The increase of europium-based OLED luminance through reducing the excited state lifetime by mixed-ligand complex formation
An approach to the luminance increase of the europium-based OLED is proposed through the formation of the mixed-ligand complex. The introduction of two diverse anionic ligands around one europium ion forming a mixed-ligand complex is confirmed by powder X-ray diffraction, 1 H and 19 F NMR spectrosco...
Saved in:
Published in | Physical chemistry chemical physics : PCCP Vol. 25; no. 29; pp. 242 - 248 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
26.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An approach to the luminance increase of the europium-based OLED is proposed through the formation of the mixed-ligand complex. The introduction of two diverse anionic ligands around one europium ion forming a mixed-ligand complex is confirmed by powder X-ray diffraction,
1
H and
19
F NMR spectroscopy, MALDI MS spectroscopy, and luminescence spectroscopy. A decrease in the symmetry of the coordination environment leads to a 50% reduction of the lifetime of the excited state. The obtained OLEDs based on mixed ligand europium complexes are significantly superior in luminance to OLEDs based on individual complexes.
Mixed-ligand europium complex formation resulted in a significant luminance increase due to the reduction of the lifetime of the excited state. |
---|---|
AbstractList | An approach to the luminance increase of the europium-based OLED is proposed through the formation of the mixed-ligand complex. The introduction of two diverse anionic ligands around one europium ion forming a mixed-ligand complex is confirmed by powder X-ray diffraction,
H and
F NMR spectroscopy, MALDI MS spectroscopy, and luminescence spectroscopy. A decrease in the symmetry of the coordination environment leads to a 50% reduction of the lifetime of the excited state. The obtained OLEDs based on mixed ligand europium complexes are significantly superior in luminance to OLEDs based on individual complexes. An approach to the luminance increase of the europium-based OLED is proposed through the formation of the mixed-ligand complex. The introduction of two diverse anionic ligands around one europium ion forming a mixed-ligand complex is confirmed by powder X-ray diffraction, 1 H and 19 F NMR spectroscopy, MALDI MS spectroscopy, and luminescence spectroscopy. A decrease in the symmetry of the coordination environment leads to a 50% reduction of the lifetime of the excited state. The obtained OLEDs based on mixed ligand europium complexes are significantly superior in luminance to OLEDs based on individual complexes. Mixed-ligand europium complex formation resulted in a significant luminance increase due to the reduction of the lifetime of the excited state. An approach to the luminance increase of the europium-based OLED is proposed through the formation of the mixed-ligand complex. The introduction of two diverse anionic ligands around one europium ion forming a mixed-ligand complex is confirmed by powder X-ray diffraction, 1H and 19F NMR spectroscopy, MALDI MS spectroscopy, and luminescence spectroscopy. A decrease in the symmetry of the coordination environment leads to a 50% reduction of the lifetime of the excited state. The obtained OLEDs based on mixed ligand europium complexes are significantly superior in luminance to OLEDs based on individual complexes.An approach to the luminance increase of the europium-based OLED is proposed through the formation of the mixed-ligand complex. The introduction of two diverse anionic ligands around one europium ion forming a mixed-ligand complex is confirmed by powder X-ray diffraction, 1H and 19F NMR spectroscopy, MALDI MS spectroscopy, and luminescence spectroscopy. A decrease in the symmetry of the coordination environment leads to a 50% reduction of the lifetime of the excited state. The obtained OLEDs based on mixed ligand europium complexes are significantly superior in luminance to OLEDs based on individual complexes. An approach to the luminance increase of the europium-based OLED is proposed through the formation of the mixed-ligand complex. The introduction of two diverse anionic ligands around one europium ion forming a mixed-ligand complex is confirmed by powder X-ray diffraction, 1H and 19F NMR spectroscopy, MALDI MS spectroscopy, and luminescence spectroscopy. A decrease in the symmetry of the coordination environment leads to a 50% reduction of the lifetime of the excited state. The obtained OLEDs based on mixed ligand europium complexes are significantly superior in luminance to OLEDs based on individual complexes. An approach to the luminance increase of the europium-based OLED is proposed through the formation of the mixed-ligand complex. The introduction of two diverse anionic ligands around one europium ion forming a mixed-ligand complex is confirmed by powder X-ray diffraction, 1 H and 19 F NMR spectroscopy, MALDI MS spectroscopy, and luminescence spectroscopy. A decrease in the symmetry of the coordination environment leads to a 50% reduction of the lifetime of the excited state. The obtained OLEDs based on mixed ligand europium complexes are significantly superior in luminance to OLEDs based on individual complexes. |
Author | Kozlov, Makarii I Goloveshkin, Alexander S Kuzmina, Natalia P Vashchenko, Andrey A Pavlov, Alexander A Utochnikova, Valentina V Latipov, Egor V |
AuthorAffiliation | M. V. Lomonosov Moscow State University BMSTU Center of National Technological Initiative "Digital Material Science: New Material and Substances" Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences P. N. Lebedev Physical Institute A. N. Nesmeyanov Institute of Organoelement Compounds Bauman Moscow State Technical University |
AuthorAffiliation_xml | – sequence: 0 name: BMSTU Center of National Technological Initiative "Digital Material Science: New Material and Substances" – sequence: 0 name: Bauman Moscow State Technical University – sequence: 0 name: M. V. Lomonosov Moscow State University – sequence: 0 name: Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences – sequence: 0 name: P. N. Lebedev Physical Institute – sequence: 0 name: A. N. Nesmeyanov Institute of Organoelement Compounds |
Author_xml | – sequence: 1 givenname: Makarii I surname: Kozlov fullname: Kozlov, Makarii I – sequence: 2 givenname: Andrey A surname: Vashchenko fullname: Vashchenko, Andrey A – sequence: 3 givenname: Alexander A surname: Pavlov fullname: Pavlov, Alexander A – sequence: 4 givenname: Alexander S surname: Goloveshkin fullname: Goloveshkin, Alexander S – sequence: 5 givenname: Egor V surname: Latipov fullname: Latipov, Egor V – sequence: 6 givenname: Natalia P surname: Kuzmina fullname: Kuzmina, Natalia P – sequence: 7 givenname: Valentina V surname: Utochnikova fullname: Utochnikova, Valentina V |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37462080$$D View this record in MEDLINE/PubMed |
BookMark | eNptkkFr3DAQhUVJaZJtL723CHoJBbcjy5btY9mkaWEhPaRnI0vjXQVLciULNvTPV8mmWwg9zTB8b2Z4M-fkxHmHhLxl8IkB7z5rrmYooS23L8gZqwQvOmirk2PeiFNyHuMdALCa8VfklDeVyAI4I79vd0iNUwFlROpHiin42SRbDLmg6c3m6pJOyRonnUK67IJP2x0NqJMybpsLSHGvzJLZuMgF6WRGXIxFOtxTa_aoi8lspdNUeTtPuKejD1YuxrvX5OUop4hvnuKK_Px6dbv-Vmxurr-vv2wKxXmzFPWAHMSoKlU1qgSoOoalgFq2XauaoRMDKqFlrSvWcFnBoCVXwzgC17WuO8VX5OLQdw7-V8K49NZEhdMkHfoU-7LlXVmDAJbRD8_QO5-Cy9tlqmIdlCIPWZH3T1QaLOp-DsbKcN__tTUDHw-ACj7GgOMRYdA_3Ky_5Osfjze7zjA8g7OdjwYtQZrp_5J3B0mI6tj63xvwPzn-oxw |
CitedBy_id | crossref_primary_10_1002_asia_202400800 crossref_primary_10_1021_acsami_4c06466 crossref_primary_10_1039_D4DT02501F |
Cites_doi | 10.1039/C9DT03823J 10.1016/j.rser.2014.11.070 10.1021/am900408h 10.1016/j.jorganchem.2014.03.002 10.1016/j.jlumin.2009.06.015 10.1002/adom.201400341 10.1016/j.ccr.2015.02.015 10.1063/1.1608467 10.1016/j.orgel.2012.02.024 10.1016/j.jallcom.2021.161319 10.1364/JOSA.11.000459 10.1039/B905604C 10.1246/cl.1991.1267 10.1063/1.373496 10.1016/j.ccr.2016.11.016 10.1021/cm5006086 10.1146/annurev.biophys.093008.131321 10.1002/adom.201801256 10.1002/adfm.200304378 10.1038/srep21204 10.1038/nature11687 10.1016/j.ccr.2015.02.018 10.1016/j.orgel.2009.05.018 10.1016/j.mattod.2016.12.003 10.1016/S0379-6779(97)04010-1 10.1016/j.jphotochemrev.2016.10.001 10.1063/1.1497714 10.1038/srep02395 10.1002/9781119187493 10.1039/D1DT01316E 10.1021/ja01077a015 10.1039/D1DT02269E 10.1063/1.112810 10.1039/b912243e |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2023 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2023 |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1039/d3cp02082g |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1463-9084 |
EndPage | 248 |
ExternalDocumentID | 37462080 10_1039_D3CP02082G d3cp02082g |
Genre | Journal Article |
GroupedDBID | --- -DZ -JG -~X 0-7 0R~ 123 29O 4.4 53G 705 70~ 7~J 87K AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFVBQ AGEGJ AGKEF AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CS3 D0L DU5 EBS ECGLT EE0 EF- F5P GGIMP GNO H13 HZ~ H~N IDZ J3G J3I M4U N9A NHB O9- OK1 P2P R7B R7C RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UCJ UHB VH6 WH7 YNT AAYXX AFRZK AKMSF ALUYA CITATION R56 NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c337t-5be306fc4c47c200491e2605a898c7b96bec6da5d4173a40bda3cbff03d5d59c3 |
ISSN | 1463-9076 1463-9084 |
IngestDate | Thu Jul 10 22:59:41 EDT 2025 Mon Jun 30 05:32:16 EDT 2025 Mon Jul 21 05:32:59 EDT 2025 Thu Apr 24 23:02:27 EDT 2025 Tue Jul 01 00:48:04 EDT 2025 Tue Dec 17 20:58:22 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 29 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c337t-5be306fc4c47c200491e2605a898c7b96bec6da5d4173a40bda3cbff03d5d59c3 |
Notes | https://doi.org/10.1039/d3cp02082g Electronic supplementary information (ESI) available: Synthesis and experimental methods, PXRD, TGA, IR- and NMR- spectroscopy data. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6809-1952 0000-0002-4612-0169 0000-0002-0830-1268 0000-0001-8935-2034 |
PMID | 37462080 |
PQID | 2841902617 |
PQPubID | 2047499 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2841902617 crossref_primary_10_1039_D3CP02082G pubmed_primary_37462080 rsc_primary_d3cp02082g proquest_miscellaneous_2839250601 crossref_citationtrail_10_1039_D3CP02082G |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-26 |
PublicationDateYYYYMMDD | 2023-07-26 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-26 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Physical chemistry chemical physics : PCCP |
PublicationTitleAlternate | Phys Chem Chem Phys |
PublicationYear | 2023 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Li (D3CP02082G/cit31/1) 2009; 11 Otting (D3CP02082G/cit36/1) 2010; 39 Tsujimura (D3CP02082G/cit1/1) 2017 Jung (D3CP02082G/cit3/1) 2009; 10 Xin (D3CP02082G/cit21/1) 2003; 94 Bünzli (D3CP02082G/cit16/1) 2011; 10 Wang (D3CP02082G/cit28/1) 2019; 7 Utochnikova (D3CP02082G/cit15/1) 2021; 50 Kozlov (D3CP02082G/cit18/1) 2021 Kanai (D3CP02082G/cit39/1) 1997; 91 Liu (D3CP02082G/cit14/1) 2014; 26 Melby (D3CP02082G/cit33/1) 1964; 86 Kozlov (D3CP02082G/cit37/1) 2019; 48 Utochnikova (D3CP02082G/cit6/1) 2021 Laporte (D3CP02082G/cit22/1) 1925; 11 Binnemans (D3CP02082G/cit23/1) 2015; 295 Kuznetsov (D3CP02082G/cit17/1) 2021; 50 Kido (D3CP02082G/cit30/1) 1994; 65 Uoyama (D3CP02082G/cit12/1) 2012; 492 Sun (D3CP02082G/cit19/1) 2002; 81 Li (D3CP02082G/cit4/1) 2015; 3 Lima (D3CP02082G/cit25/1) 2013; 3 Kozlov (D3CP02082G/cit40/1) 2023 Xu (D3CP02082G/cit27/1) 2015; 293–294 Li (D3CP02082G/cit13/1) 2017; 20 Adachi (D3CP02082G/cit38/1) 2000; 87 Drozdov (D3CP02082G/cit35/1) 2013 Chi (D3CP02082G/cit9/1) 2017; 346 Kido (D3CP02082G/cit29/1) 1991 Jayabharathi (D3CP02082G/cit11/1) 2014; 761 Lima (D3CP02082G/cit26/1) 2016; 6 Zhang (D3CP02082G/cit20/1) 2009; 1 Thejo Kalyani (D3CP02082G/cit2/1) 2015; 44 Reddy (D3CP02082G/cit10/1) 2016; 29 Bünzli (D3CP02082G/cit7/1) 2011; 10 Eliseeva (D3CP02082G/cit8/1) 2010; 39 Liu (D3CP02082G/cit32/1) 2012; 13 Sun (D3CP02082G/cit34/1) 2003; 13 NanoCell (D3CP02082G/cit5/1) Zhang (D3CP02082G/cit24/1) 2009; 129 |
References_xml | – issn: 2021 publication-title: Handbook on the Physics and Chemistry of Rare Earths doi: Utochnikova – issn: 2017 publication-title: OLED Display Fundamentals and Applications doi: Tsujimura – doi: NanoCell – issn: 2013 end-page: p 511-534 publication-title: Comprehensive Inorganic Chemistry II From Elements to Applications doi: Drozdov Kuzmina – volume: 48 start-page: 17298 year: 2019 ident: D3CP02082G/cit37/1 publication-title: Dalton Trans. doi: 10.1039/C9DT03823J – volume: 44 start-page: 319 year: 2015 ident: D3CP02082G/cit2/1 publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2014.11.070 – volume: 1 start-page: 1852 year: 2009 ident: D3CP02082G/cit20/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am900408h – volume: 761 start-page: 74 year: 2014 ident: D3CP02082G/cit11/1 publication-title: J. Organomet. Chem. doi: 10.1016/j.jorganchem.2014.03.002 – volume: 129 start-page: 1304 year: 2009 ident: D3CP02082G/cit24/1 publication-title: J. Lumin. doi: 10.1016/j.jlumin.2009.06.015 – volume: 3 start-page: 390 year: 2015 ident: D3CP02082G/cit4/1 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201400341 – volume: 10 start-page: 1 year: 2011 ident: D3CP02082G/cit7/1 publication-title: Springer Ser. Fluoresc. – volume: 295 start-page: 1 year: 2015 ident: D3CP02082G/cit23/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2015.02.015 – volume: 94 start-page: 4729 year: 2003 ident: D3CP02082G/cit21/1 publication-title: J. Appl. Phys. doi: 10.1063/1.1608467 – volume: 13 start-page: 1038 year: 2012 ident: D3CP02082G/cit32/1 publication-title: Org. Electron. doi: 10.1016/j.orgel.2012.02.024 – start-page: 161319 year: 2021 ident: D3CP02082G/cit18/1 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2021.161319 – volume: 11 start-page: 459 year: 1925 ident: D3CP02082G/cit22/1 publication-title: J. Opt. Soc. Am. doi: 10.1364/JOSA.11.000459 – volume: 39 start-page: 189 year: 2010 ident: D3CP02082G/cit8/1 publication-title: Chem. Soc. Rev. doi: 10.1039/B905604C – start-page: 1267 year: 1991 ident: D3CP02082G/cit29/1 publication-title: Chem. Lett. doi: 10.1246/cl.1991.1267 – volume: 87 start-page: 8049 year: 2000 ident: D3CP02082G/cit38/1 publication-title: J. Appl. Phys. doi: 10.1063/1.373496 – ident: D3CP02082G/cit5/1 – volume: 346 start-page: 91 year: 2017 ident: D3CP02082G/cit9/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2016.11.016 – volume: 26 start-page: 2368 year: 2014 ident: D3CP02082G/cit14/1 publication-title: Chem. Mater. doi: 10.1021/cm5006086 – volume: 39 start-page: 387 year: 2010 ident: D3CP02082G/cit36/1 publication-title: Annu. Rev. Biophys. doi: 10.1146/annurev.biophys.093008.131321 – volume: 7 start-page: 1801256 year: 2019 ident: D3CP02082G/cit28/1 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201801256 – volume: 13 start-page: 683 year: 2003 ident: D3CP02082G/cit34/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200304378 – volume: 6 start-page: 21204 year: 2016 ident: D3CP02082G/cit26/1 publication-title: Sci. Rep. doi: 10.1038/srep21204 – volume: 492 start-page: 234 year: 2012 ident: D3CP02082G/cit12/1 publication-title: Nature doi: 10.1038/nature11687 – volume: 293–294 start-page: 228 year: 2015 ident: D3CP02082G/cit27/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2015.02.018 – start-page: 511 volume-title: Comprehensive Inorganic Chemistry II From Elements to Applications year: 2013 ident: D3CP02082G/cit35/1 – volume: 10 start-page: 1066 year: 2009 ident: D3CP02082G/cit3/1 publication-title: Org. Electron. doi: 10.1016/j.orgel.2009.05.018 – volume: 20 start-page: 258 year: 2017 ident: D3CP02082G/cit13/1 publication-title: Mater. Today doi: 10.1016/j.mattod.2016.12.003 – volume-title: Handbook on the Physics and Chemistry of Rare Earths year: 2021 ident: D3CP02082G/cit6/1 – volume: 91 start-page: 195 year: 1997 ident: D3CP02082G/cit39/1 publication-title: Synth. Met. doi: 10.1016/S0379-6779(97)04010-1 – volume: 29 start-page: 29 year: 2016 ident: D3CP02082G/cit10/1 publication-title: J. Photochem. Photobiol., C doi: 10.1016/j.jphotochemrev.2016.10.001 – start-page: 16 year: 2023 ident: D3CP02082G/cit40/1 publication-title: Materials – volume: 10 start-page: 1 year: 2011 ident: D3CP02082G/cit16/1 publication-title: Springer Ser. Fluoresc. – volume: 81 start-page: 792 year: 2002 ident: D3CP02082G/cit19/1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1497714 – volume: 3 start-page: 1 year: 2013 ident: D3CP02082G/cit25/1 publication-title: Sci. Rep. doi: 10.1038/srep02395 – volume-title: OLED Display Fundamentals and Applications year: 2017 ident: D3CP02082G/cit1/1 doi: 10.1002/9781119187493 – volume: 50 start-page: 9685 year: 2021 ident: D3CP02082G/cit17/1 publication-title: Dalton Trans. doi: 10.1039/D1DT01316E – volume: 86 start-page: 5117 year: 1964 ident: D3CP02082G/cit33/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01077a015 – volume: 50 start-page: 12806 year: 2021 ident: D3CP02082G/cit15/1 publication-title: Dalton Trans. doi: 10.1039/D1DT02269E – volume: 65 start-page: 2124 year: 1994 ident: D3CP02082G/cit30/1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.112810 – volume: 11 start-page: 9687 year: 2009 ident: D3CP02082G/cit31/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b912243e |
SSID | ssj0001513 |
Score | 2.4474742 |
Snippet | An approach to the luminance increase of the europium-based OLED is proposed through the formation of the mixed-ligand complex. The introduction of two diverse... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 242 |
SubjectTerms | Complex formation Europium Excitation Ligands Luminance NMR spectroscopy X ray powder diffraction |
Title | The increase of europium-based OLED luminance through reducing the excited state lifetime by mixed-ligand complex formation |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37462080 https://www.proquest.com/docview/2841902617 https://www.proquest.com/docview/2839250601 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZKJ8FeJm6DsoGM4AVVhiR2bo9TVzZgQCU6tLfKcZwtWptUvUzd-En8SY4T2-lEkYCXKPKlkfJ9OT7n9FwQeu25MkikR4mfyoSwIHMId6kkbiRcN2OSs8qn-_lLcHzKPp75Z63Wz7WopeUieStuNuaV_A-qMAa4qizZf0DW_igMwD3gC1dAGK5_jXFeKL2v9sirQhvTfDkh6mxKu19P-oddED5VUQ1pW_LMVLVWkyUlV6JSOqvEou44z6TqNq-U0km-kikZ5-c68206lqsm13FdqR0YrIXpHlffqaHaczKvPA-DXs9mk30qb8blVZ0tdAn2et64b7_z-QXsLy5LG3F53bhcB_xKb7S5Oc3kUalCUucXusdYs-LbuncDOOOExNO1sWuJzAJKYqfuI2dEdp0rrampPSZaACsptPFocKiqrJpSMVV9Sb3z9UXwDqaTiiQ0ZAFMO83xaIMWzdQdtOWBTeK10dZBf_jhxB78oDxRUwGXxu-aR22ju2bzbfXnN5sGNJyZ6TxTaTjD-2hHmyb4oObZA9SSxUN0r2cwfYR-AN-w4RsuM3ybb1jxDVu-Yc03bPgGAxJrvuGKb9jwDSfXeJ1vWPMNW749Rqfv-8PeMdHNO4igNFwQP5FgjWaCCRYKhUrsSmU78yiORJjEICFEkHI_ZW5IQSIkKaciyTKHpn7qx4LuonZRFvIpwqCmplw6QjgyZD6jXIjEiaOER8JJ_SjroDfmnY6ErmyvGqyMR1WEBY1Hh7Q3qKA46qBXdu20rueycdW-gWakv_f5CBQ50J5VB4MOemmnAQL1FxsvZLlUa8DeUDU73Q56UkNqH2Mo0EG7gLEdbmjy7I9b9tB283Hso_ZitpTPQRleJC80CX8BDiG6OQ |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+increase+of+europium-based+OLED+luminance+through+reducing+the+excited+state+lifetime+by+mixed-ligand+complex+formation&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Kozlov%2C+Makarii+I&rft.au=Vashchenko%2C+Andrey+A&rft.au=Pavlov%2C+Alexander+A&rft.au=Goloveshkin%2C+Alexander+S&rft.date=2023-07-26&rft.eissn=1463-9084&rft.volume=25&rft.issue=29&rft.spage=20042&rft_id=info:doi/10.1039%2Fd3cp02082g&rft_id=info%3Apmid%2F37462080&rft.externalDocID=37462080 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon |