Multi-objective Bayesian optimization for the design of nacre-inspired composites: optimizing and understanding biomimetics through AI

The hierarchical structures found in biological materials lead to an outstanding balance of multiple material properties, and numerous research studies have been initiated to emulate the key concepts for the designing of engineering materials, the so-called bioinspired composites. However, the optim...

Full description

Saved in:
Bibliographic Details
Published inMaterials horizons Vol. 1; no. 1; pp. 4329 - 4343
Main Authors Park, Kundo, Song, Chihyeon, Park, Jinkyoo, Ryu, Seunghwa
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 02.10.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The hierarchical structures found in biological materials lead to an outstanding balance of multiple material properties, and numerous research studies have been initiated to emulate the key concepts for the designing of engineering materials, the so-called bioinspired composites. However, the optimization of bioinspired composites has long been difficult as it usually falls into the category of 'black-box problem', the objective functions not being available in a functional form. Also, bioinspired composites possess multiple material properties that are in a trade-off relationship, making it impossible to reach a unique optimal design solution. As a breakthrough, we propose a data-driven material design framework which can generate bioinspired composite designs with an optimal balance of material properties. In this study, a nacre-inspired composite is chosen as the subject of study and the optimization framework is applied to determine the designs that have an optimal balance of strength, toughness, and specific volume. Gaussian process regression was adopted for the modeling of a complex input-output relationship, and the model was trained with the data generated from the crack phase-field simulation. Then, multi-objective Bayesian optimization was carried out to determine pareto-optimal composite designs. As a result, the proposed data-driven algorithm could generate a 3D pareto surface of optimal composite design solutions, from which a user can choose a design that suits his/her requirement. To validate the result, several pareto-optimal designs are built using a PolyJet 3D printer, and their tensile test results show that each of the characteristic designs is well optimized for its specific target objective. For the designing of bioinspired composite, we employed multi-objective Bayesian optimization, a data-driven method that can determine the pareto-optimal design solutions having optimal balance of material properties.
AbstractList The hierarchical structures found in biological materials lead to an outstanding balance of multiple material properties, and numerous research studies have been initiated to emulate the key concepts for the designing of engineering materials, the so-called bioinspired composites. However, the optimization of bioinspired composites has long been difficult as it usually falls into the category of 'black-box problem', the objective functions not being available in a functional form. Also, bioinspired composites possess multiple material properties that are in a trade-off relationship, making it impossible to reach a unique optimal design solution. As a breakthrough, we propose a data-driven material design framework which can generate bioinspired composite designs with an optimal balance of material properties. In this study, a nacre-inspired composite is chosen as the subject of study and the optimization framework is applied to determine the designs that have an optimal balance of strength, toughness, and specific volume. Gaussian process regression was adopted for the modeling of a complex input-output relationship, and the model was trained with the data generated from the crack phase-field simulation. Then, multi-objective Bayesian optimization was carried out to determine pareto-optimal composite designs. As a result, the proposed data-driven algorithm could generate a 3D pareto surface of optimal composite design solutions, from which a user can choose a design that suits his/her requirement. To validate the result, several pareto-optimal designs are built using a PolyJet 3D printer, and their tensile test results show that each of the characteristic designs is well optimized for its specific target objective.
The hierarchical structures found in biological materials lead to an outstanding balance of multiple material properties, and numerous research studies have been initiated to emulate the key concepts for the designing of engineering materials, the so-called bioinspired composites. However, the optimization of bioinspired composites has long been difficult as it usually falls into the category of 'black-box problem', the objective functions not being available in a functional form. Also, bioinspired composites possess multiple material properties that are in a trade-off relationship, making it impossible to reach a unique optimal design solution. As a breakthrough, we propose a data-driven material design framework which can generate bioinspired composite designs with an optimal balance of material properties. In this study, a nacre-inspired composite is chosen as the subject of study and the optimization framework is applied to determine the designs that have an optimal balance of strength, toughness, and specific volume. Gaussian process regression was adopted for the modeling of a complex input-output relationship, and the model was trained with the data generated from the crack phase-field simulation. Then, multi-objective Bayesian optimization was carried out to determine pareto-optimal composite designs. As a result, the proposed data-driven algorithm could generate a 3D pareto surface of optimal composite design solutions, from which a user can choose a design that suits his/her requirement. To validate the result, several pareto-optimal designs are built using a PolyJet 3D printer, and their tensile test results show that each of the characteristic designs is well optimized for its specific target objective. For the designing of bioinspired composite, we employed multi-objective Bayesian optimization, a data-driven method that can determine the pareto-optimal design solutions having optimal balance of material properties.
The hierarchical structures found in biological materials lead to an outstanding balance of multiple material properties, and numerous research studies have been initiated to emulate the key concepts for the designing of engineering materials, the so-called bioinspired composites. However, the optimization of bioinspired composites has long been difficult as it usually falls into the category of 'black-box problem', the objective functions not being available in a functional form. Also, bioinspired composites possess multiple material properties that are in a trade-off relationship, making it impossible to reach a unique optimal design solution. As a breakthrough, we propose a data-driven material design framework which can generate bioinspired composite designs with an optimal balance of material properties. In this study, a nacre-inspired composite is chosen as the subject of study and the optimization framework is applied to determine the designs that have an optimal balance of strength, toughness, and specific volume. Gaussian process regression was adopted for the modeling of a complex input-output relationship, and the model was trained with the data generated from the crack phase-field simulation. Then, multi-objective Bayesian optimization was carried out to determine pareto-optimal composite designs. As a result, the proposed data-driven algorithm could generate a 3D pareto surface of optimal composite design solutions, from which a user can choose a design that suits his/her requirement. To validate the result, several pareto-optimal designs are built using a PolyJet 3D printer, and their tensile test results show that each of the characteristic designs is well optimized for its specific target objective.The hierarchical structures found in biological materials lead to an outstanding balance of multiple material properties, and numerous research studies have been initiated to emulate the key concepts for the designing of engineering materials, the so-called bioinspired composites. However, the optimization of bioinspired composites has long been difficult as it usually falls into the category of 'black-box problem', the objective functions not being available in a functional form. Also, bioinspired composites possess multiple material properties that are in a trade-off relationship, making it impossible to reach a unique optimal design solution. As a breakthrough, we propose a data-driven material design framework which can generate bioinspired composite designs with an optimal balance of material properties. In this study, a nacre-inspired composite is chosen as the subject of study and the optimization framework is applied to determine the designs that have an optimal balance of strength, toughness, and specific volume. Gaussian process regression was adopted for the modeling of a complex input-output relationship, and the model was trained with the data generated from the crack phase-field simulation. Then, multi-objective Bayesian optimization was carried out to determine pareto-optimal composite designs. As a result, the proposed data-driven algorithm could generate a 3D pareto surface of optimal composite design solutions, from which a user can choose a design that suits his/her requirement. To validate the result, several pareto-optimal designs are built using a PolyJet 3D printer, and their tensile test results show that each of the characteristic designs is well optimized for its specific target objective.
Author Park, Jinkyoo
Song, Chihyeon
Park, Kundo
Ryu, Seunghwa
AuthorAffiliation Department of Industrial & Systems Engineering
Department of Mechanical Engineering
Korea Advanced Institute of Science and Technology (KAIST)
AuthorAffiliation_xml – sequence: 0
  name: Department of Industrial & Systems Engineering
– sequence: 0
  name: Korea Advanced Institute of Science and Technology (KAIST)
– sequence: 0
  name: Department of Mechanical Engineering
Author_xml – sequence: 1
  givenname: Kundo
  surname: Park
  fullname: Park, Kundo
– sequence: 2
  givenname: Chihyeon
  surname: Song
  fullname: Song, Chihyeon
– sequence: 3
  givenname: Jinkyoo
  surname: Park
  fullname: Park, Jinkyoo
– sequence: 4
  givenname: Seunghwa
  surname: Ryu
  fullname: Ryu, Seunghwa
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37434475$$D View this record in MEDLINE/PubMed
BookMark eNptkstu1DAUhi3UipbSDXuQJTYIKeDrOGFXCr1IrdjAOvJ1xqPEDraD1D5AnxtPp9NKVVc-9vn-X-fiN2AvxGABeIfRF4xo99XQcYUQpmL5ChwSxHGzoJzvPcZMHIDjnNdoAzGOWvQaHFDBKGOCH4K763kovolqbXXx_yz8Lm9s9jLAOBU_-ltZfAzQxQTLykJTc8uaczBInWzjQ558sgbqOE4x-2Lzt53ShyWUwcA5GJtyqeHmRfk4-tEWr3N1THFeruDJ5Vuw7-SQ7fHDeQT-nP38fXrRXP06vzw9uWo0paI03GlGCEZSK0Zr97KVghDrHFXYMFc7akmrHMemU8YorRZSL-q140IQiR09Ap-2vlOKf2ebSz_6rO0wyGDjnHvS0gXpWtaRin58hq7jnEKtrlICo44gxCv14YGa1WhNPyU_ynTT7yZcAbQFdIo5J-t67cv9UEuSfugx6jd77H_Q64v7PZ5Xyednkp3ri_D7LZyyfuSePgX9D-P6qPg
CitedBy_id crossref_primary_10_1007_s42791_023_00055_9
crossref_primary_10_1016_j_matdes_2024_112700
crossref_primary_10_1002_adfm_202414670
crossref_primary_10_1002_adts_202400135
crossref_primary_10_1016_j_eml_2025_102313
crossref_primary_10_1021_acsaenm_3c00590
crossref_primary_10_1002_advs_202402440
crossref_primary_10_1016_j_jmps_2024_105785
crossref_primary_10_3390_ijms25116147
crossref_primary_10_1007_s40964_024_00769_9
crossref_primary_10_1063_5_0232055
crossref_primary_10_1016_j_surfin_2024_105571
crossref_primary_10_1016_j_addma_2024_104324
crossref_primary_10_1016_j_matdes_2024_113523
crossref_primary_10_1016_j_matdes_2025_113798
Cites_doi 10.1557/jmr.2011.65
10.1016/j.commatsci.2018.09.021
10.1016/j.compscitech.2021.109254
10.1016/j.finel.2017.03.002
10.1016/j.cma.2010.04.011
10.1007/s10898-019-00798-7
10.1039/C9MH00589G
10.1016/j.jmps.2012.04.011
10.1016/j.compositesb.2020.108513
10.1021/nn204506d
10.1016/j.matt.2019.08.013
10.1016/j.compstruct.2018.01.038
10.1039/C8TA10725D
10.1063/5.0048164
10.1007/s00158-016-1469-3
10.1038/s41427-018-0009-6
10.1016/S0142-9612(03)00215-1
10.1016/S0020-7683(98)00339-4
10.1016/j.compstruct.2019.04.017
10.1073/pnas.0631609100
10.1016/j.jmps.2012.03.002
10.1021/acscentsci.8b00307
10.1016/j.jspi.2011.09.016
10.1007/s10898-013-0118-2
10.1002/adma.201505555
10.1002/adma.201201471
10.1007/978-3-540-32373-0_3
10.1109/4235.996017
10.1063/1.5017103
10.1021/acscentsci.0c00026
10.1038/s43246-020-00078-y
10.1016/j.jmps.2006.12.009
10.1038/nmat4089
10.1002/adma.201702903
10.1115/1.4024849
10.48550/arXiv.1206.2944
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2023
Copyright_xml – notice: Copyright Royal Society of Chemistry 2023
DBID AAYXX
CITATION
NPM
7SR
7TB
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
DOI 10.1039/d3mh00137g
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Materials Research Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2051-6355
EndPage 4343
ExternalDocumentID 37434475
10_1039_D3MH00137G
d3mh00137g
Genre Journal Article
GroupedDBID 0R~
4.4
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABPDG
ABRYZ
ABXOH
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AETIL
AFLYV
AFOGI
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
GGIMP
H13
HZ~
H~N
J3I
O-G
O9-
RAOCF
RCNCU
RPMJG
RRC
RSCEA
RVUXY
AAYXX
AFRZK
AKMSF
CITATION
NPM
7SR
7TB
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
ID FETCH-LOGICAL-c337t-5fc42210acb43039a8a722eff3b1d4f475828bf51d9bddbcb6ac6f5195772a1f3
ISSN 2051-6347
2051-6355
IngestDate Fri Jul 11 00:29:39 EDT 2025
Mon Jun 30 03:34:43 EDT 2025
Thu Apr 03 06:55:11 EDT 2025
Tue Jul 01 01:36:19 EDT 2025
Thu Apr 24 23:09:51 EDT 2025
Tue Dec 17 20:58:27 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c337t-5fc42210acb43039a8a722eff3b1d4f475828bf51d9bddbcb6ac6f5195772a1f3
Notes https://doi.org/10.1039/d3mh00137g
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9516-5809
PMID 37434475
PQID 2871092005
PQPubID 2047518
PageCount 15
ParticipantIDs proquest_miscellaneous_2836298492
crossref_citationtrail_10_1039_D3MH00137G
crossref_primary_10_1039_D3MH00137G
rsc_primary_d3mh00137g
pubmed_primary_37434475
proquest_journals_2871092005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-02
PublicationDateYYYYMMDD 2023-10-02
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-02
  day: 02
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Materials horizons
PublicationTitleAlternate Mater Horiz
PublicationYear 2023
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Herbol (D3MH00137G/cit20/1) 2018; 4
Barthelat (D3MH00137G/cit4/1) 2011; 26
(D3MH00137G/cit35/1) 2014
Deutsch (D3MH00137G/cit37/1) 2012; 142
Miehe (D3MH00137G/cit28/1) 2010; 199
Molnár (D3MH00137G/cit27/1) 2017; 130
Denzel (D3MH00137G/cit30/1) 2018; 148
Rahulkumar (D3MH00137G/cit29/1) 2000; 37
Peng (D3MH00137G/cit2/1) 2020; 2
Larson (D3MH00137G/cit46/1) 2016
(D3MH00137G/cit33/1) 2013
D3MH00137G/cit38/1
Häse (D3MH00137G/cit22/1) 2021; 8
D3MH00137G/cit45/1
D3MH00137G/cit44/1
Janet (D3MH00137G/cit24/1) 2020; 6
Huang (D3MH00137G/cit8/1) 2019; 7
Zhao (D3MH00137G/cit10/1) 2017; 29
Deb (D3MH00137G/cit47/1) 2002; 6
Tang (D3MH00137G/cit18/1) 2007; 55
Zhang (D3MH00137G/cit9/1) 2016; 28
Pelikan (D3MH00137G/cit36/1) 2005
Williams (D3MH00137G/cit32/1) 2006
Snoek (D3MH00137G/cit34/1) 2012
Wegst (D3MH00137G/cit7/1) 2015; 14
Häse (D3MH00137G/cit21/1) 2018; 4
Gao (D3MH00137G/cit11/1) 2003; 100
Park (D3MH00137G/cit15/1) 2022; 220
Song (D3MH00137G/cit19/1) 2003; 24
Ghazlan (D3MH00137G/cit5/1) 2021; 205
Yang (D3MH00137G/cit42/1) 2019; 75
Devitt (D3MH00137G/cit1/1)
Kim (D3MH00137G/cit16/1) 2019; 220
Shao (D3MH00137G/cit17/1) 2012; 60
Loh (D3MH00137G/cit25/1) 2020; 1
Jeong (D3MH00137G/cit26/1) 2018; 155
Haghanifar (D3MH00137G/cit23/1) 2019; 6
Kim (D3MH00137G/cit14/1) 2018; 189
Zhao (D3MH00137G/cit3/1) 2018; 10
(D3MH00137G/cit31/1) 2005
Wei (D3MH00137G/cit12/1) 2012; 6
Snoek (D3MH00137G/cit39/1) 2012
Studart (D3MH00137G/cit6/1) 2012; 24
Couckuyt (D3MH00137G/cit40/1) 2014; 60
Begley (D3MH00137G/cit13/1) 2012; 60
Shimoyama (D3MH00137G/cit41/1) 2013; 135
Emmerich (D3MH00137G/cit43/1) 2008
Zheng (D3MH00137G/cit48/1) 2017; 55
References_xml – issn: 2005
  publication-title: Gaussian process regression for optimization. NIPS Workshop on Value of Information
– issn: 2012
  volume-title: Practical bayesian optimization of machine learning algorithms
  end-page: arXiv:1206.2944
  doi: Snoek Larochelle Adams
– issn: 2005
  volume-title: Bayesian optimization algorithm
  end-page: p 31-48
  publication-title: Hierarchical Bayesian optimization algorithm
  doi: Pelikan
– issn: 2008
  volume-title: The computation of the expected improvement in dominated hypervolume of Pareto front approximations
  end-page: 7-3
  publication-title: Rapport technique
  doi: Emmerich Klinkenberg
– issn: 2013
  publication-title: Optimization of Gaussian process hyperparameters using Rprop
– issn: 2006
  publication-title: Gaussian processes for machine learning
  doi: Williams Rasmussen
– issn: 2016
  end-page: 1-6
  publication-title: Can you estimate modulus from durometer hardness for silicones
  doi: Larson
– doi: Devitt
– issn: 2014
  publication-title: Bayesian Optimization with Inequality Constraints
– volume: 26
  start-page: 1203
  issue: 10
  year: 2011
  ident: D3MH00137G/cit4/1
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2011.65
– volume: 155
  start-page: 483
  year: 2018
  ident: D3MH00137G/cit26/1
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2018.09.021
– volume-title: Gaussian process regression for optimization. NIPS Workshop on Value of Information
  year: 2005
  ident: D3MH00137G/cit31/1
– volume: 220
  start-page: 109254
  year: 2022
  ident: D3MH00137G/cit15/1
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2021.109254
– volume: 130
  start-page: 27
  year: 2017
  ident: D3MH00137G/cit27/1
  publication-title: Finite Elem. Anal. Des.
  doi: 10.1016/j.finel.2017.03.002
– volume: 199
  start-page: 2765
  issue: 45
  year: 2010
  ident: D3MH00137G/cit28/1
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2010.04.011
– start-page: 25
  year: 2012
  ident: D3MH00137G/cit39/1
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 75
  start-page: 3
  year: 2019
  ident: D3MH00137G/cit42/1
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-019-00798-7
– ident: D3MH00137G/cit44/1
– volume: 6
  start-page: 1632
  issue: 8
  year: 2019
  ident: D3MH00137G/cit23/1
  publication-title: Mater. Horiz.
  doi: 10.1039/C9MH00589G
– volume: 60
  start-page: 1400
  issue: 8
  year: 2012
  ident: D3MH00137G/cit17/1
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2012.04.011
– ident: D3MH00137G/cit38/1
– volume: 205
  start-page: 108513
  year: 2021
  ident: D3MH00137G/cit5/1
  publication-title: Composites, Part B
  doi: 10.1016/j.compositesb.2020.108513
– volume: 6
  start-page: 2333
  issue: 3
  year: 2012
  ident: D3MH00137G/cit12/1
  publication-title: ACS Nano
  doi: 10.1021/nn204506d
– volume: 2
  start-page: 220
  issue: 1
  year: 2020
  ident: D3MH00137G/cit2/1
  publication-title: Matter
  doi: 10.1016/j.matt.2019.08.013
– volume: 189
  start-page: 27
  year: 2018
  ident: D3MH00137G/cit14/1
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2018.01.038
– volume: 7
  start-page: 2787
  issue: 6
  year: 2019
  ident: D3MH00137G/cit8/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA10725D
– volume: 8
  start-page: 031406
  issue: 3
  year: 2021
  ident: D3MH00137G/cit22/1
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/5.0048164
– volume: 55
  start-page: 53
  issue: 1
  year: 2017
  ident: D3MH00137G/cit48/1
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-016-1469-3
– volume: 10
  start-page: 1
  issue: 4
  year: 2018
  ident: D3MH00137G/cit3/1
  publication-title: NPG Asia Mater.
  doi: 10.1038/s41427-018-0009-6
– volume-title: Gaussian processes for machine learning
  year: 2006
  ident: D3MH00137G/cit32/1
– volume: 24
  start-page: 3623
  issue: 20
  year: 2003
  ident: D3MH00137G/cit19/1
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(03)00215-1
– ident: D3MH00137G/cit1/1
– ident: D3MH00137G/cit45/1
– volume: 37
  start-page: 1873
  issue: 13
  year: 2000
  ident: D3MH00137G/cit29/1
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/S0020-7683(98)00339-4
– volume: 220
  start-page: 769
  year: 2019
  ident: D3MH00137G/cit16/1
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2019.04.017
– volume: 100
  start-page: 5597
  issue: 10
  year: 2003
  ident: D3MH00137G/cit11/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0631609100
– volume: 60
  start-page: 1545
  issue: 8
  year: 2012
  ident: D3MH00137G/cit13/1
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2012.03.002
– volume: 4
  start-page: 1134
  issue: 9
  year: 2018
  ident: D3MH00137G/cit21/1
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.8b00307
– volume: 142
  start-page: 763
  issue: 3
  year: 2012
  ident: D3MH00137G/cit37/1
  publication-title: J. Stat. Plan. Inference
  doi: 10.1016/j.jspi.2011.09.016
– volume: 60
  start-page: 575
  issue: 3
  year: 2014
  ident: D3MH00137G/cit40/1
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-013-0118-2
– start-page: 1
  volume-title: Can you estimate modulus from durometer hardness for silicones
  year: 2016
  ident: D3MH00137G/cit46/1
– volume: 28
  start-page: 6292
  issue: 30
  year: 2016
  ident: D3MH00137G/cit9/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201505555
– volume: 24
  start-page: 5024
  issue: 37
  year: 2012
  ident: D3MH00137G/cit6/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201201471
– volume: 4
  start-page: 51
  issue: 1
  year: 2018
  ident: D3MH00137G/cit20/1
  publication-title: Materials
– start-page: 31
  volume-title: Hierarchical Bayesian optimization algorithm
  year: 2005
  ident: D3MH00137G/cit36/1
  doi: 10.1007/978-3-540-32373-0_3
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: D3MH00137G/cit47/1
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 148
  start-page: 094114
  issue: 9
  year: 2018
  ident: D3MH00137G/cit30/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5017103
– volume: 6
  start-page: 513
  issue: 4
  year: 2020
  ident: D3MH00137G/cit24/1
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.0c00026
– volume: 1
  start-page: 77
  issue: 1
  year: 2020
  ident: D3MH00137G/cit25/1
  publication-title: Commun. Mater.
  doi: 10.1038/s43246-020-00078-y
– start-page: 7
  volume-title: Rapport technique
  year: 2008
  ident: D3MH00137G/cit43/1
– volume: 55
  start-page: 1410
  issue: 7
  year: 2007
  ident: D3MH00137G/cit18/1
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2006.12.009
– volume-title: Bayesian Optimization with Inequality Constraints
  year: 2014
  ident: D3MH00137G/cit35/1
– volume: 14
  start-page: 23
  issue: 1
  year: 2015
  ident: D3MH00137G/cit7/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4089
– volume: 29
  start-page: 1702903
  issue: 45
  year: 2017
  ident: D3MH00137G/cit10/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201702903
– volume: 135
  start-page: 094503
  issue: 9
  year: 2013
  ident: D3MH00137G/cit41/1
  publication-title: J. Mech. Design
  doi: 10.1115/1.4024849
– start-page: arXiv:1206.2944
  year: 2012
  ident: D3MH00137G/cit34/1
  doi: 10.48550/arXiv.1206.2944
– volume-title: Optimization of Gaussian process hyperparameters using Rprop
  year: 2013
  ident: D3MH00137G/cit33/1
SSID ssj0001345080
Score 2.4155414
Snippet The hierarchical structures found in biological materials lead to an outstanding balance of multiple material properties, and numerous research studies have...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4329
SubjectTerms Algorithms
Bayesian analysis
Biological materials
Biomimetics
Composite materials
Design
Design optimization
Functionals
Gaussian process
Material properties
Multiple objective analysis
Nacre
Optimization
Pareto optimum
Specific volume
Tensile tests
Three dimensional printing
Title Multi-objective Bayesian optimization for the design of nacre-inspired composites: optimizing and understanding biomimetics through AI
URI https://www.ncbi.nlm.nih.gov/pubmed/37434475
https://www.proquest.com/docview/2871092005
https://www.proquest.com/docview/2836298492
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELagk9B4QPwaBAYyghc0mSVxmsS8lTHoJsYD6qS9RXZikyKaTCUV6v4A_m7Ojp2kUCTgJaoSO1Z9X8535_vOCL1IipgJSRlJYS0hUZ4kRER8TGRa-KmkPI3Nju7Zx3h6Hp1ejC8GjGvNLmnEq_xqK6_kf6QK90CumiX7D5LtXgo34DfIF64gYbj-lYwNe5bU4kurtQ7e8LU0pMgaFMHCMiy7RMLCJGuYzA0OtiKZV3qXXRpam8ndatPjbF9HXlxtsF80W3--kKa2szvix9aTdsdC8ab96wdlvZxfuWigJVgbvQKvrLvIjk0JPirn5Vr2OQGu8Sn4yuu6a_5pvTLxWgk6qvzOhzGLsM1-a5WuNLotBF1AtK2zVYv7VBdBLeiiNGVPPw8bwURcLow8KRg_ulxhv5J1-YXu0XW0E4L7EI7QzuR4dvKhj77RCCxT39WrpeywH20X3XD9N42V3zwQsEeW7pwYY4_MbqNb1pHAkxYVd9A1Wd1FNwflJe-hH7_gAzt84CE-MOADAz5wiw9cK7yJD9zj4zXu0YEBEngDHXiADmzRgScn99H5u-PZ0ZTYczdITmnSkLHKozAMfJ6LCCwcxlMOcyiVoiIoIgXzAm66UOOgYKIoRC5insdKlymCueaBontoVNWVfIhwESQ8yqVmW6cRLGgcvIeQKanSUDAYzUMv3QRnuS1Kr89G-ZqZ5AjKsrf0bGrk8t5Dz7u2l20plq2t9p2cMvupfst0WMBnOoDqoWfdY1CkeneMV7Je6TZgy7E0YqGHHrTy7YZxePDQHgi8u91j5tEfuzxGu_0XsI9GzXIln4Ad24inFpQ_AUYqo6Y
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+Bayesian+optimization+for+the+design+of+nacre-inspired+composites%3A+optimizing+and+understanding+biomimetics+through+AI&rft.jtitle=Materials+horizons&rft.au=Park%2C+Kundo&rft.au=Song%2C+Chihyeon&rft.au=Park%2C+Jinkyoo&rft.au=Ryu%2C+Seunghwa&rft.date=2023-10-02&rft.eissn=2051-6355&rft_id=info:doi/10.1039%2Fd3mh00137g&rft_id=info%3Apmid%2F37434475&rft.externalDocID=37434475
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-6347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-6347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-6347&client=summon