Multi-objective Bayesian optimization for the design of nacre-inspired composites: optimizing and understanding biomimetics through AI
The hierarchical structures found in biological materials lead to an outstanding balance of multiple material properties, and numerous research studies have been initiated to emulate the key concepts for the designing of engineering materials, the so-called bioinspired composites. However, the optim...
Saved in:
Published in | Materials horizons Vol. 1; no. 1; pp. 4329 - 4343 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
02.10.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The hierarchical structures found in biological materials lead to an outstanding balance of multiple material properties, and numerous research studies have been initiated to emulate the key concepts for the designing of engineering materials, the so-called bioinspired composites. However, the optimization of bioinspired composites has long been difficult as it usually falls into the category of 'black-box problem', the objective functions not being available in a functional form. Also, bioinspired composites possess multiple material properties that are in a trade-off relationship, making it impossible to reach a unique optimal design solution. As a breakthrough, we propose a data-driven material design framework which can generate bioinspired composite designs with an optimal balance of material properties. In this study, a nacre-inspired composite is chosen as the subject of study and the optimization framework is applied to determine the designs that have an optimal balance of strength, toughness, and specific volume. Gaussian process regression was adopted for the modeling of a complex input-output relationship, and the model was trained with the data generated from the crack phase-field simulation. Then, multi-objective Bayesian optimization was carried out to determine pareto-optimal composite designs. As a result, the proposed data-driven algorithm could generate a 3D pareto surface of optimal composite design solutions, from which a user can choose a design that suits his/her requirement. To validate the result, several pareto-optimal designs are built using a PolyJet 3D printer, and their tensile test results show that each of the characteristic designs is well optimized for its specific target objective.
For the designing of bioinspired composite, we employed multi-objective Bayesian optimization, a data-driven method that can determine the pareto-optimal design solutions having optimal balance of material properties. |
---|---|
AbstractList | The hierarchical structures found in biological materials lead to an outstanding balance of multiple material properties, and numerous research studies have been initiated to emulate the key concepts for the designing of engineering materials, the so-called bioinspired composites. However, the optimization of bioinspired composites has long been difficult as it usually falls into the category of 'black-box problem', the objective functions not being available in a functional form. Also, bioinspired composites possess multiple material properties that are in a trade-off relationship, making it impossible to reach a unique optimal design solution. As a breakthrough, we propose a data-driven material design framework which can generate bioinspired composite designs with an optimal balance of material properties. In this study, a nacre-inspired composite is chosen as the subject of study and the optimization framework is applied to determine the designs that have an optimal balance of strength, toughness, and specific volume. Gaussian process regression was adopted for the modeling of a complex input-output relationship, and the model was trained with the data generated from the crack phase-field simulation. Then, multi-objective Bayesian optimization was carried out to determine pareto-optimal composite designs. As a result, the proposed data-driven algorithm could generate a 3D pareto surface of optimal composite design solutions, from which a user can choose a design that suits his/her requirement. To validate the result, several pareto-optimal designs are built using a PolyJet 3D printer, and their tensile test results show that each of the characteristic designs is well optimized for its specific target objective. The hierarchical structures found in biological materials lead to an outstanding balance of multiple material properties, and numerous research studies have been initiated to emulate the key concepts for the designing of engineering materials, the so-called bioinspired composites. However, the optimization of bioinspired composites has long been difficult as it usually falls into the category of 'black-box problem', the objective functions not being available in a functional form. Also, bioinspired composites possess multiple material properties that are in a trade-off relationship, making it impossible to reach a unique optimal design solution. As a breakthrough, we propose a data-driven material design framework which can generate bioinspired composite designs with an optimal balance of material properties. In this study, a nacre-inspired composite is chosen as the subject of study and the optimization framework is applied to determine the designs that have an optimal balance of strength, toughness, and specific volume. Gaussian process regression was adopted for the modeling of a complex input-output relationship, and the model was trained with the data generated from the crack phase-field simulation. Then, multi-objective Bayesian optimization was carried out to determine pareto-optimal composite designs. As a result, the proposed data-driven algorithm could generate a 3D pareto surface of optimal composite design solutions, from which a user can choose a design that suits his/her requirement. To validate the result, several pareto-optimal designs are built using a PolyJet 3D printer, and their tensile test results show that each of the characteristic designs is well optimized for its specific target objective. For the designing of bioinspired composite, we employed multi-objective Bayesian optimization, a data-driven method that can determine the pareto-optimal design solutions having optimal balance of material properties. The hierarchical structures found in biological materials lead to an outstanding balance of multiple material properties, and numerous research studies have been initiated to emulate the key concepts for the designing of engineering materials, the so-called bioinspired composites. However, the optimization of bioinspired composites has long been difficult as it usually falls into the category of 'black-box problem', the objective functions not being available in a functional form. Also, bioinspired composites possess multiple material properties that are in a trade-off relationship, making it impossible to reach a unique optimal design solution. As a breakthrough, we propose a data-driven material design framework which can generate bioinspired composite designs with an optimal balance of material properties. In this study, a nacre-inspired composite is chosen as the subject of study and the optimization framework is applied to determine the designs that have an optimal balance of strength, toughness, and specific volume. Gaussian process regression was adopted for the modeling of a complex input-output relationship, and the model was trained with the data generated from the crack phase-field simulation. Then, multi-objective Bayesian optimization was carried out to determine pareto-optimal composite designs. As a result, the proposed data-driven algorithm could generate a 3D pareto surface of optimal composite design solutions, from which a user can choose a design that suits his/her requirement. To validate the result, several pareto-optimal designs are built using a PolyJet 3D printer, and their tensile test results show that each of the characteristic designs is well optimized for its specific target objective.The hierarchical structures found in biological materials lead to an outstanding balance of multiple material properties, and numerous research studies have been initiated to emulate the key concepts for the designing of engineering materials, the so-called bioinspired composites. However, the optimization of bioinspired composites has long been difficult as it usually falls into the category of 'black-box problem', the objective functions not being available in a functional form. Also, bioinspired composites possess multiple material properties that are in a trade-off relationship, making it impossible to reach a unique optimal design solution. As a breakthrough, we propose a data-driven material design framework which can generate bioinspired composite designs with an optimal balance of material properties. In this study, a nacre-inspired composite is chosen as the subject of study and the optimization framework is applied to determine the designs that have an optimal balance of strength, toughness, and specific volume. Gaussian process regression was adopted for the modeling of a complex input-output relationship, and the model was trained with the data generated from the crack phase-field simulation. Then, multi-objective Bayesian optimization was carried out to determine pareto-optimal composite designs. As a result, the proposed data-driven algorithm could generate a 3D pareto surface of optimal composite design solutions, from which a user can choose a design that suits his/her requirement. To validate the result, several pareto-optimal designs are built using a PolyJet 3D printer, and their tensile test results show that each of the characteristic designs is well optimized for its specific target objective. |
Author | Park, Jinkyoo Song, Chihyeon Park, Kundo Ryu, Seunghwa |
AuthorAffiliation | Department of Industrial & Systems Engineering Department of Mechanical Engineering Korea Advanced Institute of Science and Technology (KAIST) |
AuthorAffiliation_xml | – sequence: 0 name: Department of Industrial & Systems Engineering – sequence: 0 name: Korea Advanced Institute of Science and Technology (KAIST) – sequence: 0 name: Department of Mechanical Engineering |
Author_xml | – sequence: 1 givenname: Kundo surname: Park fullname: Park, Kundo – sequence: 2 givenname: Chihyeon surname: Song fullname: Song, Chihyeon – sequence: 3 givenname: Jinkyoo surname: Park fullname: Park, Jinkyoo – sequence: 4 givenname: Seunghwa surname: Ryu fullname: Ryu, Seunghwa |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37434475$$D View this record in MEDLINE/PubMed |
BookMark | eNptkstu1DAUhi3UipbSDXuQJTYIKeDrOGFXCr1IrdjAOvJ1xqPEDraD1D5AnxtPp9NKVVc-9vn-X-fiN2AvxGABeIfRF4xo99XQcYUQpmL5ChwSxHGzoJzvPcZMHIDjnNdoAzGOWvQaHFDBKGOCH4K763kovolqbXXx_yz8Lm9s9jLAOBU_-ltZfAzQxQTLykJTc8uaczBInWzjQ558sgbqOE4x-2Lzt53ShyWUwcA5GJtyqeHmRfk4-tEWr3N1THFeruDJ5Vuw7-SQ7fHDeQT-nP38fXrRXP06vzw9uWo0paI03GlGCEZSK0Zr97KVghDrHFXYMFc7akmrHMemU8YorRZSL-q140IQiR09Ap-2vlOKf2ebSz_6rO0wyGDjnHvS0gXpWtaRin58hq7jnEKtrlICo44gxCv14YGa1WhNPyU_ynTT7yZcAbQFdIo5J-t67cv9UEuSfugx6jd77H_Q64v7PZ5Xyednkp3ri_D7LZyyfuSePgX9D-P6qPg |
CitedBy_id | crossref_primary_10_1007_s42791_023_00055_9 crossref_primary_10_1016_j_matdes_2024_112700 crossref_primary_10_1002_adfm_202414670 crossref_primary_10_1002_adts_202400135 crossref_primary_10_1016_j_eml_2025_102313 crossref_primary_10_1021_acsaenm_3c00590 crossref_primary_10_1002_advs_202402440 crossref_primary_10_1016_j_jmps_2024_105785 crossref_primary_10_3390_ijms25116147 crossref_primary_10_1007_s40964_024_00769_9 crossref_primary_10_1063_5_0232055 crossref_primary_10_1016_j_surfin_2024_105571 crossref_primary_10_1016_j_addma_2024_104324 crossref_primary_10_1016_j_matdes_2024_113523 crossref_primary_10_1016_j_matdes_2025_113798 |
Cites_doi | 10.1557/jmr.2011.65 10.1016/j.commatsci.2018.09.021 10.1016/j.compscitech.2021.109254 10.1016/j.finel.2017.03.002 10.1016/j.cma.2010.04.011 10.1007/s10898-019-00798-7 10.1039/C9MH00589G 10.1016/j.jmps.2012.04.011 10.1016/j.compositesb.2020.108513 10.1021/nn204506d 10.1016/j.matt.2019.08.013 10.1016/j.compstruct.2018.01.038 10.1039/C8TA10725D 10.1063/5.0048164 10.1007/s00158-016-1469-3 10.1038/s41427-018-0009-6 10.1016/S0142-9612(03)00215-1 10.1016/S0020-7683(98)00339-4 10.1016/j.compstruct.2019.04.017 10.1073/pnas.0631609100 10.1016/j.jmps.2012.03.002 10.1021/acscentsci.8b00307 10.1016/j.jspi.2011.09.016 10.1007/s10898-013-0118-2 10.1002/adma.201505555 10.1002/adma.201201471 10.1007/978-3-540-32373-0_3 10.1109/4235.996017 10.1063/1.5017103 10.1021/acscentsci.0c00026 10.1038/s43246-020-00078-y 10.1016/j.jmps.2006.12.009 10.1038/nmat4089 10.1002/adma.201702903 10.1115/1.4024849 10.48550/arXiv.1206.2944 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2023 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2023 |
DBID | AAYXX CITATION NPM 7SR 7TB 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
DOI | 10.1039/d3mh00137g |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2051-6355 |
EndPage | 4343 |
ExternalDocumentID | 37434475 10_1039_D3MH00137G d3mh00137g |
Genre | Journal Article |
GroupedDBID | 0R~ 4.4 AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV ABASK ABDVN ABEMK ABPDG ABRYZ ABXOH ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AETIL AFLYV AFOGI AGEGJ AGRSR AGSTE AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K EBS ECGLT EE0 EF- GGIMP H13 HZ~ H~N J3I O-G O9- RAOCF RCNCU RPMJG RRC RSCEA RVUXY AAYXX AFRZK AKMSF CITATION NPM 7SR 7TB 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c337t-5fc42210acb43039a8a722eff3b1d4f475828bf51d9bddbcb6ac6f5195772a1f3 |
ISSN | 2051-6347 2051-6355 |
IngestDate | Fri Jul 11 00:29:39 EDT 2025 Mon Jun 30 03:34:43 EDT 2025 Thu Apr 03 06:55:11 EDT 2025 Tue Jul 01 01:36:19 EDT 2025 Thu Apr 24 23:09:51 EDT 2025 Tue Dec 17 20:58:27 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c337t-5fc42210acb43039a8a722eff3b1d4f475828bf51d9bddbcb6ac6f5195772a1f3 |
Notes | https://doi.org/10.1039/d3mh00137g Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9516-5809 |
PMID | 37434475 |
PQID | 2871092005 |
PQPubID | 2047518 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2836298492 crossref_citationtrail_10_1039_D3MH00137G crossref_primary_10_1039_D3MH00137G rsc_primary_d3mh00137g pubmed_primary_37434475 proquest_journals_2871092005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-02 |
PublicationDateYYYYMMDD | 2023-10-02 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Materials horizons |
PublicationTitleAlternate | Mater Horiz |
PublicationYear | 2023 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Herbol (D3MH00137G/cit20/1) 2018; 4 Barthelat (D3MH00137G/cit4/1) 2011; 26 (D3MH00137G/cit35/1) 2014 Deutsch (D3MH00137G/cit37/1) 2012; 142 Miehe (D3MH00137G/cit28/1) 2010; 199 Molnár (D3MH00137G/cit27/1) 2017; 130 Denzel (D3MH00137G/cit30/1) 2018; 148 Rahulkumar (D3MH00137G/cit29/1) 2000; 37 Peng (D3MH00137G/cit2/1) 2020; 2 Larson (D3MH00137G/cit46/1) 2016 (D3MH00137G/cit33/1) 2013 D3MH00137G/cit38/1 Häse (D3MH00137G/cit22/1) 2021; 8 D3MH00137G/cit45/1 D3MH00137G/cit44/1 Janet (D3MH00137G/cit24/1) 2020; 6 Huang (D3MH00137G/cit8/1) 2019; 7 Zhao (D3MH00137G/cit10/1) 2017; 29 Deb (D3MH00137G/cit47/1) 2002; 6 Tang (D3MH00137G/cit18/1) 2007; 55 Zhang (D3MH00137G/cit9/1) 2016; 28 Pelikan (D3MH00137G/cit36/1) 2005 Williams (D3MH00137G/cit32/1) 2006 Snoek (D3MH00137G/cit34/1) 2012 Wegst (D3MH00137G/cit7/1) 2015; 14 Häse (D3MH00137G/cit21/1) 2018; 4 Gao (D3MH00137G/cit11/1) 2003; 100 Park (D3MH00137G/cit15/1) 2022; 220 Song (D3MH00137G/cit19/1) 2003; 24 Ghazlan (D3MH00137G/cit5/1) 2021; 205 Yang (D3MH00137G/cit42/1) 2019; 75 Devitt (D3MH00137G/cit1/1) Kim (D3MH00137G/cit16/1) 2019; 220 Shao (D3MH00137G/cit17/1) 2012; 60 Loh (D3MH00137G/cit25/1) 2020; 1 Jeong (D3MH00137G/cit26/1) 2018; 155 Haghanifar (D3MH00137G/cit23/1) 2019; 6 Kim (D3MH00137G/cit14/1) 2018; 189 Zhao (D3MH00137G/cit3/1) 2018; 10 (D3MH00137G/cit31/1) 2005 Wei (D3MH00137G/cit12/1) 2012; 6 Snoek (D3MH00137G/cit39/1) 2012 Studart (D3MH00137G/cit6/1) 2012; 24 Couckuyt (D3MH00137G/cit40/1) 2014; 60 Begley (D3MH00137G/cit13/1) 2012; 60 Shimoyama (D3MH00137G/cit41/1) 2013; 135 Emmerich (D3MH00137G/cit43/1) 2008 Zheng (D3MH00137G/cit48/1) 2017; 55 |
References_xml | – issn: 2005 publication-title: Gaussian process regression for optimization. NIPS Workshop on Value of Information – issn: 2012 volume-title: Practical bayesian optimization of machine learning algorithms end-page: arXiv:1206.2944 doi: Snoek Larochelle Adams – issn: 2005 volume-title: Bayesian optimization algorithm end-page: p 31-48 publication-title: Hierarchical Bayesian optimization algorithm doi: Pelikan – issn: 2008 volume-title: The computation of the expected improvement in dominated hypervolume of Pareto front approximations end-page: 7-3 publication-title: Rapport technique doi: Emmerich Klinkenberg – issn: 2013 publication-title: Optimization of Gaussian process hyperparameters using Rprop – issn: 2006 publication-title: Gaussian processes for machine learning doi: Williams Rasmussen – issn: 2016 end-page: 1-6 publication-title: Can you estimate modulus from durometer hardness for silicones doi: Larson – doi: Devitt – issn: 2014 publication-title: Bayesian Optimization with Inequality Constraints – volume: 26 start-page: 1203 issue: 10 year: 2011 ident: D3MH00137G/cit4/1 publication-title: J. Mater. Res. doi: 10.1557/jmr.2011.65 – volume: 155 start-page: 483 year: 2018 ident: D3MH00137G/cit26/1 publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2018.09.021 – volume-title: Gaussian process regression for optimization. NIPS Workshop on Value of Information year: 2005 ident: D3MH00137G/cit31/1 – volume: 220 start-page: 109254 year: 2022 ident: D3MH00137G/cit15/1 publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2021.109254 – volume: 130 start-page: 27 year: 2017 ident: D3MH00137G/cit27/1 publication-title: Finite Elem. Anal. Des. doi: 10.1016/j.finel.2017.03.002 – volume: 199 start-page: 2765 issue: 45 year: 2010 ident: D3MH00137G/cit28/1 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2010.04.011 – start-page: 25 year: 2012 ident: D3MH00137G/cit39/1 publication-title: Adv. Neural Inf. Process. Syst. – volume: 75 start-page: 3 year: 2019 ident: D3MH00137G/cit42/1 publication-title: J. Glob. Optim. doi: 10.1007/s10898-019-00798-7 – ident: D3MH00137G/cit44/1 – volume: 6 start-page: 1632 issue: 8 year: 2019 ident: D3MH00137G/cit23/1 publication-title: Mater. Horiz. doi: 10.1039/C9MH00589G – volume: 60 start-page: 1400 issue: 8 year: 2012 ident: D3MH00137G/cit17/1 publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2012.04.011 – ident: D3MH00137G/cit38/1 – volume: 205 start-page: 108513 year: 2021 ident: D3MH00137G/cit5/1 publication-title: Composites, Part B doi: 10.1016/j.compositesb.2020.108513 – volume: 6 start-page: 2333 issue: 3 year: 2012 ident: D3MH00137G/cit12/1 publication-title: ACS Nano doi: 10.1021/nn204506d – volume: 2 start-page: 220 issue: 1 year: 2020 ident: D3MH00137G/cit2/1 publication-title: Matter doi: 10.1016/j.matt.2019.08.013 – volume: 189 start-page: 27 year: 2018 ident: D3MH00137G/cit14/1 publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2018.01.038 – volume: 7 start-page: 2787 issue: 6 year: 2019 ident: D3MH00137G/cit8/1 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA10725D – volume: 8 start-page: 031406 issue: 3 year: 2021 ident: D3MH00137G/cit22/1 publication-title: Appl. Phys. Rev. doi: 10.1063/5.0048164 – volume: 55 start-page: 53 issue: 1 year: 2017 ident: D3MH00137G/cit48/1 publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-016-1469-3 – volume: 10 start-page: 1 issue: 4 year: 2018 ident: D3MH00137G/cit3/1 publication-title: NPG Asia Mater. doi: 10.1038/s41427-018-0009-6 – volume-title: Gaussian processes for machine learning year: 2006 ident: D3MH00137G/cit32/1 – volume: 24 start-page: 3623 issue: 20 year: 2003 ident: D3MH00137G/cit19/1 publication-title: Biomaterials doi: 10.1016/S0142-9612(03)00215-1 – ident: D3MH00137G/cit1/1 – ident: D3MH00137G/cit45/1 – volume: 37 start-page: 1873 issue: 13 year: 2000 ident: D3MH00137G/cit29/1 publication-title: Int. J. Solids Struct. doi: 10.1016/S0020-7683(98)00339-4 – volume: 220 start-page: 769 year: 2019 ident: D3MH00137G/cit16/1 publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2019.04.017 – volume: 100 start-page: 5597 issue: 10 year: 2003 ident: D3MH00137G/cit11/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0631609100 – volume: 60 start-page: 1545 issue: 8 year: 2012 ident: D3MH00137G/cit13/1 publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2012.03.002 – volume: 4 start-page: 1134 issue: 9 year: 2018 ident: D3MH00137G/cit21/1 publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.8b00307 – volume: 142 start-page: 763 issue: 3 year: 2012 ident: D3MH00137G/cit37/1 publication-title: J. Stat. Plan. Inference doi: 10.1016/j.jspi.2011.09.016 – volume: 60 start-page: 575 issue: 3 year: 2014 ident: D3MH00137G/cit40/1 publication-title: J. Glob. Optim. doi: 10.1007/s10898-013-0118-2 – start-page: 1 volume-title: Can you estimate modulus from durometer hardness for silicones year: 2016 ident: D3MH00137G/cit46/1 – volume: 28 start-page: 6292 issue: 30 year: 2016 ident: D3MH00137G/cit9/1 publication-title: Adv. Mater. doi: 10.1002/adma.201505555 – volume: 24 start-page: 5024 issue: 37 year: 2012 ident: D3MH00137G/cit6/1 publication-title: Adv. Mater. doi: 10.1002/adma.201201471 – volume: 4 start-page: 51 issue: 1 year: 2018 ident: D3MH00137G/cit20/1 publication-title: Materials – start-page: 31 volume-title: Hierarchical Bayesian optimization algorithm year: 2005 ident: D3MH00137G/cit36/1 doi: 10.1007/978-3-540-32373-0_3 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: D3MH00137G/cit47/1 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.996017 – volume: 148 start-page: 094114 issue: 9 year: 2018 ident: D3MH00137G/cit30/1 publication-title: J. Chem. Phys. doi: 10.1063/1.5017103 – volume: 6 start-page: 513 issue: 4 year: 2020 ident: D3MH00137G/cit24/1 publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.0c00026 – volume: 1 start-page: 77 issue: 1 year: 2020 ident: D3MH00137G/cit25/1 publication-title: Commun. Mater. doi: 10.1038/s43246-020-00078-y – start-page: 7 volume-title: Rapport technique year: 2008 ident: D3MH00137G/cit43/1 – volume: 55 start-page: 1410 issue: 7 year: 2007 ident: D3MH00137G/cit18/1 publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2006.12.009 – volume-title: Bayesian Optimization with Inequality Constraints year: 2014 ident: D3MH00137G/cit35/1 – volume: 14 start-page: 23 issue: 1 year: 2015 ident: D3MH00137G/cit7/1 publication-title: Nat. Mater. doi: 10.1038/nmat4089 – volume: 29 start-page: 1702903 issue: 45 year: 2017 ident: D3MH00137G/cit10/1 publication-title: Adv. Mater. doi: 10.1002/adma.201702903 – volume: 135 start-page: 094503 issue: 9 year: 2013 ident: D3MH00137G/cit41/1 publication-title: J. Mech. Design doi: 10.1115/1.4024849 – start-page: arXiv:1206.2944 year: 2012 ident: D3MH00137G/cit34/1 doi: 10.48550/arXiv.1206.2944 – volume-title: Optimization of Gaussian process hyperparameters using Rprop year: 2013 ident: D3MH00137G/cit33/1 |
SSID | ssj0001345080 |
Score | 2.4155414 |
Snippet | The hierarchical structures found in biological materials lead to an outstanding balance of multiple material properties, and numerous research studies have... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4329 |
SubjectTerms | Algorithms Bayesian analysis Biological materials Biomimetics Composite materials Design Design optimization Functionals Gaussian process Material properties Multiple objective analysis Nacre Optimization Pareto optimum Specific volume Tensile tests Three dimensional printing |
Title | Multi-objective Bayesian optimization for the design of nacre-inspired composites: optimizing and understanding biomimetics through AI |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37434475 https://www.proquest.com/docview/2871092005 https://www.proquest.com/docview/2836298492 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELagk9B4QPwaBAYyghc0mSVxmsS8lTHoJsYD6qS9RXZikyKaTCUV6v4A_m7Ojp2kUCTgJaoSO1Z9X8535_vOCL1IipgJSRlJYS0hUZ4kRER8TGRa-KmkPI3Nju7Zx3h6Hp1ejC8GjGvNLmnEq_xqK6_kf6QK90CumiX7D5LtXgo34DfIF64gYbj-lYwNe5bU4kurtQ7e8LU0pMgaFMHCMiy7RMLCJGuYzA0OtiKZV3qXXRpam8ndatPjbF9HXlxtsF80W3--kKa2szvix9aTdsdC8ab96wdlvZxfuWigJVgbvQKvrLvIjk0JPirn5Vr2OQGu8Sn4yuu6a_5pvTLxWgk6qvzOhzGLsM1-a5WuNLotBF1AtK2zVYv7VBdBLeiiNGVPPw8bwURcLow8KRg_ulxhv5J1-YXu0XW0E4L7EI7QzuR4dvKhj77RCCxT39WrpeywH20X3XD9N42V3zwQsEeW7pwYY4_MbqNb1pHAkxYVd9A1Wd1FNwflJe-hH7_gAzt84CE-MOADAz5wiw9cK7yJD9zj4zXu0YEBEngDHXiADmzRgScn99H5u-PZ0ZTYczdITmnSkLHKozAMfJ6LCCwcxlMOcyiVoiIoIgXzAm66UOOgYKIoRC5insdKlymCueaBontoVNWVfIhwESQ8yqVmW6cRLGgcvIeQKanSUDAYzUMv3QRnuS1Kr89G-ZqZ5AjKsrf0bGrk8t5Dz7u2l20plq2t9p2cMvupfst0WMBnOoDqoWfdY1CkeneMV7Je6TZgy7E0YqGHHrTy7YZxePDQHgi8u91j5tEfuzxGu_0XsI9GzXIln4Ad24inFpQ_AUYqo6Y |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+Bayesian+optimization+for+the+design+of+nacre-inspired+composites%3A+optimizing+and+understanding+biomimetics+through+AI&rft.jtitle=Materials+horizons&rft.au=Park%2C+Kundo&rft.au=Song%2C+Chihyeon&rft.au=Park%2C+Jinkyoo&rft.au=Ryu%2C+Seunghwa&rft.date=2023-10-02&rft.eissn=2051-6355&rft_id=info:doi/10.1039%2Fd3mh00137g&rft_id=info%3Apmid%2F37434475&rft.externalDocID=37434475 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-6347&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-6347&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-6347&client=summon |