On the $ k $-th power mean of one kind generalized cubic Gauss sums
The main purpose of this paper is using the elementary methods and properties of the recurrence sequence to study the calculating problem of the $ k $-th power mean of one kind generalized cubic Gauss sums, and give an exact calculating formula for it.
Saved in:
Published in | AIMS mathematics Vol. 8; no. 9; pp. 21463 - 21471 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2473-6988 2473-6988 |
DOI | 10.3934/math.20231093 |
Cover
Loading…
Abstract | The main purpose of this paper is using the elementary methods and properties of the recurrence sequence to study the calculating problem of the $ k $-th power mean of one kind generalized cubic Gauss sums, and give an exact calculating formula for it. |
---|---|
AbstractList | The main purpose of this paper is using the elementary methods and properties of the recurrence sequence to study the calculating problem of the $ k $-th power mean of one kind generalized cubic Gauss sums, and give an exact calculating formula for it. |
Author | Meng, Yuanyuan Liu, Xiaoge |
Author_xml | – sequence: 1 givenname: Xiaoge surname: Liu fullname: Liu, Xiaoge – sequence: 2 givenname: Yuanyuan surname: Meng fullname: Meng, Yuanyuan |
BookMark | eNpNkD1PwzAURS1UJErpyO6ha4rt58T2iCoolSp1gdlynOc2_UgqOxWCX09KATHdpzucd3VuyaBpGyTknrMpGJAPB9dtpoIJ4MzAFRkKqSArjNaDf_cNGae0ZYwJLqRQckhmq4Z2G6QTuqOTrNvQY_uOkR7QNbQNtP9Bd3VT0TU2GN2-_sSK-lNZezp3p5RoOh3SHbkObp9w_JMj8vb89Dp7yZar-WL2uMw8gOqyHFhZgWPgpGCmH6EVFIE5XwquOYpQcuRGaQ_9NHRYVLwsRO6xMC7PdYARWVy4Veu29hjrg4sftnW1_S7auLYudrXfo4VKccMlLyVX0gtReq1VblQVjBA-sJ6VXVg-tilFDH88zuxZqD0Ltb9C4QuvCGeu |
Cites_doi | 10.1090/S0273-0979-1981-14930-2 10.1007/978-1-4757-1779-2 10.1007/s10114-022-0541-8 10.1155/2014/474726 10.1007/978-1-4757-5579-4 10.1016/j.jnt.2013.10.022 10.1515/math-2017-0060 10.3390/math7100907 10.1515/math-2019-0034 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3934/math.20231093 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) (Open Access) url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 21471 |
ExternalDocumentID | oai_doaj_org_article_3d719141b4174c22bc887597df922cf0 10_3934_math_20231093 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
ID | FETCH-LOGICAL-c337t-530bd3a03a42090008736f0acb2181e2fb1e1978c3427eae6d1b625ce69a558f3 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Wed Aug 27 00:48:02 EDT 2025 Tue Jul 01 03:57:04 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c337t-530bd3a03a42090008736f0acb2181e2fb1e1978c3427eae6d1b625ce69a558f3 |
OpenAccessLink | https://doaj.org/article/3d719141b4174c22bc887597df922cf0 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3d719141b4174c22bc887597df922cf0 crossref_primary_10_3934_math_20231093 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2023 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/math.20231093-13 key-10.3934/math.20231093-14 key-10.3934/math.20231093-15 key-10.3934/math.20231093-16 key-10.3934/math.20231093-6 key-10.3934/math.20231093-7 key-10.3934/math.20231093-8 key-10.3934/math.20231093-9 key-10.3934/math.20231093-10 key-10.3934/math.20231093-11 key-10.3934/math.20231093-12 key-10.3934/math.20231093-1 key-10.3934/math.20231093-2 key-10.3934/math.20231093-3 key-10.3934/math.20231093-4 key-10.3934/math.20231093-5 |
References_xml | – ident: key-10.3934/math.20231093-9 – ident: key-10.3934/math.20231093-6 – ident: key-10.3934/math.20231093-16 doi: 10.1090/S0273-0979-1981-14930-2 – ident: key-10.3934/math.20231093-14 doi: 10.1007/978-1-4757-1779-2 – ident: key-10.3934/math.20231093-4 doi: 10.1007/s10114-022-0541-8 – ident: key-10.3934/math.20231093-7 – ident: key-10.3934/math.20231093-3 – ident: key-10.3934/math.20231093-10 doi: 10.1155/2014/474726 – ident: key-10.3934/math.20231093-13 doi: 10.1007/978-1-4757-5579-4 – ident: key-10.3934/math.20231093-8 doi: 10.1016/j.jnt.2013.10.022 – ident: key-10.3934/math.20231093-11 – ident: key-10.3934/math.20231093-15 – ident: key-10.3934/math.20231093-1 – ident: key-10.3934/math.20231093-12 doi: 10.1515/math-2017-0060 – ident: key-10.3934/math.20231093-5 doi: 10.3390/math7100907 – ident: key-10.3934/math.20231093-2 doi: 10.1515/math-2019-0034 |
SSID | ssj0002124274 |
Score | 2.206724 |
Snippet | The main purpose of this paper is using the elementary methods and properties of the recurrence sequence to study the calculating problem of the $ k $-th power... |
SourceID | doaj crossref |
SourceType | Open Website Index Database |
StartPage | 21463 |
SubjectTerms | calculating formula elementary method k $-th power mean recurrence sequence the generalized gauss sums |
Title | On the $ k $-th power mean of one kind generalized cubic Gauss sums |
URI | https://doaj.org/article/3d719141b4174c22bc887597df922cf0 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8oDYrCZ2nhMCRKlAhYVK3SKfH1Ah0qpJF349d0lblYmFMVEUnb9zfN8XJ98xduW9zEFmXkhwmYiMTQVgIRGgrKN9IWT89KPw8CUZjKKncTzeaPVF34S19sAtcD1lU7IgCyFC7mykBIOPBbJg63MpjW_UOta8DTFFazAuyBHqrdZUU-Uq6iH_o70HojO5-lWENrz6m6LS32O7SzbIb9so9tmWKw_YznBtpVodspvXkuMhfxb1B59RTzP-5XTJp55PS8c_UVPz99Y7evLtLDcLmBj-qBdVxXGWVUds1H94ux-IZdcDYZRKaxGrAKzSgdIRDoxqdKoSH2gDVI2d9BC6ELWfUThCp11iQ0ARY1yS6zjOvDpmnRIDOGHcpAlyZ5skmQ0i7SFzMgaULFpBGhvwXXa9gqGYteYWBYoCwqsgvIoVXl12RyCtLyJP6uYEZqpYZqr4K1On_3GTM7ZNQbUvQc5Zp54v3AXSghoumxnwA2p0ss8 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+K-th+power+mean+of+one+kind+generalized+cubic+Gauss+sums&rft.jtitle=AIMS+mathematics&rft.au=Xiaoge+Liu&rft.au=Yuanyuan+Meng&rft.date=2023-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=8&rft.issue=9&rft.spage=21463&rft.epage=21471&rft_id=info:doi/10.3934%2Fmath.20231093&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_3d719141b4174c22bc887597df922cf0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |