Hybrid robust convolutional autoencoder for unsupervised anomaly detection of machine tools under noises
•A new FDD loss function to suppress the noises is designed.•Construct the PCDF module to enhance the robustness of the network.•The unsupervised anomaly detection of machine tools under noises.•The proposed HRCAE performs effective in the CNC machine tool. Anomaly detection of machine tools plays a...
Saved in:
Published in | Robotics and computer-integrated manufacturing Vol. 79; p. 102441 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A new FDD loss function to suppress the noises is designed.•Construct the PCDF module to enhance the robustness of the network.•The unsupervised anomaly detection of machine tools under noises.•The proposed HRCAE performs effective in the CNC machine tool.
Anomaly detection of machine tools plays a vital role in the machinery industry to sustain efficient operation and avoid catastrophic failures. Compared to traditional machine learning and signal processing methods, deep learning has greater adaptive capability and end-to-end convenience. However, challenges still exist in recent research in anomaly detection of machine tools based on deep learning despite the marvelous endeavors so far, such as the necessity of labeled data for model training and insufficient consideration of noise effects. During machine operation, labeled data is often difficult to obtain; the collected data contains varying degrees of noise disturbances. To address the above challenges, this paper develops a hybrid robust convolutional autoencoder (HRCAE) for unsupervised anomaly detection of machine tools under noises. A parallel convolutional distribution fitting (PCDF) module is constructed, which can effectively fuse multi-sensor information and enhance network robustness by training in parallel to better fit the data distribution with unsupervised learning. A fused directional distance (FDD) loss function is designed to comprehensively consider the distance and angle differences among the data, which can effectively suppress the influence of noises and further improve the model robustness. The proposed method is validated by real computer numerical control (CNC) machine tool data, obtaining better performance of unsupervised anomaly detection under different noises compared to other popular unsupervised improved autoencoder methods.
[Display omitted] |
---|---|
AbstractList | •A new FDD loss function to suppress the noises is designed.•Construct the PCDF module to enhance the robustness of the network.•The unsupervised anomaly detection of machine tools under noises.•The proposed HRCAE performs effective in the CNC machine tool.
Anomaly detection of machine tools plays a vital role in the machinery industry to sustain efficient operation and avoid catastrophic failures. Compared to traditional machine learning and signal processing methods, deep learning has greater adaptive capability and end-to-end convenience. However, challenges still exist in recent research in anomaly detection of machine tools based on deep learning despite the marvelous endeavors so far, such as the necessity of labeled data for model training and insufficient consideration of noise effects. During machine operation, labeled data is often difficult to obtain; the collected data contains varying degrees of noise disturbances. To address the above challenges, this paper develops a hybrid robust convolutional autoencoder (HRCAE) for unsupervised anomaly detection of machine tools under noises. A parallel convolutional distribution fitting (PCDF) module is constructed, which can effectively fuse multi-sensor information and enhance network robustness by training in parallel to better fit the data distribution with unsupervised learning. A fused directional distance (FDD) loss function is designed to comprehensively consider the distance and angle differences among the data, which can effectively suppress the influence of noises and further improve the model robustness. The proposed method is validated by real computer numerical control (CNC) machine tool data, obtaining better performance of unsupervised anomaly detection under different noises compared to other popular unsupervised improved autoencoder methods.
[Display omitted] Anomaly detection of machine tools plays a vital role in the machinery industry to sustain efficient operation and avoid catastrophic failures. Compared to traditional machine learning and signal processing methods, deep learning has greater adaptive capability and end-to-end convenience. However, challenges still exist in recent research in anomaly detection of machine tools based on deep learning despite the marvelous endeavors so far, such as the necessity of labeled data for model training and insufficient consideration of noise effects. During machine operation, labeled data is often difficult to obtain; the collected data contains varying degrees of noise disturbances. To address the above challenges, this paper develops a hybrid robust convolutional autoencoder (HRCAE) for unsupervised anomaly detection of machine tools under noises. A parallel convolutional distribution fitting (PCDF) module is constructed, which can effectively fuse multi-sensor information and enhance network robustness by training in parallel to better fit the data distribution with unsupervised learning. A fused directional distance (FDD) loss function is designed to comprehensively consider the distance and angle differences among the data, which can effectively suppress the influence of noises and further improve the model robustness. The proposed method is validated by real computer numerical control (CNC) machine tool data, obtaining better performance of unsupervised anomaly detection under different noises compared to other popular unsupervised improved autoencoder methods. |
ArticleNumber | 102441 |
Author | Yan, Shen Shao, Haidong Liu, Bin Xiao, Yiming Wan, Jiafu |
Author_xml | – sequence: 1 givenname: Shen surname: Yan fullname: Yan, Shen organization: College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China – sequence: 2 givenname: Haidong orcidid: 0000-0002-8018-1774 surname: Shao fullname: Shao, Haidong email: hdshao@hnu.edu.cn organization: College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China – sequence: 3 givenname: Yiming surname: Xiao fullname: Xiao, Yiming organization: College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China – sequence: 4 givenname: Bin surname: Liu fullname: Liu, Bin organization: Department of Management Science, University of Strathclyde, Glasgow, G1 1XQ, UK – sequence: 5 givenname: Jiafu surname: Wan fullname: Wan, Jiafu organization: Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou, 510641, China |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-92934$$DView record from Swedish Publication Index |
BookMark | eNp9kMtq3DAUQEVIoZO0P9CVPqCe6GlL0E1IHykEskm7FXpcNxo80iDZU-bvKzPJpousLohzdLnnCl2mnAChT5RsKaH9zW5bfNxvGWGsPTAh6AXaUDXojkk-XKINGXjfSSXke3RV646QBkm-Qc_3J1diwCW7pc7Y53TM0zLHnOyE7TJnSD4HKHjMBS-pLgcox1ghYJvy3k4nHGAGvwo4j3hv_XNMgOecp9r41Uy58fUDejfaqcLHl3mNfn3_9nR33z08_vh5d_vQec6HuZPBCzcqPUhJiOK94xK0Y04ppoFoQbWmfZDB9lZQoVQAYOBGJ1Tfrh4Cv0afz__Wv3BYnDmUuLflZLKN5mv8fWty-WOmeTGaaS4ars64L7nWAqPxcbbrOXOxcTKUmDWw2Zk1sFkDm3PgprL_1Nddb0pfzhK0BscIxVQfW2MIsbSMJuT4lv4Pps2Zig |
CitedBy_id | crossref_primary_10_1088_1361_6501_acc3ba crossref_primary_10_1016_j_knosys_2023_110259 crossref_primary_10_3390_s24227218 crossref_primary_10_1016_j_jrras_2024_101022 crossref_primary_10_1109_OJIES_2024_3455264 crossref_primary_10_1109_TMECH_2023_3318373 crossref_primary_10_1016_j_aei_2024_102910 crossref_primary_10_1155_2023_1168991 crossref_primary_10_1016_j_engappai_2023_107464 crossref_primary_10_1088_1361_6501_acabdf crossref_primary_10_1016_j_ress_2023_109246 crossref_primary_10_1109_ACCESS_2023_3333242 crossref_primary_10_1016_j_apacoust_2023_109537 crossref_primary_10_1088_1361_6501_aca8c1 crossref_primary_10_1109_JIOT_2024_3353337 crossref_primary_10_3390_electronics12132826 crossref_primary_10_1016_j_knosys_2024_112606 crossref_primary_10_1016_j_psep_2025_106871 crossref_primary_10_1109_ACCESS_2024_3471169 crossref_primary_10_1016_j_aei_2024_102366 crossref_primary_10_1088_1361_6501_ad051b crossref_primary_10_3390_rs16132415 crossref_primary_10_1109_TIM_2024_3375958 crossref_primary_10_1155_vib_8119232 crossref_primary_10_1016_j_engappai_2023_106228 crossref_primary_10_1088_1361_6501_acf332 crossref_primary_10_3390_s23041993 crossref_primary_10_1088_1361_6501_acb377 crossref_primary_10_1109_TTE_2023_3313986 crossref_primary_10_1016_j_nucengdes_2024_113493 crossref_primary_10_1115_1_4063642 crossref_primary_10_1016_j_ymssp_2023_110427 crossref_primary_10_1109_ACCESS_2024_3509988 crossref_primary_10_1109_JSEN_2022_3224247 crossref_primary_10_1016_j_knosys_2022_110203 crossref_primary_10_3390_electronics12173632 crossref_primary_10_1016_j_engappai_2023_106597 crossref_primary_10_1016_j_knosys_2023_110744 crossref_primary_10_1016_j_knosys_2024_111579 crossref_primary_10_1016_j_jmsy_2024_08_027 crossref_primary_10_1016_j_engappai_2023_107601 crossref_primary_10_3390_app13052857 crossref_primary_10_1088_1361_6501_ad00d4 crossref_primary_10_1109_ACCESS_2024_3497755 crossref_primary_10_1016_j_rcim_2023_102577 crossref_primary_10_1016_j_eswa_2023_120696 crossref_primary_10_1088_1361_6501_acc2d9 crossref_primary_10_3390_jmse13010070 crossref_primary_10_3390_machines11010040 crossref_primary_10_1016_j_jrras_2024_100932 crossref_primary_10_1016_j_aei_2023_101900 crossref_primary_10_1016_j_measurement_2023_112769 crossref_primary_10_3233_JIFS_235903 crossref_primary_10_1109_TIM_2024_3481539 crossref_primary_10_1016_j_rcim_2023_102566 crossref_primary_10_3390_machines12050309 crossref_primary_10_1016_j_engstruct_2024_119192 crossref_primary_10_1016_j_jksuci_2023_101860 crossref_primary_10_1016_j_procs_2024_01_105 crossref_primary_10_3390_s23229212 crossref_primary_10_1016_j_rineng_2024_102015 crossref_primary_10_3390_app13053289 crossref_primary_10_1016_j_asoc_2024_112493 crossref_primary_10_1109_JSEN_2023_3255203 crossref_primary_10_1016_j_asoc_2025_112785 crossref_primary_10_1016_j_ijpe_2024_109319 crossref_primary_10_3390_info15060360 crossref_primary_10_1002_ett_4827 crossref_primary_10_1016_j_ress_2022_109037 crossref_primary_10_3390_s23052612 crossref_primary_10_1016_j_ymssp_2024_111328 crossref_primary_10_1016_j_ymssp_2023_110098 crossref_primary_10_1016_j_imavis_2023_104710 crossref_primary_10_1016_j_ress_2022_109036 crossref_primary_10_1109_TIM_2023_3250284 crossref_primary_10_1109_ACCESS_2023_3244795 crossref_primary_10_1109_ACCESS_2024_3495819 crossref_primary_10_1016_j_ress_2024_110784 crossref_primary_10_1016_j_engappai_2024_109578 crossref_primary_10_1177_14759217231199427 crossref_primary_10_1016_j_aei_2023_102139 crossref_primary_10_1109_ACCESS_2024_3360871 crossref_primary_10_1109_TIM_2022_3230480 crossref_primary_10_1016_j_cie_2025_111023 crossref_primary_10_1016_j_compag_2023_108583 crossref_primary_10_1007_s11709_024_1065_3 crossref_primary_10_1109_ACCESS_2023_3342868 crossref_primary_10_3390_machines12120891 crossref_primary_10_1007_s12206_023_1003_7 crossref_primary_10_1016_j_dsp_2024_104813 crossref_primary_10_3233_JIFS_223575 crossref_primary_10_1016_j_engappai_2023_105860 crossref_primary_10_1109_JIOT_2024_3404112 crossref_primary_10_1109_TII_2023_3275696 crossref_primary_10_1007_s12206_025_0204_7 crossref_primary_10_1016_j_dsp_2023_103940 crossref_primary_10_1109_TIM_2023_3246494 crossref_primary_10_1109_TIM_2025_3548060 crossref_primary_10_1109_JIOT_2023_3296538 crossref_primary_10_1016_j_jhazmat_2024_136536 crossref_primary_10_3390_s24020330 crossref_primary_10_1016_j_ress_2023_109319 crossref_primary_10_1109_TIM_2024_3453339 crossref_primary_10_1016_j_eswa_2023_119824 crossref_primary_10_1080_00207543_2024_2427895 crossref_primary_10_1109_TMECH_2023_3278710 crossref_primary_10_1016_j_nhres_2024_11_004 crossref_primary_10_1088_1361_6501_ad4b54 crossref_primary_10_1016_j_ress_2023_109152 crossref_primary_10_1177_14759217241291268 crossref_primary_10_3390_electronics12030491 |
Cites_doi | 10.1016/j.patrec.2018.03.010 10.1016/j.measurement.2021.109683 10.1115/1.4036350 10.1002/int.22162 10.1007/s00170-015-7530-3 10.3390/s20216113 10.1016/j.jmatprotec.2020.116901 10.1016/j.rinp.2018.08.023 10.1016/j.asoc.2021.107751 10.1007/s11465-022-0673-7 10.1109/ACCESS.2021.3058809 10.1016/j.rcim.2016.11.008 10.1007/s10845-019-01488-7 10.1016/j.jmsy.2021.12.002 10.1016/j.rcim.2022.102391 10.3390/s20174896 10.1016/j.neucom.2017.12.014 10.1007/s00170-017-0300-7 10.1016/j.jmsy.2018.02.001 10.1109/TII.2018.2881543 10.3390/s17020273 10.1007/s13735-021-00206-5 10.1016/j.measurement.2016.04.007 10.1016/j.eng.2019.03.012 10.1016/j.rcim.2016.05.010 10.1007/s00170-017-0404-0 10.1145/3434767 10.1016/j.eng.2019.04.011 10.1016/j.patcog.2017.08.029 10.1016/j.rcim.2019.101842 10.1109/TIM.2021.3096283 10.1016/j.rcim.2019.101924 10.1109/TMECH.2022.3177174 10.1016/j.aei.2022.101648 10.1155/2019/9543490 10.1007/s00170-020-05931-5 10.1007/s11465-018-0472-3 10.1109/TII.2019.2949355 10.1109/TIM.2021.3123218 10.1016/j.aei.2022.101564 10.1016/j.ymssp.2021.107738 10.1109/TETCI.2021.3115666 10.1016/j.jmsy.2022.04.001 10.1109/TII.2020.2966326 |
ContentType | Journal Article |
Copyright | 2022 |
Copyright_xml | – notice: 2022 |
DBID | AAYXX CITATION ADTPV AOWAS |
DOI | 10.1016/j.rcim.2022.102441 |
DatabaseName | CrossRef SwePub SwePub Articles |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1879-2537 |
ExternalDocumentID | oai_DiVA_org_ltu_92934 10_1016_j_rcim_2022_102441 S0736584522001259 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFSI ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 E.L EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PZZ Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K UHS WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH ADTPV AOWAS EFKBS |
ID | FETCH-LOGICAL-c337t-5dc4bf8975500836b35e9b2b8829e09419916d5da6a41488dee2ebfb4862447d3 |
IEDL.DBID | .~1 |
ISSN | 0736-5845 1879-2537 |
IngestDate | Thu Aug 21 06:45:45 EDT 2025 Thu Apr 24 23:12:37 EDT 2025 Tue Jul 01 02:40:47 EDT 2025 Fri Feb 23 02:37:47 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Machine tools Unsupervised anomaly detection Noises Hybrid robust convolutional autoencoder |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c337t-5dc4bf8975500836b35e9b2b8829e09419916d5da6a41488dee2ebfb4862447d3 |
ORCID | 0000-0002-8018-1774 |
ParticipantIDs | swepub_primary_oai_DiVA_org_ltu_92934 crossref_citationtrail_10_1016_j_rcim_2022_102441 crossref_primary_10_1016_j_rcim_2022_102441 elsevier_sciencedirect_doi_10_1016_j_rcim_2022_102441 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Robotics and computer-integrated manufacturing |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Zhu, Li, Wu (bib0037) 2021; 15 Liu, Han, Hou (bib0040) 2018; 282 Zhou, Guo, Sun (bib0008) 2021; 157 Deebak, Al-Turjman (bib0023) 2021 Thill, Konen, Wang (bib0032) 2021; 112 Li, Shi, Tang (bib0009) 2021; 288 Ou, Li, Huang (bib0024) 2021; 70 Wu, Wang, Gao (bib0042) 2018; 73 Sun, Ma, Zhao (bib0021) 2018; 15 Wen, Wang, Li (bib0052) 2022; 17 Li, Lim, Zhou (bib0048) 2009; 1 Li, Fu, Chen (bib0007) 2020; 20 Guo, Li, Zhang (bib0015) 2020; 110 Xiao, Shao, Han (bib0051) 2022 Cheng, Jiao, Yan (bib0022) 2022; 26 Yu, Zhou (bib0038) 2020; 16 Vincent, Larochelle, Bengio (bib0054) 2008 Zhao, Yan, Wang (bib0049) 2017; 17 Jiang, Ren, Zhang (bib0036) 2021; 19 Li, Zhang, Gao (bib0029) 2021; 6 Kong, Chen, Li (bib0014) 2017; 92 Babouri, Ouelaa, Djebala (bib0010) 2016; 82 Shi, Luo, He (bib0025) 2019; 16 Liu, Liu, Wang (bib0044) 2019; 34 Sheikh Fathollahi, Razzazi (bib0046) 2021; 10 Sun, Shao, Zhao (bib0053) 2016; 89 Wang (bib0004) 2019; 5 Yang, Pattipati, Awasthi (bib0028) 2022; 63 Wang, Xie, Zhao (bib0050) 2017; 45 Ratava, Lohtander, Varis (bib0006) 2017; 47 Liu, Zheng, Xu (bib0005) 2021 Szegedy, Liu, Jia (bib0039) 2015 Yuan, Liu, Yang (bib0012) 2020; 20 Huang, Zhu, Lei (bib0020) 2020; 31 Gong, Liu, Le (bib0031) 2019 Ruderman, Rabinowitz, Morcos (bib0041) 2018 Sun, Zhang, Mo (bib0027) 2020; 64 Zong, Song, Min (bib0030) 2018 Cai, Zhou, Yan (bib0045) 2019 Liu, Vengayil, Zhong (bib0001) 2018; 48 Niaki, Feng, Ulutan (bib0011) 2016; 9 Kingma, Ba (bib0047) 2014 Xu (bib0003) 2017; 92 Yu, Cheng, Lu (bib0013) 2021; 182 Wang, Zhang (bib0026) 2021; 70 Lyu, Zhang, Yu (bib0034) 2022; 52 Sethi, Singh, Singh (bib0043) 2019; 119 Fang, Jia, Chen (bib0035) 2018; 11 Wu, Jennings, Terpenny (bib0016) 2017; 139 Liang, Wang, Li (bib0019) 2019; 5 Liu, Kong, Niu (bib0002) 2020; 61 Duan, Hu, Zhan (bib0017) 2022; 78 Chen, Wang, Qiao (bib0018) 2018; 13 Li, Guo, Wang (bib0033) 2021; 9 Yan, Shao, Xiao (bib0055) 2022; 53 Xu (10.1016/j.rcim.2022.102441_bib0003) 2017; 92 Li (10.1016/j.rcim.2022.102441_bib0009) 2021; 288 Zhu (10.1016/j.rcim.2022.102441_bib0037) 2021; 15 Wu (10.1016/j.rcim.2022.102441_bib0042) 2018; 73 Wang (10.1016/j.rcim.2022.102441_bib0004) 2019; 5 Ou (10.1016/j.rcim.2022.102441_bib0024) 2021; 70 Li (10.1016/j.rcim.2022.102441_bib0029) 2021; 6 Kong (10.1016/j.rcim.2022.102441_bib0014) 2017; 92 Sun (10.1016/j.rcim.2022.102441_bib0053) 2016; 89 Xiao (10.1016/j.rcim.2022.102441_bib0051) 2022 Yan (10.1016/j.rcim.2022.102441_bib0055) 2022; 53 Duan (10.1016/j.rcim.2022.102441_bib0017) 2022; 78 Liu (10.1016/j.rcim.2022.102441_bib0005) 2021 Cai (10.1016/j.rcim.2022.102441_bib0045) 2019 Liu (10.1016/j.rcim.2022.102441_bib0044) 2019; 34 Zong (10.1016/j.rcim.2022.102441_bib0030) 2018 Deebak (10.1016/j.rcim.2022.102441_bib0023) 2021 Yang (10.1016/j.rcim.2022.102441_bib0028) 2022; 63 Cheng (10.1016/j.rcim.2022.102441_bib0022) 2022; 26 Szegedy (10.1016/j.rcim.2022.102441_bib0039) 2015 Ruderman (10.1016/j.rcim.2022.102441_bib0041) 2018 Guo (10.1016/j.rcim.2022.102441_bib0015) 2020; 110 Zhou (10.1016/j.rcim.2022.102441_bib0008) 2021; 157 Sheikh Fathollahi (10.1016/j.rcim.2022.102441_bib0046) 2021; 10 Liu (10.1016/j.rcim.2022.102441_bib0001) 2018; 48 Vincent (10.1016/j.rcim.2022.102441_bib0054) 2008 Kingma (10.1016/j.rcim.2022.102441_bib0047) 2014 Zhao (10.1016/j.rcim.2022.102441_bib0049) 2017; 17 Ratava (10.1016/j.rcim.2022.102441_bib0006) 2017; 47 Yu (10.1016/j.rcim.2022.102441_bib0038) 2020; 16 Liang (10.1016/j.rcim.2022.102441_bib0019) 2019; 5 Gong (10.1016/j.rcim.2022.102441_bib0031) 2019 Chen (10.1016/j.rcim.2022.102441_bib0018) 2018; 13 Sethi (10.1016/j.rcim.2022.102441_bib0043) 2019; 119 Wu (10.1016/j.rcim.2022.102441_bib0016) 2017; 139 Sun (10.1016/j.rcim.2022.102441_bib0021) 2018; 15 Yuan (10.1016/j.rcim.2022.102441_bib0012) 2020; 20 Niaki (10.1016/j.rcim.2022.102441_bib0011) 2016; 9 Li (10.1016/j.rcim.2022.102441_bib0048) 2009; 1 Liu (10.1016/j.rcim.2022.102441_bib0002) 2020; 61 Thill (10.1016/j.rcim.2022.102441_bib0032) 2021; 112 Lyu (10.1016/j.rcim.2022.102441_bib0034) 2022; 52 Li (10.1016/j.rcim.2022.102441_bib0007) 2020; 20 Fang (10.1016/j.rcim.2022.102441_bib0035) 2018; 11 Sun (10.1016/j.rcim.2022.102441_bib0027) 2020; 64 Yu (10.1016/j.rcim.2022.102441_bib0013) 2021; 182 Huang (10.1016/j.rcim.2022.102441_bib0020) 2020; 31 Wang (10.1016/j.rcim.2022.102441_bib0026) 2021; 70 Jiang (10.1016/j.rcim.2022.102441_bib0036) 2021; 19 Babouri (10.1016/j.rcim.2022.102441_bib0010) 2016; 82 Liu (10.1016/j.rcim.2022.102441_bib0040) 2018; 282 Wang (10.1016/j.rcim.2022.102441_bib0050) 2017; 45 Wen (10.1016/j.rcim.2022.102441_bib0052) 2022; 17 Shi (10.1016/j.rcim.2022.102441_bib0025) 2019; 16 Li (10.1016/j.rcim.2022.102441_bib0033) 2021; 9 |
References_xml | – volume: 9 start-page: 97 year: 2016 end-page: 121 ident: bib0011 article-title: A wavelet-based data-driven modelling for tool wear assessment of difficult to machine materials publication-title: Int. J. Mechatron. Manuf. Syst. – volume: 20 start-page: 6113 year: 2020 ident: bib0012 article-title: Tool wear condition monitoring by combining variational mode decomposition and ensemble learning publication-title: Sensors – volume: 78 year: 2022 ident: bib0017 article-title: MS-SSPCANet: A powerful deep learning framework for tool wear prediction publication-title: Rob. Comput. Integr. Manuf. – volume: 16 start-page: 5150 year: 2019 end-page: 5159 ident: bib0025 article-title: Tool wear prediction via multidimensional stacked sparse autoencoders with feature fusion publication-title: IEEE Trans. Ind. Inf. – volume: 182 year: 2021 ident: bib0013 article-title: A machine vision method for measurement of machining tool wear publication-title: Measurement – volume: 110 start-page: 1445 year: 2020 end-page: 1456 ident: bib0015 article-title: Tool condition monitoring in milling process using multifractal detrended fluctuation analysis and support vector machine publication-title: Int. J. Adv. Manuf. Technol. – volume: 16 start-page: 6347 year: 2020 end-page: 6358 ident: bib0038 article-title: One-dimensional residual convolutional autoencoder based feature learning for gearbox fault diagnosis publication-title: IEEE Trans. Ind. Inf. – year: 2021 ident: bib0023 article-title: Digital-twin assisted: fault diagnosis using deep transfer learning for machining tool condition publication-title: Int. J. Intell. Syst. – volume: 9 start-page: 29356 year: 2021 end-page: 29365 ident: bib0033 article-title: Unsupervised fake news detection based on autoencoder publication-title: IEEE Access – volume: 17 start-page: 1 year: 2022 end-page: 12 ident: bib0052 article-title: A new automatic convolutional neural network based on deep reinforcement learning for fault diagnosis publication-title: Front. Mech. Eng. – volume: 70 start-page: 1 year: 2021 end-page: 9 ident: bib0024 article-title: Tool wear recognition based on deep kernel autoencoder with multichannel signals fusion publication-title: IEEE Trans. Instrum. Meas. – start-page: 1705 year: 2019 end-page: 1714 ident: bib0031 article-title: Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision – year: 2019 ident: bib0045 article-title: A stacked BiLSTM neural network based on coattention mechanism for question answering publication-title: Comput. Intell. Neurosci. – volume: 53 year: 2022 ident: bib0055 article-title: Semi-supervised fault diagnosis of machinery using LPS-DGAT under speed fluctuation and extremely low labeled rates publication-title: Adv. Eng. Inf. – volume: 15 start-page: 1 year: 2021 end-page: 21 ident: bib0037 article-title: Stacked convolutional sparse auto-encoders for representation learning publication-title: ACM Trans. Knowl. Discov. Data – volume: 82 start-page: 2017 year: 2016 end-page: 2028 ident: bib0010 article-title: Experimental study of tool life transition and wear monitoring in turning operation using a hybrid method based on wavelet multi-resolution analysis and empirical mode decomposition publication-title: Int. J. Adv. Manuf. Technol. – volume: 47 start-page: 70 year: 2017 end-page: 75 ident: bib0006 article-title: Tool condition monitoring in interrupted cutting with acceleration sensors publication-title: Rob. Comput. Integr. Manuf. – volume: 64 year: 2020 ident: bib0027 article-title: In-process tool condition forecasting based on a deep learning method publication-title: Rob. Comput. Integr. Manuf. – volume: 48 start-page: 13 year: 2018 end-page: 24 ident: bib0001 article-title: A systematic development method for cyber-physical machine tools publication-title: J. Manuf. Syst. – start-page: 1 year: 2021 end-page: 33 ident: bib0005 article-title: Digitalisation and servitisation of machine tools in the era of industry 4.0: a review publication-title: Int. J. Prod. Res. – volume: 15 start-page: 2416 year: 2018 end-page: 2425 ident: bib0021 article-title: Deep transfer learning based on sparse autoencoder for remaining useful life prediction of tool in manufacturing publication-title: IEEE Trans. Ind. Inf. – year: 2018 ident: bib0041 article-title: Pooling is neither necessary nor sufficient for appropriate deformation stability in CNNs – year: 2022 ident: bib0051 article-title: Novel joint transfer network for unsupervised bearing fault diagnosis from simulation domain to experimental domain publication-title: IEEE/ASME Trans. Mechatron. – volume: 52 year: 2022 ident: bib0034 article-title: A novel RSG-based intelligent bearing fault diagnosis method for motors in high-noise industrial environment publication-title: Adv. Eng. Inf. – year: 2014 ident: bib0047 article-title: Adam: amethod for stochastic optimization – year: 2018 ident: bib0030 article-title: Deep autoencoding gaussian mixture model for unsupervised anomaly detection publication-title: International Conference on Learning Representations – volume: 63 start-page: 329 year: 2022 end-page: 343 ident: bib0028 article-title: Hybrid data-driven and model-informed online tool wear detection in milling machines publication-title: J. Manuf. Syst. – volume: 112 year: 2021 ident: bib0032 article-title: Temporal convolutional autoencoder for unsupervised anomaly detection in time series publication-title: Appl. Soft Comput. – volume: 288 year: 2021 ident: bib0009 article-title: Real-time tool wear monitoring using thin-film thermocouple publication-title: J. Mater. Process. Technol. – volume: 45 start-page: 47 year: 2017 end-page: 58 ident: bib0050 article-title: Multisensory fusion based virtual tool wear sensing for ubiquitous manufacturing publication-title: Rob. Comput. Integr. Manuf. – volume: 11 start-page: 96 year: 2018 end-page: 104 ident: bib0035 article-title: Laser stripe image denoising using convolutional autoencoder publication-title: Results Phys. – volume: 20 start-page: 4896 year: 2020 ident: bib0007 article-title: Deep anomaly detection for CNC machine cutting tool using spindle current signals publication-title: Sensors – start-page: 1096 year: 2008 end-page: 1103 ident: bib0054 article-title: Extracting and composing robust features with denoising autoencoders publication-title: Proceedings of the 25th international conference on Machine learning – volume: 61 year: 2020 ident: bib0002 article-title: A method of NC machine tools intelligent monitoring system in smart factories publication-title: Rob. Comput. Integr. Manuf. – volume: 31 start-page: 953 year: 2020 end-page: 966 ident: bib0020 article-title: Tool wear predicting based on multi-domain feature fusion by deep convolutional neural network in milling operations publication-title: J. Intell. Manuf. – volume: 119 start-page: 157 year: 2019 end-page: 165 ident: bib0043 article-title: Residual codean autoencoder for facial attribute analysis publication-title: Pattern Recognit. Lett. – volume: 157 year: 2021 ident: bib0008 article-title: Sound singularity analysis for milling tool condition monitoring towards sustainable manufacturing publication-title: Mech. Syst. Sig. Process. – volume: 34 start-page: 2807 year: 2019 end-page: 2834 ident: bib0044 article-title: Distance measure for fermatean fuzzy linguistic term sets based on linguistic scale function: an illustration of the TODIM and TOPSIS methods publication-title: Int. J. Intell. Syst. – volume: 92 start-page: 1893 year: 2017 end-page: 1900 ident: bib0003 article-title: Machine tool 4.0 for the new era of manufacturing publication-title: Int. J. Adv. Manuf. Technol. – volume: 10 start-page: 43 year: 2021 end-page: 53 ident: bib0046 article-title: Music similarity measurement and recommendation system using convolutional neural networks publication-title: Int. J. Multimedia Inf. Retr. – volume: 139 year: 2017 ident: bib0016 article-title: A comparative study on machine learning algorithms for smart manufacturing: tool wear prediction using random forests publication-title: J. Manuf. Sci. Eng. – start-page: 1 year: 2015 end-page: 9 ident: bib0039 article-title: Going deeper with convolutions publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 89 start-page: 171 year: 2016 end-page: 178 ident: bib0053 article-title: A sparse auto-encoder-based deep neural network approach for induction motor faults classification publication-title: Measurement – volume: 5 start-page: 646 year: 2019 end-page: 652 ident: bib0019 article-title: Data-driven anomaly diagnosis for machining processes publication-title: Engineering – volume: 13 start-page: 264 year: 2018 end-page: 291 ident: bib0018 article-title: Basic research on machinery fault diagnostics: past, present, and future trends publication-title: Front. Mech. Eng. – volume: 5 start-page: 615 year: 2019 end-page: 618 ident: bib0004 article-title: From intelligence science to intelligent manufacturing publication-title: Engineering – volume: 17 start-page: 273 year: 2017 ident: bib0049 article-title: Learning to monitor machine health with convolutional bi-directional LSTM networks publication-title: Sensors – volume: 73 start-page: 275 year: 2018 end-page: 288 ident: bib0042 article-title: Deep adaptive feature embedding with local sample distributions for person re-identification publication-title: Pattern Recognit. – volume: 70 start-page: 1 year: 2021 end-page: 11 ident: bib0026 article-title: A sequence-to-sequence model with attention and monotonicity loss for tool wear monitoring and prediction publication-title: IEEE Trans. Instrum. Meas. – volume: 92 start-page: 3647 year: 2017 end-page: 3657 ident: bib0014 article-title: Hidden semi-markov model-based method for tool wear estimation in milling process publication-title: Int. J. Adv. Manuf. Technol. – volume: 19 start-page: 1 year: 2021 end-page: 5 ident: bib0036 article-title: A convolutional autoencoder method for simultaneous seismic data reconstruction and denoising publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 26 start-page: 286 year: 2022 end-page: 300 ident: bib0022 article-title: Intelligent tool wear monitoring and multi-step prediction based on deep learning model publication-title: J. Manuf. Syst. – volume: 1 year: 2009 ident: bib0048 article-title: Fuzzy neural network modelling for tool wear estimation in dry milling operation publication-title: Annual Conference of the PHM Society – volume: 282 start-page: 52 year: 2018 end-page: 59 ident: bib0040 article-title: Single image super-resolution using a deep encoder–decoder symmetrical network with iterative back projection publication-title: Neurocomputing – volume: 6 start-page: 690 year: 2021 end-page: 699 ident: bib0029 article-title: A new semi-supervised fault diagnosis method via deep coral and transfer component analysis publication-title: IEEE Trans. Emerg. Top. Comput. Intell. – volume: 119 start-page: 157 year: 2019 ident: 10.1016/j.rcim.2022.102441_bib0043 article-title: Residual codean autoencoder for facial attribute analysis publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2018.03.010 – volume: 182 year: 2021 ident: 10.1016/j.rcim.2022.102441_bib0013 article-title: A machine vision method for measurement of machining tool wear publication-title: Measurement doi: 10.1016/j.measurement.2021.109683 – volume: 139 issue: 7 year: 2017 ident: 10.1016/j.rcim.2022.102441_bib0016 article-title: A comparative study on machine learning algorithms for smart manufacturing: tool wear prediction using random forests publication-title: J. Manuf. Sci. Eng. doi: 10.1115/1.4036350 – volume: 34 start-page: 2807 issue: 11 year: 2019 ident: 10.1016/j.rcim.2022.102441_bib0044 article-title: Distance measure for fermatean fuzzy linguistic term sets based on linguistic scale function: an illustration of the TODIM and TOPSIS methods publication-title: Int. J. Intell. Syst. doi: 10.1002/int.22162 – volume: 82 start-page: 2017 issue: 9 year: 2016 ident: 10.1016/j.rcim.2022.102441_bib0010 article-title: Experimental study of tool life transition and wear monitoring in turning operation using a hybrid method based on wavelet multi-resolution analysis and empirical mode decomposition publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-015-7530-3 – volume: 9 start-page: 97 issue: 2 year: 2016 ident: 10.1016/j.rcim.2022.102441_bib0011 article-title: A wavelet-based data-driven modelling for tool wear assessment of difficult to machine materials publication-title: Int. J. Mechatron. Manuf. Syst. – volume: 20 start-page: 6113 issue: 21 year: 2020 ident: 10.1016/j.rcim.2022.102441_bib0012 article-title: Tool wear condition monitoring by combining variational mode decomposition and ensemble learning publication-title: Sensors doi: 10.3390/s20216113 – volume: 288 year: 2021 ident: 10.1016/j.rcim.2022.102441_bib0009 article-title: Real-time tool wear monitoring using thin-film thermocouple publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2020.116901 – volume: 11 start-page: 96 year: 2018 ident: 10.1016/j.rcim.2022.102441_bib0035 article-title: Laser stripe image denoising using convolutional autoencoder publication-title: Results Phys. doi: 10.1016/j.rinp.2018.08.023 – volume: 112 year: 2021 ident: 10.1016/j.rcim.2022.102441_bib0032 article-title: Temporal convolutional autoencoder for unsupervised anomaly detection in time series publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107751 – volume: 17 start-page: 1 issue: 2 year: 2022 ident: 10.1016/j.rcim.2022.102441_bib0052 article-title: A new automatic convolutional neural network based on deep reinforcement learning for fault diagnosis publication-title: Front. Mech. Eng. doi: 10.1007/s11465-022-0673-7 – volume: 9 start-page: 29356 year: 2021 ident: 10.1016/j.rcim.2022.102441_bib0033 article-title: Unsupervised fake news detection based on autoencoder publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3058809 – volume: 47 start-page: 70 year: 2017 ident: 10.1016/j.rcim.2022.102441_bib0006 article-title: Tool condition monitoring in interrupted cutting with acceleration sensors publication-title: Rob. Comput. Integr. Manuf. doi: 10.1016/j.rcim.2016.11.008 – volume: 31 start-page: 953 issue: 4 year: 2020 ident: 10.1016/j.rcim.2022.102441_bib0020 article-title: Tool wear predicting based on multi-domain feature fusion by deep convolutional neural network in milling operations publication-title: J. Intell. Manuf. doi: 10.1007/s10845-019-01488-7 – year: 2018 ident: 10.1016/j.rcim.2022.102441_bib0041 – volume: 26 start-page: 286 year: 2022 ident: 10.1016/j.rcim.2022.102441_bib0022 article-title: Intelligent tool wear monitoring and multi-step prediction based on deep learning model publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2021.12.002 – volume: 78 year: 2022 ident: 10.1016/j.rcim.2022.102441_bib0017 article-title: MS-SSPCANet: A powerful deep learning framework for tool wear prediction publication-title: Rob. Comput. Integr. Manuf. doi: 10.1016/j.rcim.2022.102391 – year: 2014 ident: 10.1016/j.rcim.2022.102441_bib0047 – volume: 20 start-page: 4896 issue: 17 year: 2020 ident: 10.1016/j.rcim.2022.102441_bib0007 article-title: Deep anomaly detection for CNC machine cutting tool using spindle current signals publication-title: Sensors doi: 10.3390/s20174896 – start-page: 1 year: 2015 ident: 10.1016/j.rcim.2022.102441_bib0039 article-title: Going deeper with convolutions – year: 2018 ident: 10.1016/j.rcim.2022.102441_bib0030 article-title: Deep autoencoding gaussian mixture model for unsupervised anomaly detection – volume: 282 start-page: 52 year: 2018 ident: 10.1016/j.rcim.2022.102441_bib0040 article-title: Single image super-resolution using a deep encoder–decoder symmetrical network with iterative back projection publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.12.014 – volume: 92 start-page: 1893 issue: 5 year: 2017 ident: 10.1016/j.rcim.2022.102441_bib0003 article-title: Machine tool 4.0 for the new era of manufacturing publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-017-0300-7 – volume: 48 start-page: 13 year: 2018 ident: 10.1016/j.rcim.2022.102441_bib0001 article-title: A systematic development method for cyber-physical machine tools publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2018.02.001 – start-page: 1 year: 2021 ident: 10.1016/j.rcim.2022.102441_bib0005 article-title: Digitalisation and servitisation of machine tools in the era of industry 4.0: a review publication-title: Int. J. Prod. Res. – volume: 15 start-page: 2416 issue: 4 year: 2018 ident: 10.1016/j.rcim.2022.102441_bib0021 article-title: Deep transfer learning based on sparse autoencoder for remaining useful life prediction of tool in manufacturing publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2018.2881543 – volume: 17 start-page: 273 issue: 2 year: 2017 ident: 10.1016/j.rcim.2022.102441_bib0049 article-title: Learning to monitor machine health with convolutional bi-directional LSTM networks publication-title: Sensors doi: 10.3390/s17020273 – volume: 10 start-page: 43 issue: 1 year: 2021 ident: 10.1016/j.rcim.2022.102441_bib0046 article-title: Music similarity measurement and recommendation system using convolutional neural networks publication-title: Int. J. Multimedia Inf. Retr. doi: 10.1007/s13735-021-00206-5 – volume: 89 start-page: 171 year: 2016 ident: 10.1016/j.rcim.2022.102441_bib0053 article-title: A sparse auto-encoder-based deep neural network approach for induction motor faults classification publication-title: Measurement doi: 10.1016/j.measurement.2016.04.007 – volume: 5 start-page: 646 issue: 4 year: 2019 ident: 10.1016/j.rcim.2022.102441_bib0019 article-title: Data-driven anomaly diagnosis for machining processes publication-title: Engineering doi: 10.1016/j.eng.2019.03.012 – volume: 45 start-page: 47 year: 2017 ident: 10.1016/j.rcim.2022.102441_bib0050 article-title: Multisensory fusion based virtual tool wear sensing for ubiquitous manufacturing publication-title: Rob. Comput. Integr. Manuf. doi: 10.1016/j.rcim.2016.05.010 – volume: 92 start-page: 3647 issue: 9 year: 2017 ident: 10.1016/j.rcim.2022.102441_bib0014 article-title: Hidden semi-markov model-based method for tool wear estimation in milling process publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-017-0404-0 – volume: 1 year: 2009 ident: 10.1016/j.rcim.2022.102441_bib0048 article-title: Fuzzy neural network modelling for tool wear estimation in dry milling operation – volume: 15 start-page: 1 issue: 2 year: 2021 ident: 10.1016/j.rcim.2022.102441_bib0037 article-title: Stacked convolutional sparse auto-encoders for representation learning publication-title: ACM Trans. Knowl. Discov. Data doi: 10.1145/3434767 – volume: 5 start-page: 615 issue: 4 year: 2019 ident: 10.1016/j.rcim.2022.102441_bib0004 article-title: From intelligence science to intelligent manufacturing publication-title: Engineering doi: 10.1016/j.eng.2019.04.011 – volume: 73 start-page: 275 year: 2018 ident: 10.1016/j.rcim.2022.102441_bib0042 article-title: Deep adaptive feature embedding with local sample distributions for person re-identification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.08.029 – volume: 61 year: 2020 ident: 10.1016/j.rcim.2022.102441_bib0002 article-title: A method of NC machine tools intelligent monitoring system in smart factories publication-title: Rob. Comput. Integr. Manuf. doi: 10.1016/j.rcim.2019.101842 – volume: 70 start-page: 1 year: 2021 ident: 10.1016/j.rcim.2022.102441_bib0024 article-title: Tool wear recognition based on deep kernel autoencoder with multichannel signals fusion publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2021.3096283 – volume: 64 year: 2020 ident: 10.1016/j.rcim.2022.102441_bib0027 article-title: In-process tool condition forecasting based on a deep learning method publication-title: Rob. Comput. Integr. Manuf. doi: 10.1016/j.rcim.2019.101924 – year: 2022 ident: 10.1016/j.rcim.2022.102441_bib0051 article-title: Novel joint transfer network for unsupervised bearing fault diagnosis from simulation domain to experimental domain publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2022.3177174 – volume: 53 year: 2022 ident: 10.1016/j.rcim.2022.102441_bib0055 article-title: Semi-supervised fault diagnosis of machinery using LPS-DGAT under speed fluctuation and extremely low labeled rates publication-title: Adv. Eng. Inf. doi: 10.1016/j.aei.2022.101648 – year: 2019 ident: 10.1016/j.rcim.2022.102441_bib0045 article-title: A stacked BiLSTM neural network based on coattention mechanism for question answering publication-title: Comput. Intell. Neurosci. doi: 10.1155/2019/9543490 – volume: 110 start-page: 1445 issue: 5 year: 2020 ident: 10.1016/j.rcim.2022.102441_bib0015 article-title: Tool condition monitoring in milling process using multifractal detrended fluctuation analysis and support vector machine publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-020-05931-5 – year: 2021 ident: 10.1016/j.rcim.2022.102441_bib0023 article-title: Digital-twin assisted: fault diagnosis using deep transfer learning for machining tool condition publication-title: Int. J. Intell. Syst. – volume: 13 start-page: 264 issue: 2 year: 2018 ident: 10.1016/j.rcim.2022.102441_bib0018 article-title: Basic research on machinery fault diagnostics: past, present, and future trends publication-title: Front. Mech. Eng. doi: 10.1007/s11465-018-0472-3 – start-page: 1096 year: 2008 ident: 10.1016/j.rcim.2022.102441_bib0054 article-title: Extracting and composing robust features with denoising autoencoders – volume: 16 start-page: 5150 issue: 8 year: 2019 ident: 10.1016/j.rcim.2022.102441_bib0025 article-title: Tool wear prediction via multidimensional stacked sparse autoencoders with feature fusion publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2019.2949355 – volume: 70 start-page: 1 year: 2021 ident: 10.1016/j.rcim.2022.102441_bib0026 article-title: A sequence-to-sequence model with attention and monotonicity loss for tool wear monitoring and prediction publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2021.3123218 – volume: 19 start-page: 1 year: 2021 ident: 10.1016/j.rcim.2022.102441_bib0036 article-title: A convolutional autoencoder method for simultaneous seismic data reconstruction and denoising publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 52 year: 2022 ident: 10.1016/j.rcim.2022.102441_bib0034 article-title: A novel RSG-based intelligent bearing fault diagnosis method for motors in high-noise industrial environment publication-title: Adv. Eng. Inf. doi: 10.1016/j.aei.2022.101564 – volume: 157 year: 2021 ident: 10.1016/j.rcim.2022.102441_bib0008 article-title: Sound singularity analysis for milling tool condition monitoring towards sustainable manufacturing publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2021.107738 – start-page: 1705 year: 2019 ident: 10.1016/j.rcim.2022.102441_bib0031 article-title: Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection – volume: 6 start-page: 690 issue: 3 year: 2021 ident: 10.1016/j.rcim.2022.102441_bib0029 article-title: A new semi-supervised fault diagnosis method via deep coral and transfer component analysis publication-title: IEEE Trans. Emerg. Top. Comput. Intell. doi: 10.1109/TETCI.2021.3115666 – volume: 63 start-page: 329 year: 2022 ident: 10.1016/j.rcim.2022.102441_bib0028 article-title: Hybrid data-driven and model-informed online tool wear detection in milling machines publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2022.04.001 – volume: 16 start-page: 6347 issue: 10 year: 2020 ident: 10.1016/j.rcim.2022.102441_bib0038 article-title: One-dimensional residual convolutional autoencoder based feature learning for gearbox fault diagnosis publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2020.2966326 |
SSID | ssj0002453 |
Score | 2.6373212 |
Snippet | •A new FDD loss function to suppress the noises is designed.•Construct the PCDF module to enhance the robustness of the network.•The unsupervised anomaly... Anomaly detection of machine tools plays a vital role in the machinery industry to sustain efficient operation and avoid catastrophic failures. Compared to... |
SourceID | swepub crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 102441 |
SubjectTerms | Deep learning Drift och underhållsteknik Hybrid robust convolutional autoencoder Machine tools Noises Operation and Maintenance Unsupervised anomaly detection |
Title | Hybrid robust convolutional autoencoder for unsupervised anomaly detection of machine tools under noises |
URI | https://dx.doi.org/10.1016/j.rcim.2022.102441 https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-92934 |
Volume | 79 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQXMoBKA_xlg_tCYXVxk6yOa4W0PaFqvIQN8uOJ-2iJV7lceDCb2cmcSgcyqGnSMk4iTyTeUTffMPYp1SkcWJjzNxsbAMJmQm0MEkAGrIoAQwqhv53_LiMpzfy6110t8QmfS8MwSq97-98euut_ZmB383BYjYbXKFxUvjEBIJidkRNfFImZOWnT39hHqHsmChROCBp3zjTYbzKbEbd6GFIDAZSDv8ZnF6ziLaR52KDrfmUkY-7t_rIlqDYZOv9OAbuv85NtvqKW3CL_Zk-UjMWL51pqpoTutxbGd5LN7UjBkuL6zFr5U1RNQvyGhVYrgv3oOeP3ELd4rQK7nL-0IIugdfOzStOnWclLxzKV9vs5uL8ejIN_FiFIBMiqYPIZtLkozTB4oS4qY2IIDWhwVw7Baz2CAwV28jqWEsslkYWIASTG0m9JDKxYoctF66AXca1lnaIdW0KeYKX5CgfWhELO4pB6iwSe2zY76fKPOc4jb6Yqx5cdq9IB4p0oDod7LGTlzWLjnHjXemoV5N6YzcKQ8K76z53On15BvFsn81ux8qVv9W8bhQmjkLu_-f9D9gHGkzf4bsP2XJdNnCE6Uttjlv7PGYr48mv7z_p-OXb9PIZZSPykA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9RAEB6FUEAKAgGU8NyCVMiczru2zwVFRBJdyKMhQemWXe-YXHSxT34IXcOf4g8yY69DKEiBlNb78GpmPA_rm28B3qUyjRMXU-bmYhcozGxgpE0CNJhFCVJQsfy_4_gknp6pz-fR-Qr8GnphGFbpfX_v0ztv7Z-MvDRHi9ls9IWMk8MnJRAcs6PUIysPcfmD6rb648EuKXk7DPf3Tj9NA3-1QJBJmTRB5DJl80maUILO_MxWRpja0FK-mSJVPAwIil3kTGwUFQwThxiiza3ifgqVOEn73oP7itwFX5vw4ecfXEmoeupLOl3Ax_OdOj2orMpm3P4ehkyZoNT4n9HwJm1pF-r2H8Mjn6OKnV4MT2AFiw1YH-5_EN4dbMDaDTLDp3AxXXL3l6hK29aNYDi7N2vay7RNyZSZjtZTmizaom4X7KZqdMIU5ZWZL4XDpgOGFaLMxVWH8kTRlOW8FtzqVomipPn1Mzi7E2E_h9WiLHAThDHKjamQTjFPaEhN8rGTsXSTGJXJIrkF40GeOvMk53zXxlwPaLZLzTrQrAPd62AL3l-vWfQUH7fOjgY16b8MVVMMunXddq_T63cwsffu7OuOLqvvet60mjJVqV785_5v4cH09PhIHx2cHL6EhzQie3D5K1htqhZfU-7U2DedrQr4dtcfx2-O5yuQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+robust+convolutional+autoencoder+for+unsupervised+anomaly+detection+of+machine+tools+under+noises&rft.jtitle=Robotics+and+computer-integrated+manufacturing&rft.au=Yan%2C+Shen&rft.au=Shao%2C+Haidong&rft.au=Xiao%2C+Yiming&rft.au=Liu%2C+Bin&rft.date=2023-02-01&rft.pub=Elsevier+Ltd&rft.issn=0736-5845&rft.eissn=1879-2537&rft.volume=79&rft_id=info:doi/10.1016%2Fj.rcim.2022.102441&rft.externalDocID=S0736584522001259 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0736-5845&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0736-5845&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0736-5845&client=summon |