Reactivity and mechanism of α-nucleophile scaffolds as catalytic organophosphate scavengers

Despite their unique benefits imparted by their structure and reactivity, certain α-nucleophile molecules remain underexplored as chemical inactivators for the topical decontamination of reactive organophosphates (OPs). Here, we present a library of thirty α-nucleophile scaffolds, each designed with...

Full description

Saved in:
Bibliographic Details
Published inOrganic & biomolecular chemistry Vol. 17; no. 16; pp. 3951 - 3963
Main Authors Wong, Pamela T, Bhattacharjee, Somnath, Cannon, Jayme, Tang, Shengzhuang, Yang, Kelly, Bowden, Sierra, Varnau, Victoria, O'Konek, Jessica J, Choi, Seok Ki
Format Journal Article
LanguageEnglish
Published CAMBRIDGE Royal Soc Chemistry 17.04.2019
Royal Society of Chemistry
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Despite their unique benefits imparted by their structure and reactivity, certain α-nucleophile molecules remain underexplored as chemical inactivators for the topical decontamination of reactive organophosphates (OPs). Here, we present a library of thirty α-nucleophile scaffolds, each designed with either a pyridinium aldoxime (PAM) or hydroxamic acid (HA) α-nucleophile core tethered to a polar or charged scaffold for optimized physicochemical properties and reactivity. These library compounds were screened for their abilities to catalyze the hydrolysis of a model OP, paraoxon (POX), in kinetic assays. These screening experiments led to the identification of multiple lead compounds with the ability to inactivate POX two- to four-times more rapidly than Dekon 139-the active ingredient currently used for skin decontamination of OPs. Our mechanistic studies, performed under variable pH and temperature conditions suggested that the differences in the reactivity and activation energy of these compounds are fundamentally attributable to the core nucleophilicity and p K a . Following their screening and mechanistic studies, select lead compounds were further evaluated and demonstrated greater efficacy than Dekon 139 in the topical decontamination of POX in an ex vivo porcine skin model. In addition to OP reactivity, several compounds in the PAM class displayed a dual mode of activity, as they retained the ability to reactivate POX-inhibited acetylcholine esterase (AChE). In summary, this report describes a rationale for the hydrophilic scaffold design of α-nucleophiles, and it offers advanced insights into their chemical reactivity, mechanism, and practical utility as OP decontaminants. Design and in vitro validation of polar α-nucleophile scaffolds that offer potent catalytic reactivity and practical utility for organophosphate decontamination.
AbstractList Despite their unique benefits imparted by their structure and reactivity, certain α-nucleophile molecules remain underexplored as chemical inactivators for the topical decontamination of reactive organophosphates (OPs). Here, we present a library of thirty α-nucleophile scaffolds, each designed with either a pyridinium aldoxime (PAM) or hydroxamic acid (HA) α-nucleophile core tethered to a polar or charged scaffold for optimized physicochemical properties and reactivity. These library compounds were screened for their abilities to catalyze the hydrolysis of a model OP, paraoxon (POX), in kinetic assays. These screening experiments led to the identification of multiple lead compounds with the ability to inactivate POX two- to four-times more rapidly than Dekon 139-the active ingredient currently used for skin decontamination of OPs. Our mechanistic studies, performed under variable pH and temperature conditions suggested that the differences in the reactivity and activation energy of these compounds are fundamentally attributable to the core nucleophilicity and pKa. Following their screening and mechanistic studies, select lead compounds were further evaluated and demonstrated greater efficacy than Dekon 139 in the topical decontamination of POX in an ex vivo porcine skin model. In addition to OP reactivity, several compounds in the PAM class displayed a dual mode of activity, as they retained the ability to reactivate POX-inhibited acetylcholine esterase (AChE). In summary, this report describes a rationale for the hydrophilic scaffold design of α-nucleophiles, and it offers advanced insights into their chemical reactivity, mechanism, and practical utility as OP decontaminants.Despite their unique benefits imparted by their structure and reactivity, certain α-nucleophile molecules remain underexplored as chemical inactivators for the topical decontamination of reactive organophosphates (OPs). Here, we present a library of thirty α-nucleophile scaffolds, each designed with either a pyridinium aldoxime (PAM) or hydroxamic acid (HA) α-nucleophile core tethered to a polar or charged scaffold for optimized physicochemical properties and reactivity. These library compounds were screened for their abilities to catalyze the hydrolysis of a model OP, paraoxon (POX), in kinetic assays. These screening experiments led to the identification of multiple lead compounds with the ability to inactivate POX two- to four-times more rapidly than Dekon 139-the active ingredient currently used for skin decontamination of OPs. Our mechanistic studies, performed under variable pH and temperature conditions suggested that the differences in the reactivity and activation energy of these compounds are fundamentally attributable to the core nucleophilicity and pKa. Following their screening and mechanistic studies, select lead compounds were further evaluated and demonstrated greater efficacy than Dekon 139 in the topical decontamination of POX in an ex vivo porcine skin model. In addition to OP reactivity, several compounds in the PAM class displayed a dual mode of activity, as they retained the ability to reactivate POX-inhibited acetylcholine esterase (AChE). In summary, this report describes a rationale for the hydrophilic scaffold design of α-nucleophiles, and it offers advanced insights into their chemical reactivity, mechanism, and practical utility as OP decontaminants.
Despite their unique benefits imparted by their structure and reactivity, certain α-nucleophile molecules remain underexplored as chemical inactivators for the topical decontamination of reactive organophosphates (OPs). Here, we present a library of thirty α-nucleophile scaffolds, each designed with either a pyridinium aldoxime (PAM) or hydroxamic acid (HA) α-nucleophile core tethered to a polar or charged scaffold for optimized physicochemical properties and reactivity. These library compounds were screened for their abilities to catalyze the hydrolysis of a model OP, paraoxon (POX), in kinetic assays. These screening experiments led to the identification of multiple lead compounds with the ability to inactivate POX two- to four-times more rapidly than Dekon 139-the active ingredient currently used for skin decontamination of OPs. Our mechanistic studies, performed under variable pH and temperature conditions suggested that the differences in the reactivity and activation energy of these compounds are fundamentally attributable to the core nucleophilicity and pKa. Following their screening and mechanistic studies, select lead compounds were further evaluated and demonstrated greater efficacy than Dekon 139 in the topical decontamination of POX in an ex vivo porcine skin model. In addition to OP reactivity, several compounds in the PAM class displayed a dual mode of activity, as they retained the ability to reactivate POX-inhibited acetylcholine esterase (AChE). In summary, this report describes a rationale for the hydrophilic scaffold design of α-nucleophiles, and it offers advanced insights into their chemical reactivity, mechanism, and practical utility as OP decontaminants.
Despite their unique benefits imparted by their structure and reactivity, certain α-nucleophile molecules remain underexplored as chemical inactivators for the topical decontamination of reactive organophosphates (OPs). Here, we present a library of thirty α-nucleophile scaffolds, each designed with either a pyridinium aldoxime (PAM) or hydroxamic acid (HA) α-nucleophile core tethered to a polar or charged scaffold for optimized physicochemical properties and reactivity. These library compounds were screened for their abilities to catalyze the hydrolysis of a model OP, paraoxon (POX), in kinetic assays. These screening experiments led to the identification of multiple lead compounds with the ability to inactivate POX two- to four-times more rapidly than Dekon 139—the active ingredient currently used for skin decontamination of OPs. Our mechanistic studies, performed under variable pH and temperature conditions suggested that the differences in the reactivity and activation energy of these compounds are fundamentally attributable to the core nucleophilicity and p K a . Following their screening and mechanistic studies, select lead compounds were further evaluated and demonstrated greater efficacy than Dekon 139 in the topical decontamination of POX in an ex vivo porcine skin model. In addition to OP reactivity, several compounds in the PAM class displayed a dual mode of activity, as they retained the ability to reactivate POX-inhibited acetylcholine esterase (AChE). In summary, this report describes a rationale for the hydrophilic scaffold design of α-nucleophiles, and it offers advanced insights into their chemical reactivity, mechanism, and practical utility as OP decontaminants.
Despite their unique benefits imparted by their structure and reactivity, certain α-nucleophile molecules remain underexplored as chemical inactivators for the topical decontamination of reactive organophosphates (OPs). Here, we present a library of thirty α-nucleophile scaffolds, each designed with either a pyridinium aldoxime (PAM) or hydroxamic acid (HA) α-nucleophile core tethered to a polar or charged scaffold for optimized physicochemical properties and reactivity. These library compounds were screened for their abilities to catalyze the hydrolysis of a model OP, paraoxon (POX), in kinetic assays. These screening experiments led to the identification of multiple lead compounds with the ability to inactivate POX two- to four-times more rapidly than Dekon 139-the active ingredient currently used for skin decontamination of OPs. Our mechanistic studies, performed under variable pH and temperature conditions suggested that the differences in the reactivity and activation energy of these compounds are fundamentally attributable to the core nucleophilicity and p K a . Following their screening and mechanistic studies, select lead compounds were further evaluated and demonstrated greater efficacy than Dekon 139 in the topical decontamination of POX in an ex vivo porcine skin model. In addition to OP reactivity, several compounds in the PAM class displayed a dual mode of activity, as they retained the ability to reactivate POX-inhibited acetylcholine esterase (AChE). In summary, this report describes a rationale for the hydrophilic scaffold design of α-nucleophiles, and it offers advanced insights into their chemical reactivity, mechanism, and practical utility as OP decontaminants. Design and in vitro validation of polar α-nucleophile scaffolds that offer potent catalytic reactivity and practical utility for organophosphate decontamination.
Despite their unique benefits imparted by their structure and reactivity, certain alpha-nucleophile molecules remain underexplored as chemical inactivators for the topical decontamination of reactive organophosphates (OPs). Here, we present a library of thirty alpha-nucleophile scaffolds, each designed with either a pyridinium aldoxime (PAM) or hydroxamic acid (HA) alpha-nucleophile core tethered to a polar or charged scaffold for optimized physicochemical properties and reactivity. These library compounds were screened for their abilities to catalyze the hydrolysis of a model OP, paraoxon (POX), in kinetic assays. These screening experiments led to the identification of multiple lead compounds with the ability to inactivate POX two-to four-times more rapidly than Dekon 139-the active ingredient currently used for skin decontamination of OPs. Our mechanistic studies, performed under variable pH and temperature conditions suggested that the differences in the reactivity and activation energy of these compounds are fundamentally attributable to the core nucleophilicity and pK(a). Following their screening and mechanistic studies, select lead compounds were further evaluated and demonstrated greater efficacy than Dekon 139 in the topical decontamination of POX in an ex vivo porcine skin model. In addition to OP reactivity, several compounds in the PAM class displayed a dual mode of activity, as they retained the ability to reactivate POX-inhibited acetylcholine esterase (AChE). In summary, this report describes a rationale for the hydrophilic scaffold design of alpha-nucleophiles, and it offers advanced insights into their chemical reactivity, mechanism, and practical utility as OP decontaminants.
Author Cannon, Jayme
Bowden, Sierra
O'Konek, Jessica J
Wong, Pamela T
Bhattacharjee, Somnath
Yang, Kelly
Choi, Seok Ki
Tang, Shengzhuang
Varnau, Victoria
AuthorAffiliation Michigan Nanotechnology Institute for Medicine and Biological Sciences
Department of Internal Medicine
University of Michigan Medical School
AuthorAffiliation_xml – sequence: 0
  name: Department of Internal Medicine
– sequence: 0
  name: Michigan Nanotechnology Institute for Medicine and Biological Sciences
– sequence: 0
  name: University of Michigan Medical School
Author_xml – sequence: 1
  givenname: Pamela T
  surname: Wong
  fullname: Wong, Pamela T
– sequence: 2
  givenname: Somnath
  surname: Bhattacharjee
  fullname: Bhattacharjee, Somnath
– sequence: 3
  givenname: Jayme
  surname: Cannon
  fullname: Cannon, Jayme
– sequence: 4
  givenname: Shengzhuang
  surname: Tang
  fullname: Tang, Shengzhuang
– sequence: 5
  givenname: Kelly
  surname: Yang
  fullname: Yang, Kelly
– sequence: 6
  givenname: Sierra
  surname: Bowden
  fullname: Bowden, Sierra
– sequence: 7
  givenname: Victoria
  surname: Varnau
  fullname: Varnau, Victoria
– sequence: 8
  givenname: Jessica J
  surname: O'Konek
  fullname: O'Konek, Jessica J
– sequence: 9
  givenname: Seok Ki
  surname: Choi
  fullname: Choi, Seok Ki
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30942252$$D View this record in MEDLINE/PubMed
BookMark eNqN0k9rFDEYBvAgFduuXrwrA17EMvommcxMjjpoqxQKojdheCebdLPMJGuSqezH8ov4mUy76wrFg6e8h9_zkH-n5Mh5pwl5SuE1BS7fKOkHAAF8_YCc0KppShBcHh1mBsfkNMY1AJVNXT0ixxxkxZhgJ-TbZ40q2RubtgW6ZTFptUJn41R4U_z6WbpZjdpvVnbURVRojB-XscBYKEw4bpNVhQ_X6DLxcbPCdMdutLvWIT4mDw2OUT_Zrwvy9cP7L91FeXl1_rF7e1kqzptU1kBNNUjT8JrJGocWJQ6mEZpyRNFywZsWK2O0AsUZqweWR5WPqIRoaI4tyMtd7yb477OOqZ9sVHoc0Wk_x54xYHXdAhOZvrhH134OLu8uKwotb2jFsnq-V_Mw6WW_CXbCsO3_3FsGZzvwQw_eRGW1U_rAAKCqawHQ5il3Lkj7_7qzCZP1rvOzSzn6ahdVwccYtDnEKPS3r9938urd3et_yhjuYbUvSwHt-O_Is10kRHWo_vuh-G_fprl6
CitedBy_id crossref_primary_10_1016_j_jclepro_2023_139892
crossref_primary_10_1039_D1RA01125A
crossref_primary_10_1016_j_apradiso_2022_110588
crossref_primary_10_1039_D4CC03116D
crossref_primary_10_1021_acs_chemmater_0c03160
crossref_primary_10_1039_C9DT04733F
crossref_primary_10_1016_j_ijpharm_2021_120689
crossref_primary_10_1016_j_tox_2020_152586
crossref_primary_10_1016_j_eurpolymj_2019_109464
crossref_primary_10_1016_j_envpol_2023_121802
crossref_primary_10_1016_j_envres_2020_109653
crossref_primary_10_1016_j_toxlet_2020_12_014
crossref_primary_10_3390_nano11010224
crossref_primary_10_3390_biom10030436
crossref_primary_10_1021_acs_iecr_1c01374
crossref_primary_10_1039_D1MD00194A
crossref_primary_10_1021_acsomega_4c09946
crossref_primary_10_1021_acsami_0c08946
Cites_doi 10.1016/j.biomaterials.2010.02.004
10.1021/ja01596a011
10.1007/s11356-016-6143-1
10.1016/j.cbi.2010.02.033
10.1016/j.bmcl.2009.07.035
10.1016/0041-008X(88)90390-0
10.1021/bi00887a029
10.1021/ja01618a072
10.1016/j.addr.2009.08.001
10.1074/jbc.M111.230656
10.1021/jo00834a044
10.1034/j.1600-0625.2000.009003165.x
10.1016/j.cbi.2018.10.022
10.1016/j.ejmech.2018.08.016
10.1007/BF00581649
10.1021/acsnano.6b04996
10.1021/acs.chemrestox.6b00198
10.1007/s002040050450
10.1007/s00204-002-0375-1
10.1039/b412132e
10.3109/15569527.2010.515280
10.1039/c3tb21267j
10.1002/chem.201801394
10.1021/ed078p1499
10.1016/j.cbi.2010.03.017
10.1021/jo01099a019
10.1021/ma200522m
10.1074/jbc.M111.264739
10.3390/ijms12032077
10.1016/j.tox.2007.06.023
10.1016/j.cbi.2010.02.015
10.1177/0960327108090269
10.1039/C8OB01928B
10.1038/jidsymp.1998.27
10.1002/jat.1189
10.1007/BF00303133
10.1021/acs.molpharmaceut.5b00684
10.1039/B609658C
10.1080/10426509108038845
10.1124/mol.106.026179
10.1021/jp305867v
10.1016/0223-5234(88)90168-7
10.1002/prot.25073
10.1021/jm900433t
10.1039/C4OB02067G
10.1016/0006-2952(61)90145-9
10.1016/j.toxlet.2017.11.003
10.1016/S0009-2797(99)00053-8
10.3109/15376516.2012.686535
10.1016/j.bcp.2004.07.038
10.1039/c8ob01928b
10.1039/c4ob02067g
10.1039/b609658c
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2019
Copyright_xml – notice: Copyright Royal Society of Chemistry 2019
DBID AAYXX
CITATION
17B
1KM
AAWJD
BLEPL
DTL
EGQ
NPM
7QO
7T7
7TM
8FD
C1K
FR3
P64
7X8
DOI 10.1039/c9ob00503j
DatabaseName CrossRef
Web of Knowledge
Index Chemicus
Web of Science - Science Citation Index Expanded - 2019
Web of Science Core Collection
Science Citation Index Expanded
Web of Science Primary (SCIE, SSCI & AHCI)
PubMed
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
Web of Science
PubMed
Biotechnology Research Abstracts
Technology Research Database
Nucleic Acids Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
CrossRef

Web of Science
Biotechnology Research Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 1KM
  name: Index Chemicus
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC
  sourceTypes:
    Enrichment Source
    Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1477-0539
EndPage 3963
ExternalDocumentID 30942252
000466500800008
10_1039_C9OB00503J
c9ob00503j
Genre Journal Article
GrantInformation_xml – fundername: US Defense Threat Reduction Agency-DOD
  grantid: HDTRA1-17-C-00001
GroupedDBID ---
-DZ
-JG
-~X
0-7
0R~
123
29N
4.4
705
70~
7~J
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ACNCT
ACPRK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFVBQ
AGEGJ
AGKEF
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CS3
D0L
DU5
EBS
ECGLT
EE0
EF-
EJD
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3I
M4U
N9A
O9-
OK1
P2P
R7B
R7C
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UCJ
VH6
VQA
WH7
XSW
YNT
YZZ
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
R56
17B
1KM
BLEPL
DTL
GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED
GROUPED_WOS_WEB_OF_SCIENCE
NPM
7QO
7T7
7TM
8FD
C1K
FR3
P64
7X8
ID FETCH-LOGICAL-c337t-601f4b9f736296ab8a9abf75e13aa5835378a4ffec0c3226b2fecc539c5571f73
ISICitedReferencesCount 19
ISICitedReferencesURI https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000466500800008
ISSN 1477-0520
1477-0539
IngestDate Fri Jul 11 16:01:04 EDT 2025
Mon Jun 30 11:58:12 EDT 2025
Thu Apr 03 07:11:15 EDT 2025
Fri May 30 03:09:50 EDT 2025
Fri Aug 29 16:06:54 EDT 2025
Tue Jul 01 01:51:57 EDT 2025
Thu Apr 24 22:50:27 EDT 2025
Tue Dec 17 20:59:27 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords NERVE AGENTS
OXIME REACTIVATORS
PARAOXON
KINETICS
PAMAM DENDRIMERS
SKIN DECONTAMINATION LOTION
WARFARE AGENTS
SARIN
COOPERATIVITY
INHIBITED HUMAN ACETYLCHOLINESTERASE
Language English
LinkModel OpenURL
LogoURL https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg
MergedId FETCHMERGED-LOGICAL-c337t-601f4b9f736296ab8a9abf75e13aa5835378a4ffec0c3226b2fecc539c5571f73
Notes Electronic supplementary information (ESI) available: Details of materials and analytical methods not detailed above, synthetic methods, copies of NMR and UV-Vis spectra, supplementary figures and tables. See DOI
10.1039/c9ob00503j
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4387-4723
0000-0003-4279-1261
0000-0001-5633-4817
0000-0002-1455-0586
0000-0002-6862-7913
PMID 30942252
PQID 2210837142
PQPubID 2047497
PageCount 13
ParticipantIDs webofscience_primary_000466500800008CitationCount
pubmed_primary_30942252
rsc_primary_c9ob00503j
crossref_primary_10_1039_C9OB00503J
proquest_journals_2210837142
crossref_citationtrail_10_1039_C9OB00503J
webofscience_primary_000466500800008
proquest_miscellaneous_2202668025
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190417
PublicationDateYYYYMMDD 2019-04-17
PublicationDate_xml – month: 4
  year: 2019
  text: 20190417
  day: 17
PublicationDecade 2010
PublicationPlace CAMBRIDGE
PublicationPlace_xml – name: CAMBRIDGE
– name: England
– name: Cambridge
PublicationTitle Organic & biomolecular chemistry
PublicationTitleAbbrev ORG BIOMOL CHEM
PublicationTitleAlternate Org Biomol Chem
PublicationYear 2019
Publisher Royal Soc Chemistry
Royal Society of Chemistry
Publisher_xml – name: Royal Soc Chemistry
– name: Royal Society of Chemistry
References Lamb (C9OB00503J-(cit25)/*[position()=1]) 1965; 4
Jacquet (C9OB00503J-(cit21)/*[position()=1]) 2016; 23
Swidler (C9OB00503J-(cit29)/*[position()=1]) 1956; 78
Li (C9OB00503J-(cit17)/*[position()=1]) 2016; 10
Braue (C9OB00503J-(cit22)/*[position()=1]) 2011; 30
Jun (C9OB00503J-(cit7)/*[position()=1]) 2010; 187
Fentabil (C9OB00503J-(cit10)/*[position()=1]) 2018; 293
Bjarnason (C9OB00503J-(cit16)/*[position()=1]) 2008; 27
Fryer (C9OB00503J-(cit23)/*[position()=1]) 1988; 411
Sangster (C9OB00503J-(cit34)/*[position()=1]) 1997
de Koning (C9OB00503J-(cit51)/*[position()=1]) 2018; 157
Demerseman (C9OB00503J-(cit41)/*[position()=1]) 1988; 23
Morales (C9OB00503J-(cit19)/*[position()=1]) 2018; 16
Sanson (C9OB00503J-(cit13)/*[position()=1]) 2009; 52
Franklin (C9OB00503J-(cit12)/*[position()=1]) 2016; 84
Sit (C9OB00503J-(cit4)/*[position()=1]) 2011; 286
Tsang (C9OB00503J-(cit20)/*[position()=1]) 2004; 2
Singh (C9OB00503J-(cit11)/*[position()=1]) 2015; 13
Cohen (C9OB00503J-(cit6)/*[position()=1]) 2006; 70
Ellman (C9OB00503J-(cit40)/*[position()=1]) 1961; 7
Bharathi (C9OB00503J-(cit8)/*[position()=1]) 2014; 2
Garcia (C9OB00503J-(cit52)/*[position()=1]) 2010; 187
Terrier (C9OB00503J-(cit27)/*[position()=1]) 2006; 4
Worek (C9OB00503J-(cit38)/*[position()=1]) 2004; 68
Poziomek (C9OB00503J-(cit31)/*[position()=1]) 1958; 23
Bos (C9OB00503J-(cit33)/*[position()=1]) 2000; 9
Po (C9OB00503J-(cit36)/*[position()=1]) 2001; 78
Mukherjee (C9OB00503J-(cit48)/*[position()=1]) 2015; 12
Vale (C9OB00503J-(cit2)/*[position()=1]) 2007; 240
Amitai (C9OB00503J-(cit18)/*[position()=1]) 2010; 31
Zorbaz (C9OB00503J-(cit45)/*[position()=1]) 2018; 24
Misik (C9OB00503J-(cit15)/*[position()=1]) 2012; 22
Choi (C9OB00503J-(cit47)/*[position()=1]) 2012; 116
Bajgar (C9OB00503J-(cit1)/*[position()=1]) 2004; 38
Tang (C9OB00503J-(cit9)/*[position()=1]) 2019; 297
Jovanović (C9OB00503J-(cit14)/*[position()=1]) 1989; 63
DeMar (C9OB00503J-(cit3)/*[position()=1]) 2010; 187
Bharate (C9OB00503J-(cit30)/*[position()=1]) 2009; 19
Wallace (C9OB00503J-(cit42)/*[position()=1]) 1988; 92
Jun (C9OB00503J-(cit43)/*[position()=1]) 2011; 12
Hackley (C9OB00503J-(cit28)/*[position()=1]) 1955; 77
Vicent (C9OB00503J-(cit49)/*[position()=1]) 2009; 61
Cochran (C9OB00503J-(cit50)/*[position()=1]) 2011; 286
Becker (C9OB00503J-(cit24)/*[position()=1]) 1997; 71
Behrman (C9OB00503J-(cit26)/*[position()=1]) 1970; 35
Choi (C9OB00503J-(cit46)/*[position()=1]) 2011; 44
Berberich (C9OB00503J-(cit39)/*[position()=1]) 2016; 29
Boulet (C9OB00503J-(cit35)/*[position()=1]) 1991; 57
Broomfield (C9OB00503J-(cit5)/*[position()=1]) 1999; 119–120
Hadgraft (C9OB00503J-(cit32)/*[position()=1]) 1998; 3
Petroianu (C9OB00503J-(cit44)/*[position()=1]) 2007; 27
Worek (C9OB00503J-(cit37)/*[position()=1]) 2002; 76
Garcia, GE (WOS:000281108600035) 2010; 187
Worek, F (WOS:000224952200015) 2004; 68
Jun, D (WOS:000281108600069) 2010; 187
SWIDLER, R (WOS:A1956WB83800011) 1956; 78
Amitai, G (WOS:000276932600020) 2010; 31
DEMERSEMAN, P (WOS:A1988M569300010) 1988; 23
LAMB, JC (WOS:A19656994500029) 1965; 4
Vicent, MJ (WOS:000271769600001) 2009; 61
Berberich, JA (WOS:000383733300017) 2016; 29
Bharathi, S (WOS:000331500800014) 2014; 2
Terrier, F (WOS:000242005100013) 2006; 4
Franklin, MC (WOS:000382812900007) 2016; 84
Fentabil, M (WOS:000433259800035) 2018; 293
Choi, SK (WOS:000308119900028) 2012; 116
Sanson, B (WOS:000272338000026) 2009; 52
Tang, SZ (WOS:000452715400009) 2019; 297
Singh, N (WOS:000350674400001) 2015; 13
Jun, D (WOS:000288784200043) 2011; 12
Becker, G (WOS:A1997XZ86100009) 1997; 71
POZIOMEK, EJ (WOS:A1958WP70600019) 1958; 23
de Koning, MC (WOS:000447480000013) 2018; 157
ELLMAN, GL (WOS:A19617004A00002) 1961; 7
Morales, JI (WOS:000447780200016) 2018; 16
Cohen, O (WOS:000239922300036) 2006; 70
BOULET, CA (WOS:A1991FB28800001) 1991; 57
Braue, EH (WOS:000287249400003) 2011; 30
HACKLEY, BE (WOS:A1955WB86000071) 1955; 77
Sangster, J. (000466500800008.39) 1997
Mukherjee, J (WOS:000366151500031) 2015; 12
Po, HN (WOS:000171525700019) 2001; 78
Jacquet, P (WOS:000375412600006) 2016; 23
Li, P (WOS:000386423600017) 2016; 10
Bajgar, J (WOS:000225885700006) 2004; 38
Misik, J (WOS:000307997700004) 2012; 22
Broomfield, CA (WOS:000081184400046) 1999; 119
Worek, F (WOS:000178502400006) 2002; 76
Demar, JC (WOS:000281108600034) 2010; 187
Bharate, SB (WOS:000268863800047) 2009; 19
Choi, SK (WOS:000291288900003) 2011; 44
Sit, RK (WOS:000291027700025) 2011; 286
Cochran, R (WOS:000294046600031) 2011; 286
JOVANOVIC, D (WOS:A1989AT33800013) 1989; 63
FRYER, MW (WOS:A1988L653800011) 1988; 411
Bjarnason, S (WOS:000258550700010) 2008; 27
Hadgraft, J (MEDLINE:9734827) 1998; 3
Tsang, JSW (WOS:000225335900008) 2004; 2
Bos, JD (WOS:000087010600001) 2000; 9
BEHRMAN, EJ (WOS:A1970H224500044) 1970; 35
Vale, JA (WOS:000251105200021) 2007; 240
WALLACE, KB (WOS:A1988M053100015) 1988; 92
Petroianu, GA (WOS:000245370200008) 2007; 27
Zorbaz, T (WOS:000437730300032) 2018; 24
References_xml – issn: 1997
  publication-title: Octanol-Water Partition Coefficients: Fundamentals and Physical Chemistry
  doi: Sangster
– issn: 2004
  issue: 38
  end-page: 151-216
  publication-title: Advances in Clinical Chemistry
  doi: Bajgar
– volume: 31
  start-page: 4417
  year: 2010
  ident: C9OB00503J-(cit18)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.02.004
– volume: 78
  start-page: 3594
  year: 1956
  ident: C9OB00503J-(cit29)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01596a011
– volume: 23
  start-page: 8200
  year: 2016
  ident: C9OB00503J-(cit21)/*[position()=1]
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-016-6143-1
– volume: 187
  start-page: 199
  year: 2010
  ident: C9OB00503J-(cit52)/*[position()=1]
  publication-title: Chem.-Biol. Interact.
  doi: 10.1016/j.cbi.2010.02.033
– volume: 19
  start-page: 5101
  year: 2009
  ident: C9OB00503J-(cit30)/*[position()=1]
  publication-title: Bioorg. Med. Chem. Lett.
  doi: 10.1016/j.bmcl.2009.07.035
– volume: 92
  start-page: 307
  year: 1988
  ident: C9OB00503J-(cit42)/*[position()=1]
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/0041-008X(88)90390-0
– volume: 4
  start-page: 2475
  year: 1965
  ident: C9OB00503J-(cit25)/*[position()=1]
  publication-title: Biochemistry
  doi: 10.1021/bi00887a029
– volume: 77
  start-page: 3651
  year: 1955
  ident: C9OB00503J-(cit28)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01618a072
– volume: 61
  start-page: 1117
  year: 2009
  ident: C9OB00503J-(cit49)/*[position()=1]
  publication-title: Adv. Drug Delivery Rev.
  doi: 10.1016/j.addr.2009.08.001
– volume: 286
  start-page: 19422
  year: 2011
  ident: C9OB00503J-(cit4)/*[position()=1]
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.230656
– volume: 35
  start-page: 3069
  year: 1970
  ident: C9OB00503J-(cit26)/*[position()=1]
  publication-title: J. Org. Chem.
  doi: 10.1021/jo00834a044
– volume: 9
  start-page: 165
  year: 2000
  ident: C9OB00503J-(cit33)/*[position()=1]
  publication-title: Exp. Dermatol.
  doi: 10.1034/j.1600-0625.2000.009003165.x
– volume: 297
  start-page: 67
  year: 2019
  ident: C9OB00503J-(cit9)/*[position()=1]
  publication-title: Chem.-Biol. Interact.
  doi: 10.1016/j.cbi.2018.10.022
– volume: 157
  start-page: 151
  year: 2018
  ident: C9OB00503J-(cit51)/*[position()=1]
  publication-title: Eur. J. Med. Chem.
  doi: 10.1016/j.ejmech.2018.08.016
– volume: 411
  start-page: 76
  year: 1988
  ident: C9OB00503J-(cit23)/*[position()=1]
  publication-title: Pfluegers Arch.
  doi: 10.1007/BF00581649
– volume: 10
  start-page: 9174
  year: 2016
  ident: C9OB00503J-(cit17)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b04996
– volume: 29
  start-page: 1534
  year: 2016
  ident: C9OB00503J-(cit39)/*[position()=1]
  publication-title: Chem. Res. Toxicol.
  doi: 10.1021/acs.chemrestox.6b00198
– volume: 71
  start-page: 714
  year: 1997
  ident: C9OB00503J-(cit24)/*[position()=1]
  publication-title: Arch. Toxicol.
  doi: 10.1007/s002040050450
– volume: 76
  start-page: 523
  year: 2002
  ident: C9OB00503J-(cit37)/*[position()=1]
  publication-title: Arch. Toxicol.
  doi: 10.1007/s00204-002-0375-1
– volume: 2
  start-page: 3457
  year: 2004
  ident: C9OB00503J-(cit20)/*[position()=1]
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/b412132e
– volume: 30
  start-page: 15
  year: 2011
  ident: C9OB00503J-(cit22)/*[position()=1]
  publication-title: Cutaneous Ocul. Toxicol.
  doi: 10.3109/15569527.2010.515280
– volume-title: Octanol-Water Partition Coefficients: Fundamentals and Physical Chemistry
  year: 1997
  ident: C9OB00503J-(cit34)/*[position()=1]
– volume: 2
  start-page: 1068
  year: 2014
  ident: C9OB00503J-(cit8)/*[position()=1]
  publication-title: J. Mater. Chem. B
  doi: 10.1039/c3tb21267j
– volume: 24
  start-page: 9675
  year: 2018
  ident: C9OB00503J-(cit45)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201801394
– volume: 78
  start-page: 1499
  year: 2001
  ident: C9OB00503J-(cit36)/*[position()=1]
  publication-title: J. Chem. Educ.
  doi: 10.1021/ed078p1499
– volume: 187
  start-page: 380
  year: 2010
  ident: C9OB00503J-(cit7)/*[position()=1]
  publication-title: Chem.-Biol. Interact.
  doi: 10.1016/j.cbi.2010.03.017
– volume: 23
  start-page: 714
  year: 1958
  ident: C9OB00503J-(cit31)/*[position()=1]
  publication-title: J. Org. Chem.
  doi: 10.1021/jo01099a019
– volume: 44
  start-page: 4026
  year: 2011
  ident: C9OB00503J-(cit46)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/ma200522m
– volume: 286
  start-page: 29718
  year: 2011
  ident: C9OB00503J-(cit50)/*[position()=1]
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.264739
– volume: 12
  start-page: 2077
  year: 2011
  ident: C9OB00503J-(cit43)/*[position()=1]
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms12032077
– volume: 38
  volume-title: Advances in Clinical Chemistry
  year: 2004
  ident: C9OB00503J-(cit1)/*[position()=1]
– volume: 240
  start-page: 141
  year: 2007
  ident: C9OB00503J-(cit2)/*[position()=1]
  publication-title: Toxicology
  doi: 10.1016/j.tox.2007.06.023
– volume: 187
  start-page: 191
  year: 2010
  ident: C9OB00503J-(cit3)/*[position()=1]
  publication-title: Chem.-Biol. Interact.
  doi: 10.1016/j.cbi.2010.02.015
– volume: 27
  start-page: 253
  year: 2008
  ident: C9OB00503J-(cit16)/*[position()=1]
  publication-title: Hum. Exp. Toxicol.
  doi: 10.1177/0960327108090269
– volume: 16
  start-page: 7446
  year: 2018
  ident: C9OB00503J-(cit19)/*[position()=1]
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/C8OB01928B
– volume: 3
  start-page: 131
  year: 1998
  ident: C9OB00503J-(cit32)/*[position()=1]
  publication-title: J. Invest. Dermatol. Symp. Proc.
  doi: 10.1038/jidsymp.1998.27
– volume: 27
  start-page: 168
  year: 2007
  ident: C9OB00503J-(cit44)/*[position()=1]
  publication-title: J. Appl. Toxicol.
  doi: 10.1002/jat.1189
– volume: 63
  start-page: 416
  year: 1989
  ident: C9OB00503J-(cit14)/*[position()=1]
  publication-title: Arch. Toxicol.
  doi: 10.1007/BF00303133
– volume: 12
  start-page: 4498
  year: 2015
  ident: C9OB00503J-(cit48)/*[position()=1]
  publication-title: Mol. Pharmaceutics
  doi: 10.1021/acs.molpharmaceut.5b00684
– volume: 4
  start-page: 4352
  year: 2006
  ident: C9OB00503J-(cit27)/*[position()=1]
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/B609658C
– volume: 57
  start-page: 147
  year: 1991
  ident: C9OB00503J-(cit35)/*[position()=1]
  publication-title: Phosphorus, Sulfur Silicon Relat. Elem.
  doi: 10.1080/10426509108038845
– volume: 70
  start-page: 1121
  year: 2006
  ident: C9OB00503J-(cit6)/*[position()=1]
  publication-title: Mol. Pharmacol.
  doi: 10.1124/mol.106.026179
– volume: 116
  start-page: 10387
  year: 2012
  ident: C9OB00503J-(cit47)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp305867v
– volume: 23
  start-page: 63
  year: 1988
  ident: C9OB00503J-(cit41)/*[position()=1]
  publication-title: Eur. J. Med. Chem.
  doi: 10.1016/0223-5234(88)90168-7
– volume: 84
  start-page: 1246
  year: 2016
  ident: C9OB00503J-(cit12)/*[position()=1]
  publication-title: Proteins: Struct., Funct., Bioinf.
  doi: 10.1002/prot.25073
– volume: 52
  start-page: 7593
  year: 2009
  ident: C9OB00503J-(cit13)/*[position()=1]
  publication-title: J. Med. Chem.
  doi: 10.1021/jm900433t
– volume: 13
  start-page: 2827
  year: 2015
  ident: C9OB00503J-(cit11)/*[position()=1]
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/C4OB02067G
– volume: 7
  start-page: 88
  year: 1961
  ident: C9OB00503J-(cit40)/*[position()=1]
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/0006-2952(61)90145-9
– volume: 293
  start-page: 241
  year: 2018
  ident: C9OB00503J-(cit10)/*[position()=1]
  publication-title: Toxicol. Lett.
  doi: 10.1016/j.toxlet.2017.11.003
– volume: 119–120
  start-page: 413
  year: 1999
  ident: C9OB00503J-(cit5)/*[position()=1]
  publication-title: Chem.-Biol. Interact.
  doi: 10.1016/S0009-2797(99)00053-8
– volume: 22
  start-page: 520
  year: 2012
  ident: C9OB00503J-(cit15)/*[position()=1]
  publication-title: Toxicol. Mech. Methods
  doi: 10.3109/15376516.2012.686535
– volume: 68
  start-page: 2237
  year: 2004
  ident: C9OB00503J-(cit38)/*[position()=1]
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2004.07.038
– volume: 10
  start-page: 9174
  year: 2016
  ident: WOS:000386423600017
  article-title: Nanosizing a Metal-Organic Framework Enzyme Carrier for Accelerating Nerve Agent Hydrolysis
  publication-title: ACS NANO
  doi: 10.1021/acsnano.6b04996
– volume: 157
  start-page: 151
  year: 2018
  ident: WOS:000447480000013
  article-title: Discovery of a potent non-oxime reactivator of nerve agent inhibited human acetylcholinesterase
  publication-title: EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY
  doi: 10.1016/j.ejmech.2018.08.016
– volume: 7
  start-page: 88
  year: 1961
  ident: WOS:A19617004A00002
  article-title: A NEW AND RAPID COLORIMETRIC DETERMINATION OF ACETYLCHOLINESTERASE ACTIVITY
  publication-title: BIOCHEMICAL PHARMACOLOGY
– volume: 12
  start-page: 4498
  year: 2015
  ident: WOS:000366151500031
  article-title: Mechanism of Cooperativity and Nonlinear Release Kinetics in Multivalent Dendrimer-Atropine Complexes
  publication-title: MOLECULAR PHARMACEUTICS
  doi: 10.1021/acs.molpharmaceut.5b00684
– volume: 24
  start-page: 9675
  year: 2018
  ident: WOS:000437730300032
  article-title: Potent 3-Hydroxy-2-Pyridine Aldoxime Reactivators of Organophosphate-Inhibited Cholinesterases with Predicted Blood-Brain Barrier Penetration
  publication-title: CHEMISTRY-A EUROPEAN JOURNAL
  doi: 10.1002/chem.201801394
– volume: 35
  start-page: 3069
  year: 1970
  ident: WOS:A1970H224500044
  article-title: REACTIONS OF PHOSPHONIC ACID ESTERS WITH NUCLEOPHILES .2. SURVEY OF NUCLEOPHILES REACTING WITH PARA-NITROPHENYL METHYLPHOSPHONATE ANION
  publication-title: JOURNAL OF ORGANIC CHEMISTRY
– volume: 70
  start-page: 1121
  year: 2006
  ident: WOS:000239922300036
  article-title: Comparison of polyethylene glycol-conjugated recombinant human acetylcholinesterase and serum human butyrylcholinesterase as bioscavengers of organophosphate compounds
  publication-title: MOLECULAR PHARMACOLOGY
  doi: 10.1124/mol.106.026179
– volume: 31
  start-page: 4417
  year: 2010
  ident: WOS:000276932600020
  article-title: Decontamination of chemical and biological warfare agents with a single multi-functional material
  publication-title: BIOMATERIALS
  doi: 10.1016/j.biomaterials.2010.02.004
– volume: 16
  start-page: 7446
  year: 2018
  ident: WOS:000447780200016
  article-title: Dual function of amino acid ionic liquids (Bmim[AA]) on the degradation of the organophosphorus pesticide, Paraoxon (R)
  publication-title: ORGANIC & BIOMOLECULAR CHEMISTRY
  doi: 10.1039/c8ob01928b
– volume: 187
  start-page: 199
  year: 2010
  ident: WOS:000281108600035
  article-title: Novel oximes as blood-brain barrier penetrating cholinesterase reactivators
  publication-title: CHEMICO-BIOLOGICAL INTERACTIONS
  doi: 10.1016/j.cbi.2010.02.033
– volume: 63
  start-page: 416
  year: 1989
  ident: WOS:A1989AT33800013
  article-title: PHARMACOKINETICS OF PRALIDOXIME CHLORIDE - A COMPARATIVE-STUDY IN HEALTHY-VOLUNTEERS AND IN ORGANO-PHOSPHORUS POISONING
  publication-title: ARCHIVES OF TOXICOLOGY
– volume: 12
  start-page: 2077
  year: 2011
  ident: WOS:000288784200043
  article-title: In Vitro Ability of Currently Available Oximes to Reactivate Organophosphate Pesticide-Inhibited Human Acetylcholinesterase and Butyrylcholinesterase
  publication-title: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES
  doi: 10.3390/ijms12032077
– volume: 44
  start-page: 4026
  year: 2011
  ident: WOS:000291288900003
  article-title: Specificity and Negative Cooperativity in Dendrimer-Oxime Drug Complexation
  publication-title: MACROMOLECULES
  doi: 10.1021/ma200522m
– volume: 3
  start-page: 131
  year: 1998
  ident: MEDLINE:9734827
  article-title: The selection and design of topical and transdermal agents: a review.
  publication-title: The journal of investigative dermatology. Symposium proceedings
– volume: 30
  start-page: 15
  year: 2011
  ident: WOS:000287249400003
  article-title: Efficacy studies of Reactive Skin Decontamination Lotion, M291 Skin Decontamination Kit, 0.5% bleach, 1% soapy water, and Skin Exposure Reduction Paste Against Chemical Warfare Agents, Part 1: Guinea pigs challenged with VX
  publication-title: CUTANEOUS AND OCULAR TOXICOLOGY
  doi: 10.3109/15569527.2010.515280
– volume: 38
  start-page: 151
  year: 2004
  ident: WOS:000225885700006
  article-title: Organophosphates/nerve agent poisoning: Mechanism of action, diagnosis, prophylaxis, and treatment
  publication-title: ADVANCES IN CLINICAL CHEMISTRY, VOL. 38
– volume: 286
  start-page: 19422
  year: 2011
  ident: WOS:000291027700025
  article-title: New Structural Scaffolds for Centrally Acting Oxime Reactivators of Phosphylated Cholinesterases
  publication-title: JOURNAL OF BIOLOGICAL CHEMISTRY
  doi: 10.1074/jbc.M111.230656
– volume: 293
  start-page: 241
  year: 2018
  ident: WOS:000433259800035
  article-title: Degradation of pesticides with RSDL (R) (reactive skin decontamination lotion kit) lotion: LC-MS investigation
  publication-title: TOXICOLOGY LETTERS
  doi: 10.1016/j.toxlet.2017.11.003
– volume: 13
  start-page: 2827
  year: 2015
  ident: WOS:000350674400001
  article-title: From alpha-nucleophiles to functionalized aggregates: exploring the reactivity of hydroxamate ion towards esterolytic reactions in micelles
  publication-title: ORGANIC & BIOMOLECULAR CHEMISTRY
  doi: 10.1039/c4ob02067g
– volume: 411
  start-page: 76
  year: 1988
  ident: WOS:A1988L653800011
  article-title: PARALYSIS OF SKELETAL-MUSCLE BY BUTANEDIONE MONOXIME, A CHEMICAL PHOSPHATASE
  publication-title: PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY
– volume: 27
  start-page: 253
  year: 2008
  ident: WOS:000258550700010
  article-title: Comparison of selected skin decontaminant products and regimens against VX in domestic swine
  publication-title: HUMAN & EXPERIMENTAL TOXICOLOGY
  doi: 10.1177/0960327108090269
– volume: 2
  start-page: 3457
  year: 2004
  ident: WOS:000225335900008
  article-title: La3+-catalyzed methanolysis of O,O-diethyl S-(p-nitrophenyl) phosphorothioate and O,O-diethyl S-phenyl phosphorothioate. Millions-fold acceleration of the destruction of V-agent simulants
  publication-title: ORGANIC & BIOMOLECULAR CHEMISTRY
  doi: 10.1039/b412132e
– volume: 29
  start-page: 1534
  year: 2016
  ident: WOS:000383733300017
  article-title: Biological Testing of Organophosphorus-Inactivated Acetylcholinesterase Oxime Reactivators Identified via Virtual Screening
  publication-title: CHEMICAL RESEARCH IN TOXICOLOGY
  doi: 10.1021/acs.chemrestox.6b00198
– volume: 23
  start-page: 63
  year: 1988
  ident: WOS:A1988M569300010
  article-title: POLYMETHYLENEDIOXY BIS(2-HYDROXYIMINOMETHYLPYRIDINIUM) AS INVITRO REACTIVATORS OF ORGANOPHOSPHOROUS INHIBITED EEL ACETYLCHOLINESTERASE
  publication-title: EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY
– volume: 76
  start-page: 523
  year: 2002
  ident: WOS:000178502400006
  article-title: Reactivation kinetics of acetylcholinesterase from different species inhibited by highly toxic organophosphates
  publication-title: ARCHIVES OF TOXICOLOGY
  doi: 10.1007/s00204-002-0375-1
– volume: 23
  start-page: 714
  year: 1958
  ident: WOS:A1958WP70600019
  article-title: PYRIDINIUM ALDOXIMES
  publication-title: JOURNAL OF ORGANIC CHEMISTRY
– volume: 187
  start-page: 191
  year: 2010
  ident: WOS:000281108600034
  article-title: Pro-2-PAM therapy for central and peripheral cholinesterases
  publication-title: CHEMICO-BIOLOGICAL INTERACTIONS
  doi: 10.1016/j.cbi.2010.02.015
– volume: 61
  start-page: 1117
  year: 2009
  ident: WOS:000271769600001
  article-title: Polymer therapeutics: Clinical applications and challenges for development Preface
  publication-title: ADVANCED DRUG DELIVERY REVIEWS
  doi: 10.1016/j.addr.2009.08.001
– volume: 68
  start-page: 2237
  year: 2004
  ident: WOS:000224952200015
  article-title: Kinetic analysis of interactions between human acetylcholinesterase, structurally different organophosphorus compounds and oximes
  publication-title: BIOCHEMICAL PHARMACOLOGY
  doi: 10.1016/j.bcp.2004.07.038
– volume: 71
  start-page: 714
  year: 1997
  ident: WOS:A1997XZ86100009
  article-title: Direct reaction of oximes with sarin, soman, or tabun in vitro
  publication-title: ARCHIVES OF TOXICOLOGY
– volume: 297
  start-page: 67
  year: 2019
  ident: WOS:000452715400009
  article-title: Hydrophilic scaffolds of oxime as the potent catalytic inactivator of reactive organophosphate
  publication-title: CHEMICO-BIOLOGICAL INTERACTIONS
  doi: 10.1016/j.cbi.2018.10.022
– volume: 116
  start-page: 10387
  year: 2012
  ident: WOS:000308119900028
  article-title: Specific and Cooperative Interactions between Oximes and PAMAM Dendrimers As Demonstrated by H-1 NMR Study
  publication-title: JOURNAL OF PHYSICAL CHEMISTRY B
  doi: 10.1021/jp305867v
– volume: 19
  start-page: 5101
  year: 2009
  ident: WOS:000268863800047
  article-title: New series of monoquaternary pyridinium oximes: Synthesis and reactivation potency for paraoxon-inhibited electric eel and recombinant human acetylcholinesterase
  publication-title: BIOORGANIC & MEDICINAL CHEMISTRY LETTERS
  doi: 10.1016/j.bmcl.2009.07.035
– volume: 22
  start-page: 520
  year: 2012
  ident: WOS:000307997700004
  article-title: In vitro skin permeation and decontamination of the organophosphorus pesticide paraoxon under various physical conditions - evidence for a wash-in effect
  publication-title: TOXICOLOGY MECHANISMS AND METHODS
  doi: 10.3109/15376516.2012.686535
– volume: 78
  start-page: 1499
  year: 2001
  ident: WOS:000171525700019
  article-title: The Henderson-Hasselbalch equation: Its history and limitations
  publication-title: JOURNAL OF CHEMICAL EDUCATION
– volume: 2
  start-page: 1068
  year: 2014
  ident: WOS:000331500800014
  article-title: Design and mechanistic investigation of oxime-conjugated PAMAM dendrimers as the catalytic scavenger of reactive organophosphate
  publication-title: JOURNAL OF MATERIALS CHEMISTRY B
  doi: 10.1039/c3tb21267j
– volume: 52
  start-page: 7593
  year: 2009
  ident: WOS:000272338000026
  article-title: Crystallographic Snapshots of Nonaged and Aged Conjugates of Soman with Acetylcholinesterase, and of a Ternary Complex of the Aged Conjugate with Pralidoxime
  publication-title: JOURNAL OF MEDICINAL CHEMISTRY
  doi: 10.1021/jm900433t
– volume: 4
  start-page: 4352
  year: 2006
  ident: WOS:000242005100013
  article-title: Revisiting the reactivity of oximate alpha-nucleophiles with electrophilic phosphorus centers. Relevance to detoxification of sarin, soman and DFP under mild conditions
  publication-title: ORGANIC & BIOMOLECULAR CHEMISTRY
  doi: 10.1039/b609658c
– volume: 84
  start-page: 1246
  year: 2016
  ident: WOS:000382812900007
  article-title: Structures of paraoxon-inhibited human acetylcholinesterase reveal perturbations of the acyl loop and the dimer interface
  publication-title: PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS
  doi: 10.1002/prot.25073
– volume: 286
  start-page: 29718
  year: 2011
  ident: WOS:000294046600031
  article-title: Oxime-assisted Acetylcholinesterase Catalytic Scavengers of Organophosphates That Resist Aging
  publication-title: JOURNAL OF BIOLOGICAL CHEMISTRY
  doi: 10.1074/jbc.M111.264739
– volume: 57
  start-page: 147
  year: 1991
  ident: WOS:A1991FB28800001
  article-title: SYNTHESIS AND STRUCTURE OF SOME PHOSPHONYLATED OXIMES RELATED TO ORGANOPHOSPHATE NERVE AGENTS
  publication-title: PHOSPHORUS SULFUR AND SILICON AND THE RELATED ELEMENTS
– volume: 4
  start-page: 2475
  year: 1965
  ident: WOS:A19656994500029
  article-title: REACTION OF 4-FORMYL-1-METHYLPYRIDINIUM IODIDE OXIME WITH ISOPROPYL METHYLPHOSPHONOFLUORIDATE
  publication-title: BIOCHEMISTRY
– volume: 77
  start-page: 3651
  year: 1955
  ident: WOS:A1955WB86000071
  article-title: ACCELERATION OF THE HYDROLYSIS OF ORGANIC FLUOROPHOSPHATES AND FLUOROPHOSPHONATES WITH HYDROXAMIC ACIDS
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
– volume: 27
  start-page: 168
  year: 2007
  ident: WOS:000245370200008
  article-title: In vitro oxime reactivation of red blood cell acetylcholinesterase inhibited by methyl-paraoxon
  publication-title: JOURNAL OF APPLIED TOXICOLOGY
  doi: 10.1002/jat.1189
– volume: 9
  start-page: 165
  year: 2000
  ident: WOS:000087010600001
  article-title: The 500 Dalton rule for the skin penetration of chemical compounds and drugs
  publication-title: EXPERIMENTAL DERMATOLOGY
– volume: 119
  start-page: 413
  year: 1999
  ident: WOS:000081184400046
  article-title: Protein engineering of a human enzyme that hydrolyzes V and G nerve agents: design, construction and characterization
  publication-title: CHEMICO-BIOLOGICAL INTERACTIONS
– year: 1997
  ident: 000466500800008.39
  publication-title: Octanol-Water Partition Coefficients: Fundamentals and Physical Chemistry
– volume: 23
  start-page: 8200
  year: 2016
  ident: WOS:000375412600006
  article-title: Current and emerging strategies for organophosphate decontamination: special focus on hyperstable enzymes
  publication-title: ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
  doi: 10.1007/s11356-016-6143-1
– volume: 240
  start-page: 141
  year: 2007
  ident: WOS:000251105200021
  article-title: Nerve agents: Why they are so toxic and can poisoning from these agents be treated?
  publication-title: TOXICOLOGY
  doi: 10.1016/j.tox.2007.06.023
– volume: 78
  start-page: 3594
  year: 1956
  ident: WOS:A1956WB83800011
  article-title: THE KINETICS OF THE REACTION OF ISOPROPYL METHYLPHOSPHONOFLUORIDATE (SARIN) WITH BENZOHYDROXAMIC ACID
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
– volume: 92
  start-page: 307
  year: 1988
  ident: WOS:A1988M053100015
  article-title: REACTIVATION AND AGING OF PHOSPHORYLATED BRAIN ACETYLCHOLINESTERASE FROM FISH AND RODENTS
  publication-title: TOXICOLOGY AND APPLIED PHARMACOLOGY
– volume: 187
  start-page: 380
  year: 2010
  ident: WOS:000281108600069
  article-title: Preparation and characterization of methoxy polyethylene glycol-conjugated phosphotriesterase as a potential catalytic bioscavenger against organophosphate poisoning
  publication-title: CHEMICO-BIOLOGICAL INTERACTIONS
  doi: 10.1016/j.cbi.2010.03.017
SSID ssj0019764
Score 2.3692057
Snippet Despite their unique benefits imparted by their structure and reactivity, certain α-nucleophile molecules remain underexplored as chemical inactivators for the...
Despite their unique benefits imparted by their structure and reactivity, certain alpha-nucleophile molecules remain underexplored as chemical inactivators for...
Source Web of Science
SourceID proquest
pubmed
webofscience
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3951
SubjectTerms Acetylcholinesterase
Catalysis
Chemical reactions
Chemistry
Chemistry, Organic
Decontamination
Esterase
Hydroxamic acid
Inactivators
Lead compounds
Molecular structure
NMR
Nuclear magnetic resonance
Nucleophiles
Organic chemistry
Organophosphates
Paraoxon
Physical Sciences
Physicochemical properties
Pyridinium
Reactivity
Scaffolds
Science & Technology
Screening
Skin
Title Reactivity and mechanism of α-nucleophile scaffolds as catalytic organophosphate scavengers
URI http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000466500800008
https://www.ncbi.nlm.nih.gov/pubmed/30942252
https://www.proquest.com/docview/2210837142
https://www.proquest.com/docview/2202668025
Volume 17
WOS 000466500800008
WOSCitedRecordID wos000466500800008
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9AAXxKtgKMiI9oAiF6-f8bGNgkrESyiVekCKdtdeRVViR7WD1P4XfgR_hN_EzHq9Nk0OgYvlbGbtxPN5Z2bnRcihjIMwlVnqgOrqOkEkhg7njDrSo6lImR9FqkvEp8_R2XkwuQgver2fnaildcWPxc3WvJL_4SqMAV8xS_YfOGsuCgNwDvyFI3AYjjvx-FuGaQmq-wPufy8zTOPFrhegAR6Nxken1MmxXnGxmsPLPygFk7JYpCU2l1H7NtdYrlU1dgKSolzNQfNEsh8Y66r9PFpzrZM2hYIK5uw3bXUHomkZZ9Z3HeX7lS2zBRtMj43JD5evGOZ5Xery_MUS9-5bP0ie10EAE3a9NIibNlvac_hVN_M108JW71VQ5XapUzP18hrEsYORN7X06Y7VJY3Mmhx3sdddYf1EF6jN9Md6fdyQBK6PhVRHyZdTVfJm0sq7xsd_Swya4ETllveTWTv3DtnzwArx-mTvZDz98NG4qUCXU2ELzd9q6t_6ybt29t8az4YZA0rNVSm26j1Kx5k-IPe1cWKf1Eh7SHpZ_ojcHTUMfky-t4izAXG2QZxdSPv3ry7abIM2m5W2QZt9C212i7Yn5Pz9eDo6c3R_Dkf4flw5YMvLgCcyBiUoiRgfsoRxGYcZ9RkLQbX34yELMCzJFSA3Iu7BqQBOizCMKUzbJ32AVfaM2IkfSi5RHKQBlg_inEYurCNxRDlLA2mRt80znAldvB57qCxmm9yyyBtDu6pLtmylOmhYMdOvdDnzPAomSUwDzyKvzdfwjNGLxvKsWCONC0rtEGwFizytWWhu47tJAAISZu8DT82wSAqu7nppkcMumw2FSuIGYwntNzhYhO5CNtJPAstXVM93-tsvyL32xTwg_epqnb0EtbrirzS4_wCB5c10
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reactivity+and+mechanism+of+%CE%B1-nucleophile+scaffolds+as+catalytic+organophosphate+scavengers&rft.jtitle=Organic+%26+biomolecular+chemistry&rft.au=Wong%2C+Pamela+T.&rft.au=Bhattacharjee%2C+Somnath&rft.au=Cannon%2C+Jayme&rft.au=Tang%2C+Shengzhuang&rft.date=2019-04-17&rft.issn=1477-0520&rft.eissn=1477-0539&rft.volume=17&rft.issue=16&rft.spage=3951&rft.epage=3963&rft_id=info:doi/10.1039%2FC9OB00503J&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C9OB00503J
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-0520&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-0520&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-0520&client=summon