Synthesis and proton-conductive behaviour of two MOFs with covalently bonded imidazoles in the channels

Immobilization of imidazole molecules as proton carriers into MOFs to facilitate proton conduction is a general strategy for developing high proton conductive materials. Herein, we designed two imidazole substituted phthalic acid ligands and constructed two novel MOFs, {[Zr 6 (OH) 16 (H 3 L 1 ) 4 ]C...

Full description

Saved in:
Bibliographic Details
Published inDalton transactions : an international journal of inorganic chemistry Vol. 53; no. 2; pp. 8716 - 8721
Main Authors Chen, Kun-Peng, Ma, Yue, Ren, Hong-Xia, Zhang, Chen-Xi, Wang, Qing-Lun
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 21.05.2024
Subjects
Online AccessGet full text
ISSN1477-9226
1477-9234
1477-9234
DOI10.1039/d3dt04338j

Cover

Loading…
Abstract Immobilization of imidazole molecules as proton carriers into MOFs to facilitate proton conduction is a general strategy for developing high proton conductive materials. Herein, we designed two imidazole substituted phthalic acid ligands and constructed two novel MOFs, {[Zr 6 (OH) 16 (H 3 L 1 ) 4 ]Cl 8 ·20H 2 O} n [ Zr-MOF ; H 3 L 1 = 2-(1 H -imidazol-4-yl) methylaminoterephthalic acid] and {Gd(HCOO)(H 2 L 2 ) 2 } n [ Gd-MOF ; H 3 L 2 = 5-(1 H -imidazol-4-yl)methylaminoisophthalic acid] and fully studied their porous nature, stability and water-assisted proton conduction. The resulting Zr-MOF exhibits a high proton conductivity of 1.82 × 10 −2 S cm −1 at 98% RH and 80 °C, while Gd-MOF has a proton conductivity of 3.01 × 10 −3 S cm −1 at 98% RH and 60 °C. Based on two imidazole substituted phthalic acid ligands, two new metal-organic frameworks have been synthesized. Both complexes exhibit impressive proton conductivities under 98% RH.
AbstractList Immobilization of imidazole molecules as proton carriers into MOFs to facilitate proton conduction is a general strategy for developing high proton conductive materials. Herein, we designed two imidazole substituted phthalic acid ligands and constructed two novel MOFs, {[Zr6(OH)16(H3L1)4]Cl8·20H2O}n [Zr-MOF; H3L1 = 2-(1H-imidazol-4-yl) methylaminoterephthalic acid] and {Gd(HCOO)(H2L2)2}n [Gd-MOF; H3L2 = 5-(1H-imidazol-4-yl)methylaminoisophthalic acid] and fully studied their porous nature, stability and water-assisted proton conduction. The resulting Zr-MOF exhibits a high proton conductivity of 1.82 × 10−2 S cm−1 at 98% RH and 80 °C, while Gd-MOF has a proton conductivity of 3.01 × 10−3 S cm−1 at 98% RH and 60 °C.
Immobilization of imidazole molecules as proton carriers into MOFs to facilitate proton conduction is a general strategy for developing high proton conductive materials. Herein, we designed two imidazole substituted phthalic acid ligands and constructed two novel MOFs, {[Zr 6 (OH) 16 (H 3 L 1 ) 4 ]Cl 8 ·20H 2 O} n [ Zr-MOF ; H 3 L 1 = 2-(1 H -imidazol-4-yl) methylaminoterephthalic acid] and {Gd(HCOO)(H 2 L 2 ) 2 } n [ Gd-MOF ; H 3 L 2 = 5-(1 H -imidazol-4-yl)methylaminoisophthalic acid] and fully studied their porous nature, stability and water-assisted proton conduction. The resulting Zr-MOF exhibits a high proton conductivity of 1.82 × 10 −2 S cm −1 at 98% RH and 80 °C, while Gd-MOF has a proton conductivity of 3.01 × 10 −3 S cm −1 at 98% RH and 60 °C. Based on two imidazole substituted phthalic acid ligands, two new metal-organic frameworks have been synthesized. Both complexes exhibit impressive proton conductivities under 98% RH.
Immobilization of imidazole molecules as proton carriers into MOFs to facilitate proton conduction is a general strategy for developing high proton conductive materials. Herein, we designed two imidazole substituted phthalic acid ligands and constructed two novel MOFs, {[Zr (OH) (H L ) ]Cl ·20H O} [Zr-MOF; H L = 2-(1 -imidazol-4-yl) methylaminoterephthalic acid] and {Gd(HCOO)(H L ) } [Gd-MOF; H L = 5-(1 -imidazol-4-yl)methylaminoisophthalic acid] and fully studied their porous nature, stability and water-assisted proton conduction. The resulting Zr-MOF exhibits a high proton conductivity of 1.82 × 10 S cm at 98% RH and 80 °C, while Gd-MOF has a proton conductivity of 3.01 × 10 S cm at 98% RH and 60 °C.
Immobilization of imidazole molecules as proton carriers into MOFs to facilitate proton conduction is a general strategy for developing high proton conductive materials. Herein, we designed two imidazole substituted phthalic acid ligands and constructed two novel MOFs, {[Zr 6 (OH) 16 (H 3 L 1 ) 4 ]Cl 8 ·20H 2 O} n [Zr-MOF; H 3 L 1 = 2-(1 H -imidazol-4-yl) methylaminoterephthalic acid] and {Gd(HCOO)(H 2 L 2 ) 2 } n [Gd-MOF; H 3 L 2 = 5-(1 H -imidazol-4-yl)methylaminoisophthalic acid] and fully studied their porous nature, stability and water-assisted proton conduction. The resulting Zr-MOF exhibits a high proton conductivity of 1.82 × 10 −2 S cm −1 at 98% RH and 80 °C, while Gd-MOF has a proton conductivity of 3.01 × 10 −3 S cm −1 at 98% RH and 60 °C.
Immobilization of imidazole molecules as proton carriers into MOFs to facilitate proton conduction is a general strategy for developing high proton conductive materials. Herein, we designed two imidazole substituted phthalic acid ligands and constructed two novel MOFs, {[Zr6(OH)16(H3L1)4]Cl8·20H2O}n [Zr-MOF; H3L1 = 2-(1H-imidazol-4-yl) methylaminoterephthalic acid] and {Gd(HCOO)(H2L2)2}n [Gd-MOF; H3L2 = 5-(1H-imidazol-4-yl)methylaminoisophthalic acid] and fully studied their porous nature, stability and water-assisted proton conduction. The resulting Zr-MOF exhibits a high proton conductivity of 1.82 × 10-2 S cm-1 at 98% RH and 80 °C, while Gd-MOF has a proton conductivity of 3.01 × 10-3 S cm-1 at 98% RH and 60 °C.Immobilization of imidazole molecules as proton carriers into MOFs to facilitate proton conduction is a general strategy for developing high proton conductive materials. Herein, we designed two imidazole substituted phthalic acid ligands and constructed two novel MOFs, {[Zr6(OH)16(H3L1)4]Cl8·20H2O}n [Zr-MOF; H3L1 = 2-(1H-imidazol-4-yl) methylaminoterephthalic acid] and {Gd(HCOO)(H2L2)2}n [Gd-MOF; H3L2 = 5-(1H-imidazol-4-yl)methylaminoisophthalic acid] and fully studied their porous nature, stability and water-assisted proton conduction. The resulting Zr-MOF exhibits a high proton conductivity of 1.82 × 10-2 S cm-1 at 98% RH and 80 °C, while Gd-MOF has a proton conductivity of 3.01 × 10-3 S cm-1 at 98% RH and 60 °C.
Author Ma, Yue
Zhang, Chen-Xi
Chen, Kun-Peng
Ren, Hong-Xia
Wang, Qing-Lun
AuthorAffiliation College of Chemical Engineering and Materials Science
Nankai University
Tianjin University of Science and Technology
College of Chemistry
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)
AuthorAffiliation_xml – sequence: 0
  name: College of Chemical Engineering and Materials Science
– sequence: 0
  name: College of Chemistry
– sequence: 0
  name: Nankai University
– sequence: 0
  name: Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)
– sequence: 0
  name: Tianjin University of Science and Technology
Author_xml – sequence: 1
  givenname: Kun-Peng
  surname: Chen
  fullname: Chen, Kun-Peng
– sequence: 2
  givenname: Yue
  surname: Ma
  fullname: Ma, Yue
– sequence: 3
  givenname: Hong-Xia
  surname: Ren
  fullname: Ren, Hong-Xia
– sequence: 4
  givenname: Chen-Xi
  surname: Zhang
  fullname: Zhang, Chen-Xi
– sequence: 5
  givenname: Qing-Lun
  surname: Wang
  fullname: Wang, Qing-Lun
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38711354$$D View this record in MEDLINE/PubMed
BookMark eNptkc1PGzEQxa0qVcPXpfdWlnpBlbbYnmy8PlZ8lKIgDsB55bVnG0cbm669QeGvxzSQShGnmcPvPc2bt09GPngk5DNnPzgDdWLBJjYBqBYfyB6fSFkoAZPRdhfTMdmPccGYEKwUn8gYKsk5lJM98ud27dMco4tUe0sf-pCCL0zwdjDJrZA2ONcrF4aehpamx0Cvby4ifXRpTk1Y6Q596ta0yQK01C2d1U-hw0idp9mXmrn2Hrt4SD62uot49DoPyP3F-d3pZTG7-fX79OesMAAyFaVtWaUkAseGVVyxHIFrKbiqtG6R8VJwLBuosM0JrG4Mm2pd8kaoKROygQNyvPHNSf4OGFO9dNFg12mPYYg1sJIrkEpBRr_toIsc0-frXijJYFpVPFNfX6mhWaKtH3q31P26fnthBr5vANOHGHtstwhn9Us_9Rmc3f3r5yrDbAc2Lunkgk-9dt37ki8bSR_N1vp_5fAMsPWbXw
CitedBy_id crossref_primary_10_1021_acs_inorgchem_4c01579
crossref_primary_10_1016_j_jallcom_2024_177546
crossref_primary_10_1002_admi_202400928
Cites_doi 10.1021/acsami.8b12846
10.1002/anie.201404164
10.1021/ja5069855
10.1021/jacs.6b04501
10.1021/acsami.6b12240
10.1002/anie.201102997
10.1038/35104620
10.1021/ja305587n
10.1021/acsami.9b01075
10.1021/ja310435e
10.1039/C9DT02269D
10.1107/S2053273314026370
10.1038/s41560-017-0018-7
10.1021/acsenergylett.7b00560
10.1002/anie.201411703
10.1039/C7TA10148A
10.1021/jacs.6b12847
10.1126/science.1109157
10.1016/j.ijhydene.2020.09.235
10.1039/C7TA04496H
10.1021/jacs.7b09163
10.1021/jacs.7b01559
10.1021/acs.inorgchem.9b00274
10.1021/acsami.9b01121
10.1039/C8CC08700H
10.1021/acs.cgd.5b01190
10.1021/cm950192a
10.1038/nmat2526
10.1021/acs.chemmater.5b00665
10.1021/cr0207123
10.1002/anie.198202082
10.1007/s10853-023-08903-8
10.1039/C5DT01667C
10.1021/cm0310519
10.1021/acs.inorgchem.2c00597
10.1038/nchem.402
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2024
Copyright_xml – notice: Copyright Royal Society of Chemistry 2024
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/d3dt04338j
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database

PubMed
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1477-9234
EndPage 8721
ExternalDocumentID 38711354
10_1039_D3DT04338J
d3dt04338j
Genre Journal Article
GroupedDBID ---
-DZ
-JG
-~X
0-7
0R~
29F
4.4
53G
5GY
70~
7~J
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFVBQ
AGEGJ
AGKEF
AGRSR
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CS3
D0L
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3G
J3H
J3I
M4U
O9-
R7B
R7C
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UCJ
UPT
VH6
VQA
WH7
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
R56
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c337t-5df0897e31eb081901471a72198aafe01521e5b38ef711dabc06aa51b296027b3
ISSN 1477-9226
1477-9234
IngestDate Fri Jul 11 12:24:29 EDT 2025
Sun Jun 29 16:46:50 EDT 2025
Thu Apr 03 06:59:33 EDT 2025
Tue Jul 01 04:27:38 EDT 2025
Thu Apr 24 23:05:43 EDT 2025
Tue Dec 17 20:58:33 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c337t-5df0897e31eb081901471a72198aafe01521e5b38ef711dabc06aa51b296027b3
Notes Electronic supplementary information (ESI) available. CCDC
https://doi.org/10.1039/d3dt04338j
For ESI and crystallographic data in CIF or other electronic format see DOI
2321488
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8619-8614
0000-0002-0983-6280
0000-0003-3383-9112
PMID 38711354
PQID 3057036881
PQPubID 2047498
PageCount 6
ParticipantIDs proquest_journals_3057036881
pubmed_primary_38711354
proquest_miscellaneous_3051937993
rsc_primary_d3dt04338j
crossref_primary_10_1039_D3DT04338J
crossref_citationtrail_10_1039_D3DT04338J
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-21
PublicationDateYYYYMMDD 2024-05-21
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-21
  day: 21
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Dalton transactions : an international journal of inorganic chemistry
PublicationTitleAlternate Dalton Trans
PublicationYear 2024
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Liu (D3DT04338J/cit25/1) 2015; 44
Kreuer (D3DT04338J/cit35/1) 2003; 21
Steele (D3DT04338J/cit2/1) 2001; 414
Wei (D3DT04338J/cit11/1) 2017; 139
Ponomareva (D3DT04338J/cit12/1) 2012; 134
Taylor (D3DT04338J/cit29/1) 2015; 27
Xing (D3DT04338J/cit30/1) 2019; 55
Dong (D3DT04338J/cit16/1) 2018; 10
Sheldrick (D3DT04338J/cit32/1) 2015; 71
Jacobson (D3DT04338J/cit1/1) 2005; 308
Hurd (D3DT04338J/cit5/1) 2009; 1
Tang (D3DT04338J/cit13/1) 2014; 136
Xie (D3DT04338J/cit27/1) 2019; 58
Taylor (D3DT04338J/cit22/1) 2013; 135
Umeyama (D3DT04338J/cit19/1) 2011; 50
Hao (D3DT04338J/cit15/1) 2022; 61
Yang (D3DT04338J/cit7/1) 2017; 2
Li (D3DT04338J/cit4/1) 2003; 15
Nguyen (D3DT04338J/cit23/1) 2018; 6
Zhang (D3DT04338J/cit6/1) 2017; 139
Yuan (D3DT04338J/cit33/1) 2016; 138
Mauritz (D3DT04338J/cit3/1) 2004; 104
Kreuer (D3DT04338J/cit36/1) 1996; 8
Luo (D3DT04338J/cit24/1) 2019; 11
Wang (D3DT04338J/cit31/1) 2019; 48
Li (D3DT04338J/cit10/1) 2017; 2
Wang (D3DT04338J/cit18/1) 2021; 46
Patel (D3DT04338J/cit14/1) 2016; 8
Bureekaew (D3DT04338J/cit21/1) 2009; 8
Ye (D3DT04338J/cit26/1) 2017; 139
Li (D3DT04338J/cit17/1) 2023; 58
Yang (D3DT04338J/cit28/1) 2015; 15
Mukhopadhyay (D3DT04338J/cit9/1) 2019; 11
Phang (D3DT04338J/cit20/1) 2014; 53
Rapti (D3DT04338J/cit34/1) 2017; 5
Phang (D3DT04338J/cit8/1) 2015; 54
References_xml – volume: 10
  start-page: 38209
  year: 2018
  ident: D3DT04338J/cit16/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b12846
– volume: 53
  start-page: 8383
  year: 2014
  ident: D3DT04338J/cit20/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201404164
– volume: 136
  start-page: 12444
  year: 2014
  ident: D3DT04338J/cit13/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5069855
– volume: 138
  start-page: 8912
  year: 2016
  ident: D3DT04338J/cit33/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b04501
– volume: 8
  start-page: 30687
  year: 2016
  ident: D3DT04338J/cit14/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b12240
– volume: 50
  start-page: 11706
  year: 2011
  ident: D3DT04338J/cit19/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201102997
– volume: 414
  start-page: 345
  year: 2001
  ident: D3DT04338J/cit2/1
  publication-title: Nature
  doi: 10.1038/35104620
– volume: 134
  start-page: 15640
  year: 2012
  ident: D3DT04338J/cit12/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja305587n
– volume: 11
  start-page: 9164
  year: 2019
  ident: D3DT04338J/cit24/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b01075
– volume: 135
  start-page: 1193
  year: 2013
  ident: D3DT04338J/cit22/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja310435e
– volume: 48
  start-page: 9930
  year: 2019
  ident: D3DT04338J/cit31/1
  publication-title: Dalton Trans.
  doi: 10.1039/C9DT02269D
– volume: 71
  start-page: 3
  year: 2015
  ident: D3DT04338J/cit32/1
  publication-title: Acta Crystallogr., Sect. A: Found. Adv.
  doi: 10.1107/S2053273314026370
– volume: 2
  start-page: 877
  year: 2017
  ident: D3DT04338J/cit7/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-017-0018-7
– volume: 2
  start-page: 2313
  year: 2017
  ident: D3DT04338J/cit10/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00560
– volume: 54
  start-page: 5142
  year: 2015
  ident: D3DT04338J/cit8/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201411703
– volume: 6
  start-page: 1816
  year: 2018
  ident: D3DT04338J/cit23/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA10148A
– volume: 139
  start-page: 3505
  year: 2017
  ident: D3DT04338J/cit11/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b12847
– volume: 308
  start-page: 1901
  year: 2005
  ident: D3DT04338J/cit1/1
  publication-title: Science
  doi: 10.1126/science.1109157
– volume: 46
  start-page: 1163
  year: 2021
  ident: D3DT04338J/cit18/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.09.235
– volume: 5
  start-page: 14707
  year: 2017
  ident: D3DT04338J/cit34/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA04496H
– volume: 139
  start-page: 15604
  year: 2017
  ident: D3DT04338J/cit26/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b09163
– volume: 139
  start-page: 6183
  year: 2017
  ident: D3DT04338J/cit6/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b01559
– volume: 58
  start-page: 5173
  year: 2019
  ident: D3DT04338J/cit27/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.9b00274
– volume: 11
  start-page: 13423
  year: 2019
  ident: D3DT04338J/cit9/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b01121
– volume: 55
  start-page: 1241
  year: 2019
  ident: D3DT04338J/cit30/1
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC08700H
– volume: 15
  start-page: 5827
  year: 2015
  ident: D3DT04338J/cit28/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.5b01190
– volume: 8
  start-page: 610
  year: 1996
  ident: D3DT04338J/cit36/1
  publication-title: Chem. Mater.
  doi: 10.1021/cm950192a
– volume: 8
  start-page: 831
  year: 2009
  ident: D3DT04338J/cit21/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2526
– volume: 27
  start-page: 2286
  year: 2015
  ident: D3DT04338J/cit29/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b00665
– volume: 104
  start-page: 4535
  year: 2004
  ident: D3DT04338J/cit3/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr0207123
– volume: 21
  start-page: 208
  year: 2003
  ident: D3DT04338J/cit35/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.198202082
– volume: 58
  start-page: 14154
  year: 2023
  ident: D3DT04338J/cit17/1
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-023-08903-8
– volume: 44
  start-page: 12976
  year: 2015
  ident: D3DT04338J/cit25/1
  publication-title: Dalton Trans.
  doi: 10.1039/C5DT01667C
– volume: 15
  start-page: 4896
  year: 2003
  ident: D3DT04338J/cit4/1
  publication-title: Chem. Mater.
  doi: 10.1021/cm0310519
– volume: 61
  start-page: 9533
  year: 2022
  ident: D3DT04338J/cit15/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.2c00597
– volume: 1
  start-page: 705
  year: 2009
  ident: D3DT04338J/cit5/1
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.402
SSID ssj0022052
Score 2.4605386
Snippet Immobilization of imidazole molecules as proton carriers into MOFs to facilitate proton conduction is a general strategy for developing high proton conductive...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8716
SubjectTerms Gadolinium
Imidazole
Metal-organic frameworks
Proton conduction
Zirconium
Title Synthesis and proton-conductive behaviour of two MOFs with covalently bonded imidazoles in the channels
URI https://www.ncbi.nlm.nih.gov/pubmed/38711354
https://www.proquest.com/docview/3057036881
https://www.proquest.com/docview/3051937993
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbK9gAviNsgMJARvKAqkMS5Pk5rqzG1GxKpVJ4iJ05G0UjQmgptf40_xzl2YrfqhICXqHLcxPL5Yn_n4nMIeStY5IvYqewyFqHt-wmzeVWGdgHcwQ_hBqtQUZydhSdz_3QRLAaDXxtRS-s2f1_c3Hqu5H-kCm0gVzwl-w-S1Q-FBvgN8oUrSBiufyXjz9c18DdMKaKO-zdYDxgUXMzhKqPS1Rn8tfQEtD-b4ex8suqjzWEgsOFcXg_zBq3gw-X3peA3mN-pj33EQ8G1SresCeyIYxlqrCzRlxlfSasCr2XmCWNc3EpJoWpHFfDErryc8SDV9qdSrTfHX82xtJnktF_WBnZNfWEvlh3V1f3wP9AsXSxo-t40Yng--t89Y8RQppI-TlXGoWwORy3NPjqbPa9LnL3Z1plDu_VcJR_ucOs5G6szKodbO70aws4u4jBMwiqYaDG9W_zN7JV9fMDZeTaZT6dZOl6kd8i-BzoK7Ar7R-P041Tr-54jCz7pgffZcVnywTx7mw_tKDlAea76UjSS8qQPyP1OV6FHCngPyaCsH5G7etIekwsNQAoApDsApBqAtKkoAJAiACkCkBoAUgVAagBIlzWF59IegE_IfDJOj0_srnKHXTAWtXYgKidOopK5Za44J3AgDnOUxByWAgdJYxnkLC6ryHUFzwsn5Dxwcw8Uai_K2QHZq5u6fEYoc1kcxtz3BTB3IM9coKuaY3WlIPYSYZF3_fxlRZfWHqurXGYyvIIl2YiNUjnXpxZ5o_v-UMlcbu112Ish676VVQbbIqaqi2PXIq_1bZhu9K_xumzWsg-oQxEwfos8VeLTr2GAPZcFvkUOQJ662eDg-Z_f-oLcM9_NIdlrr9blS6DDbf6qg91v40u5qQ
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+and+proton-conductive+behaviour+of+two+MOFs+with+covalently+bonded+imidazoles+in+the+channels&rft.jtitle=Dalton+transactions+%3A+an+international+journal+of+inorganic+chemistry&rft.au=Kun-Peng%2C+Chen&rft.au=Ma%2C+Yue&rft.au=Hong-Xia%2C+Ren&rft.au=Chen-Xi%2C+Zhang&rft.date=2024-05-21&rft.pub=Royal+Society+of+Chemistry&rft.issn=1477-9226&rft.eissn=1477-9234&rft.volume=53&rft.issue=20&rft.spage=8716&rft.epage=8721&rft_id=info:doi/10.1039%2Fd3dt04338j&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-9226&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-9226&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-9226&client=summon