Rh single-atom nanozymes for efficient ascorbic acid oxidation and detection

The management of ascorbic acid (AA) in biological fluids is of significant importance for body functions and human health, yet challenging due to the lack of high-performance sensing catalysts. Herein, we report the design of Rh single-atom nanozymes (Rh SAzymes) by mimicking the active sites of as...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 15; no. 14; pp. 6629 - 6635
Main Authors Shi, Xiaoyue, Li, Juan, Xiong, Yu, Liu, Ziyu, Zhan, Jinhua, Cai, Bin
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 06.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The management of ascorbic acid (AA) in biological fluids is of significant importance for body functions and human health, yet challenging due to the lack of high-performance sensing catalysts. Herein, we report the design of Rh single-atom nanozymes (Rh SAzymes) by mimicking the active sites of ascorbate peroxidase toward efficient electrocatalytic oxidation and detection of AA. Benefiting from the enzyme-mimicking single-atom coordination, the Rh SAzyme exhibits an unprecedented electrocatalytic activity for AA oxidation with an onset potential as low as 0.02 V ( vs. Ag/AgCl). Combined with the screen-printing technology, a miniaturized Rh SAzyme biosensor was firstly constructed for tracking dynamic trends of AA in the human subject and detecting AA content in nutritional products. The as-prepared biosensor exhibits excellent detection performances with a wide linear range of 10.0 μM-53.1 mM, a low detection limit of 0.26 μM, and a long stability of 28 days. This work opens a door for the design of artificial single-atom electrocatalysts to mimic natural enzymes and their subsequent application in biosensors. Rh single-atom nanozymes are designed to mimic the active sites of ascorbate peroxidase, based on which electrochemical sensors have been developed for efficient ascorbic acid detection.
AbstractList The management of ascorbic acid (AA) in biological fluids is of significant importance for body functions and human health, yet challenging due to the lack of high-performance sensing catalysts. Herein, we report the design of Rh single-atom nanozymes (Rh SAzymes) by mimicking the active sites of ascorbate peroxidase toward efficient electrocatalytic oxidation and detection of AA. Benefiting from the enzyme-mimicking single-atom coordination, the Rh SAzyme exhibits an unprecedented electrocatalytic activity for AA oxidation with an onset potential as low as 0.02 V (vs. Ag/AgCl). Combined with the screen-printing technology, a miniaturized Rh SAzyme biosensor was firstly constructed for tracking dynamic trends of AA in the human subject and detecting AA content in nutritional products. The as-prepared biosensor exhibits excellent detection performances with a wide linear range of 10.0 μM-53.1 mM, a low detection limit of 0.26 μM, and a long stability of 28 days. This work opens a door for the design of artificial single-atom electrocatalysts to mimic natural enzymes and their subsequent application in biosensors.The management of ascorbic acid (AA) in biological fluids is of significant importance for body functions and human health, yet challenging due to the lack of high-performance sensing catalysts. Herein, we report the design of Rh single-atom nanozymes (Rh SAzymes) by mimicking the active sites of ascorbate peroxidase toward efficient electrocatalytic oxidation and detection of AA. Benefiting from the enzyme-mimicking single-atom coordination, the Rh SAzyme exhibits an unprecedented electrocatalytic activity for AA oxidation with an onset potential as low as 0.02 V (vs. Ag/AgCl). Combined with the screen-printing technology, a miniaturized Rh SAzyme biosensor was firstly constructed for tracking dynamic trends of AA in the human subject and detecting AA content in nutritional products. The as-prepared biosensor exhibits excellent detection performances with a wide linear range of 10.0 μM-53.1 mM, a low detection limit of 0.26 μM, and a long stability of 28 days. This work opens a door for the design of artificial single-atom electrocatalysts to mimic natural enzymes and their subsequent application in biosensors.
The management of ascorbic acid (AA) in biological fluids is of significant importance for body functions and human health, yet challenging due to the lack of high-performance sensing catalysts. Herein, we report the design of Rh single-atom nanozymes (Rh SAzymes) by mimicking the active sites of ascorbate peroxidase toward efficient electrocatalytic oxidation and detection of AA. Benefiting from the enzyme-mimicking single-atom coordination, the Rh SAzyme exhibits an unprecedented electrocatalytic activity for AA oxidation with an onset potential as low as 0.02 V ( vs. Ag/AgCl). Combined with the screen-printing technology, a miniaturized Rh SAzyme biosensor was firstly constructed for tracking dynamic trends of AA in the human subject and detecting AA content in nutritional products. The as-prepared biosensor exhibits excellent detection performances with a wide linear range of 10.0 μM-53.1 mM, a low detection limit of 0.26 μM, and a long stability of 28 days. This work opens a door for the design of artificial single-atom electrocatalysts to mimic natural enzymes and their subsequent application in biosensors. Rh single-atom nanozymes are designed to mimic the active sites of ascorbate peroxidase, based on which electrochemical sensors have been developed for efficient ascorbic acid detection.
The management of ascorbic acid (AA) in biological fluids is of significant importance for body functions and human health, yet challenging due to the lack of high-performance sensing catalysts. Herein, we report the design of Rh single-atom nanozymes (Rh SAzymes) by mimicking the active sites of ascorbate peroxidase toward efficient electrocatalytic oxidation and detection of AA. Benefiting from the enzyme-mimicking single-atom coordination, the Rh SAzyme exhibits an unprecedented electrocatalytic activity for AA oxidation with an onset potential as low as 0.02 V (vs. Ag/AgCl). Combined with the screen-printing technology, a miniaturized Rh SAzyme biosensor was firstly constructed for tracking dynamic trends of AA in the human subject and detecting AA content in nutritional products. The as-prepared biosensor exhibits excellent detection performances with a wide linear range of 10.0 μM–53.1 mM, a low detection limit of 0.26 μM, and a long stability of 28 days. This work opens a door for the design of artificial single-atom electrocatalysts to mimic natural enzymes and their subsequent application in biosensors.
The management of ascorbic acid (AA) in biological fluids is of significant importance for body functions and human health, yet challenging due to the lack of high-performance sensing catalysts. Herein, we report the design of Rh single-atom nanozymes (Rh SAzymes) by mimicking the active sites of ascorbate peroxidase toward efficient electrocatalytic oxidation and detection of AA. Benefiting from the enzyme-mimicking single-atom coordination, the Rh SAzyme exhibits an unprecedented electrocatalytic activity for AA oxidation with an onset potential as low as 0.02 V ( vs. Ag/AgCl). Combined with the screen-printing technology, a miniaturized Rh SAzyme biosensor was firstly constructed for tracking dynamic trends of AA in the human subject and detecting AA content in nutritional products. The as-prepared biosensor exhibits excellent detection performances with a wide linear range of 10.0 μM–53.1 mM, a low detection limit of 0.26 μM, and a long stability of 28 days. This work opens a door for the design of artificial single-atom electrocatalysts to mimic natural enzymes and their subsequent application in biosensors.
The management of ascorbic acid (AA) in biological fluids is of significant importance for body functions and human health, yet challenging due to the lack of high-performance sensing catalysts. Herein, we report the design of Rh single-atom nanozymes (Rh SAzymes) by mimicking the active sites of ascorbate peroxidase toward efficient electrocatalytic oxidation and detection of AA. Benefiting from the enzyme-mimicking single-atom coordination, the Rh SAzyme exhibits an unprecedented electrocatalytic activity for AA oxidation with an onset potential as low as 0.02 V ( Ag/AgCl). Combined with the screen-printing technology, a miniaturized Rh SAzyme biosensor was firstly constructed for tracking dynamic trends of AA in the human subject and detecting AA content in nutritional products. The as-prepared biosensor exhibits excellent detection performances with a wide linear range of 10.0 μM-53.1 mM, a low detection limit of 0.26 μM, and a long stability of 28 days. This work opens a door for the design of artificial single-atom electrocatalysts to mimic natural enzymes and their subsequent application in biosensors.
Author Zhan, Jinhua
Li, Juan
Cai, Bin
Xiong, Yu
Shi, Xiaoyue
Liu, Ziyu
AuthorAffiliation Central South University
NHC Key Lab of Health Economics and Policy Research
MOE
Qingdao University of Science and Technology
Department of Chemistry and Chemical Engineering
Centre for Health Management and Policy Research
Cheeloo College of Medicine
Shandong University
Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
School of Chemistry and Chemical Engineering
School of Public Health
AuthorAffiliation_xml – sequence: 0
  name: Centre for Health Management and Policy Research
– sequence: 0
  name: Shandong University
– sequence: 0
  name: Department of Chemistry and Chemical Engineering
– sequence: 0
  name: Central South University
– sequence: 0
  name: School of Chemistry and Chemical Engineering
– sequence: 0
  name: Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
– sequence: 0
  name: School of Public Health
– sequence: 0
  name: MOE
– sequence: 0
  name: Cheeloo College of Medicine
– sequence: 0
  name: NHC Key Lab of Health Economics and Policy Research
– sequence: 0
  name: Qingdao University of Science and Technology
Author_xml – sequence: 1
  givenname: Xiaoyue
  surname: Shi
  fullname: Shi, Xiaoyue
– sequence: 2
  givenname: Juan
  surname: Li
  fullname: Li, Juan
– sequence: 3
  givenname: Yu
  surname: Xiong
  fullname: Xiong, Yu
– sequence: 4
  givenname: Ziyu
  surname: Liu
  fullname: Liu, Ziyu
– sequence: 5
  givenname: Jinhua
  surname: Zhan
  fullname: Zhan, Jinhua
– sequence: 6
  givenname: Bin
  surname: Cai
  fullname: Cai, Bin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36951617$$D View this record in MEDLINE/PubMed
BookMark eNpt0UtLxDAQB_Agiu-LdyXgRYTqpGmz6VF846Igei5pMtFom2jSBfXT23V1BfGUB78ZhvmvkUUfPBKyxeCAAa8ODfcRoJDyeYGs5lBAxvkoX5zfRbFC1lJ6AhAVF3yZrHBRlUyw0SoZ3z7S5PxDi5nqQ0e98uHjvcNEbYgUrXXaoe-pSjrExmmqtDM0vDmjehc8Vd5Qgz3q6WuDLFnVJtz8PtfJ_dnp3fFFNr45vzw-Gmd6GKzPBMicIRtxAFNIhqU0TdUwy5hkAvIG2DAmWmY4b2zOuQWsdC65KKVFGH7Wyd6s70sMrxNMfd25pLFtlccwSXU-qgBKEEIMdPcPfQqT6IfppqqshGCyGNTOt5o0HZr6JbpOxff6Z08D2J8BHUNKEe2cMKinIdQn_Pr2K4SrAcMfrF3_ta4-Ktf-X7I9K4lJz1v_5so_AebqkLI
CitedBy_id crossref_primary_10_1002_slct_202402650
crossref_primary_10_1016_j_microc_2025_113380
crossref_primary_10_1016_j_bios_2024_116256
crossref_primary_10_1021_acsanm_4c01873
crossref_primary_10_1021_acsnano_4c00308
crossref_primary_10_1016_j_trac_2023_117280
crossref_primary_10_1016_j_foodchem_2023_137750
crossref_primary_10_1016_j_ccr_2023_215450
crossref_primary_10_1002_smsc_202400025
crossref_primary_10_1021_acs_analchem_3c05245
crossref_primary_10_1016_j_microc_2024_111731
crossref_primary_10_1016_j_nanoms_2023_12_006
crossref_primary_10_3390_molecules28155847
crossref_primary_10_3390_molecules29225254
crossref_primary_10_1007_s12274_023_6208_7
crossref_primary_10_1039_D3CP05403A
crossref_primary_10_1007_s11771_024_5831_0
crossref_primary_10_1016_j_snb_2025_137227
Cites_doi 10.1021/acs.analchem.1c04912
10.1038/s41467-020-20314-w
10.1039/C8CS00457A
10.1021/acs.analchem.1c05189
10.1016/j.foodchem.2022.132251
10.1016/S0039-9140(00)00618-4
10.1021/ac00127a069
10.1016/j.electacta.2016.12.055
10.1007/s12274-022-4371-x
10.1021/ja991407a
10.1021/acssensors.0c00604
10.1007/s10800-011-0277-0
10.1021/acs.nanolett.7b03607
10.1007/s12274-020-3244-4
10.3390/nu11122956
10.1021/acssensors.2c01597
10.1016/j.bios.2019.111474
10.1016/j.nantod.2021.101269
10.1007/s12274-022-4265-y
10.1021/acsaem.9b02513
10.1016/j.bios.2019.04.058
10.1038/s41929-021-00609-x
10.1021/ac00298a046
10.1002/cjoc.202000383
10.1016/j.bios.2018.10.012
10.1056/NEJM198604033141407
10.1039/C7CS00582B
10.1007/s12274-021-3794-0
10.1021/acssensors.1c00553
10.1002/anie.202004841
10.1016/j.foodchem.2020.126509
10.1021/acs.analchem.1c01581
10.1002/anie.202215136
10.1021/acs.analchem.2c00684
10.1016/j.foodchem.2020.128692
10.1080/13590840802305423
10.1021/acs.analchem.0c05191
10.1186/1475-2891-2-7
10.1007/s11427-019-9518-0
10.1038/nsb913
10.1016/j.jcis.2019.10.007
10.1002/anie.202212653
10.1016/j.bios.2018.08.043
10.1016/j.snb.2018.12.079
10.1021/jacs.0c09599
10.1021/jacs.0c09108
10.1016/j.ccell.2018.07.014
10.1002/anie.201905645
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2023
Copyright_xml – notice: Copyright Royal Society of Chemistry 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
DOI 10.1039/d3nr00488k
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Materials Research Database
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-3372
EndPage 6635
ExternalDocumentID 36951617
10_1039_D3NR00488K
d3nr00488k
Genre Journal Article
GroupedDBID ---
-JG
0-7
0R~
29M
4.4
53G
705
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
H13
HZ~
H~N
J3I
O-G
O9-
OK1
P2P
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
RVUXY
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
ID FETCH-LOGICAL-c337t-60821e17300d481e58db9b1f1181602b01936ef1d33bf233f0e9c283658fe0f23
ISSN 2040-3364
2040-3372
IngestDate Fri Jul 11 16:07:26 EDT 2025
Mon Jun 30 03:09:23 EDT 2025
Wed Feb 19 02:24:49 EST 2025
Thu Apr 24 22:57:41 EDT 2025
Tue Jul 01 00:42:06 EDT 2025
Tue Dec 17 20:59:04 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c337t-60821e17300d481e58db9b1f1181602b01936ef1d33bf233f0e9c283658fe0f23
Notes Electronic supplementary information (ESI) available. See DOI
https://doi.org/10.1039/d3nr00488k
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9156-0438
0000-0003-0548-8028
0000-0002-3263-0395
PMID 36951617
PQID 2795966184
PQPubID 2047485
PageCount 7
ParticipantIDs pubmed_primary_36951617
crossref_primary_10_1039_D3NR00488K
rsc_primary_d3nr00488k
proquest_journals_2795966184
crossref_citationtrail_10_1039_D3NR00488K
proquest_miscellaneous_2790050666
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-06
PublicationDateYYYYMMDD 2023-04-06
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-06
  day: 06
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Nanoscale
PublicationTitleAlternate Nanoscale
PublicationYear 2023
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Naidu (D3NR00488K/cit12/1) 2003; 2
Sempionatto (D3NR00488K/cit10/1) 2019; 137
Wang (D3NR00488K/cit24/1) 2022; 15
Ma (D3NR00488K/cit44/1) 2022; 94
Karimi-Maleh (D3NR00488K/cit50/1) 2020; 560
Shahamirifard (D3NR00488K/cit48/1) 2019; 141
Hasan (D3NR00488K/cit38/1) 2020; 3
Liu (D3NR00488K/cit26/1) 2022; 34
Jiao (D3NR00488K/cit13/1) 2020; 59
Isola (D3NR00488K/cit54/1) 2019; 11
Lin (D3NR00488K/cit18/1) 2019; 62
Jiang (D3NR00488K/cit20/1) 2021; 39
Wang (D3NR00488K/cit27/1) 2020; 59
Wu (D3NR00488K/cit17/1) 2021; 12
Yu (D3NR00488K/cit47/1) 2019; 322
Deakin (D3NR00488K/cit52/1) 1986; 58
Ji (D3NR00488K/cit14/1) 2021; 4
Yang (D3NR00488K/cit22/1) 2022; 61
Hickey (D3NR00488K/cit56/1) 2009; 17
Xiong (D3NR00488K/cit23/1) 2021; 14
Carr (D3NR00488K/cit2/1) 2020; 12
Zhang (D3NR00488K/cit15/1) 2023
Sharp (D3NR00488K/cit35/1) 2003; 10
Long (D3NR00488K/cit32/1) 2022; 94
Antonello (D3NR00488K/cit40/1) 1999; 121
Levine (D3NR00488K/cit1/1) 1986; 314
Cheng (D3NR00488K/cit16/1) 2022; 34
Rajkumar (D3NR00488K/cit53/1) 2011; 41
Hasnat (D3NR00488K/cit41/1) 2017; 225
Ledray (D3NR00488K/cit36/1) 2020; 142
Wang (D3NR00488K/cit30/1) 2020; 142
Thompson (D3NR00488K/cit37/1) 2018; 47
Shenoy (D3NR00488K/cit3/1) 2018; 34
Zhang (D3NR00488K/cit4/1) 2018; 121
Huang (D3NR00488K/cit49/1) 2019; 283
Zhu (D3NR00488K/cit29/1) 2022; 15
Veerapandi (D3NR00488K/cit43/1) 2022; 382
Sempionatto (D3NR00488K/cit6/1) 2021; 6
Chen (D3NR00488K/cit8/1) 2022; 94
Yao (D3NR00488K/cit31/1) 2022; 61
Hu (D3NR00488K/cit39/1) 1986; 58
Sempionatto (D3NR00488K/cit11/1) 2021; 6
Yang (D3NR00488K/cit42/1) 2019; 124
Wu (D3NR00488K/cit21/1) 2019; 48
Gal (D3NR00488K/cit55/1) 2001; 53
Bettazzi (D3NR00488K/cit45/1) 2021; 344
Yu (D3NR00488K/cit5/1) 2020; 32
Li (D3NR00488K/cit25/1) 2022; 15
Wang (D3NR00488K/cit51/1) 2017; 17
Li (D3NR00488K/cit7/1) 2021; 93
Wei (D3NR00488K/cit19/1) 2021; 40
Liu (D3NR00488K/cit28/1) 2023
Sempionatto (D3NR00488K/cit9/1) 2020; 5
de Faria (D3NR00488K/cit46/1) 2020; 319
Xie (D3NR00488K/cit34/1) 2021; 93
Zhou (D3NR00488K/cit33/1) 2022; 7
References_xml – volume: 94
  start-page: 1919
  year: 2022
  ident: D3NR00488K/cit32/1
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.1c04912
– volume: 12
  start-page: 1
  year: 2021
  ident: D3NR00488K/cit17/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20314-w
– volume: 48
  start-page: 1004
  year: 2019
  ident: D3NR00488K/cit21/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00457A
– volume: 94
  start-page: 2333
  year: 2022
  ident: D3NR00488K/cit44/1
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.1c05189
– volume: 382
  start-page: 132251
  year: 2022
  ident: D3NR00488K/cit43/1
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2022.132251
– volume: 53
  start-page: 1103
  year: 2001
  ident: D3NR00488K/cit55/1
  publication-title: Talanta
  doi: 10.1016/S0039-9140(00)00618-4
– volume: 58
  start-page: 3235
  year: 1986
  ident: D3NR00488K/cit39/1
  publication-title: Anal. Chem.
  doi: 10.1021/ac00127a069
– volume: 225
  start-page: 105
  year: 2017
  ident: D3NR00488K/cit41/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.12.055
– volume: 15
  start-page: 6888
  year: 2022
  ident: D3NR00488K/cit25/1
  publication-title: Nano Res.
  doi: 10.1007/s12274-022-4371-x
– volume: 61
  start-page: 1
  year: 2022
  ident: D3NR00488K/cit22/1
  publication-title: Angew. Chem., Int. Ed.
– volume: 61
  start-page: 1
  year: 2022
  ident: D3NR00488K/cit31/1
  publication-title: Angew. Chem., Int. Ed.
– volume: 121
  start-page: 9668
  year: 1999
  ident: D3NR00488K/cit40/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja991407a
– volume: 322
  start-page: 1
  year: 2019
  ident: D3NR00488K/cit47/1
  publication-title: Electrochim. Acta
– volume: 32
  start-page: 1
  year: 2020
  ident: D3NR00488K/cit5/1
  publication-title: Adv. Mater.
– volume: 5
  start-page: 1804
  year: 2020
  ident: D3NR00488K/cit9/1
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.0c00604
– volume: 41
  start-page: 663
  year: 2011
  ident: D3NR00488K/cit53/1
  publication-title: J. Appl. Electrochem.
  doi: 10.1007/s10800-011-0277-0
– volume: 17
  start-page: 7613
  year: 2017
  ident: D3NR00488K/cit51/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b03607
– volume: 14
  start-page: 2418
  year: 2021
  ident: D3NR00488K/cit23/1
  publication-title: Nano Res.
  doi: 10.1007/s12274-020-3244-4
– volume: 11
  start-page: 1
  year: 2019
  ident: D3NR00488K/cit54/1
  publication-title: Nutrients
  doi: 10.3390/nu11122956
– volume: 7
  start-page: 3422
  year: 2022
  ident: D3NR00488K/cit33/1
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.2c01597
– volume: 141
  start-page: 111474
  year: 2019
  ident: D3NR00488K/cit48/1
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2019.111474
– volume: 40
  start-page: 1
  year: 2021
  ident: D3NR00488K/cit19/1
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2021.101269
– volume: 15
  start-page: 5792
  year: 2022
  ident: D3NR00488K/cit29/1
  publication-title: Nano Res.
  doi: 10.1007/s12274-022-4265-y
– volume: 3
  start-page: 2907
  year: 2020
  ident: D3NR00488K/cit38/1
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.9b02513
– volume: 137
  start-page: 161
  year: 2019
  ident: D3NR00488K/cit10/1
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2019.04.058
– volume: 4
  start-page: 407
  year: 2021
  ident: D3NR00488K/cit14/1
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-021-00609-x
– volume: 58
  start-page: 1474
  year: 1986
  ident: D3NR00488K/cit52/1
  publication-title: Anal. Chem.
  doi: 10.1021/ac00298a046
– volume: 39
  start-page: 174
  year: 2021
  ident: D3NR00488K/cit20/1
  publication-title: Chin. J. Chem.
  doi: 10.1002/cjoc.202000383
– volume: 124
  start-page: 191
  year: 2019
  ident: D3NR00488K/cit42/1
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2018.10.012
– volume: 314
  start-page: 892
  year: 1986
  ident: D3NR00488K/cit1/1
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJM198604033141407
– volume: 47
  start-page: 929
  year: 2018
  ident: D3NR00488K/cit37/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00582B
– volume: 15
  start-page: 1730
  year: 2022
  ident: D3NR00488K/cit24/1
  publication-title: Nano Res.
  doi: 10.1007/s12274-021-3794-0
– volume: 6
  start-page: 1745
  year: 2021
  ident: D3NR00488K/cit6/1
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.1c00553
– volume: 59
  start-page: 13057
  year: 2020
  ident: D3NR00488K/cit27/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202004841
– volume: 34
  start-page: 1
  year: 2022
  ident: D3NR00488K/cit26/1
  publication-title: Adv. Mater.
– volume: 319
  start-page: 1
  year: 2020
  ident: D3NR00488K/cit46/1
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2020.126509
– volume: 12
  start-page: 1
  year: 2020
  ident: D3NR00488K/cit2/1
  publication-title: Nutrients
– volume: 93
  start-page: 14068
  year: 2021
  ident: D3NR00488K/cit7/1
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.1c01581
– year: 2023
  ident: D3NR00488K/cit15/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202215136
– volume: 94
  start-page: 7319
  year: 2022
  ident: D3NR00488K/cit8/1
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.2c00684
– volume: 344
  start-page: 1
  year: 2021
  ident: D3NR00488K/cit45/1
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2020.128692
– volume: 17
  start-page: 169
  year: 2009
  ident: D3NR00488K/cit56/1
  publication-title: J. Nutr. Environ. Med.
  doi: 10.1080/13590840802305423
– volume: 34
  start-page: 1
  year: 2022
  ident: D3NR00488K/cit16/1
  publication-title: Adv. Mater.
– volume: 93
  start-page: 4916
  year: 2021
  ident: D3NR00488K/cit34/1
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.0c05191
– volume: 2
  start-page: 1
  year: 2003
  ident: D3NR00488K/cit12/1
  publication-title: Nutr. J.
  doi: 10.1186/1475-2891-2-7
– volume: 6
  start-page: 1745
  year: 2021
  ident: D3NR00488K/cit11/1
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.1c00553
– volume: 62
  start-page: 710
  year: 2019
  ident: D3NR00488K/cit18/1
  publication-title: Sci. China: Life Sci.
  doi: 10.1007/s11427-019-9518-0
– volume: 10
  start-page: 303
  year: 2003
  ident: D3NR00488K/cit35/1
  publication-title: Nat. Struct. Biol.
  doi: 10.1038/nsb913
– volume: 560
  start-page: 208
  year: 2020
  ident: D3NR00488K/cit50/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2019.10.007
– year: 2023
  ident: D3NR00488K/cit28/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202212653
– volume: 121
  start-page: 96
  year: 2018
  ident: D3NR00488K/cit4/1
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2018.08.043
– volume: 283
  start-page: 556
  year: 2019
  ident: D3NR00488K/cit49/1
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2018.12.079
– volume: 142
  start-page: 19339
  year: 2020
  ident: D3NR00488K/cit30/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c09599
– volume: 142
  start-page: 20419
  year: 2020
  ident: D3NR00488K/cit36/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c09108
– volume: 34
  start-page: 700
  year: 2018
  ident: D3NR00488K/cit3/1
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2018.07.014
– volume: 59
  start-page: 2565
  year: 2020
  ident: D3NR00488K/cit13/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201905645
SSID ssj0069363
Score 2.51626
Snippet The management of ascorbic acid (AA) in biological fluids is of significant importance for body functions and human health, yet challenging due to the lack of...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6629
SubjectTerms Ascorbic Acid
Biosensors
Electrocatalysts
Humans
Oxidation
Oxidation-Reduction
Peroxidase
Rhodium
Screen printing
Title Rh single-atom nanozymes for efficient ascorbic acid oxidation and detection
URI https://www.ncbi.nlm.nih.gov/pubmed/36951617
https://www.proquest.com/docview/2795966184
https://www.proquest.com/docview/2790050666
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3fb5RAEMc32iamPjT-qlKrWaMv5oIFBvbgsf5sbO3D2cbzibCwmxJbaO4g8frXO7uwC7U1UV_IZVmOZD97czMw8x1CXvk-THNg3A0jYG4oowjtYF64IXD0N7zEY7EqcP5yxPZPws_zaG4ajffVJQ1_k1_eWFfyP1RxDLmqKtl_IGu_FAfwM_LFIxLG418xnp1OVKh_JlwMnc8nVVbVlyulvqR1vLU4hE4hX2KIyZUwa14Wk_pn2fVR0u8NCtHoZKxq7KWiya2XCM9C_6pb_07mZVavWjt6WHZ1HcMGm5d9hu_3dpjU6hcg5aodP2EIQCem9PrU2hIFKu0QYHrVbEbj7RGOjCBj3UOMa9bZAyVuWkC10Ibjx3gSruzFueYEDL0-1lV0_qaFbU7dJusBhgVo19b3Dt5--mb-e1kCDIwILSS7w602yB1z8VUP5FpYgU7GwjR_0U7G8T2y2UcHdK9DfZ_cEtUDcnekGfmQHM5O6Qg6tdApQqcWOjXQqYJOLXSK0KmF_oicfPxw_G7f7VtiuDmuf-My9Nh84asmA0UY-yKKC55wX6ryYeYFHB12YEL6BQCXAYD0RJKjB4l-phQejmyRtaquxBNCkbSfeSKOZIR4ZR4XU47BYxYwyZgHgUNem2VK814vXrUtOUt13gIk6Xs4munVPXDISzv3olNJuXHWjlnttP8VLdNANbtnqu2QQ17Y02jj1IurrBJ1q-conSKMtB3yuKNkb2OoOmQLsdnhgfz2Hy95SjaG7b5D1ppFK56hi9nw5_2--gUN83h2
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rh+single-atom+nanozymes+for+efficient+ascorbic+acid+oxidation+and+detection&rft.jtitle=Nanoscale&rft.au=Shi%2C+Xiaoyue&rft.au=Li%2C+Juan&rft.au=Xiong%2C+Yu&rft.au=Liu%2C+Ziyu&rft.date=2023-04-06&rft.eissn=2040-3372&rft.volume=15&rft.issue=14&rft.spage=6629&rft_id=info:doi/10.1039%2Fd3nr00488k&rft_id=info%3Apmid%2F36951617&rft.externalDocID=36951617
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon