Hybrid robust convolutional autoencoder for unsupervised anomaly detection of machine tools under noises

•A new FDD loss function to suppress the noises is designed.•Construct the PCDF module to enhance the robustness of the network.•The unsupervised anomaly detection of machine tools under noises.•The proposed HRCAE performs effective in the CNC machine tool. Anomaly detection of machine tools plays a...

Full description

Saved in:
Bibliographic Details
Published inRobotics and computer-integrated manufacturing Vol. 79; p. 102441
Main Authors Yan, Shen, Shao, Haidong, Xiao, Yiming, Liu, Bin, Wan, Jiafu
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A new FDD loss function to suppress the noises is designed.•Construct the PCDF module to enhance the robustness of the network.•The unsupervised anomaly detection of machine tools under noises.•The proposed HRCAE performs effective in the CNC machine tool. Anomaly detection of machine tools plays a vital role in the machinery industry to sustain efficient operation and avoid catastrophic failures. Compared to traditional machine learning and signal processing methods, deep learning has greater adaptive capability and end-to-end convenience. However, challenges still exist in recent research in anomaly detection of machine tools based on deep learning despite the marvelous endeavors so far, such as the necessity of labeled data for model training and insufficient consideration of noise effects. During machine operation, labeled data is often difficult to obtain; the collected data contains varying degrees of noise disturbances. To address the above challenges, this paper develops a hybrid robust convolutional autoencoder (HRCAE) for unsupervised anomaly detection of machine tools under noises. A parallel convolutional distribution fitting (PCDF) module is constructed, which can effectively fuse multi-sensor information and enhance network robustness by training in parallel to better fit the data distribution with unsupervised learning. A fused directional distance (FDD) loss function is designed to comprehensively consider the distance and angle differences among the data, which can effectively suppress the influence of noises and further improve the model robustness. The proposed method is validated by real computer numerical control (CNC) machine tool data, obtaining better performance of unsupervised anomaly detection under different noises compared to other popular unsupervised improved autoencoder methods. [Display omitted]
AbstractList •A new FDD loss function to suppress the noises is designed.•Construct the PCDF module to enhance the robustness of the network.•The unsupervised anomaly detection of machine tools under noises.•The proposed HRCAE performs effective in the CNC machine tool. Anomaly detection of machine tools plays a vital role in the machinery industry to sustain efficient operation and avoid catastrophic failures. Compared to traditional machine learning and signal processing methods, deep learning has greater adaptive capability and end-to-end convenience. However, challenges still exist in recent research in anomaly detection of machine tools based on deep learning despite the marvelous endeavors so far, such as the necessity of labeled data for model training and insufficient consideration of noise effects. During machine operation, labeled data is often difficult to obtain; the collected data contains varying degrees of noise disturbances. To address the above challenges, this paper develops a hybrid robust convolutional autoencoder (HRCAE) for unsupervised anomaly detection of machine tools under noises. A parallel convolutional distribution fitting (PCDF) module is constructed, which can effectively fuse multi-sensor information and enhance network robustness by training in parallel to better fit the data distribution with unsupervised learning. A fused directional distance (FDD) loss function is designed to comprehensively consider the distance and angle differences among the data, which can effectively suppress the influence of noises and further improve the model robustness. The proposed method is validated by real computer numerical control (CNC) machine tool data, obtaining better performance of unsupervised anomaly detection under different noises compared to other popular unsupervised improved autoencoder methods. [Display omitted]
Anomaly detection of machine tools plays a vital role in the machinery industry to sustain efficient operation and avoid catastrophic failures. Compared to traditional machine learning and signal processing methods, deep learning has greater adaptive capability and end-to-end convenience. However, challenges still exist in recent research in anomaly detection of machine tools based on deep learning despite the marvelous endeavors so far, such as the necessity of labeled data for model training and insufficient consideration of noise effects. During machine operation, labeled data is often difficult to obtain; the collected data contains varying degrees of noise disturbances. To address the above challenges, this paper develops a hybrid robust convolutional autoencoder (HRCAE) for unsupervised anomaly detection of machine tools under noises. A parallel convolutional distribution fitting (PCDF) module is constructed, which can effectively fuse multi-sensor information and enhance network robustness by training in parallel to better fit the data distribution with unsupervised learning. A fused directional distance (FDD) loss function is designed to comprehensively consider the distance and angle differences among the data, which can effectively suppress the influence of noises and further improve the model robustness. The proposed method is validated by real computer numerical control (CNC) machine tool data, obtaining better performance of unsupervised anomaly detection under different noises compared to other popular unsupervised improved autoencoder methods.
ArticleNumber 102441
Author Yan, Shen
Shao, Haidong
Liu, Bin
Xiao, Yiming
Wan, Jiafu
Author_xml – sequence: 1
  givenname: Shen
  surname: Yan
  fullname: Yan, Shen
  organization: College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
– sequence: 2
  givenname: Haidong
  orcidid: 0000-0002-8018-1774
  surname: Shao
  fullname: Shao, Haidong
  email: hdshao@hnu.edu.cn
  organization: College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
– sequence: 3
  givenname: Yiming
  surname: Xiao
  fullname: Xiao, Yiming
  organization: College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
– sequence: 4
  givenname: Bin
  surname: Liu
  fullname: Liu, Bin
  organization: Department of Management Science, University of Strathclyde, Glasgow, G1 1XQ, UK
– sequence: 5
  givenname: Jiafu
  surname: Wan
  fullname: Wan, Jiafu
  organization: Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou, 510641, China
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-92934$$DView record from Swedish Publication Index
BookMark eNp9kMtq3DAUQEVIoZO0P9CVPqCe6GlL0E1IHykEskm7FXpcNxo80iDZU-bvKzPJpousLohzdLnnCl2mnAChT5RsKaH9zW5bfNxvGWGsPTAh6AXaUDXojkk-XKINGXjfSSXke3RV646QBkm-Qc_3J1diwCW7pc7Y53TM0zLHnOyE7TJnSD4HKHjMBS-pLgcox1ghYJvy3k4nHGAGvwo4j3hv_XNMgOecp9r41Uy58fUDejfaqcLHl3mNfn3_9nR33z08_vh5d_vQec6HuZPBCzcqPUhJiOK94xK0Y04ppoFoQbWmfZDB9lZQoVQAYOBGJ1Tfrh4Cv0afz__Wv3BYnDmUuLflZLKN5mv8fWty-WOmeTGaaS4ars64L7nWAqPxcbbrOXOxcTKUmDWw2Zk1sFkDm3PgprL_1Nddb0pfzhK0BscIxVQfW2MIsbSMJuT4lv4Pps2Zig
CitedBy_id crossref_primary_10_1088_1361_6501_acc3ba
crossref_primary_10_1016_j_knosys_2023_110259
crossref_primary_10_3390_s24227218
crossref_primary_10_1016_j_jrras_2024_101022
crossref_primary_10_1109_OJIES_2024_3455264
crossref_primary_10_1109_TMECH_2023_3318373
crossref_primary_10_1016_j_aei_2024_102910
crossref_primary_10_1155_2023_1168991
crossref_primary_10_1016_j_engappai_2023_107464
crossref_primary_10_1088_1361_6501_acabdf
crossref_primary_10_1016_j_ress_2023_109246
crossref_primary_10_1109_ACCESS_2023_3333242
crossref_primary_10_1016_j_apacoust_2023_109537
crossref_primary_10_1088_1361_6501_aca8c1
crossref_primary_10_1109_JIOT_2024_3353337
crossref_primary_10_3390_electronics12132826
crossref_primary_10_1016_j_knosys_2024_112606
crossref_primary_10_1016_j_psep_2025_106871
crossref_primary_10_1109_ACCESS_2024_3471169
crossref_primary_10_1016_j_aei_2024_102366
crossref_primary_10_1088_1361_6501_ad051b
crossref_primary_10_3390_rs16132415
crossref_primary_10_1109_TIM_2024_3375958
crossref_primary_10_1155_vib_8119232
crossref_primary_10_1016_j_engappai_2023_106228
crossref_primary_10_1088_1361_6501_acf332
crossref_primary_10_3390_s23041993
crossref_primary_10_1088_1361_6501_acb377
crossref_primary_10_1109_TTE_2023_3313986
crossref_primary_10_1016_j_nucengdes_2024_113493
crossref_primary_10_1115_1_4063642
crossref_primary_10_1016_j_ymssp_2023_110427
crossref_primary_10_1109_ACCESS_2024_3509988
crossref_primary_10_1109_JSEN_2022_3224247
crossref_primary_10_1016_j_knosys_2022_110203
crossref_primary_10_3390_electronics12173632
crossref_primary_10_1016_j_engappai_2023_106597
crossref_primary_10_1016_j_knosys_2023_110744
crossref_primary_10_1016_j_knosys_2024_111579
crossref_primary_10_1016_j_jmsy_2024_08_027
crossref_primary_10_1016_j_engappai_2023_107601
crossref_primary_10_3390_app13052857
crossref_primary_10_1088_1361_6501_ad00d4
crossref_primary_10_1109_ACCESS_2024_3497755
crossref_primary_10_1016_j_rcim_2023_102577
crossref_primary_10_1016_j_eswa_2023_120696
crossref_primary_10_1088_1361_6501_acc2d9
crossref_primary_10_3390_jmse13010070
crossref_primary_10_3390_machines11010040
crossref_primary_10_1016_j_jrras_2024_100932
crossref_primary_10_1016_j_aei_2023_101900
crossref_primary_10_1016_j_measurement_2023_112769
crossref_primary_10_3233_JIFS_235903
crossref_primary_10_1109_TIM_2024_3481539
crossref_primary_10_1016_j_rcim_2023_102566
crossref_primary_10_3390_machines12050309
crossref_primary_10_1016_j_engstruct_2024_119192
crossref_primary_10_1016_j_jksuci_2023_101860
crossref_primary_10_1016_j_procs_2024_01_105
crossref_primary_10_3390_s23229212
crossref_primary_10_1016_j_rineng_2024_102015
crossref_primary_10_3390_app13053289
crossref_primary_10_1016_j_asoc_2024_112493
crossref_primary_10_1109_JSEN_2023_3255203
crossref_primary_10_1016_j_asoc_2025_112785
crossref_primary_10_1016_j_ijpe_2024_109319
crossref_primary_10_3390_info15060360
crossref_primary_10_1002_ett_4827
crossref_primary_10_1016_j_ress_2022_109037
crossref_primary_10_3390_s23052612
crossref_primary_10_1016_j_ymssp_2024_111328
crossref_primary_10_1016_j_ymssp_2023_110098
crossref_primary_10_1016_j_imavis_2023_104710
crossref_primary_10_1016_j_ress_2022_109036
crossref_primary_10_1109_TIM_2023_3250284
crossref_primary_10_1109_ACCESS_2023_3244795
crossref_primary_10_1109_ACCESS_2024_3495819
crossref_primary_10_1016_j_ress_2024_110784
crossref_primary_10_1016_j_engappai_2024_109578
crossref_primary_10_1177_14759217231199427
crossref_primary_10_1016_j_aei_2023_102139
crossref_primary_10_1109_ACCESS_2024_3360871
crossref_primary_10_1109_TIM_2022_3230480
crossref_primary_10_1016_j_cie_2025_111023
crossref_primary_10_1016_j_compag_2023_108583
crossref_primary_10_1007_s11709_024_1065_3
crossref_primary_10_1109_ACCESS_2023_3342868
crossref_primary_10_3390_machines12120891
crossref_primary_10_1007_s12206_023_1003_7
crossref_primary_10_1016_j_dsp_2024_104813
crossref_primary_10_3233_JIFS_223575
crossref_primary_10_1016_j_engappai_2023_105860
crossref_primary_10_1109_JIOT_2024_3404112
crossref_primary_10_1109_TII_2023_3275696
crossref_primary_10_1007_s12206_025_0204_7
crossref_primary_10_1016_j_dsp_2023_103940
crossref_primary_10_1109_TIM_2023_3246494
crossref_primary_10_1109_TIM_2025_3548060
crossref_primary_10_1109_JIOT_2023_3296538
crossref_primary_10_1016_j_jhazmat_2024_136536
crossref_primary_10_3390_s24020330
crossref_primary_10_1016_j_ress_2023_109319
crossref_primary_10_1109_TIM_2024_3453339
crossref_primary_10_1016_j_eswa_2023_119824
crossref_primary_10_1080_00207543_2024_2427895
crossref_primary_10_1109_TMECH_2023_3278710
crossref_primary_10_1016_j_nhres_2024_11_004
crossref_primary_10_1088_1361_6501_ad4b54
crossref_primary_10_1016_j_ress_2023_109152
crossref_primary_10_1177_14759217241291268
crossref_primary_10_3390_electronics12030491
Cites_doi 10.1016/j.patrec.2018.03.010
10.1016/j.measurement.2021.109683
10.1115/1.4036350
10.1002/int.22162
10.1007/s00170-015-7530-3
10.3390/s20216113
10.1016/j.jmatprotec.2020.116901
10.1016/j.rinp.2018.08.023
10.1016/j.asoc.2021.107751
10.1007/s11465-022-0673-7
10.1109/ACCESS.2021.3058809
10.1016/j.rcim.2016.11.008
10.1007/s10845-019-01488-7
10.1016/j.jmsy.2021.12.002
10.1016/j.rcim.2022.102391
10.3390/s20174896
10.1016/j.neucom.2017.12.014
10.1007/s00170-017-0300-7
10.1016/j.jmsy.2018.02.001
10.1109/TII.2018.2881543
10.3390/s17020273
10.1007/s13735-021-00206-5
10.1016/j.measurement.2016.04.007
10.1016/j.eng.2019.03.012
10.1016/j.rcim.2016.05.010
10.1007/s00170-017-0404-0
10.1145/3434767
10.1016/j.eng.2019.04.011
10.1016/j.patcog.2017.08.029
10.1016/j.rcim.2019.101842
10.1109/TIM.2021.3096283
10.1016/j.rcim.2019.101924
10.1109/TMECH.2022.3177174
10.1016/j.aei.2022.101648
10.1155/2019/9543490
10.1007/s00170-020-05931-5
10.1007/s11465-018-0472-3
10.1109/TII.2019.2949355
10.1109/TIM.2021.3123218
10.1016/j.aei.2022.101564
10.1016/j.ymssp.2021.107738
10.1109/TETCI.2021.3115666
10.1016/j.jmsy.2022.04.001
10.1109/TII.2020.2966326
ContentType Journal Article
Copyright 2022
Copyright_xml – notice: 2022
DBID AAYXX
CITATION
ADTPV
AOWAS
DOI 10.1016/j.rcim.2022.102441
DatabaseName CrossRef
SwePub
SwePub Articles
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1879-2537
ExternalDocumentID oai_DiVA_org_ltu_92934
10_1016_j_rcim_2022_102441
S0736584522001259
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFSI
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
E.L
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PZZ
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ADTPV
AOWAS
EFKBS
ID FETCH-LOGICAL-c337t-5dc4bf8975500836b35e9b2b8829e09419916d5da6a41488dee2ebfb4862447d3
IEDL.DBID .~1
ISSN 0736-5845
1879-2537
IngestDate Thu Aug 21 06:45:45 EDT 2025
Thu Apr 24 23:12:37 EDT 2025
Tue Jul 01 02:40:47 EDT 2025
Fri Feb 23 02:37:47 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Machine tools
Unsupervised anomaly detection
Noises
Hybrid robust convolutional autoencoder
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-5dc4bf8975500836b35e9b2b8829e09419916d5da6a41488dee2ebfb4862447d3
ORCID 0000-0002-8018-1774
ParticipantIDs swepub_primary_oai_DiVA_org_ltu_92934
crossref_citationtrail_10_1016_j_rcim_2022_102441
crossref_primary_10_1016_j_rcim_2022_102441
elsevier_sciencedirect_doi_10_1016_j_rcim_2022_102441
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Robotics and computer-integrated manufacturing
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhu, Li, Wu (bib0037) 2021; 15
Liu, Han, Hou (bib0040) 2018; 282
Zhou, Guo, Sun (bib0008) 2021; 157
Deebak, Al-Turjman (bib0023) 2021
Thill, Konen, Wang (bib0032) 2021; 112
Li, Shi, Tang (bib0009) 2021; 288
Ou, Li, Huang (bib0024) 2021; 70
Wu, Wang, Gao (bib0042) 2018; 73
Sun, Ma, Zhao (bib0021) 2018; 15
Wen, Wang, Li (bib0052) 2022; 17
Li, Lim, Zhou (bib0048) 2009; 1
Li, Fu, Chen (bib0007) 2020; 20
Guo, Li, Zhang (bib0015) 2020; 110
Xiao, Shao, Han (bib0051) 2022
Cheng, Jiao, Yan (bib0022) 2022; 26
Yu, Zhou (bib0038) 2020; 16
Vincent, Larochelle, Bengio (bib0054) 2008
Zhao, Yan, Wang (bib0049) 2017; 17
Jiang, Ren, Zhang (bib0036) 2021; 19
Li, Zhang, Gao (bib0029) 2021; 6
Kong, Chen, Li (bib0014) 2017; 92
Babouri, Ouelaa, Djebala (bib0010) 2016; 82
Shi, Luo, He (bib0025) 2019; 16
Liu, Liu, Wang (bib0044) 2019; 34
Sheikh Fathollahi, Razzazi (bib0046) 2021; 10
Sun, Shao, Zhao (bib0053) 2016; 89
Wang (bib0004) 2019; 5
Yang, Pattipati, Awasthi (bib0028) 2022; 63
Wang, Xie, Zhao (bib0050) 2017; 45
Ratava, Lohtander, Varis (bib0006) 2017; 47
Liu, Zheng, Xu (bib0005) 2021
Szegedy, Liu, Jia (bib0039) 2015
Yuan, Liu, Yang (bib0012) 2020; 20
Huang, Zhu, Lei (bib0020) 2020; 31
Gong, Liu, Le (bib0031) 2019
Ruderman, Rabinowitz, Morcos (bib0041) 2018
Sun, Zhang, Mo (bib0027) 2020; 64
Zong, Song, Min (bib0030) 2018
Cai, Zhou, Yan (bib0045) 2019
Liu, Vengayil, Zhong (bib0001) 2018; 48
Niaki, Feng, Ulutan (bib0011) 2016; 9
Kingma, Ba (bib0047) 2014
Xu (bib0003) 2017; 92
Yu, Cheng, Lu (bib0013) 2021; 182
Wang, Zhang (bib0026) 2021; 70
Lyu, Zhang, Yu (bib0034) 2022; 52
Sethi, Singh, Singh (bib0043) 2019; 119
Fang, Jia, Chen (bib0035) 2018; 11
Wu, Jennings, Terpenny (bib0016) 2017; 139
Liang, Wang, Li (bib0019) 2019; 5
Liu, Kong, Niu (bib0002) 2020; 61
Duan, Hu, Zhan (bib0017) 2022; 78
Chen, Wang, Qiao (bib0018) 2018; 13
Li, Guo, Wang (bib0033) 2021; 9
Yan, Shao, Xiao (bib0055) 2022; 53
Xu (10.1016/j.rcim.2022.102441_bib0003) 2017; 92
Li (10.1016/j.rcim.2022.102441_bib0009) 2021; 288
Zhu (10.1016/j.rcim.2022.102441_bib0037) 2021; 15
Wu (10.1016/j.rcim.2022.102441_bib0042) 2018; 73
Wang (10.1016/j.rcim.2022.102441_bib0004) 2019; 5
Ou (10.1016/j.rcim.2022.102441_bib0024) 2021; 70
Li (10.1016/j.rcim.2022.102441_bib0029) 2021; 6
Kong (10.1016/j.rcim.2022.102441_bib0014) 2017; 92
Sun (10.1016/j.rcim.2022.102441_bib0053) 2016; 89
Xiao (10.1016/j.rcim.2022.102441_bib0051) 2022
Yan (10.1016/j.rcim.2022.102441_bib0055) 2022; 53
Duan (10.1016/j.rcim.2022.102441_bib0017) 2022; 78
Liu (10.1016/j.rcim.2022.102441_bib0005) 2021
Cai (10.1016/j.rcim.2022.102441_bib0045) 2019
Liu (10.1016/j.rcim.2022.102441_bib0044) 2019; 34
Zong (10.1016/j.rcim.2022.102441_bib0030) 2018
Deebak (10.1016/j.rcim.2022.102441_bib0023) 2021
Yang (10.1016/j.rcim.2022.102441_bib0028) 2022; 63
Cheng (10.1016/j.rcim.2022.102441_bib0022) 2022; 26
Szegedy (10.1016/j.rcim.2022.102441_bib0039) 2015
Ruderman (10.1016/j.rcim.2022.102441_bib0041) 2018
Guo (10.1016/j.rcim.2022.102441_bib0015) 2020; 110
Zhou (10.1016/j.rcim.2022.102441_bib0008) 2021; 157
Sheikh Fathollahi (10.1016/j.rcim.2022.102441_bib0046) 2021; 10
Liu (10.1016/j.rcim.2022.102441_bib0001) 2018; 48
Vincent (10.1016/j.rcim.2022.102441_bib0054) 2008
Kingma (10.1016/j.rcim.2022.102441_bib0047) 2014
Zhao (10.1016/j.rcim.2022.102441_bib0049) 2017; 17
Ratava (10.1016/j.rcim.2022.102441_bib0006) 2017; 47
Yu (10.1016/j.rcim.2022.102441_bib0038) 2020; 16
Liang (10.1016/j.rcim.2022.102441_bib0019) 2019; 5
Gong (10.1016/j.rcim.2022.102441_bib0031) 2019
Chen (10.1016/j.rcim.2022.102441_bib0018) 2018; 13
Sethi (10.1016/j.rcim.2022.102441_bib0043) 2019; 119
Wu (10.1016/j.rcim.2022.102441_bib0016) 2017; 139
Sun (10.1016/j.rcim.2022.102441_bib0021) 2018; 15
Yuan (10.1016/j.rcim.2022.102441_bib0012) 2020; 20
Niaki (10.1016/j.rcim.2022.102441_bib0011) 2016; 9
Li (10.1016/j.rcim.2022.102441_bib0048) 2009; 1
Liu (10.1016/j.rcim.2022.102441_bib0002) 2020; 61
Thill (10.1016/j.rcim.2022.102441_bib0032) 2021; 112
Lyu (10.1016/j.rcim.2022.102441_bib0034) 2022; 52
Li (10.1016/j.rcim.2022.102441_bib0007) 2020; 20
Fang (10.1016/j.rcim.2022.102441_bib0035) 2018; 11
Sun (10.1016/j.rcim.2022.102441_bib0027) 2020; 64
Yu (10.1016/j.rcim.2022.102441_bib0013) 2021; 182
Huang (10.1016/j.rcim.2022.102441_bib0020) 2020; 31
Wang (10.1016/j.rcim.2022.102441_bib0026) 2021; 70
Jiang (10.1016/j.rcim.2022.102441_bib0036) 2021; 19
Babouri (10.1016/j.rcim.2022.102441_bib0010) 2016; 82
Liu (10.1016/j.rcim.2022.102441_bib0040) 2018; 282
Wang (10.1016/j.rcim.2022.102441_bib0050) 2017; 45
Wen (10.1016/j.rcim.2022.102441_bib0052) 2022; 17
Shi (10.1016/j.rcim.2022.102441_bib0025) 2019; 16
Li (10.1016/j.rcim.2022.102441_bib0033) 2021; 9
References_xml – volume: 9
  start-page: 97
  year: 2016
  end-page: 121
  ident: bib0011
  article-title: A wavelet-based data-driven modelling for tool wear assessment of difficult to machine materials
  publication-title: Int. J. Mechatron. Manuf. Syst.
– volume: 20
  start-page: 6113
  year: 2020
  ident: bib0012
  article-title: Tool wear condition monitoring by combining variational mode decomposition and ensemble learning
  publication-title: Sensors
– volume: 78
  year: 2022
  ident: bib0017
  article-title: MS-SSPCANet: A powerful deep learning framework for tool wear prediction
  publication-title: Rob. Comput. Integr. Manuf.
– volume: 16
  start-page: 5150
  year: 2019
  end-page: 5159
  ident: bib0025
  article-title: Tool wear prediction via multidimensional stacked sparse autoencoders with feature fusion
  publication-title: IEEE Trans. Ind. Inf.
– volume: 182
  year: 2021
  ident: bib0013
  article-title: A machine vision method for measurement of machining tool wear
  publication-title: Measurement
– volume: 110
  start-page: 1445
  year: 2020
  end-page: 1456
  ident: bib0015
  article-title: Tool condition monitoring in milling process using multifractal detrended fluctuation analysis and support vector machine
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 16
  start-page: 6347
  year: 2020
  end-page: 6358
  ident: bib0038
  article-title: One-dimensional residual convolutional autoencoder based feature learning for gearbox fault diagnosis
  publication-title: IEEE Trans. Ind. Inf.
– year: 2021
  ident: bib0023
  article-title: Digital-twin assisted: fault diagnosis using deep transfer learning for machining tool condition
  publication-title: Int. J. Intell. Syst.
– volume: 9
  start-page: 29356
  year: 2021
  end-page: 29365
  ident: bib0033
  article-title: Unsupervised fake news detection based on autoencoder
  publication-title: IEEE Access
– volume: 17
  start-page: 1
  year: 2022
  end-page: 12
  ident: bib0052
  article-title: A new automatic convolutional neural network based on deep reinforcement learning for fault diagnosis
  publication-title: Front. Mech. Eng.
– volume: 70
  start-page: 1
  year: 2021
  end-page: 9
  ident: bib0024
  article-title: Tool wear recognition based on deep kernel autoencoder with multichannel signals fusion
  publication-title: IEEE Trans. Instrum. Meas.
– start-page: 1705
  year: 2019
  end-page: 1714
  ident: bib0031
  article-title: Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection
  publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
– year: 2019
  ident: bib0045
  article-title: A stacked BiLSTM neural network based on coattention mechanism for question answering
  publication-title: Comput. Intell. Neurosci.
– volume: 53
  year: 2022
  ident: bib0055
  article-title: Semi-supervised fault diagnosis of machinery using LPS-DGAT under speed fluctuation and extremely low labeled rates
  publication-title: Adv. Eng. Inf.
– volume: 15
  start-page: 1
  year: 2021
  end-page: 21
  ident: bib0037
  article-title: Stacked convolutional sparse auto-encoders for representation learning
  publication-title: ACM Trans. Knowl. Discov. Data
– volume: 82
  start-page: 2017
  year: 2016
  end-page: 2028
  ident: bib0010
  article-title: Experimental study of tool life transition and wear monitoring in turning operation using a hybrid method based on wavelet multi-resolution analysis and empirical mode decomposition
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 47
  start-page: 70
  year: 2017
  end-page: 75
  ident: bib0006
  article-title: Tool condition monitoring in interrupted cutting with acceleration sensors
  publication-title: Rob. Comput. Integr. Manuf.
– volume: 64
  year: 2020
  ident: bib0027
  article-title: In-process tool condition forecasting based on a deep learning method
  publication-title: Rob. Comput. Integr. Manuf.
– volume: 48
  start-page: 13
  year: 2018
  end-page: 24
  ident: bib0001
  article-title: A systematic development method for cyber-physical machine tools
  publication-title: J. Manuf. Syst.
– start-page: 1
  year: 2021
  end-page: 33
  ident: bib0005
  article-title: Digitalisation and servitisation of machine tools in the era of industry 4.0: a review
  publication-title: Int. J. Prod. Res.
– volume: 15
  start-page: 2416
  year: 2018
  end-page: 2425
  ident: bib0021
  article-title: Deep transfer learning based on sparse autoencoder for remaining useful life prediction of tool in manufacturing
  publication-title: IEEE Trans. Ind. Inf.
– year: 2018
  ident: bib0041
  article-title: Pooling is neither necessary nor sufficient for appropriate deformation stability in CNNs
– year: 2022
  ident: bib0051
  article-title: Novel joint transfer network for unsupervised bearing fault diagnosis from simulation domain to experimental domain
  publication-title: IEEE/ASME Trans. Mechatron.
– volume: 52
  year: 2022
  ident: bib0034
  article-title: A novel RSG-based intelligent bearing fault diagnosis method for motors in high-noise industrial environment
  publication-title: Adv. Eng. Inf.
– year: 2014
  ident: bib0047
  article-title: Adam: amethod for stochastic optimization
– year: 2018
  ident: bib0030
  article-title: Deep autoencoding gaussian mixture model for unsupervised anomaly detection
  publication-title: International Conference on Learning Representations
– volume: 63
  start-page: 329
  year: 2022
  end-page: 343
  ident: bib0028
  article-title: Hybrid data-driven and model-informed online tool wear detection in milling machines
  publication-title: J. Manuf. Syst.
– volume: 112
  year: 2021
  ident: bib0032
  article-title: Temporal convolutional autoencoder for unsupervised anomaly detection in time series
  publication-title: Appl. Soft Comput.
– volume: 288
  year: 2021
  ident: bib0009
  article-title: Real-time tool wear monitoring using thin-film thermocouple
  publication-title: J. Mater. Process. Technol.
– volume: 45
  start-page: 47
  year: 2017
  end-page: 58
  ident: bib0050
  article-title: Multisensory fusion based virtual tool wear sensing for ubiquitous manufacturing
  publication-title: Rob. Comput. Integr. Manuf.
– volume: 11
  start-page: 96
  year: 2018
  end-page: 104
  ident: bib0035
  article-title: Laser stripe image denoising using convolutional autoencoder
  publication-title: Results Phys.
– volume: 20
  start-page: 4896
  year: 2020
  ident: bib0007
  article-title: Deep anomaly detection for CNC machine cutting tool using spindle current signals
  publication-title: Sensors
– start-page: 1096
  year: 2008
  end-page: 1103
  ident: bib0054
  article-title: Extracting and composing robust features with denoising autoencoders
  publication-title: Proceedings of the 25th international conference on Machine learning
– volume: 61
  year: 2020
  ident: bib0002
  article-title: A method of NC machine tools intelligent monitoring system in smart factories
  publication-title: Rob. Comput. Integr. Manuf.
– volume: 31
  start-page: 953
  year: 2020
  end-page: 966
  ident: bib0020
  article-title: Tool wear predicting based on multi-domain feature fusion by deep convolutional neural network in milling operations
  publication-title: J. Intell. Manuf.
– volume: 119
  start-page: 157
  year: 2019
  end-page: 165
  ident: bib0043
  article-title: Residual codean autoencoder for facial attribute analysis
  publication-title: Pattern Recognit. Lett.
– volume: 157
  year: 2021
  ident: bib0008
  article-title: Sound singularity analysis for milling tool condition monitoring towards sustainable manufacturing
  publication-title: Mech. Syst. Sig. Process.
– volume: 34
  start-page: 2807
  year: 2019
  end-page: 2834
  ident: bib0044
  article-title: Distance measure for fermatean fuzzy linguistic term sets based on linguistic scale function: an illustration of the TODIM and TOPSIS methods
  publication-title: Int. J. Intell. Syst.
– volume: 92
  start-page: 1893
  year: 2017
  end-page: 1900
  ident: bib0003
  article-title: Machine tool 4.0 for the new era of manufacturing
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 10
  start-page: 43
  year: 2021
  end-page: 53
  ident: bib0046
  article-title: Music similarity measurement and recommendation system using convolutional neural networks
  publication-title: Int. J. Multimedia Inf. Retr.
– volume: 139
  year: 2017
  ident: bib0016
  article-title: A comparative study on machine learning algorithms for smart manufacturing: tool wear prediction using random forests
  publication-title: J. Manuf. Sci. Eng.
– start-page: 1
  year: 2015
  end-page: 9
  ident: bib0039
  article-title: Going deeper with convolutions
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 89
  start-page: 171
  year: 2016
  end-page: 178
  ident: bib0053
  article-title: A sparse auto-encoder-based deep neural network approach for induction motor faults classification
  publication-title: Measurement
– volume: 5
  start-page: 646
  year: 2019
  end-page: 652
  ident: bib0019
  article-title: Data-driven anomaly diagnosis for machining processes
  publication-title: Engineering
– volume: 13
  start-page: 264
  year: 2018
  end-page: 291
  ident: bib0018
  article-title: Basic research on machinery fault diagnostics: past, present, and future trends
  publication-title: Front. Mech. Eng.
– volume: 5
  start-page: 615
  year: 2019
  end-page: 618
  ident: bib0004
  article-title: From intelligence science to intelligent manufacturing
  publication-title: Engineering
– volume: 17
  start-page: 273
  year: 2017
  ident: bib0049
  article-title: Learning to monitor machine health with convolutional bi-directional LSTM networks
  publication-title: Sensors
– volume: 73
  start-page: 275
  year: 2018
  end-page: 288
  ident: bib0042
  article-title: Deep adaptive feature embedding with local sample distributions for person re-identification
  publication-title: Pattern Recognit.
– volume: 70
  start-page: 1
  year: 2021
  end-page: 11
  ident: bib0026
  article-title: A sequence-to-sequence model with attention and monotonicity loss for tool wear monitoring and prediction
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 92
  start-page: 3647
  year: 2017
  end-page: 3657
  ident: bib0014
  article-title: Hidden semi-markov model-based method for tool wear estimation in milling process
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 19
  start-page: 1
  year: 2021
  end-page: 5
  ident: bib0036
  article-title: A convolutional autoencoder method for simultaneous seismic data reconstruction and denoising
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 26
  start-page: 286
  year: 2022
  end-page: 300
  ident: bib0022
  article-title: Intelligent tool wear monitoring and multi-step prediction based on deep learning model
  publication-title: J. Manuf. Syst.
– volume: 1
  year: 2009
  ident: bib0048
  article-title: Fuzzy neural network modelling for tool wear estimation in dry milling operation
  publication-title: Annual Conference of the PHM Society
– volume: 282
  start-page: 52
  year: 2018
  end-page: 59
  ident: bib0040
  article-title: Single image super-resolution using a deep encoder–decoder symmetrical network with iterative back projection
  publication-title: Neurocomputing
– volume: 6
  start-page: 690
  year: 2021
  end-page: 699
  ident: bib0029
  article-title: A new semi-supervised fault diagnosis method via deep coral and transfer component analysis
  publication-title: IEEE Trans. Emerg. Top. Comput. Intell.
– volume: 119
  start-page: 157
  year: 2019
  ident: 10.1016/j.rcim.2022.102441_bib0043
  article-title: Residual codean autoencoder for facial attribute analysis
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2018.03.010
– volume: 182
  year: 2021
  ident: 10.1016/j.rcim.2022.102441_bib0013
  article-title: A machine vision method for measurement of machining tool wear
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109683
– volume: 139
  issue: 7
  year: 2017
  ident: 10.1016/j.rcim.2022.102441_bib0016
  article-title: A comparative study on machine learning algorithms for smart manufacturing: tool wear prediction using random forests
  publication-title: J. Manuf. Sci. Eng.
  doi: 10.1115/1.4036350
– volume: 34
  start-page: 2807
  issue: 11
  year: 2019
  ident: 10.1016/j.rcim.2022.102441_bib0044
  article-title: Distance measure for fermatean fuzzy linguistic term sets based on linguistic scale function: an illustration of the TODIM and TOPSIS methods
  publication-title: Int. J. Intell. Syst.
  doi: 10.1002/int.22162
– volume: 82
  start-page: 2017
  issue: 9
  year: 2016
  ident: 10.1016/j.rcim.2022.102441_bib0010
  article-title: Experimental study of tool life transition and wear monitoring in turning operation using a hybrid method based on wavelet multi-resolution analysis and empirical mode decomposition
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-015-7530-3
– volume: 9
  start-page: 97
  issue: 2
  year: 2016
  ident: 10.1016/j.rcim.2022.102441_bib0011
  article-title: A wavelet-based data-driven modelling for tool wear assessment of difficult to machine materials
  publication-title: Int. J. Mechatron. Manuf. Syst.
– volume: 20
  start-page: 6113
  issue: 21
  year: 2020
  ident: 10.1016/j.rcim.2022.102441_bib0012
  article-title: Tool wear condition monitoring by combining variational mode decomposition and ensemble learning
  publication-title: Sensors
  doi: 10.3390/s20216113
– volume: 288
  year: 2021
  ident: 10.1016/j.rcim.2022.102441_bib0009
  article-title: Real-time tool wear monitoring using thin-film thermocouple
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2020.116901
– volume: 11
  start-page: 96
  year: 2018
  ident: 10.1016/j.rcim.2022.102441_bib0035
  article-title: Laser stripe image denoising using convolutional autoencoder
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2018.08.023
– volume: 112
  year: 2021
  ident: 10.1016/j.rcim.2022.102441_bib0032
  article-title: Temporal convolutional autoencoder for unsupervised anomaly detection in time series
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107751
– volume: 17
  start-page: 1
  issue: 2
  year: 2022
  ident: 10.1016/j.rcim.2022.102441_bib0052
  article-title: A new automatic convolutional neural network based on deep reinforcement learning for fault diagnosis
  publication-title: Front. Mech. Eng.
  doi: 10.1007/s11465-022-0673-7
– volume: 9
  start-page: 29356
  year: 2021
  ident: 10.1016/j.rcim.2022.102441_bib0033
  article-title: Unsupervised fake news detection based on autoencoder
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3058809
– volume: 47
  start-page: 70
  year: 2017
  ident: 10.1016/j.rcim.2022.102441_bib0006
  article-title: Tool condition monitoring in interrupted cutting with acceleration sensors
  publication-title: Rob. Comput. Integr. Manuf.
  doi: 10.1016/j.rcim.2016.11.008
– volume: 31
  start-page: 953
  issue: 4
  year: 2020
  ident: 10.1016/j.rcim.2022.102441_bib0020
  article-title: Tool wear predicting based on multi-domain feature fusion by deep convolutional neural network in milling operations
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-019-01488-7
– year: 2018
  ident: 10.1016/j.rcim.2022.102441_bib0041
– volume: 26
  start-page: 286
  year: 2022
  ident: 10.1016/j.rcim.2022.102441_bib0022
  article-title: Intelligent tool wear monitoring and multi-step prediction based on deep learning model
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2021.12.002
– volume: 78
  year: 2022
  ident: 10.1016/j.rcim.2022.102441_bib0017
  article-title: MS-SSPCANet: A powerful deep learning framework for tool wear prediction
  publication-title: Rob. Comput. Integr. Manuf.
  doi: 10.1016/j.rcim.2022.102391
– year: 2014
  ident: 10.1016/j.rcim.2022.102441_bib0047
– volume: 20
  start-page: 4896
  issue: 17
  year: 2020
  ident: 10.1016/j.rcim.2022.102441_bib0007
  article-title: Deep anomaly detection for CNC machine cutting tool using spindle current signals
  publication-title: Sensors
  doi: 10.3390/s20174896
– start-page: 1
  year: 2015
  ident: 10.1016/j.rcim.2022.102441_bib0039
  article-title: Going deeper with convolutions
– year: 2018
  ident: 10.1016/j.rcim.2022.102441_bib0030
  article-title: Deep autoencoding gaussian mixture model for unsupervised anomaly detection
– volume: 282
  start-page: 52
  year: 2018
  ident: 10.1016/j.rcim.2022.102441_bib0040
  article-title: Single image super-resolution using a deep encoder–decoder symmetrical network with iterative back projection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.12.014
– volume: 92
  start-page: 1893
  issue: 5
  year: 2017
  ident: 10.1016/j.rcim.2022.102441_bib0003
  article-title: Machine tool 4.0 for the new era of manufacturing
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-017-0300-7
– volume: 48
  start-page: 13
  year: 2018
  ident: 10.1016/j.rcim.2022.102441_bib0001
  article-title: A systematic development method for cyber-physical machine tools
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2018.02.001
– start-page: 1
  year: 2021
  ident: 10.1016/j.rcim.2022.102441_bib0005
  article-title: Digitalisation and servitisation of machine tools in the era of industry 4.0: a review
  publication-title: Int. J. Prod. Res.
– volume: 15
  start-page: 2416
  issue: 4
  year: 2018
  ident: 10.1016/j.rcim.2022.102441_bib0021
  article-title: Deep transfer learning based on sparse autoencoder for remaining useful life prediction of tool in manufacturing
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2018.2881543
– volume: 17
  start-page: 273
  issue: 2
  year: 2017
  ident: 10.1016/j.rcim.2022.102441_bib0049
  article-title: Learning to monitor machine health with convolutional bi-directional LSTM networks
  publication-title: Sensors
  doi: 10.3390/s17020273
– volume: 10
  start-page: 43
  issue: 1
  year: 2021
  ident: 10.1016/j.rcim.2022.102441_bib0046
  article-title: Music similarity measurement and recommendation system using convolutional neural networks
  publication-title: Int. J. Multimedia Inf. Retr.
  doi: 10.1007/s13735-021-00206-5
– volume: 89
  start-page: 171
  year: 2016
  ident: 10.1016/j.rcim.2022.102441_bib0053
  article-title: A sparse auto-encoder-based deep neural network approach for induction motor faults classification
  publication-title: Measurement
  doi: 10.1016/j.measurement.2016.04.007
– volume: 5
  start-page: 646
  issue: 4
  year: 2019
  ident: 10.1016/j.rcim.2022.102441_bib0019
  article-title: Data-driven anomaly diagnosis for machining processes
  publication-title: Engineering
  doi: 10.1016/j.eng.2019.03.012
– volume: 45
  start-page: 47
  year: 2017
  ident: 10.1016/j.rcim.2022.102441_bib0050
  article-title: Multisensory fusion based virtual tool wear sensing for ubiquitous manufacturing
  publication-title: Rob. Comput. Integr. Manuf.
  doi: 10.1016/j.rcim.2016.05.010
– volume: 92
  start-page: 3647
  issue: 9
  year: 2017
  ident: 10.1016/j.rcim.2022.102441_bib0014
  article-title: Hidden semi-markov model-based method for tool wear estimation in milling process
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-017-0404-0
– volume: 1
  year: 2009
  ident: 10.1016/j.rcim.2022.102441_bib0048
  article-title: Fuzzy neural network modelling for tool wear estimation in dry milling operation
– volume: 15
  start-page: 1
  issue: 2
  year: 2021
  ident: 10.1016/j.rcim.2022.102441_bib0037
  article-title: Stacked convolutional sparse auto-encoders for representation learning
  publication-title: ACM Trans. Knowl. Discov. Data
  doi: 10.1145/3434767
– volume: 5
  start-page: 615
  issue: 4
  year: 2019
  ident: 10.1016/j.rcim.2022.102441_bib0004
  article-title: From intelligence science to intelligent manufacturing
  publication-title: Engineering
  doi: 10.1016/j.eng.2019.04.011
– volume: 73
  start-page: 275
  year: 2018
  ident: 10.1016/j.rcim.2022.102441_bib0042
  article-title: Deep adaptive feature embedding with local sample distributions for person re-identification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.08.029
– volume: 61
  year: 2020
  ident: 10.1016/j.rcim.2022.102441_bib0002
  article-title: A method of NC machine tools intelligent monitoring system in smart factories
  publication-title: Rob. Comput. Integr. Manuf.
  doi: 10.1016/j.rcim.2019.101842
– volume: 70
  start-page: 1
  year: 2021
  ident: 10.1016/j.rcim.2022.102441_bib0024
  article-title: Tool wear recognition based on deep kernel autoencoder with multichannel signals fusion
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2021.3096283
– volume: 64
  year: 2020
  ident: 10.1016/j.rcim.2022.102441_bib0027
  article-title: In-process tool condition forecasting based on a deep learning method
  publication-title: Rob. Comput. Integr. Manuf.
  doi: 10.1016/j.rcim.2019.101924
– year: 2022
  ident: 10.1016/j.rcim.2022.102441_bib0051
  article-title: Novel joint transfer network for unsupervised bearing fault diagnosis from simulation domain to experimental domain
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2022.3177174
– volume: 53
  year: 2022
  ident: 10.1016/j.rcim.2022.102441_bib0055
  article-title: Semi-supervised fault diagnosis of machinery using LPS-DGAT under speed fluctuation and extremely low labeled rates
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2022.101648
– year: 2019
  ident: 10.1016/j.rcim.2022.102441_bib0045
  article-title: A stacked BiLSTM neural network based on coattention mechanism for question answering
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2019/9543490
– volume: 110
  start-page: 1445
  issue: 5
  year: 2020
  ident: 10.1016/j.rcim.2022.102441_bib0015
  article-title: Tool condition monitoring in milling process using multifractal detrended fluctuation analysis and support vector machine
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-020-05931-5
– year: 2021
  ident: 10.1016/j.rcim.2022.102441_bib0023
  article-title: Digital-twin assisted: fault diagnosis using deep transfer learning for machining tool condition
  publication-title: Int. J. Intell. Syst.
– volume: 13
  start-page: 264
  issue: 2
  year: 2018
  ident: 10.1016/j.rcim.2022.102441_bib0018
  article-title: Basic research on machinery fault diagnostics: past, present, and future trends
  publication-title: Front. Mech. Eng.
  doi: 10.1007/s11465-018-0472-3
– start-page: 1096
  year: 2008
  ident: 10.1016/j.rcim.2022.102441_bib0054
  article-title: Extracting and composing robust features with denoising autoencoders
– volume: 16
  start-page: 5150
  issue: 8
  year: 2019
  ident: 10.1016/j.rcim.2022.102441_bib0025
  article-title: Tool wear prediction via multidimensional stacked sparse autoencoders with feature fusion
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2019.2949355
– volume: 70
  start-page: 1
  year: 2021
  ident: 10.1016/j.rcim.2022.102441_bib0026
  article-title: A sequence-to-sequence model with attention and monotonicity loss for tool wear monitoring and prediction
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2021.3123218
– volume: 19
  start-page: 1
  year: 2021
  ident: 10.1016/j.rcim.2022.102441_bib0036
  article-title: A convolutional autoencoder method for simultaneous seismic data reconstruction and denoising
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 52
  year: 2022
  ident: 10.1016/j.rcim.2022.102441_bib0034
  article-title: A novel RSG-based intelligent bearing fault diagnosis method for motors in high-noise industrial environment
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2022.101564
– volume: 157
  year: 2021
  ident: 10.1016/j.rcim.2022.102441_bib0008
  article-title: Sound singularity analysis for milling tool condition monitoring towards sustainable manufacturing
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2021.107738
– start-page: 1705
  year: 2019
  ident: 10.1016/j.rcim.2022.102441_bib0031
  article-title: Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection
– volume: 6
  start-page: 690
  issue: 3
  year: 2021
  ident: 10.1016/j.rcim.2022.102441_bib0029
  article-title: A new semi-supervised fault diagnosis method via deep coral and transfer component analysis
  publication-title: IEEE Trans. Emerg. Top. Comput. Intell.
  doi: 10.1109/TETCI.2021.3115666
– volume: 63
  start-page: 329
  year: 2022
  ident: 10.1016/j.rcim.2022.102441_bib0028
  article-title: Hybrid data-driven and model-informed online tool wear detection in milling machines
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2022.04.001
– volume: 16
  start-page: 6347
  issue: 10
  year: 2020
  ident: 10.1016/j.rcim.2022.102441_bib0038
  article-title: One-dimensional residual convolutional autoencoder based feature learning for gearbox fault diagnosis
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2020.2966326
SSID ssj0002453
Score 2.6373212
Snippet •A new FDD loss function to suppress the noises is designed.•Construct the PCDF module to enhance the robustness of the network.•The unsupervised anomaly...
Anomaly detection of machine tools plays a vital role in the machinery industry to sustain efficient operation and avoid catastrophic failures. Compared to...
SourceID swepub
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 102441
SubjectTerms Deep learning
Drift och underhållsteknik
Hybrid robust convolutional autoencoder
Machine tools
Noises
Operation and Maintenance
Unsupervised anomaly detection
Title Hybrid robust convolutional autoencoder for unsupervised anomaly detection of machine tools under noises
URI https://dx.doi.org/10.1016/j.rcim.2022.102441
https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-92934
Volume 79
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQXMoBKA_xlg_tCYXVxk6yOa4W0PaFqvIQN8uOJ-2iJV7lceDCb2cmcSgcyqGnSMk4iTyTeUTffMPYp1SkcWJjzNxsbAMJmQm0MEkAGrIoAQwqhv53_LiMpzfy6110t8QmfS8MwSq97-98euut_ZmB383BYjYbXKFxUvjEBIJidkRNfFImZOWnT39hHqHsmChROCBp3zjTYbzKbEbd6GFIDAZSDv8ZnF6ziLaR52KDrfmUkY-7t_rIlqDYZOv9OAbuv85NtvqKW3CL_Zk-UjMWL51pqpoTutxbGd5LN7UjBkuL6zFr5U1RNQvyGhVYrgv3oOeP3ELd4rQK7nL-0IIugdfOzStOnWclLxzKV9vs5uL8ejIN_FiFIBMiqYPIZtLkozTB4oS4qY2IIDWhwVw7Baz2CAwV28jqWEsslkYWIASTG0m9JDKxYoctF66AXca1lnaIdW0KeYKX5CgfWhELO4pB6iwSe2zY76fKPOc4jb6Yqx5cdq9IB4p0oDod7LGTlzWLjnHjXemoV5N6YzcKQ8K76z53On15BvFsn81ux8qVv9W8bhQmjkLu_-f9D9gHGkzf4bsP2XJdNnCE6Uttjlv7PGYr48mv7z_p-OXb9PIZZSPykA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9RAEB6FUEAKAgGU8NyCVMiczru2zwVFRBJdyKMhQemWXe-YXHSxT34IXcOf4g8yY69DKEiBlNb78GpmPA_rm28B3qUyjRMXU-bmYhcozGxgpE0CNJhFCVJQsfy_4_gknp6pz-fR-Qr8GnphGFbpfX_v0ztv7Z-MvDRHi9ls9IWMk8MnJRAcs6PUIysPcfmD6rb648EuKXk7DPf3Tj9NA3-1QJBJmTRB5DJl80maUILO_MxWRpja0FK-mSJVPAwIil3kTGwUFQwThxiiza3ifgqVOEn73oP7itwFX5vw4ecfXEmoeupLOl3Ax_OdOj2orMpm3P4ehkyZoNT4n9HwJm1pF-r2H8Mjn6OKnV4MT2AFiw1YH-5_EN4dbMDaDTLDp3AxXXL3l6hK29aNYDi7N2vay7RNyZSZjtZTmizaom4X7KZqdMIU5ZWZL4XDpgOGFaLMxVWH8kTRlOW8FtzqVomipPn1Mzi7E2E_h9WiLHAThDHKjamQTjFPaEhN8rGTsXSTGJXJIrkF40GeOvMk53zXxlwPaLZLzTrQrAPd62AL3l-vWfQUH7fOjgY16b8MVVMMunXddq_T63cwsffu7OuOLqvvet60mjJVqV785_5v4cH09PhIHx2cHL6EhzQie3D5K1htqhZfU-7U2DedrQr4dtcfx2-O5yuQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+robust+convolutional+autoencoder+for+unsupervised+anomaly+detection+of+machine+tools+under+noises&rft.jtitle=Robotics+and+computer-integrated+manufacturing&rft.au=Yan%2C+Shen&rft.au=Shao%2C+Haidong&rft.au=Xiao%2C+Yiming&rft.au=Liu%2C+Bin&rft.date=2023-02-01&rft.pub=Elsevier+Ltd&rft.issn=0736-5845&rft.eissn=1879-2537&rft.volume=79&rft_id=info:doi/10.1016%2Fj.rcim.2022.102441&rft.externalDocID=S0736584522001259
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0736-5845&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0736-5845&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0736-5845&client=summon