Reactivity and mechanism of α-nucleophile scaffolds as catalytic organophosphate scavengers
Despite their unique benefits imparted by their structure and reactivity, certain α-nucleophile molecules remain underexplored as chemical inactivators for the topical decontamination of reactive organophosphates (OPs). Here, we present a library of thirty α-nucleophile scaffolds, each designed with...
Saved in:
Published in | Organic & biomolecular chemistry Vol. 17; no. 16; pp. 3951 - 3963 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
CAMBRIDGE
Royal Soc Chemistry
17.04.2019
Royal Society of Chemistry |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Despite their unique benefits imparted by their structure and reactivity, certain α-nucleophile molecules remain underexplored as chemical inactivators for the topical decontamination of reactive organophosphates (OPs). Here, we present a library of thirty α-nucleophile scaffolds, each designed with either a pyridinium aldoxime (PAM) or hydroxamic acid (HA) α-nucleophile core tethered to a polar or charged scaffold for optimized physicochemical properties and reactivity. These library compounds were screened for their abilities to catalyze the hydrolysis of a model OP, paraoxon (POX), in kinetic assays. These screening experiments led to the identification of multiple lead compounds with the ability to inactivate POX two- to four-times more rapidly than Dekon 139-the active ingredient currently used for skin decontamination of OPs. Our mechanistic studies, performed under variable pH and temperature conditions suggested that the differences in the reactivity and activation energy of these compounds are fundamentally attributable to the core nucleophilicity and p
K
a
. Following their screening and mechanistic studies, select lead compounds were further evaluated and demonstrated greater efficacy than Dekon 139 in the topical decontamination of POX in an
ex vivo
porcine skin model. In addition to OP reactivity, several compounds in the PAM class displayed a dual mode of activity, as they retained the ability to reactivate POX-inhibited acetylcholine esterase (AChE). In summary, this report describes a rationale for the hydrophilic scaffold design of α-nucleophiles, and it offers advanced insights into their chemical reactivity, mechanism, and practical utility as OP decontaminants.
Design and
in vitro
validation of polar α-nucleophile scaffolds that offer potent catalytic reactivity and practical utility for organophosphate decontamination. |
---|---|
AbstractList | Despite their unique benefits imparted by their structure and reactivity, certain α-nucleophile molecules remain underexplored as chemical inactivators for the topical decontamination of reactive organophosphates (OPs). Here, we present a library of thirty α-nucleophile scaffolds, each designed with either a pyridinium aldoxime (PAM) or hydroxamic acid (HA) α-nucleophile core tethered to a polar or charged scaffold for optimized physicochemical properties and reactivity. These library compounds were screened for their abilities to catalyze the hydrolysis of a model OP, paraoxon (POX), in kinetic assays. These screening experiments led to the identification of multiple lead compounds with the ability to inactivate POX two- to four-times more rapidly than Dekon 139-the active ingredient currently used for skin decontamination of OPs. Our mechanistic studies, performed under variable pH and temperature conditions suggested that the differences in the reactivity and activation energy of these compounds are fundamentally attributable to the core nucleophilicity and pKa. Following their screening and mechanistic studies, select lead compounds were further evaluated and demonstrated greater efficacy than Dekon 139 in the topical decontamination of POX in an ex vivo porcine skin model. In addition to OP reactivity, several compounds in the PAM class displayed a dual mode of activity, as they retained the ability to reactivate POX-inhibited acetylcholine esterase (AChE). In summary, this report describes a rationale for the hydrophilic scaffold design of α-nucleophiles, and it offers advanced insights into their chemical reactivity, mechanism, and practical utility as OP decontaminants.Despite their unique benefits imparted by their structure and reactivity, certain α-nucleophile molecules remain underexplored as chemical inactivators for the topical decontamination of reactive organophosphates (OPs). Here, we present a library of thirty α-nucleophile scaffolds, each designed with either a pyridinium aldoxime (PAM) or hydroxamic acid (HA) α-nucleophile core tethered to a polar or charged scaffold for optimized physicochemical properties and reactivity. These library compounds were screened for their abilities to catalyze the hydrolysis of a model OP, paraoxon (POX), in kinetic assays. These screening experiments led to the identification of multiple lead compounds with the ability to inactivate POX two- to four-times more rapidly than Dekon 139-the active ingredient currently used for skin decontamination of OPs. Our mechanistic studies, performed under variable pH and temperature conditions suggested that the differences in the reactivity and activation energy of these compounds are fundamentally attributable to the core nucleophilicity and pKa. Following their screening and mechanistic studies, select lead compounds were further evaluated and demonstrated greater efficacy than Dekon 139 in the topical decontamination of POX in an ex vivo porcine skin model. In addition to OP reactivity, several compounds in the PAM class displayed a dual mode of activity, as they retained the ability to reactivate POX-inhibited acetylcholine esterase (AChE). In summary, this report describes a rationale for the hydrophilic scaffold design of α-nucleophiles, and it offers advanced insights into their chemical reactivity, mechanism, and practical utility as OP decontaminants. Despite their unique benefits imparted by their structure and reactivity, certain α-nucleophile molecules remain underexplored as chemical inactivators for the topical decontamination of reactive organophosphates (OPs). Here, we present a library of thirty α-nucleophile scaffolds, each designed with either a pyridinium aldoxime (PAM) or hydroxamic acid (HA) α-nucleophile core tethered to a polar or charged scaffold for optimized physicochemical properties and reactivity. These library compounds were screened for their abilities to catalyze the hydrolysis of a model OP, paraoxon (POX), in kinetic assays. These screening experiments led to the identification of multiple lead compounds with the ability to inactivate POX two- to four-times more rapidly than Dekon 139-the active ingredient currently used for skin decontamination of OPs. Our mechanistic studies, performed under variable pH and temperature conditions suggested that the differences in the reactivity and activation energy of these compounds are fundamentally attributable to the core nucleophilicity and pKa. Following their screening and mechanistic studies, select lead compounds were further evaluated and demonstrated greater efficacy than Dekon 139 in the topical decontamination of POX in an ex vivo porcine skin model. In addition to OP reactivity, several compounds in the PAM class displayed a dual mode of activity, as they retained the ability to reactivate POX-inhibited acetylcholine esterase (AChE). In summary, this report describes a rationale for the hydrophilic scaffold design of α-nucleophiles, and it offers advanced insights into their chemical reactivity, mechanism, and practical utility as OP decontaminants. Despite their unique benefits imparted by their structure and reactivity, certain α-nucleophile molecules remain underexplored as chemical inactivators for the topical decontamination of reactive organophosphates (OPs). Here, we present a library of thirty α-nucleophile scaffolds, each designed with either a pyridinium aldoxime (PAM) or hydroxamic acid (HA) α-nucleophile core tethered to a polar or charged scaffold for optimized physicochemical properties and reactivity. These library compounds were screened for their abilities to catalyze the hydrolysis of a model OP, paraoxon (POX), in kinetic assays. These screening experiments led to the identification of multiple lead compounds with the ability to inactivate POX two- to four-times more rapidly than Dekon 139—the active ingredient currently used for skin decontamination of OPs. Our mechanistic studies, performed under variable pH and temperature conditions suggested that the differences in the reactivity and activation energy of these compounds are fundamentally attributable to the core nucleophilicity and p K a . Following their screening and mechanistic studies, select lead compounds were further evaluated and demonstrated greater efficacy than Dekon 139 in the topical decontamination of POX in an ex vivo porcine skin model. In addition to OP reactivity, several compounds in the PAM class displayed a dual mode of activity, as they retained the ability to reactivate POX-inhibited acetylcholine esterase (AChE). In summary, this report describes a rationale for the hydrophilic scaffold design of α-nucleophiles, and it offers advanced insights into their chemical reactivity, mechanism, and practical utility as OP decontaminants. Despite their unique benefits imparted by their structure and reactivity, certain α-nucleophile molecules remain underexplored as chemical inactivators for the topical decontamination of reactive organophosphates (OPs). Here, we present a library of thirty α-nucleophile scaffolds, each designed with either a pyridinium aldoxime (PAM) or hydroxamic acid (HA) α-nucleophile core tethered to a polar or charged scaffold for optimized physicochemical properties and reactivity. These library compounds were screened for their abilities to catalyze the hydrolysis of a model OP, paraoxon (POX), in kinetic assays. These screening experiments led to the identification of multiple lead compounds with the ability to inactivate POX two- to four-times more rapidly than Dekon 139-the active ingredient currently used for skin decontamination of OPs. Our mechanistic studies, performed under variable pH and temperature conditions suggested that the differences in the reactivity and activation energy of these compounds are fundamentally attributable to the core nucleophilicity and p K a . Following their screening and mechanistic studies, select lead compounds were further evaluated and demonstrated greater efficacy than Dekon 139 in the topical decontamination of POX in an ex vivo porcine skin model. In addition to OP reactivity, several compounds in the PAM class displayed a dual mode of activity, as they retained the ability to reactivate POX-inhibited acetylcholine esterase (AChE). In summary, this report describes a rationale for the hydrophilic scaffold design of α-nucleophiles, and it offers advanced insights into their chemical reactivity, mechanism, and practical utility as OP decontaminants. Design and in vitro validation of polar α-nucleophile scaffolds that offer potent catalytic reactivity and practical utility for organophosphate decontamination. Despite their unique benefits imparted by their structure and reactivity, certain alpha-nucleophile molecules remain underexplored as chemical inactivators for the topical decontamination of reactive organophosphates (OPs). Here, we present a library of thirty alpha-nucleophile scaffolds, each designed with either a pyridinium aldoxime (PAM) or hydroxamic acid (HA) alpha-nucleophile core tethered to a polar or charged scaffold for optimized physicochemical properties and reactivity. These library compounds were screened for their abilities to catalyze the hydrolysis of a model OP, paraoxon (POX), in kinetic assays. These screening experiments led to the identification of multiple lead compounds with the ability to inactivate POX two-to four-times more rapidly than Dekon 139-the active ingredient currently used for skin decontamination of OPs. Our mechanistic studies, performed under variable pH and temperature conditions suggested that the differences in the reactivity and activation energy of these compounds are fundamentally attributable to the core nucleophilicity and pK(a). Following their screening and mechanistic studies, select lead compounds were further evaluated and demonstrated greater efficacy than Dekon 139 in the topical decontamination of POX in an ex vivo porcine skin model. In addition to OP reactivity, several compounds in the PAM class displayed a dual mode of activity, as they retained the ability to reactivate POX-inhibited acetylcholine esterase (AChE). In summary, this report describes a rationale for the hydrophilic scaffold design of alpha-nucleophiles, and it offers advanced insights into their chemical reactivity, mechanism, and practical utility as OP decontaminants. |
Author | Cannon, Jayme Bowden, Sierra O'Konek, Jessica J Wong, Pamela T Bhattacharjee, Somnath Yang, Kelly Choi, Seok Ki Tang, Shengzhuang Varnau, Victoria |
AuthorAffiliation | Michigan Nanotechnology Institute for Medicine and Biological Sciences Department of Internal Medicine University of Michigan Medical School |
AuthorAffiliation_xml | – sequence: 0 name: Department of Internal Medicine – sequence: 0 name: Michigan Nanotechnology Institute for Medicine and Biological Sciences – sequence: 0 name: University of Michigan Medical School |
Author_xml | – sequence: 1 givenname: Pamela T surname: Wong fullname: Wong, Pamela T – sequence: 2 givenname: Somnath surname: Bhattacharjee fullname: Bhattacharjee, Somnath – sequence: 3 givenname: Jayme surname: Cannon fullname: Cannon, Jayme – sequence: 4 givenname: Shengzhuang surname: Tang fullname: Tang, Shengzhuang – sequence: 5 givenname: Kelly surname: Yang fullname: Yang, Kelly – sequence: 6 givenname: Sierra surname: Bowden fullname: Bowden, Sierra – sequence: 7 givenname: Victoria surname: Varnau fullname: Varnau, Victoria – sequence: 8 givenname: Jessica J surname: O'Konek fullname: O'Konek, Jessica J – sequence: 9 givenname: Seok Ki surname: Choi fullname: Choi, Seok Ki |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30942252$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0k9rFDEYBvAgFduuXrwrA17EMvommcxMjjpoqxQKojdheCebdLPMJGuSqezH8ov4mUy76wrFg6e8h9_zkH-n5Mh5pwl5SuE1BS7fKOkHAAF8_YCc0KppShBcHh1mBsfkNMY1AJVNXT0ixxxkxZhgJ-TbZ40q2RubtgW6ZTFptUJn41R4U_z6WbpZjdpvVnbURVRojB-XscBYKEw4bpNVhQ_X6DLxcbPCdMdutLvWIT4mDw2OUT_Zrwvy9cP7L91FeXl1_rF7e1kqzptU1kBNNUjT8JrJGocWJQ6mEZpyRNFywZsWK2O0AsUZqweWR5WPqIRoaI4tyMtd7yb477OOqZ9sVHoc0Wk_x54xYHXdAhOZvrhH134OLu8uKwotb2jFsnq-V_Mw6WW_CXbCsO3_3FsGZzvwQw_eRGW1U_rAAKCqawHQ5il3Lkj7_7qzCZP1rvOzSzn6ahdVwccYtDnEKPS3r9938urd3et_yhjuYbUvSwHt-O_Is10kRHWo_vuh-G_fprl6 |
CitedBy_id | crossref_primary_10_1016_j_jclepro_2023_139892 crossref_primary_10_1039_D1RA01125A crossref_primary_10_1016_j_apradiso_2022_110588 crossref_primary_10_1039_D4CC03116D crossref_primary_10_1021_acs_chemmater_0c03160 crossref_primary_10_1039_C9DT04733F crossref_primary_10_1016_j_ijpharm_2021_120689 crossref_primary_10_1016_j_tox_2020_152586 crossref_primary_10_1016_j_eurpolymj_2019_109464 crossref_primary_10_1016_j_envpol_2023_121802 crossref_primary_10_1016_j_envres_2020_109653 crossref_primary_10_1016_j_toxlet_2020_12_014 crossref_primary_10_3390_nano11010224 crossref_primary_10_3390_biom10030436 crossref_primary_10_1021_acs_iecr_1c01374 crossref_primary_10_1039_D1MD00194A crossref_primary_10_1021_acsomega_4c09946 crossref_primary_10_1021_acsami_0c08946 |
Cites_doi | 10.1016/j.biomaterials.2010.02.004 10.1021/ja01596a011 10.1007/s11356-016-6143-1 10.1016/j.cbi.2010.02.033 10.1016/j.bmcl.2009.07.035 10.1016/0041-008X(88)90390-0 10.1021/bi00887a029 10.1021/ja01618a072 10.1016/j.addr.2009.08.001 10.1074/jbc.M111.230656 10.1021/jo00834a044 10.1034/j.1600-0625.2000.009003165.x 10.1016/j.cbi.2018.10.022 10.1016/j.ejmech.2018.08.016 10.1007/BF00581649 10.1021/acsnano.6b04996 10.1021/acs.chemrestox.6b00198 10.1007/s002040050450 10.1007/s00204-002-0375-1 10.1039/b412132e 10.3109/15569527.2010.515280 10.1039/c3tb21267j 10.1002/chem.201801394 10.1021/ed078p1499 10.1016/j.cbi.2010.03.017 10.1021/jo01099a019 10.1021/ma200522m 10.1074/jbc.M111.264739 10.3390/ijms12032077 10.1016/j.tox.2007.06.023 10.1016/j.cbi.2010.02.015 10.1177/0960327108090269 10.1039/C8OB01928B 10.1038/jidsymp.1998.27 10.1002/jat.1189 10.1007/BF00303133 10.1021/acs.molpharmaceut.5b00684 10.1039/B609658C 10.1080/10426509108038845 10.1124/mol.106.026179 10.1021/jp305867v 10.1016/0223-5234(88)90168-7 10.1002/prot.25073 10.1021/jm900433t 10.1039/C4OB02067G 10.1016/0006-2952(61)90145-9 10.1016/j.toxlet.2017.11.003 10.1016/S0009-2797(99)00053-8 10.3109/15376516.2012.686535 10.1016/j.bcp.2004.07.038 10.1039/c8ob01928b 10.1039/c4ob02067g 10.1039/b609658c |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2019 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2019 |
DBID | AAYXX CITATION 17B 1KM AAWJD BLEPL DTL EGQ NPM 7QO 7T7 7TM 8FD C1K FR3 P64 7X8 |
DOI | 10.1039/c9ob00503j |
DatabaseName | CrossRef Web of Knowledge Index Chemicus Web of Science - Science Citation Index Expanded - 2019 Web of Science Core Collection Science Citation Index Expanded Web of Science Primary (SCIE, SSCI & AHCI) PubMed Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef Web of Science PubMed Biotechnology Research Abstracts Technology Research Database Nucleic Acids Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef Web of Science Biotechnology Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 1KM name: Index Chemicus url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC sourceTypes: Enrichment Source Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1477-0539 |
EndPage | 3963 |
ExternalDocumentID | 30942252 000466500800008 10_1039_C9OB00503J c9ob00503j |
Genre | Journal Article |
GrantInformation_xml | – fundername: US Defense Threat Reduction Agency-DOD grantid: HDTRA1-17-C-00001 |
GroupedDBID | --- -DZ -JG -~X 0-7 0R~ 123 29N 4.4 705 70~ 7~J AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ACNCT ACPRK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRDS AFVBQ AGEGJ AGKEF AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K CS3 D0L DU5 EBS ECGLT EE0 EF- EJD F5P GGIMP GNO H13 HZ~ H~N IDZ J3I M4U N9A O9- OK1 P2P R7B R7C RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UCJ VH6 VQA WH7 XSW YNT YZZ AAYXX AFRZK AKMSF ALUYA CITATION R56 17B 1KM BLEPL DTL GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED GROUPED_WOS_WEB_OF_SCIENCE NPM 7QO 7T7 7TM 8FD C1K FR3 P64 7X8 |
ID | FETCH-LOGICAL-c337t-601f4b9f736296ab8a9abf75e13aa5835378a4ffec0c3226b2fecc539c5571f73 |
ISICitedReferencesCount | 19 |
ISICitedReferencesURI | https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000466500800008 |
ISSN | 1477-0520 1477-0539 |
IngestDate | Fri Jul 11 16:01:04 EDT 2025 Mon Jun 30 11:58:12 EDT 2025 Thu Apr 03 07:11:15 EDT 2025 Fri May 30 03:09:50 EDT 2025 Fri Aug 29 16:06:54 EDT 2025 Tue Jul 01 01:51:57 EDT 2025 Thu Apr 24 22:50:27 EDT 2025 Tue Dec 17 20:59:27 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Keywords | NERVE AGENTS OXIME REACTIVATORS PARAOXON KINETICS PAMAM DENDRIMERS SKIN DECONTAMINATION LOTION WARFARE AGENTS SARIN COOPERATIVITY INHIBITED HUMAN ACETYLCHOLINESTERASE |
Language | English |
LinkModel | OpenURL |
LogoURL | https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg |
MergedId | FETCHMERGED-LOGICAL-c337t-601f4b9f736296ab8a9abf75e13aa5835378a4ffec0c3226b2fecc539c5571f73 |
Notes | Electronic supplementary information (ESI) available: Details of materials and analytical methods not detailed above, synthetic methods, copies of NMR and UV-Vis spectra, supplementary figures and tables. See DOI 10.1039/c9ob00503j ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4387-4723 0000-0003-4279-1261 0000-0001-5633-4817 0000-0002-1455-0586 0000-0002-6862-7913 |
PMID | 30942252 |
PQID | 2210837142 |
PQPubID | 2047497 |
PageCount | 13 |
ParticipantIDs | webofscience_primary_000466500800008CitationCount pubmed_primary_30942252 rsc_primary_c9ob00503j crossref_primary_10_1039_C9OB00503J proquest_journals_2210837142 crossref_citationtrail_10_1039_C9OB00503J webofscience_primary_000466500800008 proquest_miscellaneous_2202668025 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190417 |
PublicationDateYYYYMMDD | 2019-04-17 |
PublicationDate_xml | – month: 4 year: 2019 text: 20190417 day: 17 |
PublicationDecade | 2010 |
PublicationPlace | CAMBRIDGE |
PublicationPlace_xml | – name: CAMBRIDGE – name: England – name: Cambridge |
PublicationTitle | Organic & biomolecular chemistry |
PublicationTitleAbbrev | ORG BIOMOL CHEM |
PublicationTitleAlternate | Org Biomol Chem |
PublicationYear | 2019 |
Publisher | Royal Soc Chemistry Royal Society of Chemistry |
Publisher_xml | – name: Royal Soc Chemistry – name: Royal Society of Chemistry |
References | Lamb (C9OB00503J-(cit25)/*[position()=1]) 1965; 4 Jacquet (C9OB00503J-(cit21)/*[position()=1]) 2016; 23 Swidler (C9OB00503J-(cit29)/*[position()=1]) 1956; 78 Li (C9OB00503J-(cit17)/*[position()=1]) 2016; 10 Braue (C9OB00503J-(cit22)/*[position()=1]) 2011; 30 Jun (C9OB00503J-(cit7)/*[position()=1]) 2010; 187 Fentabil (C9OB00503J-(cit10)/*[position()=1]) 2018; 293 Bjarnason (C9OB00503J-(cit16)/*[position()=1]) 2008; 27 Fryer (C9OB00503J-(cit23)/*[position()=1]) 1988; 411 Sangster (C9OB00503J-(cit34)/*[position()=1]) 1997 de Koning (C9OB00503J-(cit51)/*[position()=1]) 2018; 157 Demerseman (C9OB00503J-(cit41)/*[position()=1]) 1988; 23 Morales (C9OB00503J-(cit19)/*[position()=1]) 2018; 16 Sanson (C9OB00503J-(cit13)/*[position()=1]) 2009; 52 Franklin (C9OB00503J-(cit12)/*[position()=1]) 2016; 84 Sit (C9OB00503J-(cit4)/*[position()=1]) 2011; 286 Tsang (C9OB00503J-(cit20)/*[position()=1]) 2004; 2 Singh (C9OB00503J-(cit11)/*[position()=1]) 2015; 13 Cohen (C9OB00503J-(cit6)/*[position()=1]) 2006; 70 Ellman (C9OB00503J-(cit40)/*[position()=1]) 1961; 7 Bharathi (C9OB00503J-(cit8)/*[position()=1]) 2014; 2 Garcia (C9OB00503J-(cit52)/*[position()=1]) 2010; 187 Terrier (C9OB00503J-(cit27)/*[position()=1]) 2006; 4 Worek (C9OB00503J-(cit38)/*[position()=1]) 2004; 68 Poziomek (C9OB00503J-(cit31)/*[position()=1]) 1958; 23 Bos (C9OB00503J-(cit33)/*[position()=1]) 2000; 9 Po (C9OB00503J-(cit36)/*[position()=1]) 2001; 78 Mukherjee (C9OB00503J-(cit48)/*[position()=1]) 2015; 12 Vale (C9OB00503J-(cit2)/*[position()=1]) 2007; 240 Amitai (C9OB00503J-(cit18)/*[position()=1]) 2010; 31 Zorbaz (C9OB00503J-(cit45)/*[position()=1]) 2018; 24 Misik (C9OB00503J-(cit15)/*[position()=1]) 2012; 22 Choi (C9OB00503J-(cit47)/*[position()=1]) 2012; 116 Bajgar (C9OB00503J-(cit1)/*[position()=1]) 2004; 38 Tang (C9OB00503J-(cit9)/*[position()=1]) 2019; 297 Jovanović (C9OB00503J-(cit14)/*[position()=1]) 1989; 63 DeMar (C9OB00503J-(cit3)/*[position()=1]) 2010; 187 Bharate (C9OB00503J-(cit30)/*[position()=1]) 2009; 19 Wallace (C9OB00503J-(cit42)/*[position()=1]) 1988; 92 Jun (C9OB00503J-(cit43)/*[position()=1]) 2011; 12 Hackley (C9OB00503J-(cit28)/*[position()=1]) 1955; 77 Vicent (C9OB00503J-(cit49)/*[position()=1]) 2009; 61 Cochran (C9OB00503J-(cit50)/*[position()=1]) 2011; 286 Becker (C9OB00503J-(cit24)/*[position()=1]) 1997; 71 Behrman (C9OB00503J-(cit26)/*[position()=1]) 1970; 35 Choi (C9OB00503J-(cit46)/*[position()=1]) 2011; 44 Berberich (C9OB00503J-(cit39)/*[position()=1]) 2016; 29 Boulet (C9OB00503J-(cit35)/*[position()=1]) 1991; 57 Broomfield (C9OB00503J-(cit5)/*[position()=1]) 1999; 119–120 Hadgraft (C9OB00503J-(cit32)/*[position()=1]) 1998; 3 Petroianu (C9OB00503J-(cit44)/*[position()=1]) 2007; 27 Worek (C9OB00503J-(cit37)/*[position()=1]) 2002; 76 Garcia, GE (WOS:000281108600035) 2010; 187 Worek, F (WOS:000224952200015) 2004; 68 Jun, D (WOS:000281108600069) 2010; 187 SWIDLER, R (WOS:A1956WB83800011) 1956; 78 Amitai, G (WOS:000276932600020) 2010; 31 DEMERSEMAN, P (WOS:A1988M569300010) 1988; 23 LAMB, JC (WOS:A19656994500029) 1965; 4 Vicent, MJ (WOS:000271769600001) 2009; 61 Berberich, JA (WOS:000383733300017) 2016; 29 Bharathi, S (WOS:000331500800014) 2014; 2 Terrier, F (WOS:000242005100013) 2006; 4 Franklin, MC (WOS:000382812900007) 2016; 84 Fentabil, M (WOS:000433259800035) 2018; 293 Choi, SK (WOS:000308119900028) 2012; 116 Sanson, B (WOS:000272338000026) 2009; 52 Tang, SZ (WOS:000452715400009) 2019; 297 Singh, N (WOS:000350674400001) 2015; 13 Jun, D (WOS:000288784200043) 2011; 12 Becker, G (WOS:A1997XZ86100009) 1997; 71 POZIOMEK, EJ (WOS:A1958WP70600019) 1958; 23 de Koning, MC (WOS:000447480000013) 2018; 157 ELLMAN, GL (WOS:A19617004A00002) 1961; 7 Morales, JI (WOS:000447780200016) 2018; 16 Cohen, O (WOS:000239922300036) 2006; 70 BOULET, CA (WOS:A1991FB28800001) 1991; 57 Braue, EH (WOS:000287249400003) 2011; 30 HACKLEY, BE (WOS:A1955WB86000071) 1955; 77 Sangster, J. (000466500800008.39) 1997 Mukherjee, J (WOS:000366151500031) 2015; 12 Po, HN (WOS:000171525700019) 2001; 78 Jacquet, P (WOS:000375412600006) 2016; 23 Li, P (WOS:000386423600017) 2016; 10 Bajgar, J (WOS:000225885700006) 2004; 38 Misik, J (WOS:000307997700004) 2012; 22 Broomfield, CA (WOS:000081184400046) 1999; 119 Worek, F (WOS:000178502400006) 2002; 76 Demar, JC (WOS:000281108600034) 2010; 187 Bharate, SB (WOS:000268863800047) 2009; 19 Choi, SK (WOS:000291288900003) 2011; 44 Sit, RK (WOS:000291027700025) 2011; 286 Cochran, R (WOS:000294046600031) 2011; 286 JOVANOVIC, D (WOS:A1989AT33800013) 1989; 63 FRYER, MW (WOS:A1988L653800011) 1988; 411 Bjarnason, S (WOS:000258550700010) 2008; 27 Hadgraft, J (MEDLINE:9734827) 1998; 3 Tsang, JSW (WOS:000225335900008) 2004; 2 Bos, JD (WOS:000087010600001) 2000; 9 BEHRMAN, EJ (WOS:A1970H224500044) 1970; 35 Vale, JA (WOS:000251105200021) 2007; 240 WALLACE, KB (WOS:A1988M053100015) 1988; 92 Petroianu, GA (WOS:000245370200008) 2007; 27 Zorbaz, T (WOS:000437730300032) 2018; 24 |
References_xml | – issn: 1997 publication-title: Octanol-Water Partition Coefficients: Fundamentals and Physical Chemistry doi: Sangster – issn: 2004 issue: 38 end-page: 151-216 publication-title: Advances in Clinical Chemistry doi: Bajgar – volume: 31 start-page: 4417 year: 2010 ident: C9OB00503J-(cit18)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.02.004 – volume: 78 start-page: 3594 year: 1956 ident: C9OB00503J-(cit29)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01596a011 – volume: 23 start-page: 8200 year: 2016 ident: C9OB00503J-(cit21)/*[position()=1] publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-016-6143-1 – volume: 187 start-page: 199 year: 2010 ident: C9OB00503J-(cit52)/*[position()=1] publication-title: Chem.-Biol. Interact. doi: 10.1016/j.cbi.2010.02.033 – volume: 19 start-page: 5101 year: 2009 ident: C9OB00503J-(cit30)/*[position()=1] publication-title: Bioorg. Med. Chem. Lett. doi: 10.1016/j.bmcl.2009.07.035 – volume: 92 start-page: 307 year: 1988 ident: C9OB00503J-(cit42)/*[position()=1] publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/0041-008X(88)90390-0 – volume: 4 start-page: 2475 year: 1965 ident: C9OB00503J-(cit25)/*[position()=1] publication-title: Biochemistry doi: 10.1021/bi00887a029 – volume: 77 start-page: 3651 year: 1955 ident: C9OB00503J-(cit28)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01618a072 – volume: 61 start-page: 1117 year: 2009 ident: C9OB00503J-(cit49)/*[position()=1] publication-title: Adv. Drug Delivery Rev. doi: 10.1016/j.addr.2009.08.001 – volume: 286 start-page: 19422 year: 2011 ident: C9OB00503J-(cit4)/*[position()=1] publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.230656 – volume: 35 start-page: 3069 year: 1970 ident: C9OB00503J-(cit26)/*[position()=1] publication-title: J. Org. Chem. doi: 10.1021/jo00834a044 – volume: 9 start-page: 165 year: 2000 ident: C9OB00503J-(cit33)/*[position()=1] publication-title: Exp. Dermatol. doi: 10.1034/j.1600-0625.2000.009003165.x – volume: 297 start-page: 67 year: 2019 ident: C9OB00503J-(cit9)/*[position()=1] publication-title: Chem.-Biol. Interact. doi: 10.1016/j.cbi.2018.10.022 – volume: 157 start-page: 151 year: 2018 ident: C9OB00503J-(cit51)/*[position()=1] publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2018.08.016 – volume: 411 start-page: 76 year: 1988 ident: C9OB00503J-(cit23)/*[position()=1] publication-title: Pfluegers Arch. doi: 10.1007/BF00581649 – volume: 10 start-page: 9174 year: 2016 ident: C9OB00503J-(cit17)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.6b04996 – volume: 29 start-page: 1534 year: 2016 ident: C9OB00503J-(cit39)/*[position()=1] publication-title: Chem. Res. Toxicol. doi: 10.1021/acs.chemrestox.6b00198 – volume: 71 start-page: 714 year: 1997 ident: C9OB00503J-(cit24)/*[position()=1] publication-title: Arch. Toxicol. doi: 10.1007/s002040050450 – volume: 76 start-page: 523 year: 2002 ident: C9OB00503J-(cit37)/*[position()=1] publication-title: Arch. Toxicol. doi: 10.1007/s00204-002-0375-1 – volume: 2 start-page: 3457 year: 2004 ident: C9OB00503J-(cit20)/*[position()=1] publication-title: Org. Biomol. Chem. doi: 10.1039/b412132e – volume: 30 start-page: 15 year: 2011 ident: C9OB00503J-(cit22)/*[position()=1] publication-title: Cutaneous Ocul. Toxicol. doi: 10.3109/15569527.2010.515280 – volume-title: Octanol-Water Partition Coefficients: Fundamentals and Physical Chemistry year: 1997 ident: C9OB00503J-(cit34)/*[position()=1] – volume: 2 start-page: 1068 year: 2014 ident: C9OB00503J-(cit8)/*[position()=1] publication-title: J. Mater. Chem. B doi: 10.1039/c3tb21267j – volume: 24 start-page: 9675 year: 2018 ident: C9OB00503J-(cit45)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201801394 – volume: 78 start-page: 1499 year: 2001 ident: C9OB00503J-(cit36)/*[position()=1] publication-title: J. Chem. Educ. doi: 10.1021/ed078p1499 – volume: 187 start-page: 380 year: 2010 ident: C9OB00503J-(cit7)/*[position()=1] publication-title: Chem.-Biol. Interact. doi: 10.1016/j.cbi.2010.03.017 – volume: 23 start-page: 714 year: 1958 ident: C9OB00503J-(cit31)/*[position()=1] publication-title: J. Org. Chem. doi: 10.1021/jo01099a019 – volume: 44 start-page: 4026 year: 2011 ident: C9OB00503J-(cit46)/*[position()=1] publication-title: Macromolecules doi: 10.1021/ma200522m – volume: 286 start-page: 29718 year: 2011 ident: C9OB00503J-(cit50)/*[position()=1] publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.264739 – volume: 12 start-page: 2077 year: 2011 ident: C9OB00503J-(cit43)/*[position()=1] publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms12032077 – volume: 38 volume-title: Advances in Clinical Chemistry year: 2004 ident: C9OB00503J-(cit1)/*[position()=1] – volume: 240 start-page: 141 year: 2007 ident: C9OB00503J-(cit2)/*[position()=1] publication-title: Toxicology doi: 10.1016/j.tox.2007.06.023 – volume: 187 start-page: 191 year: 2010 ident: C9OB00503J-(cit3)/*[position()=1] publication-title: Chem.-Biol. Interact. doi: 10.1016/j.cbi.2010.02.015 – volume: 27 start-page: 253 year: 2008 ident: C9OB00503J-(cit16)/*[position()=1] publication-title: Hum. Exp. Toxicol. doi: 10.1177/0960327108090269 – volume: 16 start-page: 7446 year: 2018 ident: C9OB00503J-(cit19)/*[position()=1] publication-title: Org. Biomol. Chem. doi: 10.1039/C8OB01928B – volume: 3 start-page: 131 year: 1998 ident: C9OB00503J-(cit32)/*[position()=1] publication-title: J. Invest. Dermatol. Symp. Proc. doi: 10.1038/jidsymp.1998.27 – volume: 27 start-page: 168 year: 2007 ident: C9OB00503J-(cit44)/*[position()=1] publication-title: J. Appl. Toxicol. doi: 10.1002/jat.1189 – volume: 63 start-page: 416 year: 1989 ident: C9OB00503J-(cit14)/*[position()=1] publication-title: Arch. Toxicol. doi: 10.1007/BF00303133 – volume: 12 start-page: 4498 year: 2015 ident: C9OB00503J-(cit48)/*[position()=1] publication-title: Mol. Pharmaceutics doi: 10.1021/acs.molpharmaceut.5b00684 – volume: 4 start-page: 4352 year: 2006 ident: C9OB00503J-(cit27)/*[position()=1] publication-title: Org. Biomol. Chem. doi: 10.1039/B609658C – volume: 57 start-page: 147 year: 1991 ident: C9OB00503J-(cit35)/*[position()=1] publication-title: Phosphorus, Sulfur Silicon Relat. Elem. doi: 10.1080/10426509108038845 – volume: 70 start-page: 1121 year: 2006 ident: C9OB00503J-(cit6)/*[position()=1] publication-title: Mol. Pharmacol. doi: 10.1124/mol.106.026179 – volume: 116 start-page: 10387 year: 2012 ident: C9OB00503J-(cit47)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp305867v – volume: 23 start-page: 63 year: 1988 ident: C9OB00503J-(cit41)/*[position()=1] publication-title: Eur. J. Med. Chem. doi: 10.1016/0223-5234(88)90168-7 – volume: 84 start-page: 1246 year: 2016 ident: C9OB00503J-(cit12)/*[position()=1] publication-title: Proteins: Struct., Funct., Bioinf. doi: 10.1002/prot.25073 – volume: 52 start-page: 7593 year: 2009 ident: C9OB00503J-(cit13)/*[position()=1] publication-title: J. Med. Chem. doi: 10.1021/jm900433t – volume: 13 start-page: 2827 year: 2015 ident: C9OB00503J-(cit11)/*[position()=1] publication-title: Org. Biomol. Chem. doi: 10.1039/C4OB02067G – volume: 7 start-page: 88 year: 1961 ident: C9OB00503J-(cit40)/*[position()=1] publication-title: Biochem. Pharmacol. doi: 10.1016/0006-2952(61)90145-9 – volume: 293 start-page: 241 year: 2018 ident: C9OB00503J-(cit10)/*[position()=1] publication-title: Toxicol. Lett. doi: 10.1016/j.toxlet.2017.11.003 – volume: 119–120 start-page: 413 year: 1999 ident: C9OB00503J-(cit5)/*[position()=1] publication-title: Chem.-Biol. Interact. doi: 10.1016/S0009-2797(99)00053-8 – volume: 22 start-page: 520 year: 2012 ident: C9OB00503J-(cit15)/*[position()=1] publication-title: Toxicol. Mech. Methods doi: 10.3109/15376516.2012.686535 – volume: 68 start-page: 2237 year: 2004 ident: C9OB00503J-(cit38)/*[position()=1] publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2004.07.038 – volume: 10 start-page: 9174 year: 2016 ident: WOS:000386423600017 article-title: Nanosizing a Metal-Organic Framework Enzyme Carrier for Accelerating Nerve Agent Hydrolysis publication-title: ACS NANO doi: 10.1021/acsnano.6b04996 – volume: 157 start-page: 151 year: 2018 ident: WOS:000447480000013 article-title: Discovery of a potent non-oxime reactivator of nerve agent inhibited human acetylcholinesterase publication-title: EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY doi: 10.1016/j.ejmech.2018.08.016 – volume: 7 start-page: 88 year: 1961 ident: WOS:A19617004A00002 article-title: A NEW AND RAPID COLORIMETRIC DETERMINATION OF ACETYLCHOLINESTERASE ACTIVITY publication-title: BIOCHEMICAL PHARMACOLOGY – volume: 12 start-page: 4498 year: 2015 ident: WOS:000366151500031 article-title: Mechanism of Cooperativity and Nonlinear Release Kinetics in Multivalent Dendrimer-Atropine Complexes publication-title: MOLECULAR PHARMACEUTICS doi: 10.1021/acs.molpharmaceut.5b00684 – volume: 24 start-page: 9675 year: 2018 ident: WOS:000437730300032 article-title: Potent 3-Hydroxy-2-Pyridine Aldoxime Reactivators of Organophosphate-Inhibited Cholinesterases with Predicted Blood-Brain Barrier Penetration publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.201801394 – volume: 35 start-page: 3069 year: 1970 ident: WOS:A1970H224500044 article-title: REACTIONS OF PHOSPHONIC ACID ESTERS WITH NUCLEOPHILES .2. SURVEY OF NUCLEOPHILES REACTING WITH PARA-NITROPHENYL METHYLPHOSPHONATE ANION publication-title: JOURNAL OF ORGANIC CHEMISTRY – volume: 70 start-page: 1121 year: 2006 ident: WOS:000239922300036 article-title: Comparison of polyethylene glycol-conjugated recombinant human acetylcholinesterase and serum human butyrylcholinesterase as bioscavengers of organophosphate compounds publication-title: MOLECULAR PHARMACOLOGY doi: 10.1124/mol.106.026179 – volume: 31 start-page: 4417 year: 2010 ident: WOS:000276932600020 article-title: Decontamination of chemical and biological warfare agents with a single multi-functional material publication-title: BIOMATERIALS doi: 10.1016/j.biomaterials.2010.02.004 – volume: 16 start-page: 7446 year: 2018 ident: WOS:000447780200016 article-title: Dual function of amino acid ionic liquids (Bmim[AA]) on the degradation of the organophosphorus pesticide, Paraoxon (R) publication-title: ORGANIC & BIOMOLECULAR CHEMISTRY doi: 10.1039/c8ob01928b – volume: 187 start-page: 199 year: 2010 ident: WOS:000281108600035 article-title: Novel oximes as blood-brain barrier penetrating cholinesterase reactivators publication-title: CHEMICO-BIOLOGICAL INTERACTIONS doi: 10.1016/j.cbi.2010.02.033 – volume: 63 start-page: 416 year: 1989 ident: WOS:A1989AT33800013 article-title: PHARMACOKINETICS OF PRALIDOXIME CHLORIDE - A COMPARATIVE-STUDY IN HEALTHY-VOLUNTEERS AND IN ORGANO-PHOSPHORUS POISONING publication-title: ARCHIVES OF TOXICOLOGY – volume: 12 start-page: 2077 year: 2011 ident: WOS:000288784200043 article-title: In Vitro Ability of Currently Available Oximes to Reactivate Organophosphate Pesticide-Inhibited Human Acetylcholinesterase and Butyrylcholinesterase publication-title: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES doi: 10.3390/ijms12032077 – volume: 44 start-page: 4026 year: 2011 ident: WOS:000291288900003 article-title: Specificity and Negative Cooperativity in Dendrimer-Oxime Drug Complexation publication-title: MACROMOLECULES doi: 10.1021/ma200522m – volume: 3 start-page: 131 year: 1998 ident: MEDLINE:9734827 article-title: The selection and design of topical and transdermal agents: a review. publication-title: The journal of investigative dermatology. Symposium proceedings – volume: 30 start-page: 15 year: 2011 ident: WOS:000287249400003 article-title: Efficacy studies of Reactive Skin Decontamination Lotion, M291 Skin Decontamination Kit, 0.5% bleach, 1% soapy water, and Skin Exposure Reduction Paste Against Chemical Warfare Agents, Part 1: Guinea pigs challenged with VX publication-title: CUTANEOUS AND OCULAR TOXICOLOGY doi: 10.3109/15569527.2010.515280 – volume: 38 start-page: 151 year: 2004 ident: WOS:000225885700006 article-title: Organophosphates/nerve agent poisoning: Mechanism of action, diagnosis, prophylaxis, and treatment publication-title: ADVANCES IN CLINICAL CHEMISTRY, VOL. 38 – volume: 286 start-page: 19422 year: 2011 ident: WOS:000291027700025 article-title: New Structural Scaffolds for Centrally Acting Oxime Reactivators of Phosphylated Cholinesterases publication-title: JOURNAL OF BIOLOGICAL CHEMISTRY doi: 10.1074/jbc.M111.230656 – volume: 293 start-page: 241 year: 2018 ident: WOS:000433259800035 article-title: Degradation of pesticides with RSDL (R) (reactive skin decontamination lotion kit) lotion: LC-MS investigation publication-title: TOXICOLOGY LETTERS doi: 10.1016/j.toxlet.2017.11.003 – volume: 13 start-page: 2827 year: 2015 ident: WOS:000350674400001 article-title: From alpha-nucleophiles to functionalized aggregates: exploring the reactivity of hydroxamate ion towards esterolytic reactions in micelles publication-title: ORGANIC & BIOMOLECULAR CHEMISTRY doi: 10.1039/c4ob02067g – volume: 411 start-page: 76 year: 1988 ident: WOS:A1988L653800011 article-title: PARALYSIS OF SKELETAL-MUSCLE BY BUTANEDIONE MONOXIME, A CHEMICAL PHOSPHATASE publication-title: PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY – volume: 27 start-page: 253 year: 2008 ident: WOS:000258550700010 article-title: Comparison of selected skin decontaminant products and regimens against VX in domestic swine publication-title: HUMAN & EXPERIMENTAL TOXICOLOGY doi: 10.1177/0960327108090269 – volume: 2 start-page: 3457 year: 2004 ident: WOS:000225335900008 article-title: La3+-catalyzed methanolysis of O,O-diethyl S-(p-nitrophenyl) phosphorothioate and O,O-diethyl S-phenyl phosphorothioate. Millions-fold acceleration of the destruction of V-agent simulants publication-title: ORGANIC & BIOMOLECULAR CHEMISTRY doi: 10.1039/b412132e – volume: 29 start-page: 1534 year: 2016 ident: WOS:000383733300017 article-title: Biological Testing of Organophosphorus-Inactivated Acetylcholinesterase Oxime Reactivators Identified via Virtual Screening publication-title: CHEMICAL RESEARCH IN TOXICOLOGY doi: 10.1021/acs.chemrestox.6b00198 – volume: 23 start-page: 63 year: 1988 ident: WOS:A1988M569300010 article-title: POLYMETHYLENEDIOXY BIS(2-HYDROXYIMINOMETHYLPYRIDINIUM) AS INVITRO REACTIVATORS OF ORGANOPHOSPHOROUS INHIBITED EEL ACETYLCHOLINESTERASE publication-title: EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY – volume: 76 start-page: 523 year: 2002 ident: WOS:000178502400006 article-title: Reactivation kinetics of acetylcholinesterase from different species inhibited by highly toxic organophosphates publication-title: ARCHIVES OF TOXICOLOGY doi: 10.1007/s00204-002-0375-1 – volume: 23 start-page: 714 year: 1958 ident: WOS:A1958WP70600019 article-title: PYRIDINIUM ALDOXIMES publication-title: JOURNAL OF ORGANIC CHEMISTRY – volume: 187 start-page: 191 year: 2010 ident: WOS:000281108600034 article-title: Pro-2-PAM therapy for central and peripheral cholinesterases publication-title: CHEMICO-BIOLOGICAL INTERACTIONS doi: 10.1016/j.cbi.2010.02.015 – volume: 61 start-page: 1117 year: 2009 ident: WOS:000271769600001 article-title: Polymer therapeutics: Clinical applications and challenges for development Preface publication-title: ADVANCED DRUG DELIVERY REVIEWS doi: 10.1016/j.addr.2009.08.001 – volume: 68 start-page: 2237 year: 2004 ident: WOS:000224952200015 article-title: Kinetic analysis of interactions between human acetylcholinesterase, structurally different organophosphorus compounds and oximes publication-title: BIOCHEMICAL PHARMACOLOGY doi: 10.1016/j.bcp.2004.07.038 – volume: 71 start-page: 714 year: 1997 ident: WOS:A1997XZ86100009 article-title: Direct reaction of oximes with sarin, soman, or tabun in vitro publication-title: ARCHIVES OF TOXICOLOGY – volume: 297 start-page: 67 year: 2019 ident: WOS:000452715400009 article-title: Hydrophilic scaffolds of oxime as the potent catalytic inactivator of reactive organophosphate publication-title: CHEMICO-BIOLOGICAL INTERACTIONS doi: 10.1016/j.cbi.2018.10.022 – volume: 116 start-page: 10387 year: 2012 ident: WOS:000308119900028 article-title: Specific and Cooperative Interactions between Oximes and PAMAM Dendrimers As Demonstrated by H-1 NMR Study publication-title: JOURNAL OF PHYSICAL CHEMISTRY B doi: 10.1021/jp305867v – volume: 19 start-page: 5101 year: 2009 ident: WOS:000268863800047 article-title: New series of monoquaternary pyridinium oximes: Synthesis and reactivation potency for paraoxon-inhibited electric eel and recombinant human acetylcholinesterase publication-title: BIOORGANIC & MEDICINAL CHEMISTRY LETTERS doi: 10.1016/j.bmcl.2009.07.035 – volume: 22 start-page: 520 year: 2012 ident: WOS:000307997700004 article-title: In vitro skin permeation and decontamination of the organophosphorus pesticide paraoxon under various physical conditions - evidence for a wash-in effect publication-title: TOXICOLOGY MECHANISMS AND METHODS doi: 10.3109/15376516.2012.686535 – volume: 78 start-page: 1499 year: 2001 ident: WOS:000171525700019 article-title: The Henderson-Hasselbalch equation: Its history and limitations publication-title: JOURNAL OF CHEMICAL EDUCATION – volume: 2 start-page: 1068 year: 2014 ident: WOS:000331500800014 article-title: Design and mechanistic investigation of oxime-conjugated PAMAM dendrimers as the catalytic scavenger of reactive organophosphate publication-title: JOURNAL OF MATERIALS CHEMISTRY B doi: 10.1039/c3tb21267j – volume: 52 start-page: 7593 year: 2009 ident: WOS:000272338000026 article-title: Crystallographic Snapshots of Nonaged and Aged Conjugates of Soman with Acetylcholinesterase, and of a Ternary Complex of the Aged Conjugate with Pralidoxime publication-title: JOURNAL OF MEDICINAL CHEMISTRY doi: 10.1021/jm900433t – volume: 4 start-page: 4352 year: 2006 ident: WOS:000242005100013 article-title: Revisiting the reactivity of oximate alpha-nucleophiles with electrophilic phosphorus centers. Relevance to detoxification of sarin, soman and DFP under mild conditions publication-title: ORGANIC & BIOMOLECULAR CHEMISTRY doi: 10.1039/b609658c – volume: 84 start-page: 1246 year: 2016 ident: WOS:000382812900007 article-title: Structures of paraoxon-inhibited human acetylcholinesterase reveal perturbations of the acyl loop and the dimer interface publication-title: PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS doi: 10.1002/prot.25073 – volume: 286 start-page: 29718 year: 2011 ident: WOS:000294046600031 article-title: Oxime-assisted Acetylcholinesterase Catalytic Scavengers of Organophosphates That Resist Aging publication-title: JOURNAL OF BIOLOGICAL CHEMISTRY doi: 10.1074/jbc.M111.264739 – volume: 57 start-page: 147 year: 1991 ident: WOS:A1991FB28800001 article-title: SYNTHESIS AND STRUCTURE OF SOME PHOSPHONYLATED OXIMES RELATED TO ORGANOPHOSPHATE NERVE AGENTS publication-title: PHOSPHORUS SULFUR AND SILICON AND THE RELATED ELEMENTS – volume: 4 start-page: 2475 year: 1965 ident: WOS:A19656994500029 article-title: REACTION OF 4-FORMYL-1-METHYLPYRIDINIUM IODIDE OXIME WITH ISOPROPYL METHYLPHOSPHONOFLUORIDATE publication-title: BIOCHEMISTRY – volume: 77 start-page: 3651 year: 1955 ident: WOS:A1955WB86000071 article-title: ACCELERATION OF THE HYDROLYSIS OF ORGANIC FLUOROPHOSPHATES AND FLUOROPHOSPHONATES WITH HYDROXAMIC ACIDS publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY – volume: 27 start-page: 168 year: 2007 ident: WOS:000245370200008 article-title: In vitro oxime reactivation of red blood cell acetylcholinesterase inhibited by methyl-paraoxon publication-title: JOURNAL OF APPLIED TOXICOLOGY doi: 10.1002/jat.1189 – volume: 9 start-page: 165 year: 2000 ident: WOS:000087010600001 article-title: The 500 Dalton rule for the skin penetration of chemical compounds and drugs publication-title: EXPERIMENTAL DERMATOLOGY – volume: 119 start-page: 413 year: 1999 ident: WOS:000081184400046 article-title: Protein engineering of a human enzyme that hydrolyzes V and G nerve agents: design, construction and characterization publication-title: CHEMICO-BIOLOGICAL INTERACTIONS – year: 1997 ident: 000466500800008.39 publication-title: Octanol-Water Partition Coefficients: Fundamentals and Physical Chemistry – volume: 23 start-page: 8200 year: 2016 ident: WOS:000375412600006 article-title: Current and emerging strategies for organophosphate decontamination: special focus on hyperstable enzymes publication-title: ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH doi: 10.1007/s11356-016-6143-1 – volume: 240 start-page: 141 year: 2007 ident: WOS:000251105200021 article-title: Nerve agents: Why they are so toxic and can poisoning from these agents be treated? publication-title: TOXICOLOGY doi: 10.1016/j.tox.2007.06.023 – volume: 78 start-page: 3594 year: 1956 ident: WOS:A1956WB83800011 article-title: THE KINETICS OF THE REACTION OF ISOPROPYL METHYLPHOSPHONOFLUORIDATE (SARIN) WITH BENZOHYDROXAMIC ACID publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY – volume: 92 start-page: 307 year: 1988 ident: WOS:A1988M053100015 article-title: REACTIVATION AND AGING OF PHOSPHORYLATED BRAIN ACETYLCHOLINESTERASE FROM FISH AND RODENTS publication-title: TOXICOLOGY AND APPLIED PHARMACOLOGY – volume: 187 start-page: 380 year: 2010 ident: WOS:000281108600069 article-title: Preparation and characterization of methoxy polyethylene glycol-conjugated phosphotriesterase as a potential catalytic bioscavenger against organophosphate poisoning publication-title: CHEMICO-BIOLOGICAL INTERACTIONS doi: 10.1016/j.cbi.2010.03.017 |
SSID | ssj0019764 |
Score | 2.3692057 |
Snippet | Despite their unique benefits imparted by their structure and reactivity, certain α-nucleophile molecules remain underexplored as chemical inactivators for the... Despite their unique benefits imparted by their structure and reactivity, certain alpha-nucleophile molecules remain underexplored as chemical inactivators for... |
Source | Web of Science |
SourceID | proquest pubmed webofscience crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3951 |
SubjectTerms | Acetylcholinesterase Catalysis Chemical reactions Chemistry Chemistry, Organic Decontamination Esterase Hydroxamic acid Inactivators Lead compounds Molecular structure NMR Nuclear magnetic resonance Nucleophiles Organic chemistry Organophosphates Paraoxon Physical Sciences Physicochemical properties Pyridinium Reactivity Scaffolds Science & Technology Screening Skin |
Title | Reactivity and mechanism of α-nucleophile scaffolds as catalytic organophosphate scavengers |
URI | http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000466500800008 https://www.ncbi.nlm.nih.gov/pubmed/30942252 https://www.proquest.com/docview/2210837142 https://www.proquest.com/docview/2202668025 |
Volume | 17 |
WOS | 000466500800008 |
WOSCitedRecordID | wos000466500800008 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9AAXxKtgKMiI9oAiF6-f8bGNgkrESyiVekCKdtdeRVViR7WD1P4XfgR_hN_EzHq9Nk0OgYvlbGbtxPN5Z2bnRcihjIMwlVnqgOrqOkEkhg7njDrSo6lImR9FqkvEp8_R2XkwuQgver2fnaildcWPxc3WvJL_4SqMAV8xS_YfOGsuCgNwDvyFI3AYjjvx-FuGaQmq-wPufy8zTOPFrhegAR6Nxken1MmxXnGxmsPLPygFk7JYpCU2l1H7NtdYrlU1dgKSolzNQfNEsh8Y66r9PFpzrZM2hYIK5uw3bXUHomkZZ9Z3HeX7lS2zBRtMj43JD5evGOZ5Xery_MUS9-5bP0ie10EAE3a9NIibNlvac_hVN_M108JW71VQ5XapUzP18hrEsYORN7X06Y7VJY3Mmhx3sdddYf1EF6jN9Md6fdyQBK6PhVRHyZdTVfJm0sq7xsd_Swya4ETllveTWTv3DtnzwArx-mTvZDz98NG4qUCXU2ELzd9q6t_6ybt29t8az4YZA0rNVSm26j1Kx5k-IPe1cWKf1Eh7SHpZ_ojcHTUMfky-t4izAXG2QZxdSPv3ry7abIM2m5W2QZt9C212i7Yn5Pz9eDo6c3R_Dkf4flw5YMvLgCcyBiUoiRgfsoRxGYcZ9RkLQbX34yELMCzJFSA3Iu7BqQBOizCMKUzbJ32AVfaM2IkfSi5RHKQBlg_inEYurCNxRDlLA2mRt80znAldvB57qCxmm9yyyBtDu6pLtmylOmhYMdOvdDnzPAomSUwDzyKvzdfwjNGLxvKsWCONC0rtEGwFizytWWhu47tJAAISZu8DT82wSAqu7nppkcMumw2FSuIGYwntNzhYhO5CNtJPAstXVM93-tsvyL32xTwg_epqnb0EtbrirzS4_wCB5c10 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reactivity+and+mechanism+of+%CE%B1-nucleophile+scaffolds+as+catalytic+organophosphate+scavengers&rft.jtitle=Organic+%26+biomolecular+chemistry&rft.au=Wong%2C+Pamela+T.&rft.au=Bhattacharjee%2C+Somnath&rft.au=Cannon%2C+Jayme&rft.au=Tang%2C+Shengzhuang&rft.date=2019-04-17&rft.issn=1477-0520&rft.eissn=1477-0539&rft.volume=17&rft.issue=16&rft.spage=3951&rft.epage=3963&rft_id=info:doi/10.1039%2FC9OB00503J&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C9OB00503J |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-0520&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-0520&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-0520&client=summon |