/S0096-3003(01)00040-6_BIB28
– volume: 27
  start-page: 83
  issue: 5
  year: 1994
  ident: 10.1016/S0096-3003(01)00040-6_BIB9
  article-title: A numerical method for singular perturbation problems arising in chemical reactor theory
  publication-title: Comput. Math. Appl.
  doi: 10.1016/0898-1221(94)90078-7
– volume: 14
  start-page: 97
  year: 1994
  ident: 10.1016/S0096-3003(01)00040-6_BIB29
  article-title: Locking in finite element approximation of long thin extensible beams
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/14.1.97
– volume: 55
  start-page: 31
  year: 1993
  ident: 10.1016/S0096-3003(01)00040-6_BIB8
  article-title: A computational method for solving singular perturbation problems
  publication-title: Appl. Math. Comput.
  doi: 10.1016/0096-3003(93)90004-X
SSID ssj0007614
Score 1.8577747
Snippet Singularly perturbed two-point boundary value problems (BVPs) for fourth-order ordinary differential equations (ODEs) with a small positive parameter...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 269
SubjectTerms Asymptotic expansion
Boundary layer
Exact sciences and technology
Exponentially fitted difference scheme
Finite difference scheme
Fourth-order ordinary differential equation
Mathematical analysis
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Ordinary differential equations
Partial differential equations, boundary value problems
Sciences and techniques of general use
Self-adjoint boundary value problem
Singularly perturbed problems
Title A numerical method for boundary value problems for singularly perturbed fourth-order ordinary differential equations
URI https://dx.doi.org/10.1016/S0096-3003(01)00040-6
Volume 129
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b8IwELYoLK2qqk-VPpCHDu0QSLDzGhEqoq1gKhJblDi2ioRoGsLA0t_eOzuBMlRIXSIl0TmRz7n7HPu-j5AHJhX3uVSWwhDIE-5isTJ8VzbrMpGkAMGx3nk09oYT_jp1pzXSr2phcFtlGftNTNfRurzSKXuzk81mWOMbIl8UjFAEJki73eiy0AvqpNF7eRuONwEZZuqGjDnEbV422xbymEb0xUfbedLtWN5fKeo4i5fQccooXvxKQ4NTclLiR9ozr3hGanJxTo5GG_LV5QUpenSxMgsxc2oUoilAU5poBaV8TZHgW9JSSmap7-EfA9yQOl_TTOaQhhKJRqu8-LA0OyeFoy7dpZWkCoSGOZVfhip8eUkmg-f3_tAqxRUswZhfWJ4tYsj-KvUF4z5jaarSrqtswbkt48ARfqi6AuKoVIAwXFQ3FTEu48VeCnMSzq5IffG5kNeEuqkIYglYQUrBZZgEAmBICkBLcAfO3CbhVX9GomQeRwGMebTdYgZuiNANke1E2g2R1yTtjVlmqDf2GQSVs6KdMRRBethn2tpx7vaBzEfSO_fm_23fkkMtIYNsnPYdqRf5St4DkimSFjlofzutcrz-AGZH7go
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b8IwELYQDG1VVX2q9EE9dGiHlICdByNCRVAeE0hsVuLYKhKiFMLAv--dnUAZKqQukZLonMjn3H2Ofd9HyDNTmgdcaUdjCOQx97BYGb4rl9WZjBOA4FjvPBj6nTH_mHiTAmnltTC4rTKL_Tamm2idXalmvVldTKdY49tAvigYoQhMkHa7hOxUvEhKzW6vM9wGZJipWzLmBm7zctmukMc2Yi6-uLVX047j_5WiThfRCjpOW8WLX2mofU7OMvxIm_YVL0hBzS_JyWBLvrq6ImmTztd2IWZGrUI0BWhKY6OgtNxQJPhWNJOSWZl7-McAN6TONnShlpCGYoVG62X66Rh2TgpHU7pLc0kVCA0zqr4tVfjqmozb76NWx8nEFRzJWJA6visjyP46CSTjAWNJopO6p13JuauisCaDhq5LiKNKA8LwUN1URriMF_kJzEk4uyHF-ddc3RLqJTKMFGAFpSRXjTiUAEMSAFqS1-DMKxOe96eQGfM4CmDMxG6LGbhBoBuEWxPGDcIvk7et2cJSbxwyCHNnib0xJCA9HDKt7Dl390AWIOmdd_f_tp_IUWc06It-d9i7J8dGTgaZOd0HUkyXa_UIqCaNK9mo_QEI6e_y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+numerical+method+for+boundary+value+problems+for+singularly+perturbed+fourth-order+ordinary+differential+equations&rft.jtitle=Applied+mathematics+and+computation&rft.au=Shanthi%2C+V.&rft.au=Ramanujam%2C+N.&rft.date=2002-07-10&rft.issn=0096-3003&rft.volume=129&rft.issue=2-3&rft.spage=269&rft.epage=294&rft_id=info:doi/10.1016%2FS0096-3003%2801%2900040-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S0096_3003_01_00040_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon