Rh single-atom nanozymes for efficient ascorbic acid oxidation and detection
The management of ascorbic acid (AA) in biological fluids is of significant importance for body functions and human health, yet challenging due to the lack of high-performance sensing catalysts. Herein, we report the design of Rh single-atom nanozymes (Rh SAzymes) by mimicking the active sites of as...
Saved in:
Published in | Nanoscale Vol. 15; no. 14; pp. 6629 - 6635 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
06.04.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The management of ascorbic acid (AA) in biological fluids is of significant importance for body functions and human health, yet challenging due to the lack of high-performance sensing catalysts. Herein, we report the design of Rh single-atom nanozymes (Rh SAzymes) by mimicking the active sites of ascorbate peroxidase toward efficient electrocatalytic oxidation and detection of AA. Benefiting from the enzyme-mimicking single-atom coordination, the Rh SAzyme exhibits an unprecedented electrocatalytic activity for AA oxidation with an onset potential as low as 0.02 V (
vs.
Ag/AgCl). Combined with the screen-printing technology, a miniaturized Rh SAzyme biosensor was firstly constructed for tracking dynamic trends of AA in the human subject and detecting AA content in nutritional products. The as-prepared biosensor exhibits excellent detection performances with a wide linear range of 10.0 μM-53.1 mM, a low detection limit of 0.26 μM, and a long stability of 28 days. This work opens a door for the design of artificial single-atom electrocatalysts to mimic natural enzymes and their subsequent application in biosensors.
Rh single-atom nanozymes are designed to mimic the active sites of ascorbate peroxidase, based on which electrochemical sensors have been developed for efficient ascorbic acid detection. |
---|---|
AbstractList | The management of ascorbic acid (AA) in biological fluids is of significant importance for body functions and human health, yet challenging due to the lack of high-performance sensing catalysts. Herein, we report the design of Rh single-atom nanozymes (Rh SAzymes) by mimicking the active sites of ascorbate peroxidase toward efficient electrocatalytic oxidation and detection of AA. Benefiting from the enzyme-mimicking single-atom coordination, the Rh SAzyme exhibits an unprecedented electrocatalytic activity for AA oxidation with an onset potential as low as 0.02 V (vs. Ag/AgCl). Combined with the screen-printing technology, a miniaturized Rh SAzyme biosensor was firstly constructed for tracking dynamic trends of AA in the human subject and detecting AA content in nutritional products. The as-prepared biosensor exhibits excellent detection performances with a wide linear range of 10.0 μM-53.1 mM, a low detection limit of 0.26 μM, and a long stability of 28 days. This work opens a door for the design of artificial single-atom electrocatalysts to mimic natural enzymes and their subsequent application in biosensors.The management of ascorbic acid (AA) in biological fluids is of significant importance for body functions and human health, yet challenging due to the lack of high-performance sensing catalysts. Herein, we report the design of Rh single-atom nanozymes (Rh SAzymes) by mimicking the active sites of ascorbate peroxidase toward efficient electrocatalytic oxidation and detection of AA. Benefiting from the enzyme-mimicking single-atom coordination, the Rh SAzyme exhibits an unprecedented electrocatalytic activity for AA oxidation with an onset potential as low as 0.02 V (vs. Ag/AgCl). Combined with the screen-printing technology, a miniaturized Rh SAzyme biosensor was firstly constructed for tracking dynamic trends of AA in the human subject and detecting AA content in nutritional products. The as-prepared biosensor exhibits excellent detection performances with a wide linear range of 10.0 μM-53.1 mM, a low detection limit of 0.26 μM, and a long stability of 28 days. This work opens a door for the design of artificial single-atom electrocatalysts to mimic natural enzymes and their subsequent application in biosensors. The management of ascorbic acid (AA) in biological fluids is of significant importance for body functions and human health, yet challenging due to the lack of high-performance sensing catalysts. Herein, we report the design of Rh single-atom nanozymes (Rh SAzymes) by mimicking the active sites of ascorbate peroxidase toward efficient electrocatalytic oxidation and detection of AA. Benefiting from the enzyme-mimicking single-atom coordination, the Rh SAzyme exhibits an unprecedented electrocatalytic activity for AA oxidation with an onset potential as low as 0.02 V ( vs. Ag/AgCl). Combined with the screen-printing technology, a miniaturized Rh SAzyme biosensor was firstly constructed for tracking dynamic trends of AA in the human subject and detecting AA content in nutritional products. The as-prepared biosensor exhibits excellent detection performances with a wide linear range of 10.0 μM-53.1 mM, a low detection limit of 0.26 μM, and a long stability of 28 days. This work opens a door for the design of artificial single-atom electrocatalysts to mimic natural enzymes and their subsequent application in biosensors. Rh single-atom nanozymes are designed to mimic the active sites of ascorbate peroxidase, based on which electrochemical sensors have been developed for efficient ascorbic acid detection. The management of ascorbic acid (AA) in biological fluids is of significant importance for body functions and human health, yet challenging due to the lack of high-performance sensing catalysts. Herein, we report the design of Rh single-atom nanozymes (Rh SAzymes) by mimicking the active sites of ascorbate peroxidase toward efficient electrocatalytic oxidation and detection of AA. Benefiting from the enzyme-mimicking single-atom coordination, the Rh SAzyme exhibits an unprecedented electrocatalytic activity for AA oxidation with an onset potential as low as 0.02 V (vs. Ag/AgCl). Combined with the screen-printing technology, a miniaturized Rh SAzyme biosensor was firstly constructed for tracking dynamic trends of AA in the human subject and detecting AA content in nutritional products. The as-prepared biosensor exhibits excellent detection performances with a wide linear range of 10.0 μM–53.1 mM, a low detection limit of 0.26 μM, and a long stability of 28 days. This work opens a door for the design of artificial single-atom electrocatalysts to mimic natural enzymes and their subsequent application in biosensors. The management of ascorbic acid (AA) in biological fluids is of significant importance for body functions and human health, yet challenging due to the lack of high-performance sensing catalysts. Herein, we report the design of Rh single-atom nanozymes (Rh SAzymes) by mimicking the active sites of ascorbate peroxidase toward efficient electrocatalytic oxidation and detection of AA. Benefiting from the enzyme-mimicking single-atom coordination, the Rh SAzyme exhibits an unprecedented electrocatalytic activity for AA oxidation with an onset potential as low as 0.02 V ( vs. Ag/AgCl). Combined with the screen-printing technology, a miniaturized Rh SAzyme biosensor was firstly constructed for tracking dynamic trends of AA in the human subject and detecting AA content in nutritional products. The as-prepared biosensor exhibits excellent detection performances with a wide linear range of 10.0 μM–53.1 mM, a low detection limit of 0.26 μM, and a long stability of 28 days. This work opens a door for the design of artificial single-atom electrocatalysts to mimic natural enzymes and their subsequent application in biosensors. The management of ascorbic acid (AA) in biological fluids is of significant importance for body functions and human health, yet challenging due to the lack of high-performance sensing catalysts. Herein, we report the design of Rh single-atom nanozymes (Rh SAzymes) by mimicking the active sites of ascorbate peroxidase toward efficient electrocatalytic oxidation and detection of AA. Benefiting from the enzyme-mimicking single-atom coordination, the Rh SAzyme exhibits an unprecedented electrocatalytic activity for AA oxidation with an onset potential as low as 0.02 V ( Ag/AgCl). Combined with the screen-printing technology, a miniaturized Rh SAzyme biosensor was firstly constructed for tracking dynamic trends of AA in the human subject and detecting AA content in nutritional products. The as-prepared biosensor exhibits excellent detection performances with a wide linear range of 10.0 μM-53.1 mM, a low detection limit of 0.26 μM, and a long stability of 28 days. This work opens a door for the design of artificial single-atom electrocatalysts to mimic natural enzymes and their subsequent application in biosensors. |
Author | Zhan, Jinhua Li, Juan Cai, Bin Xiong, Yu Shi, Xiaoyue Liu, Ziyu |
AuthorAffiliation | Central South University NHC Key Lab of Health Economics and Policy Research MOE Qingdao University of Science and Technology Department of Chemistry and Chemical Engineering Centre for Health Management and Policy Research Cheeloo College of Medicine Shandong University Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering School of Public Health |
AuthorAffiliation_xml | – sequence: 0 name: Centre for Health Management and Policy Research – sequence: 0 name: Shandong University – sequence: 0 name: Department of Chemistry and Chemical Engineering – sequence: 0 name: Central South University – sequence: 0 name: School of Chemistry and Chemical Engineering – sequence: 0 name: Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science – sequence: 0 name: School of Public Health – sequence: 0 name: MOE – sequence: 0 name: Cheeloo College of Medicine – sequence: 0 name: NHC Key Lab of Health Economics and Policy Research – sequence: 0 name: Qingdao University of Science and Technology |
Author_xml | – sequence: 1 givenname: Xiaoyue surname: Shi fullname: Shi, Xiaoyue – sequence: 2 givenname: Juan surname: Li fullname: Li, Juan – sequence: 3 givenname: Yu surname: Xiong fullname: Xiong, Yu – sequence: 4 givenname: Ziyu surname: Liu fullname: Liu, Ziyu – sequence: 5 givenname: Jinhua surname: Zhan fullname: Zhan, Jinhua – sequence: 6 givenname: Bin surname: Cai fullname: Cai, Bin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36951617$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0UtLxDAQB_Agiu-LdyXgRYTqpGmz6VF846Igei5pMtFom2jSBfXT23V1BfGUB78ZhvmvkUUfPBKyxeCAAa8ODfcRoJDyeYGs5lBAxvkoX5zfRbFC1lJ6AhAVF3yZrHBRlUyw0SoZ3z7S5PxDi5nqQ0e98uHjvcNEbYgUrXXaoe-pSjrExmmqtDM0vDmjehc8Vd5Qgz3q6WuDLFnVJtz8PtfJ_dnp3fFFNr45vzw-Gmd6GKzPBMicIRtxAFNIhqU0TdUwy5hkAvIG2DAmWmY4b2zOuQWsdC65KKVFGH7Wyd6s70sMrxNMfd25pLFtlccwSXU-qgBKEEIMdPcPfQqT6IfppqqshGCyGNTOt5o0HZr6JbpOxff6Z08D2J8BHUNKEe2cMKinIdQn_Pr2K4SrAcMfrF3_ta4-Ktf-X7I9K4lJz1v_5so_AebqkLI |
CitedBy_id | crossref_primary_10_1002_slct_202402650 crossref_primary_10_1016_j_microc_2025_113380 crossref_primary_10_1016_j_bios_2024_116256 crossref_primary_10_1021_acsanm_4c01873 crossref_primary_10_1021_acsnano_4c00308 crossref_primary_10_1016_j_trac_2023_117280 crossref_primary_10_1016_j_foodchem_2023_137750 crossref_primary_10_1016_j_ccr_2023_215450 crossref_primary_10_1002_smsc_202400025 crossref_primary_10_1021_acs_analchem_3c05245 crossref_primary_10_1016_j_microc_2024_111731 crossref_primary_10_1016_j_nanoms_2023_12_006 crossref_primary_10_3390_molecules28155847 crossref_primary_10_3390_molecules29225254 crossref_primary_10_1007_s12274_023_6208_7 crossref_primary_10_1039_D3CP05403A crossref_primary_10_1007_s11771_024_5831_0 crossref_primary_10_1016_j_snb_2025_137227 |
Cites_doi | 10.1021/acs.analchem.1c04912 10.1038/s41467-020-20314-w 10.1039/C8CS00457A 10.1021/acs.analchem.1c05189 10.1016/j.foodchem.2022.132251 10.1016/S0039-9140(00)00618-4 10.1021/ac00127a069 10.1016/j.electacta.2016.12.055 10.1007/s12274-022-4371-x 10.1021/ja991407a 10.1021/acssensors.0c00604 10.1007/s10800-011-0277-0 10.1021/acs.nanolett.7b03607 10.1007/s12274-020-3244-4 10.3390/nu11122956 10.1021/acssensors.2c01597 10.1016/j.bios.2019.111474 10.1016/j.nantod.2021.101269 10.1007/s12274-022-4265-y 10.1021/acsaem.9b02513 10.1016/j.bios.2019.04.058 10.1038/s41929-021-00609-x 10.1021/ac00298a046 10.1002/cjoc.202000383 10.1016/j.bios.2018.10.012 10.1056/NEJM198604033141407 10.1039/C7CS00582B 10.1007/s12274-021-3794-0 10.1021/acssensors.1c00553 10.1002/anie.202004841 10.1016/j.foodchem.2020.126509 10.1021/acs.analchem.1c01581 10.1002/anie.202215136 10.1021/acs.analchem.2c00684 10.1016/j.foodchem.2020.128692 10.1080/13590840802305423 10.1021/acs.analchem.0c05191 10.1186/1475-2891-2-7 10.1007/s11427-019-9518-0 10.1038/nsb913 10.1016/j.jcis.2019.10.007 10.1002/anie.202212653 10.1016/j.bios.2018.08.043 10.1016/j.snb.2018.12.079 10.1021/jacs.0c09599 10.1021/jacs.0c09108 10.1016/j.ccell.2018.07.014 10.1002/anie.201905645 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2023 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2023 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
DOI | 10.1039/d3nr00488k |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2040-3372 |
EndPage | 6635 |
ExternalDocumentID | 36951617 10_1039_D3NR00488K d3nr00488k |
Genre | Journal Article |
GroupedDBID | --- -JG 0-7 0R~ 29M 4.4 53G 705 7~J AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFVBQ AGEGJ AGRSR AGSTE AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K DU5 EBS ECGLT EE0 EF- F5P GGIMP H13 HZ~ H~N J3I O-G O9- OK1 P2P RAOCF RCNCU RNS RPMJG RRC RSCEA RVUXY AAYXX AFRZK AKMSF ALUYA CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c337t-60821e17300d481e58db9b1f1181602b01936ef1d33bf233f0e9c283658fe0f23 |
ISSN | 2040-3364 2040-3372 |
IngestDate | Fri Jul 11 16:07:26 EDT 2025 Mon Jun 30 03:09:23 EDT 2025 Wed Feb 19 02:24:49 EST 2025 Thu Apr 24 22:57:41 EDT 2025 Tue Jul 01 00:42:06 EDT 2025 Tue Dec 17 20:59:04 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c337t-60821e17300d481e58db9b1f1181602b01936ef1d33bf233f0e9c283658fe0f23 |
Notes | Electronic supplementary information (ESI) available. See DOI https://doi.org/10.1039/d3nr00488k ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9156-0438 0000-0003-0548-8028 0000-0002-3263-0395 |
PMID | 36951617 |
PQID | 2795966184 |
PQPubID | 2047485 |
PageCount | 7 |
ParticipantIDs | pubmed_primary_36951617 crossref_primary_10_1039_D3NR00488K rsc_primary_d3nr00488k proquest_journals_2795966184 crossref_citationtrail_10_1039_D3NR00488K proquest_miscellaneous_2790050666 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-06 |
PublicationDateYYYYMMDD | 2023-04-06 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-06 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Nanoscale |
PublicationTitleAlternate | Nanoscale |
PublicationYear | 2023 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Naidu (D3NR00488K/cit12/1) 2003; 2 Sempionatto (D3NR00488K/cit10/1) 2019; 137 Wang (D3NR00488K/cit24/1) 2022; 15 Ma (D3NR00488K/cit44/1) 2022; 94 Karimi-Maleh (D3NR00488K/cit50/1) 2020; 560 Shahamirifard (D3NR00488K/cit48/1) 2019; 141 Hasan (D3NR00488K/cit38/1) 2020; 3 Liu (D3NR00488K/cit26/1) 2022; 34 Jiao (D3NR00488K/cit13/1) 2020; 59 Isola (D3NR00488K/cit54/1) 2019; 11 Lin (D3NR00488K/cit18/1) 2019; 62 Jiang (D3NR00488K/cit20/1) 2021; 39 Wang (D3NR00488K/cit27/1) 2020; 59 Wu (D3NR00488K/cit17/1) 2021; 12 Yu (D3NR00488K/cit47/1) 2019; 322 Deakin (D3NR00488K/cit52/1) 1986; 58 Ji (D3NR00488K/cit14/1) 2021; 4 Yang (D3NR00488K/cit22/1) 2022; 61 Hickey (D3NR00488K/cit56/1) 2009; 17 Xiong (D3NR00488K/cit23/1) 2021; 14 Carr (D3NR00488K/cit2/1) 2020; 12 Zhang (D3NR00488K/cit15/1) 2023 Sharp (D3NR00488K/cit35/1) 2003; 10 Long (D3NR00488K/cit32/1) 2022; 94 Antonello (D3NR00488K/cit40/1) 1999; 121 Levine (D3NR00488K/cit1/1) 1986; 314 Cheng (D3NR00488K/cit16/1) 2022; 34 Rajkumar (D3NR00488K/cit53/1) 2011; 41 Hasnat (D3NR00488K/cit41/1) 2017; 225 Ledray (D3NR00488K/cit36/1) 2020; 142 Wang (D3NR00488K/cit30/1) 2020; 142 Thompson (D3NR00488K/cit37/1) 2018; 47 Shenoy (D3NR00488K/cit3/1) 2018; 34 Zhang (D3NR00488K/cit4/1) 2018; 121 Huang (D3NR00488K/cit49/1) 2019; 283 Zhu (D3NR00488K/cit29/1) 2022; 15 Veerapandi (D3NR00488K/cit43/1) 2022; 382 Sempionatto (D3NR00488K/cit6/1) 2021; 6 Chen (D3NR00488K/cit8/1) 2022; 94 Yao (D3NR00488K/cit31/1) 2022; 61 Hu (D3NR00488K/cit39/1) 1986; 58 Sempionatto (D3NR00488K/cit11/1) 2021; 6 Yang (D3NR00488K/cit42/1) 2019; 124 Wu (D3NR00488K/cit21/1) 2019; 48 Gal (D3NR00488K/cit55/1) 2001; 53 Bettazzi (D3NR00488K/cit45/1) 2021; 344 Yu (D3NR00488K/cit5/1) 2020; 32 Li (D3NR00488K/cit25/1) 2022; 15 Wang (D3NR00488K/cit51/1) 2017; 17 Li (D3NR00488K/cit7/1) 2021; 93 Wei (D3NR00488K/cit19/1) 2021; 40 Liu (D3NR00488K/cit28/1) 2023 Sempionatto (D3NR00488K/cit9/1) 2020; 5 de Faria (D3NR00488K/cit46/1) 2020; 319 Xie (D3NR00488K/cit34/1) 2021; 93 Zhou (D3NR00488K/cit33/1) 2022; 7 |
References_xml | – volume: 94 start-page: 1919 year: 2022 ident: D3NR00488K/cit32/1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.1c04912 – volume: 12 start-page: 1 year: 2021 ident: D3NR00488K/cit17/1 publication-title: Nat. Commun. doi: 10.1038/s41467-020-20314-w – volume: 48 start-page: 1004 year: 2019 ident: D3NR00488K/cit21/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00457A – volume: 94 start-page: 2333 year: 2022 ident: D3NR00488K/cit44/1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.1c05189 – volume: 382 start-page: 132251 year: 2022 ident: D3NR00488K/cit43/1 publication-title: Food Chem. doi: 10.1016/j.foodchem.2022.132251 – volume: 53 start-page: 1103 year: 2001 ident: D3NR00488K/cit55/1 publication-title: Talanta doi: 10.1016/S0039-9140(00)00618-4 – volume: 58 start-page: 3235 year: 1986 ident: D3NR00488K/cit39/1 publication-title: Anal. Chem. doi: 10.1021/ac00127a069 – volume: 225 start-page: 105 year: 2017 ident: D3NR00488K/cit41/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.12.055 – volume: 15 start-page: 6888 year: 2022 ident: D3NR00488K/cit25/1 publication-title: Nano Res. doi: 10.1007/s12274-022-4371-x – volume: 61 start-page: 1 year: 2022 ident: D3NR00488K/cit22/1 publication-title: Angew. Chem., Int. Ed. – volume: 61 start-page: 1 year: 2022 ident: D3NR00488K/cit31/1 publication-title: Angew. Chem., Int. Ed. – volume: 121 start-page: 9668 year: 1999 ident: D3NR00488K/cit40/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja991407a – volume: 322 start-page: 1 year: 2019 ident: D3NR00488K/cit47/1 publication-title: Electrochim. Acta – volume: 32 start-page: 1 year: 2020 ident: D3NR00488K/cit5/1 publication-title: Adv. Mater. – volume: 5 start-page: 1804 year: 2020 ident: D3NR00488K/cit9/1 publication-title: ACS Sens. doi: 10.1021/acssensors.0c00604 – volume: 41 start-page: 663 year: 2011 ident: D3NR00488K/cit53/1 publication-title: J. Appl. Electrochem. doi: 10.1007/s10800-011-0277-0 – volume: 17 start-page: 7613 year: 2017 ident: D3NR00488K/cit51/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b03607 – volume: 14 start-page: 2418 year: 2021 ident: D3NR00488K/cit23/1 publication-title: Nano Res. doi: 10.1007/s12274-020-3244-4 – volume: 11 start-page: 1 year: 2019 ident: D3NR00488K/cit54/1 publication-title: Nutrients doi: 10.3390/nu11122956 – volume: 7 start-page: 3422 year: 2022 ident: D3NR00488K/cit33/1 publication-title: ACS Sens. doi: 10.1021/acssensors.2c01597 – volume: 141 start-page: 111474 year: 2019 ident: D3NR00488K/cit48/1 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2019.111474 – volume: 40 start-page: 1 year: 2021 ident: D3NR00488K/cit19/1 publication-title: Nano Today doi: 10.1016/j.nantod.2021.101269 – volume: 15 start-page: 5792 year: 2022 ident: D3NR00488K/cit29/1 publication-title: Nano Res. doi: 10.1007/s12274-022-4265-y – volume: 3 start-page: 2907 year: 2020 ident: D3NR00488K/cit38/1 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.9b02513 – volume: 137 start-page: 161 year: 2019 ident: D3NR00488K/cit10/1 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2019.04.058 – volume: 4 start-page: 407 year: 2021 ident: D3NR00488K/cit14/1 publication-title: Nat. Catal. doi: 10.1038/s41929-021-00609-x – volume: 58 start-page: 1474 year: 1986 ident: D3NR00488K/cit52/1 publication-title: Anal. Chem. doi: 10.1021/ac00298a046 – volume: 39 start-page: 174 year: 2021 ident: D3NR00488K/cit20/1 publication-title: Chin. J. Chem. doi: 10.1002/cjoc.202000383 – volume: 124 start-page: 191 year: 2019 ident: D3NR00488K/cit42/1 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2018.10.012 – volume: 314 start-page: 892 year: 1986 ident: D3NR00488K/cit1/1 publication-title: N. Engl. J. Med. doi: 10.1056/NEJM198604033141407 – volume: 47 start-page: 929 year: 2018 ident: D3NR00488K/cit37/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00582B – volume: 15 start-page: 1730 year: 2022 ident: D3NR00488K/cit24/1 publication-title: Nano Res. doi: 10.1007/s12274-021-3794-0 – volume: 6 start-page: 1745 year: 2021 ident: D3NR00488K/cit6/1 publication-title: ACS Sens. doi: 10.1021/acssensors.1c00553 – volume: 59 start-page: 13057 year: 2020 ident: D3NR00488K/cit27/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202004841 – volume: 34 start-page: 1 year: 2022 ident: D3NR00488K/cit26/1 publication-title: Adv. Mater. – volume: 319 start-page: 1 year: 2020 ident: D3NR00488K/cit46/1 publication-title: Food Chem. doi: 10.1016/j.foodchem.2020.126509 – volume: 12 start-page: 1 year: 2020 ident: D3NR00488K/cit2/1 publication-title: Nutrients – volume: 93 start-page: 14068 year: 2021 ident: D3NR00488K/cit7/1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.1c01581 – year: 2023 ident: D3NR00488K/cit15/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202215136 – volume: 94 start-page: 7319 year: 2022 ident: D3NR00488K/cit8/1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.2c00684 – volume: 344 start-page: 1 year: 2021 ident: D3NR00488K/cit45/1 publication-title: Food Chem. doi: 10.1016/j.foodchem.2020.128692 – volume: 17 start-page: 169 year: 2009 ident: D3NR00488K/cit56/1 publication-title: J. Nutr. Environ. Med. doi: 10.1080/13590840802305423 – volume: 34 start-page: 1 year: 2022 ident: D3NR00488K/cit16/1 publication-title: Adv. Mater. – volume: 93 start-page: 4916 year: 2021 ident: D3NR00488K/cit34/1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.0c05191 – volume: 2 start-page: 1 year: 2003 ident: D3NR00488K/cit12/1 publication-title: Nutr. J. doi: 10.1186/1475-2891-2-7 – volume: 6 start-page: 1745 year: 2021 ident: D3NR00488K/cit11/1 publication-title: ACS Sens. doi: 10.1021/acssensors.1c00553 – volume: 62 start-page: 710 year: 2019 ident: D3NR00488K/cit18/1 publication-title: Sci. China: Life Sci. doi: 10.1007/s11427-019-9518-0 – volume: 10 start-page: 303 year: 2003 ident: D3NR00488K/cit35/1 publication-title: Nat. Struct. Biol. doi: 10.1038/nsb913 – volume: 560 start-page: 208 year: 2020 ident: D3NR00488K/cit50/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2019.10.007 – year: 2023 ident: D3NR00488K/cit28/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202212653 – volume: 121 start-page: 96 year: 2018 ident: D3NR00488K/cit4/1 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2018.08.043 – volume: 283 start-page: 556 year: 2019 ident: D3NR00488K/cit49/1 publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2018.12.079 – volume: 142 start-page: 19339 year: 2020 ident: D3NR00488K/cit30/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c09599 – volume: 142 start-page: 20419 year: 2020 ident: D3NR00488K/cit36/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c09108 – volume: 34 start-page: 700 year: 2018 ident: D3NR00488K/cit3/1 publication-title: Cancer Cell doi: 10.1016/j.ccell.2018.07.014 – volume: 59 start-page: 2565 year: 2020 ident: D3NR00488K/cit13/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201905645 |
SSID | ssj0069363 |
Score | 2.51626 |
Snippet | The management of ascorbic acid (AA) in biological fluids is of significant importance for body functions and human health, yet challenging due to the lack of... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6629 |
SubjectTerms | Ascorbic Acid Biosensors Electrocatalysts Humans Oxidation Oxidation-Reduction Peroxidase Rhodium Screen printing |
Title | Rh single-atom nanozymes for efficient ascorbic acid oxidation and detection |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36951617 https://www.proquest.com/docview/2795966184 https://www.proquest.com/docview/2790050666 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3fb5RAEMc32iamPjT-qlKrWaMv5oIFBvbgsf5sbO3D2cbzibCwmxJbaO4g8frXO7uwC7U1UV_IZVmOZD97czMw8x1CXvk-THNg3A0jYG4oowjtYF64IXD0N7zEY7EqcP5yxPZPws_zaG4ajffVJQ1_k1_eWFfyP1RxDLmqKtl_IGu_FAfwM_LFIxLG418xnp1OVKh_JlwMnc8nVVbVlyulvqR1vLU4hE4hX2KIyZUwa14Wk_pn2fVR0u8NCtHoZKxq7KWiya2XCM9C_6pb_07mZVavWjt6WHZ1HcMGm5d9hu_3dpjU6hcg5aodP2EIQCem9PrU2hIFKu0QYHrVbEbj7RGOjCBj3UOMa9bZAyVuWkC10Ibjx3gSruzFueYEDL0-1lV0_qaFbU7dJusBhgVo19b3Dt5--mb-e1kCDIwILSS7w602yB1z8VUP5FpYgU7GwjR_0U7G8T2y2UcHdK9DfZ_cEtUDcnekGfmQHM5O6Qg6tdApQqcWOjXQqYJOLXSK0KmF_oicfPxw_G7f7VtiuDmuf-My9Nh84asmA0UY-yKKC55wX6ryYeYFHB12YEL6BQCXAYD0RJKjB4l-phQejmyRtaquxBNCkbSfeSKOZIR4ZR4XU47BYxYwyZgHgUNem2VK814vXrUtOUt13gIk6Xs4munVPXDISzv3olNJuXHWjlnttP8VLdNANbtnqu2QQ17Y02jj1IurrBJ1q-conSKMtB3yuKNkb2OoOmQLsdnhgfz2Hy95SjaG7b5D1ppFK56hi9nw5_2--gUN83h2 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rh+single-atom+nanozymes+for+efficient+ascorbic+acid+oxidation+and+detection&rft.jtitle=Nanoscale&rft.au=Shi%2C+Xiaoyue&rft.au=Li%2C+Juan&rft.au=Xiong%2C+Yu&rft.au=Liu%2C+Ziyu&rft.date=2023-04-06&rft.eissn=2040-3372&rft.volume=15&rft.issue=14&rft.spage=6629&rft_id=info:doi/10.1039%2Fd3nr00488k&rft_id=info%3Apmid%2F36951617&rft.externalDocID=36951617 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon |