A neural network approach to real-time condition monitoring of induction motors

A neural network-based incipient fault detector for small and medium-size induction motors is developed. The detector avoids the problems associated with traditional incipient fault detection schemes by employing more readily available information such as rotor speed and stator current. The neural n...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial electronics (1982) Vol. 38; no. 6; pp. 448 - 453
Main Authors Chow, M.-y., Mangum, P.M., Yee, S.O.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.12.1991
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text
ISSN0278-0046
DOI10.1109/41.107100

Cover

Loading…
Abstract A neural network-based incipient fault detector for small and medium-size induction motors is developed. The detector avoids the problems associated with traditional incipient fault detection schemes by employing more readily available information such as rotor speed and stator current. The neural network design is evaluated in real time in the laboratory on a 3/4 hp permanent magnet induction motor. The results of this evaluation indicate that the neural-network-based incipient fault detector provides a satisfactory level of accuracy, greater than 95%, which is suitable for real-world applications.< >
AbstractList A neural network-based incipient fault detector for small and medium-size induction motors is developed. The detector avoids the problems associated with traditional incipient fault detection schemes by employing more readily available information such as rotor speed and stator current. The neural network design is evaluated in real time in the laboratory on a 3/4 hp permanent magnet induction motor. The results of this evaluation indicate that the neural-network-based incipient fault detector provides a satisfactory level of accuracy, greater than 95%, which is suitable for real-world applications
A neural network-based incipient fault detector for small and medium-size induction motors is developed. The detector avoids the problems associated with traditional incipient fault detection schemes by employing more readily available information such as rotor speed and stator current. The neural network design is evaluated in real time in the laboratory on a 3/4 hp permanent magnet induction motor. The results of this evaluation indicate that the neural-network-based incipient fault detector provides a satisfactory level of accuracy, greater than 95%, which is suitable for real-world applications.< >
Author Chow, M.-y.
Yee, S.O.
Mangum, P.M.
Author_xml – sequence: 1
  givenname: M.-y.
  surname: Chow
  fullname: Chow, M.-y.
  organization: Dept. of Electr. Eng., North Carolina State Univ., Raleigh, NC, USA
– sequence: 2
  givenname: P.M.
  surname: Mangum
  fullname: Mangum, P.M.
– sequence: 3
  givenname: S.O.
  surname: Yee
  fullname: Yee, S.O.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5050103$$DView record in Pascal Francis
BookMark eNqFkM1LxDAQxXNYwfXj4NVTDyJ46O6kTdv0KOIXCF70HGbTqUa7yZpkEf97s3YFEcHLPJj5vcfw9tjEOkuMHXGYcQ7tXPAZh4YDTNgUikbmAKLeZXshvABwUfFqyu7PM0trj0OS-O78a4arlXeon7PoMk845NEsKdPOdiYaZ7OlsyY6b-xT5vrM2G6tt_u0DQdsp8ch0OFW99nj1eXDxU1-d399e3F-l-uybGJeNbwSXBc9IS2wlBp4I1rsdS2AOiJMoouFRGpLueipa6BrWkltJ2VdFm25z07H3PTs25pCVEsTNA0DWnLroIpWlKJJ419QClFLDgk82YIYNA69R6tNUCtvlug_VAUVJCph8xHT3oXgqVfaRNw0ED2aQXFQm_KV4GosPznOfjm-M_9ij0fWENEP7uv4CXsVkKI
CODEN ITIED6
CitedBy_id crossref_primary_10_1109_TIM_2019_2942172
crossref_primary_10_1177_09574565211030711
crossref_primary_10_1016_j_ymssp_2011_12_002
crossref_primary_10_1016_j_conengprac_2024_106120
crossref_primary_10_1109_TIE_2018_2840529
crossref_primary_10_1109_TASE_2009_2020508
crossref_primary_10_5370_JEET_2014_9_1_170
crossref_primary_10_1109_ACCESS_2020_2990528
crossref_primary_10_1016_S1568_4946_01_00008_4
crossref_primary_10_1109_61_252652
crossref_primary_10_1016_S0378_7796_02_00172_4
crossref_primary_10_1109_ACCESS_2022_3199381
crossref_primary_10_1109_ACCESS_2020_2972859
crossref_primary_10_1088_1361_6501_acb9aa
crossref_primary_10_1007_s10462_020_09910_w
crossref_primary_10_1007_s42417_023_01036_x
crossref_primary_10_1016_j_ymssp_2020_106908
crossref_primary_10_1109_ACCESS_2021_3089698
crossref_primary_10_3390_app112311429
crossref_primary_10_1080_15325000500244625
crossref_primary_10_1109_ACCESS_2020_3043398
crossref_primary_10_1002_etep_4450070410
crossref_primary_10_1016_S1474_6670_17_57420_0
crossref_primary_10_1080_00207549508930175
crossref_primary_10_1109_41_370379
crossref_primary_10_1109_41_370378
crossref_primary_10_1109_41_222640
crossref_primary_10_1007_s40747_022_00925_0
crossref_primary_10_1109_41_873211
crossref_primary_10_1109_28_658729
crossref_primary_10_1109_41_873213
crossref_primary_10_1109_TEC_2003_811739
crossref_primary_10_3390_su15129272
crossref_primary_10_1016_j_triboint_2024_110044
crossref_primary_10_1109_TIE_2008_2004669
crossref_primary_10_1108_JQME_02_2019_0020
crossref_primary_10_4103_0377_2063_116081
crossref_primary_10_1016_j_knosys_2021_107386
crossref_primary_10_3233_JIFS_179588
crossref_primary_10_1016_0967_0661_95_00037_U
crossref_primary_10_1016_j_dsp_2003_12_003
crossref_primary_10_1109_TIE_2003_821897
crossref_primary_10_1109_TIE_2022_3152019
crossref_primary_10_1007_s41060_023_00440_6
crossref_primary_10_1016_S0924_0136_00_00779_2
crossref_primary_10_1016_j_ress_2017_10_010
crossref_primary_10_1016_j_eswa_2008_10_058
crossref_primary_10_1016_j_isatra_2020_07_002
crossref_primary_10_1115_1_4051771
crossref_primary_10_5370_JEET_2007_2_4_485
crossref_primary_10_1016_0925_2312_94_90004_3
crossref_primary_10_1109_41_873207
crossref_primary_10_1109_TIE_2003_812470
crossref_primary_10_1109_28_395301
crossref_primary_10_1109_TIE_2008_2007527
crossref_primary_10_3390_en13010101
crossref_primary_10_1016_j_isatra_2017_06_001
crossref_primary_10_1115_1_4003371
crossref_primary_10_1016_S1474_6670_17_38456_2
crossref_primary_10_1109_95_296402
crossref_primary_10_1109_TIA_2016_2599502
crossref_primary_10_1109_TPWRD_2002_801425
crossref_primary_10_1109_28_511648
crossref_primary_10_1243_0959651011540987
crossref_primary_10_1109_JSYST_2008_924129
crossref_primary_10_1006_mssp_2001_1462
crossref_primary_10_1109_21_293489
crossref_primary_10_3390_s22228906
crossref_primary_10_1109_63_849047
crossref_primary_10_1109_60_507183
crossref_primary_10_1016_j_knosys_2023_110395
Cites_doi 10.1109/MASSP.1987.1165576
10.2172/7101510
10.1109/TPAS.1974.293858
10.1142/S012906579100008X
10.7551/mitpress/5236.001.0001
ContentType Journal Article
Copyright 1992 INIST-CNRS
Copyright_xml – notice: 1992 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SP
8FD
L7M
7TB
FR3
DOI 10.1109/41.107100
DatabaseName CrossRef
Pascal-Francis
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
DatabaseTitleList Technology Research Database

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EndPage 453
ExternalDocumentID 5050103
10_1109_41_107100
107100
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
TWZ
VH1
VJK
AAYXX
CITATION
RIG
IQODW
7SP
8FD
L7M
7TB
FR3
ID FETCH-LOGICAL-c337t-571541c2feaeba38c01749afc640edeea40ec2b8ae938bfed70d798e9d8863293
IEDL.DBID RIE
ISSN 0278-0046
IngestDate Fri Sep 05 04:21:46 EDT 2025
Thu Sep 04 23:34:27 EDT 2025
Wed Apr 02 07:22:03 EDT 2025
Tue Jul 01 02:43:46 EDT 2025
Thu Apr 24 22:56:08 EDT 2025
Tue Aug 26 16:39:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-571541c2feaeba38c01749afc640edeea40ec2b8ae938bfed70d798e9d8863293
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 28446810
PQPubID 23500
PageCount 6
ParticipantIDs crossref_primary_10_1109_41_107100
crossref_citationtrail_10_1109_41_107100
proquest_miscellaneous_29434794
ieee_primary_107100
proquest_miscellaneous_28446810
pascalfrancis_primary_5050103
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1991-12-01
PublicationDateYYYYMMDD 1991-12-01
PublicationDate_xml – month: 12
  year: 1991
  text: 1991-12-01
  day: 01
PublicationDecade 1990
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle IEEE transactions on industrial electronics (1982)
PublicationTitleAbbrev TIE
PublicationYear 1991
Publisher IEEE
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
References ref8
chow (ref4) 1990
rummelhart (ref7) 1986
werbos (ref9) 1974
smeaton (ref6) 1987
cambrias (ref2) 1988
ref3
ref5
tavner (ref1) 1989
References_xml – ident: ref8
  doi: 10.1109/MASSP.1987.1165576
– year: 1974
  ident: ref9
  publication-title: Beyond Regression New Tools for Prediction and Analysis in the Behavioral Sciences
– year: 1989
  ident: ref1
  publication-title: Condition Monitoring of Electrical Machines
– year: 1987
  ident: ref6
  publication-title: Motor Application and Maintenance Handbook
– year: 1988
  ident: ref2
  publication-title: Generic guidelines for life extension of plant electrical equipment
  doi: 10.2172/7101510
– start-page: 80
  year: 1990
  ident: ref4
  article-title: Artificial neural network methodology in real-time incipient fault detection of rotating machines
  publication-title: Proc National Science Foundation Workshop on Artificial Neural Network Methodology in Power Systems Engineering
– ident: ref5
  doi: 10.1109/TPAS.1974.293858
– ident: ref3
  doi: 10.1142/S012906579100008X
– year: 1986
  ident: ref7
  publication-title: Parallel Distributed Processing
  doi: 10.7551/mitpress/5236.001.0001
SSID ssj0014515
Score 1.7133682
Snippet A neural network-based incipient fault detector for small and medium-size induction motors is developed. The detector avoids the problems associated with...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 448
SubjectTerms A.c. Machines
Applied sciences
Artificial neural networks
Condition monitoring
Electrical engineering. Electrical power engineering
Electrical fault detection
Electrical machines
Exact sciences and technology
Fault detection
Induction motors
Laboratories
Neural networks
Rotating machines
Rotors
Stator windings
Title A neural network approach to real-time condition monitoring of induction motors
URI https://ieeexplore.ieee.org/document/107100
https://www.proquest.com/docview/28446810
https://www.proquest.com/docview/29434794
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagEwy8EeVpIQaWlDzcxB4RAiEkYAGpW-THZQESRNOFX8-dnVYtIMSUyDknis8-39nn72PsDL1aU4FWkTQyizD-yiOdOhPFhsDRXVWljhb07x_y22dxNxqOOpxtfxYGAHzyGQzo1u_lu8ZOaKkMRzhh0SyzZexl4ajWbMNADANZQUqAsRjzdSBCSawuRDIIFRemHs-lQpmQeoyNUQUWix8G2c8yN-vh-PbYgxNScsnLYNKagf38Bt34zx_YYGudt8kvQ_fYZEtQb7HVOQzCbfZ4yQnTEqXqkBHOpzDjvG04upSvEfHPc4ybnU_v4m_eDFBt3lQcY_oAQIvlxNyzw55vrp-ubqOOZSGyWVa00bBALyqxKWoMjM6kxTEqlK5sLmJwABovNjVSg8ok6tUVsSuUBOWkzDP0FnZZr25q2GO8SDMHKSjhbCwSUNIMdZynCt-SoeHI--x8qoDSdhDkxITxWvpQJFalSMrQRn12OhN9D7gbvwltURvPCYTSowWlzh6js0esFn12MlVyiWOJNkh0Dc1kXOJULQif7Q8JgtNDE7b_65cP2IrPJPPZLoes135M4Ah9ltYc-976BRsH610
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYoHCiHQpcilkKxEAcuWfJwEvuIqqItheWyK3GL_JhcShPEZi_8embs7AoKqnpK5IwTxWOPZ-zx9zF2il6tqUGrSBqZRRh_FZFOnYliQ-Dorq5TRwv6N5NiPBNXd_ldj7Ptz8IAgE8-gxHd-r1819oFLZXhCCcsmg9sA6d9kYfDWqstA5EHuoKUIGMx6uthhJJYnYtkFKq-mnw8mwrlQuo5NkcdeCzemGQ_z1xuhwPccw9PSOklv0eLzozs01_gjf_5CzvsU-9v8ovQQT6zNWgGbOsFCuEuu73ghGqJUk3ICedLoHHetRydyvuIGOg5Rs7OJ3jxP94QUG3e1hyj-gBBi-XE3fOFzS5_TL-Po55nIbJZVnZRXqIfldgUdQZGZ9LiKBVK17YQMTgAjRebGqlBZRI168rYlUqCclIWGfoLe2y9aRvYZ7xMMwcpKOFsLBJQ0uQ6LlKFb8nQdBRDdrZUQGV7EHLiwrivfDASq0okVWijITtZiT4E5I33hAbUxi8EQunRK6WuHqO7R7wWQ3a8VHKFo4m2SHQD7WJe4WQtCKHtHxIEqIdG7ODdLx-zzfH05rq6_jn59ZV99HllPvflkK13jws4Qg-mM998z30Gjkruqg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+neural+network+approach+to+real-time+condition+monitoring+of+induction+motors&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Chow%2C+M.-y.&rft.au=Mangum%2C+P.M.&rft.au=Yee%2C+S.O.&rft.date=1991-12-01&rft.issn=0278-0046&rft.volume=38&rft.issue=6&rft.spage=448&rft.epage=453&rft_id=info:doi/10.1109%2F41.107100&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_41_107100
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon