A neural network approach to real-time condition monitoring of induction motors
A neural network-based incipient fault detector for small and medium-size induction motors is developed. The detector avoids the problems associated with traditional incipient fault detection schemes by employing more readily available information such as rotor speed and stator current. The neural n...
Saved in:
Published in | IEEE transactions on industrial electronics (1982) Vol. 38; no. 6; pp. 448 - 453 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.12.1991
Institute of Electrical and Electronics Engineers |
Subjects | |
Online Access | Get full text |
ISSN | 0278-0046 |
DOI | 10.1109/41.107100 |
Cover
Loading…
Abstract | A neural network-based incipient fault detector for small and medium-size induction motors is developed. The detector avoids the problems associated with traditional incipient fault detection schemes by employing more readily available information such as rotor speed and stator current. The neural network design is evaluated in real time in the laboratory on a 3/4 hp permanent magnet induction motor. The results of this evaluation indicate that the neural-network-based incipient fault detector provides a satisfactory level of accuracy, greater than 95%, which is suitable for real-world applications.< > |
---|---|
AbstractList | A neural network-based incipient fault detector for small and medium-size induction motors is developed. The detector avoids the problems associated with traditional incipient fault detection schemes by employing more readily available information such as rotor speed and stator current. The neural network design is evaluated in real time in the laboratory on a 3/4 hp permanent magnet induction motor. The results of this evaluation indicate that the neural-network-based incipient fault detector provides a satisfactory level of accuracy, greater than 95%, which is suitable for real-world applications A neural network-based incipient fault detector for small and medium-size induction motors is developed. The detector avoids the problems associated with traditional incipient fault detection schemes by employing more readily available information such as rotor speed and stator current. The neural network design is evaluated in real time in the laboratory on a 3/4 hp permanent magnet induction motor. The results of this evaluation indicate that the neural-network-based incipient fault detector provides a satisfactory level of accuracy, greater than 95%, which is suitable for real-world applications.< > |
Author | Chow, M.-y. Yee, S.O. Mangum, P.M. |
Author_xml | – sequence: 1 givenname: M.-y. surname: Chow fullname: Chow, M.-y. organization: Dept. of Electr. Eng., North Carolina State Univ., Raleigh, NC, USA – sequence: 2 givenname: P.M. surname: Mangum fullname: Mangum, P.M. – sequence: 3 givenname: S.O. surname: Yee fullname: Yee, S.O. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5050103$$DView record in Pascal Francis |
BookMark | eNqFkM1LxDAQxXNYwfXj4NVTDyJ46O6kTdv0KOIXCF70HGbTqUa7yZpkEf97s3YFEcHLPJj5vcfw9tjEOkuMHXGYcQ7tXPAZh4YDTNgUikbmAKLeZXshvABwUfFqyu7PM0trj0OS-O78a4arlXeon7PoMk845NEsKdPOdiYaZ7OlsyY6b-xT5vrM2G6tt_u0DQdsp8ch0OFW99nj1eXDxU1-d399e3F-l-uybGJeNbwSXBc9IS2wlBp4I1rsdS2AOiJMoouFRGpLueipa6BrWkltJ2VdFm25z07H3PTs25pCVEsTNA0DWnLroIpWlKJJ419QClFLDgk82YIYNA69R6tNUCtvlug_VAUVJCph8xHT3oXgqVfaRNw0ED2aQXFQm_KV4GosPznOfjm-M_9ij0fWENEP7uv4CXsVkKI |
CODEN | ITIED6 |
CitedBy_id | crossref_primary_10_1109_TIM_2019_2942172 crossref_primary_10_1177_09574565211030711 crossref_primary_10_1016_j_ymssp_2011_12_002 crossref_primary_10_1016_j_conengprac_2024_106120 crossref_primary_10_1109_TIE_2018_2840529 crossref_primary_10_1109_TASE_2009_2020508 crossref_primary_10_5370_JEET_2014_9_1_170 crossref_primary_10_1109_ACCESS_2020_2990528 crossref_primary_10_1016_S1568_4946_01_00008_4 crossref_primary_10_1109_61_252652 crossref_primary_10_1016_S0378_7796_02_00172_4 crossref_primary_10_1109_ACCESS_2022_3199381 crossref_primary_10_1109_ACCESS_2020_2972859 crossref_primary_10_1088_1361_6501_acb9aa crossref_primary_10_1007_s10462_020_09910_w crossref_primary_10_1007_s42417_023_01036_x crossref_primary_10_1016_j_ymssp_2020_106908 crossref_primary_10_1109_ACCESS_2021_3089698 crossref_primary_10_3390_app112311429 crossref_primary_10_1080_15325000500244625 crossref_primary_10_1109_ACCESS_2020_3043398 crossref_primary_10_1002_etep_4450070410 crossref_primary_10_1016_S1474_6670_17_57420_0 crossref_primary_10_1080_00207549508930175 crossref_primary_10_1109_41_370379 crossref_primary_10_1109_41_370378 crossref_primary_10_1109_41_222640 crossref_primary_10_1007_s40747_022_00925_0 crossref_primary_10_1109_41_873211 crossref_primary_10_1109_28_658729 crossref_primary_10_1109_41_873213 crossref_primary_10_1109_TEC_2003_811739 crossref_primary_10_3390_su15129272 crossref_primary_10_1016_j_triboint_2024_110044 crossref_primary_10_1109_TIE_2008_2004669 crossref_primary_10_1108_JQME_02_2019_0020 crossref_primary_10_4103_0377_2063_116081 crossref_primary_10_1016_j_knosys_2021_107386 crossref_primary_10_3233_JIFS_179588 crossref_primary_10_1016_0967_0661_95_00037_U crossref_primary_10_1016_j_dsp_2003_12_003 crossref_primary_10_1109_TIE_2003_821897 crossref_primary_10_1109_TIE_2022_3152019 crossref_primary_10_1007_s41060_023_00440_6 crossref_primary_10_1016_S0924_0136_00_00779_2 crossref_primary_10_1016_j_ress_2017_10_010 crossref_primary_10_1016_j_eswa_2008_10_058 crossref_primary_10_1016_j_isatra_2020_07_002 crossref_primary_10_1115_1_4051771 crossref_primary_10_5370_JEET_2007_2_4_485 crossref_primary_10_1016_0925_2312_94_90004_3 crossref_primary_10_1109_41_873207 crossref_primary_10_1109_TIE_2003_812470 crossref_primary_10_1109_28_395301 crossref_primary_10_1109_TIE_2008_2007527 crossref_primary_10_3390_en13010101 crossref_primary_10_1016_j_isatra_2017_06_001 crossref_primary_10_1115_1_4003371 crossref_primary_10_1016_S1474_6670_17_38456_2 crossref_primary_10_1109_95_296402 crossref_primary_10_1109_TIA_2016_2599502 crossref_primary_10_1109_TPWRD_2002_801425 crossref_primary_10_1109_28_511648 crossref_primary_10_1243_0959651011540987 crossref_primary_10_1109_JSYST_2008_924129 crossref_primary_10_1006_mssp_2001_1462 crossref_primary_10_1109_21_293489 crossref_primary_10_3390_s22228906 crossref_primary_10_1109_63_849047 crossref_primary_10_1109_60_507183 crossref_primary_10_1016_j_knosys_2023_110395 |
Cites_doi | 10.1109/MASSP.1987.1165576 10.2172/7101510 10.1109/TPAS.1974.293858 10.1142/S012906579100008X 10.7551/mitpress/5236.001.0001 |
ContentType | Journal Article |
Copyright | 1992 INIST-CNRS |
Copyright_xml | – notice: 1992 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7SP 8FD L7M 7TB FR3 |
DOI | 10.1109/41.107100 |
DatabaseName | CrossRef Pascal-Francis Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace Mechanical & Transportation Engineering Abstracts Engineering Research Database |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Engineering Research Database |
DatabaseTitleList | Technology Research Database Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EndPage | 453 |
ExternalDocumentID | 5050103 10_1109_41_107100 107100 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 TWZ VH1 VJK AAYXX CITATION RIG IQODW 7SP 8FD L7M 7TB FR3 |
ID | FETCH-LOGICAL-c337t-571541c2feaeba38c01749afc640edeea40ec2b8ae938bfed70d798e9d8863293 |
IEDL.DBID | RIE |
ISSN | 0278-0046 |
IngestDate | Fri Sep 05 04:21:46 EDT 2025 Thu Sep 04 23:34:27 EDT 2025 Wed Apr 02 07:22:03 EDT 2025 Tue Jul 01 02:43:46 EDT 2025 Thu Apr 24 22:56:08 EDT 2025 Tue Aug 26 16:39:11 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c337t-571541c2feaeba38c01749afc640edeea40ec2b8ae938bfed70d798e9d8863293 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 28446810 |
PQPubID | 23500 |
PageCount | 6 |
ParticipantIDs | crossref_primary_10_1109_41_107100 crossref_citationtrail_10_1109_41_107100 proquest_miscellaneous_29434794 ieee_primary_107100 proquest_miscellaneous_28446810 pascalfrancis_primary_5050103 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 1900 |
PublicationDate | 1991-12-01 |
PublicationDateYYYYMMDD | 1991-12-01 |
PublicationDate_xml | – month: 12 year: 1991 text: 1991-12-01 day: 01 |
PublicationDecade | 1990 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY |
PublicationTitle | IEEE transactions on industrial electronics (1982) |
PublicationTitleAbbrev | TIE |
PublicationYear | 1991 |
Publisher | IEEE Institute of Electrical and Electronics Engineers |
Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers |
References | ref8 chow (ref4) 1990 rummelhart (ref7) 1986 werbos (ref9) 1974 smeaton (ref6) 1987 cambrias (ref2) 1988 ref3 ref5 tavner (ref1) 1989 |
References_xml | – ident: ref8 doi: 10.1109/MASSP.1987.1165576 – year: 1974 ident: ref9 publication-title: Beyond Regression New Tools for Prediction and Analysis in the Behavioral Sciences – year: 1989 ident: ref1 publication-title: Condition Monitoring of Electrical Machines – year: 1987 ident: ref6 publication-title: Motor Application and Maintenance Handbook – year: 1988 ident: ref2 publication-title: Generic guidelines for life extension of plant electrical equipment doi: 10.2172/7101510 – start-page: 80 year: 1990 ident: ref4 article-title: Artificial neural network methodology in real-time incipient fault detection of rotating machines publication-title: Proc National Science Foundation Workshop on Artificial Neural Network Methodology in Power Systems Engineering – ident: ref5 doi: 10.1109/TPAS.1974.293858 – ident: ref3 doi: 10.1142/S012906579100008X – year: 1986 ident: ref7 publication-title: Parallel Distributed Processing doi: 10.7551/mitpress/5236.001.0001 |
SSID | ssj0014515 |
Score | 1.7133682 |
Snippet | A neural network-based incipient fault detector for small and medium-size induction motors is developed. The detector avoids the problems associated with... |
SourceID | proquest pascalfrancis crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 448 |
SubjectTerms | A.c. Machines Applied sciences Artificial neural networks Condition monitoring Electrical engineering. Electrical power engineering Electrical fault detection Electrical machines Exact sciences and technology Fault detection Induction motors Laboratories Neural networks Rotating machines Rotors Stator windings |
Title | A neural network approach to real-time condition monitoring of induction motors |
URI | https://ieeexplore.ieee.org/document/107100 https://www.proquest.com/docview/28446810 https://www.proquest.com/docview/29434794 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagEwy8EeVpIQaWlDzcxB4RAiEkYAGpW-THZQESRNOFX8-dnVYtIMSUyDknis8-39nn72PsDL1aU4FWkTQyizD-yiOdOhPFhsDRXVWljhb07x_y22dxNxqOOpxtfxYGAHzyGQzo1u_lu8ZOaKkMRzhh0SyzZexl4ajWbMNADANZQUqAsRjzdSBCSawuRDIIFRemHs-lQpmQeoyNUQUWix8G2c8yN-vh-PbYgxNScsnLYNKagf38Bt34zx_YYGudt8kvQ_fYZEtQb7HVOQzCbfZ4yQnTEqXqkBHOpzDjvG04upSvEfHPc4ybnU_v4m_eDFBt3lQcY_oAQIvlxNyzw55vrp-ubqOOZSGyWVa00bBALyqxKWoMjM6kxTEqlK5sLmJwABovNjVSg8ok6tUVsSuUBOWkzDP0FnZZr25q2GO8SDMHKSjhbCwSUNIMdZynCt-SoeHI--x8qoDSdhDkxITxWvpQJFalSMrQRn12OhN9D7gbvwltURvPCYTSowWlzh6js0esFn12MlVyiWOJNkh0Dc1kXOJULQif7Q8JgtNDE7b_65cP2IrPJPPZLoes135M4Ah9ltYc-976BRsH610 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYoHCiHQpcilkKxEAcuWfJwEvuIqqItheWyK3GL_JhcShPEZi_8embs7AoKqnpK5IwTxWOPZ-zx9zF2il6tqUGrSBqZRRh_FZFOnYliQ-Dorq5TRwv6N5NiPBNXd_ldj7Ptz8IAgE8-gxHd-r1819oFLZXhCCcsmg9sA6d9kYfDWqstA5EHuoKUIGMx6uthhJJYnYtkFKq-mnw8mwrlQuo5NkcdeCzemGQ_z1xuhwPccw9PSOklv0eLzozs01_gjf_5CzvsU-9v8ovQQT6zNWgGbOsFCuEuu73ghGqJUk3ICedLoHHetRydyvuIGOg5Rs7OJ3jxP94QUG3e1hyj-gBBi-XE3fOFzS5_TL-Po55nIbJZVnZRXqIfldgUdQZGZ9LiKBVK17YQMTgAjRebGqlBZRI168rYlUqCclIWGfoLe2y9aRvYZ7xMMwcpKOFsLBJQ0uQ6LlKFb8nQdBRDdrZUQGV7EHLiwrivfDASq0okVWijITtZiT4E5I33hAbUxi8EQunRK6WuHqO7R7wWQ3a8VHKFo4m2SHQD7WJe4WQtCKHtHxIEqIdG7ODdLx-zzfH05rq6_jn59ZV99HllPvflkK13jws4Qg-mM998z30Gjkruqg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+neural+network+approach+to+real-time+condition+monitoring+of+induction+motors&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Chow%2C+M.-y.&rft.au=Mangum%2C+P.M.&rft.au=Yee%2C+S.O.&rft.date=1991-12-01&rft.issn=0278-0046&rft.volume=38&rft.issue=6&rft.spage=448&rft.epage=453&rft_id=info:doi/10.1109%2F41.107100&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_41_107100 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon |