Synthesis and proton-conductive behaviour of two MOFs with covalently bonded imidazoles in the channels
Immobilization of imidazole molecules as proton carriers into MOFs to facilitate proton conduction is a general strategy for developing high proton conductive materials. Herein, we designed two imidazole substituted phthalic acid ligands and constructed two novel MOFs, {[Zr 6 (OH) 16 (H 3 L 1 ) 4 ]C...
Saved in:
Published in | Dalton transactions : an international journal of inorganic chemistry Vol. 53; no. 2; pp. 8716 - 8721 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
21.05.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1477-9226 1477-9234 1477-9234 |
DOI | 10.1039/d3dt04338j |
Cover
Loading…
Abstract | Immobilization of imidazole molecules as proton carriers into MOFs to facilitate proton conduction is a general strategy for developing high proton conductive materials. Herein, we designed two imidazole substituted phthalic acid ligands and constructed two novel MOFs, {[Zr
6
(OH)
16
(H
3
L
1
)
4
]Cl
8
·20H
2
O}
n
[
Zr-MOF
; H
3
L
1
= 2-(1
H
-imidazol-4-yl) methylaminoterephthalic acid] and {Gd(HCOO)(H
2
L
2
)
2
}
n
[
Gd-MOF
; H
3
L
2
= 5-(1
H
-imidazol-4-yl)methylaminoisophthalic acid] and fully studied their porous nature, stability and water-assisted proton conduction. The resulting
Zr-MOF
exhibits a high proton conductivity of 1.82 × 10
−2
S cm
−1
at 98% RH and 80 °C, while
Gd-MOF
has a proton conductivity of 3.01 × 10
−3
S cm
−1
at 98% RH and 60 °C.
Based on two imidazole substituted phthalic acid ligands, two new metal-organic frameworks have been synthesized. Both complexes exhibit impressive proton conductivities under 98% RH. |
---|---|
AbstractList | Immobilization of imidazole molecules as proton carriers into MOFs to facilitate proton conduction is a general strategy for developing high proton conductive materials. Herein, we designed two imidazole substituted phthalic acid ligands and constructed two novel MOFs, {[Zr6(OH)16(H3L1)4]Cl8·20H2O}n [Zr-MOF; H3L1 = 2-(1H-imidazol-4-yl) methylaminoterephthalic acid] and {Gd(HCOO)(H2L2)2}n [Gd-MOF; H3L2 = 5-(1H-imidazol-4-yl)methylaminoisophthalic acid] and fully studied their porous nature, stability and water-assisted proton conduction. The resulting Zr-MOF exhibits a high proton conductivity of 1.82 × 10−2 S cm−1 at 98% RH and 80 °C, while Gd-MOF has a proton conductivity of 3.01 × 10−3 S cm−1 at 98% RH and 60 °C. Immobilization of imidazole molecules as proton carriers into MOFs to facilitate proton conduction is a general strategy for developing high proton conductive materials. Herein, we designed two imidazole substituted phthalic acid ligands and constructed two novel MOFs, {[Zr 6 (OH) 16 (H 3 L 1 ) 4 ]Cl 8 ·20H 2 O} n [ Zr-MOF ; H 3 L 1 = 2-(1 H -imidazol-4-yl) methylaminoterephthalic acid] and {Gd(HCOO)(H 2 L 2 ) 2 } n [ Gd-MOF ; H 3 L 2 = 5-(1 H -imidazol-4-yl)methylaminoisophthalic acid] and fully studied their porous nature, stability and water-assisted proton conduction. The resulting Zr-MOF exhibits a high proton conductivity of 1.82 × 10 −2 S cm −1 at 98% RH and 80 °C, while Gd-MOF has a proton conductivity of 3.01 × 10 −3 S cm −1 at 98% RH and 60 °C. Based on two imidazole substituted phthalic acid ligands, two new metal-organic frameworks have been synthesized. Both complexes exhibit impressive proton conductivities under 98% RH. Immobilization of imidazole molecules as proton carriers into MOFs to facilitate proton conduction is a general strategy for developing high proton conductive materials. Herein, we designed two imidazole substituted phthalic acid ligands and constructed two novel MOFs, {[Zr (OH) (H L ) ]Cl ·20H O} [Zr-MOF; H L = 2-(1 -imidazol-4-yl) methylaminoterephthalic acid] and {Gd(HCOO)(H L ) } [Gd-MOF; H L = 5-(1 -imidazol-4-yl)methylaminoisophthalic acid] and fully studied their porous nature, stability and water-assisted proton conduction. The resulting Zr-MOF exhibits a high proton conductivity of 1.82 × 10 S cm at 98% RH and 80 °C, while Gd-MOF has a proton conductivity of 3.01 × 10 S cm at 98% RH and 60 °C. Immobilization of imidazole molecules as proton carriers into MOFs to facilitate proton conduction is a general strategy for developing high proton conductive materials. Herein, we designed two imidazole substituted phthalic acid ligands and constructed two novel MOFs, {[Zr 6 (OH) 16 (H 3 L 1 ) 4 ]Cl 8 ·20H 2 O} n [Zr-MOF; H 3 L 1 = 2-(1 H -imidazol-4-yl) methylaminoterephthalic acid] and {Gd(HCOO)(H 2 L 2 ) 2 } n [Gd-MOF; H 3 L 2 = 5-(1 H -imidazol-4-yl)methylaminoisophthalic acid] and fully studied their porous nature, stability and water-assisted proton conduction. The resulting Zr-MOF exhibits a high proton conductivity of 1.82 × 10 −2 S cm −1 at 98% RH and 80 °C, while Gd-MOF has a proton conductivity of 3.01 × 10 −3 S cm −1 at 98% RH and 60 °C. Immobilization of imidazole molecules as proton carriers into MOFs to facilitate proton conduction is a general strategy for developing high proton conductive materials. Herein, we designed two imidazole substituted phthalic acid ligands and constructed two novel MOFs, {[Zr6(OH)16(H3L1)4]Cl8·20H2O}n [Zr-MOF; H3L1 = 2-(1H-imidazol-4-yl) methylaminoterephthalic acid] and {Gd(HCOO)(H2L2)2}n [Gd-MOF; H3L2 = 5-(1H-imidazol-4-yl)methylaminoisophthalic acid] and fully studied their porous nature, stability and water-assisted proton conduction. The resulting Zr-MOF exhibits a high proton conductivity of 1.82 × 10-2 S cm-1 at 98% RH and 80 °C, while Gd-MOF has a proton conductivity of 3.01 × 10-3 S cm-1 at 98% RH and 60 °C.Immobilization of imidazole molecules as proton carriers into MOFs to facilitate proton conduction is a general strategy for developing high proton conductive materials. Herein, we designed two imidazole substituted phthalic acid ligands and constructed two novel MOFs, {[Zr6(OH)16(H3L1)4]Cl8·20H2O}n [Zr-MOF; H3L1 = 2-(1H-imidazol-4-yl) methylaminoterephthalic acid] and {Gd(HCOO)(H2L2)2}n [Gd-MOF; H3L2 = 5-(1H-imidazol-4-yl)methylaminoisophthalic acid] and fully studied their porous nature, stability and water-assisted proton conduction. The resulting Zr-MOF exhibits a high proton conductivity of 1.82 × 10-2 S cm-1 at 98% RH and 80 °C, while Gd-MOF has a proton conductivity of 3.01 × 10-3 S cm-1 at 98% RH and 60 °C. |
Author | Ma, Yue Zhang, Chen-Xi Chen, Kun-Peng Ren, Hong-Xia Wang, Qing-Lun |
AuthorAffiliation | College of Chemical Engineering and Materials Science Nankai University Tianjin University of Science and Technology College of Chemistry Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) |
AuthorAffiliation_xml | – sequence: 0 name: College of Chemical Engineering and Materials Science – sequence: 0 name: College of Chemistry – sequence: 0 name: Nankai University – sequence: 0 name: Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) – sequence: 0 name: Tianjin University of Science and Technology |
Author_xml | – sequence: 1 givenname: Kun-Peng surname: Chen fullname: Chen, Kun-Peng – sequence: 2 givenname: Yue surname: Ma fullname: Ma, Yue – sequence: 3 givenname: Hong-Xia surname: Ren fullname: Ren, Hong-Xia – sequence: 4 givenname: Chen-Xi surname: Zhang fullname: Zhang, Chen-Xi – sequence: 5 givenname: Qing-Lun surname: Wang fullname: Wang, Qing-Lun |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38711354$$D View this record in MEDLINE/PubMed |
BookMark | eNptkc1PGzEQxa0qVcPXpfdWlnpBlbbYnmy8PlZ8lKIgDsB55bVnG0cbm669QeGvxzSQShGnmcPvPc2bt09GPngk5DNnPzgDdWLBJjYBqBYfyB6fSFkoAZPRdhfTMdmPccGYEKwUn8gYKsk5lJM98ud27dMco4tUe0sf-pCCL0zwdjDJrZA2ONcrF4aehpamx0Cvby4ifXRpTk1Y6Q596ta0yQK01C2d1U-hw0idp9mXmrn2Hrt4SD62uot49DoPyP3F-d3pZTG7-fX79OesMAAyFaVtWaUkAseGVVyxHIFrKbiqtG6R8VJwLBuosM0JrG4Mm2pd8kaoKROygQNyvPHNSf4OGFO9dNFg12mPYYg1sJIrkEpBRr_toIsc0-frXijJYFpVPFNfX6mhWaKtH3q31P26fnthBr5vANOHGHtstwhn9Us_9Rmc3f3r5yrDbAc2Lunkgk-9dt37ki8bSR_N1vp_5fAMsPWbXw |
CitedBy_id | crossref_primary_10_1021_acs_inorgchem_4c01579 crossref_primary_10_1016_j_jallcom_2024_177546 crossref_primary_10_1002_admi_202400928 |
Cites_doi | 10.1021/acsami.8b12846 10.1002/anie.201404164 10.1021/ja5069855 10.1021/jacs.6b04501 10.1021/acsami.6b12240 10.1002/anie.201102997 10.1038/35104620 10.1021/ja305587n 10.1021/acsami.9b01075 10.1021/ja310435e 10.1039/C9DT02269D 10.1107/S2053273314026370 10.1038/s41560-017-0018-7 10.1021/acsenergylett.7b00560 10.1002/anie.201411703 10.1039/C7TA10148A 10.1021/jacs.6b12847 10.1126/science.1109157 10.1016/j.ijhydene.2020.09.235 10.1039/C7TA04496H 10.1021/jacs.7b09163 10.1021/jacs.7b01559 10.1021/acs.inorgchem.9b00274 10.1021/acsami.9b01121 10.1039/C8CC08700H 10.1021/acs.cgd.5b01190 10.1021/cm950192a 10.1038/nmat2526 10.1021/acs.chemmater.5b00665 10.1021/cr0207123 10.1002/anie.198202082 10.1007/s10853-023-08903-8 10.1039/C5DT01667C 10.1021/cm0310519 10.1021/acs.inorgchem.2c00597 10.1038/nchem.402 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2024 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2024 |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1039/d3dt04338j |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1477-9234 |
EndPage | 8721 |
ExternalDocumentID | 38711354 10_1039_D3DT04338J d3dt04338j |
Genre | Journal Article |
GroupedDBID | --- -DZ -JG -~X 0-7 0R~ 29F 4.4 53G 5GY 70~ 7~J AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFVBQ AGEGJ AGKEF AGRSR AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CS3 D0L DU5 EBS ECGLT EE0 EF- F5P GGIMP GNO H13 HZ~ H~N IDZ J3G J3H J3I M4U O9- R7B R7C RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UCJ UPT VH6 VQA WH7 AAYXX AFRZK AKMSF ALUYA CITATION R56 NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c337t-5df0897e31eb081901471a72198aafe01521e5b38ef711dabc06aa51b296027b3 |
ISSN | 1477-9226 1477-9234 |
IngestDate | Fri Jul 11 12:24:29 EDT 2025 Sun Jun 29 16:46:50 EDT 2025 Thu Apr 03 06:59:33 EDT 2025 Tue Jul 01 04:27:38 EDT 2025 Thu Apr 24 23:05:43 EDT 2025 Tue Dec 17 20:58:33 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c337t-5df0897e31eb081901471a72198aafe01521e5b38ef711dabc06aa51b296027b3 |
Notes | Electronic supplementary information (ESI) available. CCDC https://doi.org/10.1039/d3dt04338j For ESI and crystallographic data in CIF or other electronic format see DOI 2321488 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8619-8614 0000-0002-0983-6280 0000-0003-3383-9112 |
PMID | 38711354 |
PQID | 3057036881 |
PQPubID | 2047498 |
PageCount | 6 |
ParticipantIDs | proquest_journals_3057036881 pubmed_primary_38711354 proquest_miscellaneous_3051937993 rsc_primary_d3dt04338j crossref_primary_10_1039_D3DT04338J crossref_citationtrail_10_1039_D3DT04338J |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-05-21 |
PublicationDateYYYYMMDD | 2024-05-21 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Dalton transactions : an international journal of inorganic chemistry |
PublicationTitleAlternate | Dalton Trans |
PublicationYear | 2024 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Liu (D3DT04338J/cit25/1) 2015; 44 Kreuer (D3DT04338J/cit35/1) 2003; 21 Steele (D3DT04338J/cit2/1) 2001; 414 Wei (D3DT04338J/cit11/1) 2017; 139 Ponomareva (D3DT04338J/cit12/1) 2012; 134 Taylor (D3DT04338J/cit29/1) 2015; 27 Xing (D3DT04338J/cit30/1) 2019; 55 Dong (D3DT04338J/cit16/1) 2018; 10 Sheldrick (D3DT04338J/cit32/1) 2015; 71 Jacobson (D3DT04338J/cit1/1) 2005; 308 Hurd (D3DT04338J/cit5/1) 2009; 1 Tang (D3DT04338J/cit13/1) 2014; 136 Xie (D3DT04338J/cit27/1) 2019; 58 Taylor (D3DT04338J/cit22/1) 2013; 135 Umeyama (D3DT04338J/cit19/1) 2011; 50 Hao (D3DT04338J/cit15/1) 2022; 61 Yang (D3DT04338J/cit7/1) 2017; 2 Li (D3DT04338J/cit4/1) 2003; 15 Nguyen (D3DT04338J/cit23/1) 2018; 6 Zhang (D3DT04338J/cit6/1) 2017; 139 Yuan (D3DT04338J/cit33/1) 2016; 138 Mauritz (D3DT04338J/cit3/1) 2004; 104 Kreuer (D3DT04338J/cit36/1) 1996; 8 Luo (D3DT04338J/cit24/1) 2019; 11 Wang (D3DT04338J/cit31/1) 2019; 48 Li (D3DT04338J/cit10/1) 2017; 2 Wang (D3DT04338J/cit18/1) 2021; 46 Patel (D3DT04338J/cit14/1) 2016; 8 Bureekaew (D3DT04338J/cit21/1) 2009; 8 Ye (D3DT04338J/cit26/1) 2017; 139 Li (D3DT04338J/cit17/1) 2023; 58 Yang (D3DT04338J/cit28/1) 2015; 15 Mukhopadhyay (D3DT04338J/cit9/1) 2019; 11 Phang (D3DT04338J/cit20/1) 2014; 53 Rapti (D3DT04338J/cit34/1) 2017; 5 Phang (D3DT04338J/cit8/1) 2015; 54 |
References_xml | – volume: 10 start-page: 38209 year: 2018 ident: D3DT04338J/cit16/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b12846 – volume: 53 start-page: 8383 year: 2014 ident: D3DT04338J/cit20/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201404164 – volume: 136 start-page: 12444 year: 2014 ident: D3DT04338J/cit13/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5069855 – volume: 138 start-page: 8912 year: 2016 ident: D3DT04338J/cit33/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b04501 – volume: 8 start-page: 30687 year: 2016 ident: D3DT04338J/cit14/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b12240 – volume: 50 start-page: 11706 year: 2011 ident: D3DT04338J/cit19/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201102997 – volume: 414 start-page: 345 year: 2001 ident: D3DT04338J/cit2/1 publication-title: Nature doi: 10.1038/35104620 – volume: 134 start-page: 15640 year: 2012 ident: D3DT04338J/cit12/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja305587n – volume: 11 start-page: 9164 year: 2019 ident: D3DT04338J/cit24/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b01075 – volume: 135 start-page: 1193 year: 2013 ident: D3DT04338J/cit22/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja310435e – volume: 48 start-page: 9930 year: 2019 ident: D3DT04338J/cit31/1 publication-title: Dalton Trans. doi: 10.1039/C9DT02269D – volume: 71 start-page: 3 year: 2015 ident: D3DT04338J/cit32/1 publication-title: Acta Crystallogr., Sect. A: Found. Adv. doi: 10.1107/S2053273314026370 – volume: 2 start-page: 877 year: 2017 ident: D3DT04338J/cit7/1 publication-title: Nat. Energy doi: 10.1038/s41560-017-0018-7 – volume: 2 start-page: 2313 year: 2017 ident: D3DT04338J/cit10/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00560 – volume: 54 start-page: 5142 year: 2015 ident: D3DT04338J/cit8/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201411703 – volume: 6 start-page: 1816 year: 2018 ident: D3DT04338J/cit23/1 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA10148A – volume: 139 start-page: 3505 year: 2017 ident: D3DT04338J/cit11/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b12847 – volume: 308 start-page: 1901 year: 2005 ident: D3DT04338J/cit1/1 publication-title: Science doi: 10.1126/science.1109157 – volume: 46 start-page: 1163 year: 2021 ident: D3DT04338J/cit18/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.09.235 – volume: 5 start-page: 14707 year: 2017 ident: D3DT04338J/cit34/1 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA04496H – volume: 139 start-page: 15604 year: 2017 ident: D3DT04338J/cit26/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b09163 – volume: 139 start-page: 6183 year: 2017 ident: D3DT04338J/cit6/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b01559 – volume: 58 start-page: 5173 year: 2019 ident: D3DT04338J/cit27/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.9b00274 – volume: 11 start-page: 13423 year: 2019 ident: D3DT04338J/cit9/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b01121 – volume: 55 start-page: 1241 year: 2019 ident: D3DT04338J/cit30/1 publication-title: Chem. Commun. doi: 10.1039/C8CC08700H – volume: 15 start-page: 5827 year: 2015 ident: D3DT04338J/cit28/1 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.5b01190 – volume: 8 start-page: 610 year: 1996 ident: D3DT04338J/cit36/1 publication-title: Chem. Mater. doi: 10.1021/cm950192a – volume: 8 start-page: 831 year: 2009 ident: D3DT04338J/cit21/1 publication-title: Nat. Mater. doi: 10.1038/nmat2526 – volume: 27 start-page: 2286 year: 2015 ident: D3DT04338J/cit29/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b00665 – volume: 104 start-page: 4535 year: 2004 ident: D3DT04338J/cit3/1 publication-title: Chem. Rev. doi: 10.1021/cr0207123 – volume: 21 start-page: 208 year: 2003 ident: D3DT04338J/cit35/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.198202082 – volume: 58 start-page: 14154 year: 2023 ident: D3DT04338J/cit17/1 publication-title: J. Mater. Sci. doi: 10.1007/s10853-023-08903-8 – volume: 44 start-page: 12976 year: 2015 ident: D3DT04338J/cit25/1 publication-title: Dalton Trans. doi: 10.1039/C5DT01667C – volume: 15 start-page: 4896 year: 2003 ident: D3DT04338J/cit4/1 publication-title: Chem. Mater. doi: 10.1021/cm0310519 – volume: 61 start-page: 9533 year: 2022 ident: D3DT04338J/cit15/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.2c00597 – volume: 1 start-page: 705 year: 2009 ident: D3DT04338J/cit5/1 publication-title: Nat. Chem. doi: 10.1038/nchem.402 |
SSID | ssj0022052 |
Score | 2.4605386 |
Snippet | Immobilization of imidazole molecules as proton carriers into MOFs to facilitate proton conduction is a general strategy for developing high proton conductive... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8716 |
SubjectTerms | Gadolinium Imidazole Metal-organic frameworks Proton conduction Zirconium |
Title | Synthesis and proton-conductive behaviour of two MOFs with covalently bonded imidazoles in the channels |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38711354 https://www.proquest.com/docview/3057036881 https://www.proquest.com/docview/3051937993 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbK9gAviNsgMJARvKAqkMS5Pk5rqzG1GxKpVJ4iJ05G0UjQmgptf40_xzl2YrfqhICXqHLcxPL5Yn_n4nMIeStY5IvYqewyFqHt-wmzeVWGdgHcwQ_hBqtQUZydhSdz_3QRLAaDXxtRS-s2f1_c3Hqu5H-kCm0gVzwl-w-S1Q-FBvgN8oUrSBiufyXjz9c18DdMKaKO-zdYDxgUXMzhKqPS1Rn8tfQEtD-b4ex8suqjzWEgsOFcXg_zBq3gw-X3peA3mN-pj33EQ8G1SresCeyIYxlqrCzRlxlfSasCr2XmCWNc3EpJoWpHFfDErryc8SDV9qdSrTfHX82xtJnktF_WBnZNfWEvlh3V1f3wP9AsXSxo-t40Yng--t89Y8RQppI-TlXGoWwORy3NPjqbPa9LnL3Z1plDu_VcJR_ucOs5G6szKodbO70aws4u4jBMwiqYaDG9W_zN7JV9fMDZeTaZT6dZOl6kd8i-BzoK7Ar7R-P041Tr-54jCz7pgffZcVnywTx7mw_tKDlAea76UjSS8qQPyP1OV6FHCngPyaCsH5G7etIekwsNQAoApDsApBqAtKkoAJAiACkCkBoAUgVAagBIlzWF59IegE_IfDJOj0_srnKHXTAWtXYgKidOopK5Za44J3AgDnOUxByWAgdJYxnkLC6ryHUFzwsn5Dxwcw8Uai_K2QHZq5u6fEYoc1kcxtz3BTB3IM9coKuaY3WlIPYSYZF3_fxlRZfWHqurXGYyvIIl2YiNUjnXpxZ5o_v-UMlcbu112Ish676VVQbbIqaqi2PXIq_1bZhu9K_xumzWsg-oQxEwfos8VeLTr2GAPZcFvkUOQJ662eDg-Z_f-oLcM9_NIdlrr9blS6DDbf6qg91v40u5qQ |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+and+proton-conductive+behaviour+of+two+MOFs+with+covalently+bonded+imidazoles+in+the+channels&rft.jtitle=Dalton+transactions+%3A+an+international+journal+of+inorganic+chemistry&rft.au=Kun-Peng%2C+Chen&rft.au=Ma%2C+Yue&rft.au=Hong-Xia%2C+Ren&rft.au=Chen-Xi%2C+Zhang&rft.date=2024-05-21&rft.pub=Royal+Society+of+Chemistry&rft.issn=1477-9226&rft.eissn=1477-9234&rft.volume=53&rft.issue=20&rft.spage=8716&rft.epage=8721&rft_id=info:doi/10.1039%2Fd3dt04338j&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-9226&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-9226&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-9226&client=summon |