Bi doping stimulation on the visible-light absorption of In2O3 ceramics
•Trivalent Bi doping in wide bandgap In2O3 exhibits visible light absorption.•Bi-doping in the In2O3 generates an in-gap state increasing the valence band maximum.•DFT analysis reveals pnictogen promotes the potential p-type characteristics. [Display omitted] Bandgap engineering in semiconductors is...
Saved in:
Published in | Journal of alloys and compounds Vol. 878; p. 160339 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
15.10.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0925-8388 1873-4669 |
DOI | 10.1016/j.jallcom.2021.160339 |
Cover
Loading…
Abstract | •Trivalent Bi doping in wide bandgap In2O3 exhibits visible light absorption.•Bi-doping in the In2O3 generates an in-gap state increasing the valence band maximum.•DFT analysis reveals pnictogen promotes the potential p-type characteristics.
[Display omitted]
Bandgap engineering in semiconductors is a long-term subject in many interests. Doping Bi modifies the wide-bandgap semiconductor In2O3 by generating an in-gap state. The reflectance spectra show that an optical transition occurs at 1.2 eV inside the bandgap of In2O3 as a substitution of Bi atoms, which is in good agreement with the previously reported density functional theory (DFT) calculation by Sabino et al., Phys. Rev. Mater. 3 (2019) 034605. The detailed analyses illustrate that the trivalent Bi dopant sites on the In-site in a limited concentration maintaining the chemical state of In and O. For the higher doping concentration, the secondary phase of Bi2O3 forms even though no chemical state variation of the host In2O3. However, the free electron concentration decreases rapidly with increasing Bi doping concentration while unchanging oxygen vacancies. These results confirm that the trivalent Bi induces an occupied band in the In2O3 electronic structure and In-vacancy as an acceptor, promising host materials for the p-type doping. Furthermore, the extended DFT calculation to the other pnictogen atoms confirms the similar in-gap states and lower In vacancy formation energy, suggesting the possibility toward p-type oxide semiconductors using pnictogen doped In2O3. |
---|---|
AbstractList | Bandgap engineering in semiconductors is a long-term subject in many interests. Doping Bi modifies the wide-bandgap semiconductor In2O3 by generating an in-gap state. The reflectance spectra show that an optical transition occurs at 1.2 eV inside the bandgap of In2O3 as a substitution of Bi atoms, which is in good agreement with the previously reported density functional theory (DFT) calculation by Sabino et al., Phys. Rev. Mater. 3 (2019) 034605. The detailed analyses illustrate that the trivalent Bi dopant sites on the In-site in a limited concentration maintaining the chemical state of In and O. For the higher doping concentration, the secondary phase of Bi2O3 forms even though no chemical state variation of the host In2O3. However, the free electron concentration decreases rapidly with increasing Bi doping concentration while unchanging oxygen vacancies. These results confirm that the trivalent Bi induces an occupied band in the In2O3 electronic structure and In-vacancy as an acceptor, promising host materials for the p-type doping. Furthermore, the extended DFT calculation to the other pnictogen atoms confirms the similar in-gap states and lower In vacancy formation energy, suggesting the possibility toward p-type oxide semiconductors using pnictogen doped In2O3. •Trivalent Bi doping in wide bandgap In2O3 exhibits visible light absorption.•Bi-doping in the In2O3 generates an in-gap state increasing the valence band maximum.•DFT analysis reveals pnictogen promotes the potential p-type characteristics. [Display omitted] Bandgap engineering in semiconductors is a long-term subject in many interests. Doping Bi modifies the wide-bandgap semiconductor In2O3 by generating an in-gap state. The reflectance spectra show that an optical transition occurs at 1.2 eV inside the bandgap of In2O3 as a substitution of Bi atoms, which is in good agreement with the previously reported density functional theory (DFT) calculation by Sabino et al., Phys. Rev. Mater. 3 (2019) 034605. The detailed analyses illustrate that the trivalent Bi dopant sites on the In-site in a limited concentration maintaining the chemical state of In and O. For the higher doping concentration, the secondary phase of Bi2O3 forms even though no chemical state variation of the host In2O3. However, the free electron concentration decreases rapidly with increasing Bi doping concentration while unchanging oxygen vacancies. These results confirm that the trivalent Bi induces an occupied band in the In2O3 electronic structure and In-vacancy as an acceptor, promising host materials for the p-type doping. Furthermore, the extended DFT calculation to the other pnictogen atoms confirms the similar in-gap states and lower In vacancy formation energy, suggesting the possibility toward p-type oxide semiconductors using pnictogen doped In2O3. |
ArticleNumber | 160339 |
Author | Song, Sehwan Tam Le, Chinh Bae, Jong-Seong Yang, Mihyun Park, Sungkyun Yang, Seojin Park, Chul-Hong Ihm, Kyuwook Kim, Jiwoong Choi, Yesul Kim, Hyegyeong Lee, Kug-Seung Kim, Doukyun Park, Hongjun Kim, Yong Soo |
Author_xml | – sequence: 1 givenname: Jiwoong surname: Kim fullname: Kim, Jiwoong organization: Nuclear Science Research Center, Pusan National University, Busan 46241, South Korea – sequence: 2 givenname: Hongjun surname: Park fullname: Park, Hongjun organization: Department of Physics, Pusan National University, Busan 46241, South Korea – sequence: 3 givenname: Doukyun surname: Kim fullname: Kim, Doukyun organization: Department of Physics, Pusan National University, Busan 46241, South Korea – sequence: 4 givenname: Seojin surname: Yang fullname: Yang, Seojin organization: Department of Physics, Pusan National University, Busan 46241, South Korea – sequence: 5 givenname: Sehwan surname: Song fullname: Song, Sehwan organization: Department of Physics, Pusan National University, Busan 46241, South Korea – sequence: 6 givenname: Yesul surname: Choi fullname: Choi, Yesul organization: Department of Physics, Pusan National University, Busan 46241, South Korea – sequence: 7 givenname: Hyegyeong surname: Kim fullname: Kim, Hyegyeong organization: Core Research Facilities, Pusan National University, Busan 46241, South Korea – sequence: 8 givenname: Jong-Seong surname: Bae fullname: Bae, Jong-Seong organization: Busan Center, Korea Basic Science Institute, Busan 46742, South Korea – sequence: 9 givenname: Chinh surname: Tam Le fullname: Tam Le, Chinh organization: Department of Physics, University of Ulsan, Ulsan 44610, South Korea – sequence: 10 givenname: Yong Soo surname: Kim fullname: Kim, Yong Soo organization: Department of Physics, University of Ulsan, Ulsan 44610, South Korea – sequence: 11 givenname: Mihyun surname: Yang fullname: Yang, Mihyun organization: Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673, South Korea – sequence: 12 givenname: Kyuwook surname: Ihm fullname: Ihm, Kyuwook organization: Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673, South Korea – sequence: 13 givenname: Kug-Seung orcidid: 0000-0002-7570-8404 surname: Lee fullname: Lee, Kug-Seung organization: Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673, South Korea – sequence: 14 givenname: Chul-Hong surname: Park fullname: Park, Chul-Hong organization: Department of Physics Education, Pusan National University, Busan 46241, South Korea – sequence: 15 givenname: Sungkyun surname: Park fullname: Park, Sungkyun email: psk@pusan.ac.kr organization: Nuclear Science Research Center, Pusan National University, Busan 46241, South Korea |
BookMark | eNqFkM9LwzAUx4NMcJv-CULBc2t-NU3wIDp0Dga76DmkabqltM1MsoH_vZ3dycvgwTu87-c93mcGJr3rDQD3CGYIIvbYZI1qW-26DEOMMsQgIeIKTBEvSEoZExMwhQLnKSec34BZCA2EEAmCpmD5apPK7W2_TUK03aFV0bo-GSruTHK0wZatSVu73cVElcH5_Tivk1WPNyTRxqvO6nALrmvVBnN37nPw9f72ufhI15vlavGyTjUhRUxzpKhRSFCmK8IFY1QZrGqaFzknJUdlTXmtealUpbggMBdcQc4qpqmmNdZkDh7GvXvvvg8mRNm4g--HkxLnVBSY5QQPqacxpb0LwZtaahv_Pote2VYiKE_mZCPP5uTJnBzNDXT-j9572yn_c5F7HjkzCDha42XQ1vTaVNYbHWXl7IUNvxFVjK8 |
CitedBy_id | crossref_primary_10_1016_j_susmat_2025_e01235 crossref_primary_10_1002_eem2_12508 crossref_primary_10_1016_j_snb_2022_131755 crossref_primary_10_1016_j_ceramint_2021_09_117 crossref_primary_10_1016_j_snb_2024_135482 crossref_primary_10_1007_s00604_024_06313_4 crossref_primary_10_1016_j_apsusc_2023_156393 crossref_primary_10_1021_acscatal_4c05431 |
Cites_doi | 10.1038/s41598-020-69463-4 10.1063/1.1544643 10.1063/1.324149 10.1038/ncomms3292 10.1007/BF02706504 10.1039/C8TC04024A 10.1016/j.surfcoat.2009.06.014 10.1007/BF00619080 10.1103/PhysRevB.54.11169 10.1016/0039-6028(96)00083-0 10.1103/PhysRevB.75.153205 10.1016/j.jcrysgro.2011.10.029 10.1038/srep10717 10.1016/j.apsusc.2005.04.034 10.1103/PhysRevLett.100.167402 10.1039/C4CP01392A 10.1016/j.ssi.2016.10.017 10.1039/f19837902055 10.1103/PhysRevB.59.1758 10.1209/0295-5075/95/47002 10.1002/aenm.201600847 10.1103/RevModPhys.85.1245 10.1038/40087 10.1107/S0365110X66001749 10.1103/PhysRevA.43.3161 10.1016/j.jallcom.2018.04.190 10.1021/acs.jpcc.6b10821 10.1103/PhysRevLett.77.3865 10.1002/pssa.201330184 10.1103/PhysRevB.85.224103 10.1063/1.121761 10.1063/1.1319507 10.1021/acs.chemmater.5b03794 10.1021/ja0318075 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. Copyright Elsevier BV Oct 15, 2021 |
Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright Elsevier BV Oct 15, 2021 |
DBID | AAYXX CITATION 8BQ 8FD JG9 |
DOI | 10.1016/j.jallcom.2021.160339 |
DatabaseName | CrossRef METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Physics |
EISSN | 1873-4669 |
ExternalDocumentID | 10_1016_j_jallcom_2021_160339 S0925838821017485 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNCT ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SPD SSM SSZ T5K TWZ XPP ZMT ~G- 29J AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SEW SMS SSH T9H WUQ 8BQ 8FD AFXIZ EFKBS JG9 |
ID | FETCH-LOGICAL-c337t-51a4ea1946cd389664ae2af457583b81bf48fc8baada8930598a086d6c4c4f2c3 |
IEDL.DBID | .~1 |
ISSN | 0925-8388 |
IngestDate | Fri Jul 25 05:22:44 EDT 2025 Tue Jul 01 03:33:06 EDT 2025 Thu Apr 24 23:11:46 EDT 2025 Fri Feb 23 02:47:13 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Valence band engineering p-type oxide semiconductor Visible light absorption Transparent conducting oxide |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c337t-51a4ea1946cd389664ae2af457583b81bf48fc8baada8930598a086d6c4c4f2c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7570-8404 |
PQID | 2549726532 |
PQPubID | 2045454 |
ParticipantIDs | proquest_journals_2549726532 crossref_citationtrail_10_1016_j_jallcom_2021_160339 crossref_primary_10_1016_j_jallcom_2021_160339 elsevier_sciencedirect_doi_10_1016_j_jallcom_2021_160339 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-15 |
PublicationDateYYYYMMDD | 2021-10-15 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Journal of alloys and compounds |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Kresse, Joubert (bib19) 1999; 59 Epifani, Siciliano, Gurlo, Barsan, Weimar (bib29) 2004; 126 Pérez-Tomás, Mingorance, Tanenbaum, Lira-Cantú (bib14) 2018 Lee, Subramaniam, Lee, Kumar S, Kang (bib11) 2011; 95 Fan, Goodenough (bib34) 1977; 48 Pandey, Jain, Vyas, Irusta, Sharma (bib22) 2017; 121 Perdew, Burke, Ernzerhof (bib18) 1996; 77 Marezio (bib27) 1966; 20 Xing, Xu, Song, Zhou, Li, Liu, Wei Song (bib35) 2015; 5 Ginley, Hosono, Paine (bib3) 2010 Moulder, Stickle, Sobol, Bomben (bib15) 1995 Galazka, Uecker, Irmscher, Schulz, Klimm, Albrecht, Pietsch, Ganschow, Kwasniewski, Fornari (bib40) 2013; 362 Mistonov, Chumakov, Ermakov, Iskhakova, Zakharova, Chumakova, Kvashnina (bib37) 2018; 753 Dong, Ghuman, Popescu, Duchesne, Zhou, Loh, Jelle, Jia, Wang, Mu, Kübel, Wang, He, Ghoussoub, Wang, Wood, Reyes, Zhang, Kherani, Singh, Ozin (bib13) 2018; 5 van der Pauw (bib16) 1991 Irmscher, Naumann, Pietsch, Galazka, Uecker, Schulz, Schewski, Albrecht, Fornari (bib21) 2014; 211 Walsh, Da Silva, Wei, Körber, Klein, Piper, DeMasi, Smith, Panaccione, Torelli, Payne, Bourlange, Egdell (bib23) 2008; 100 Ahila, Malligavathy, Subramanian, Padiyan (bib25) 2016; 298 Erhart, Klein, Egdell, Albe (bib24) 2007; 75 Schuhl, Baussart, Delobel, Le Bras, Leroy, Gengembre, Grimblot (bib33) 1983; 1 Biswas, De, Dua, Chkoda (bib36) 2006; 29 Kim, Shrestha, Souri, Connell, Park, Seo (bib42) 2020; 10 Jiang, Liu, Wang (bib31) 2009; 203 Young (bib43) 1995 Will (bib26) 2006 Song, Chang, Gradecak, Kong (bib2) 2016; 6 Hiramatsu, Ueda, Ohta, Hirano, Kamiya, Hosono (bib9) 2003; 82 Frank, Köstlin (bib39) 1982; 27 Reineke, Thomschke, Lüssem, Leo (bib1) 2013; 85 Colin, Pérez, Bordet, Goujon, Darie (bib28) 2012; 85 Laguna-Marco, Piquer, Roca, Boada, Andrés-Vergés, Veintemillas-Verdaguer, Serna, Iadecola, Chaboy (bib38) 2014; 16 Bhatia, Hautier, Nilgianskul, Miglio, Sun, Kim, Kim, Chen, Rignanese, Gonze, Suntivich (bib10) 2016; 28 Yu, Wang, Kumar, Umezawa, Abe (bib7) 2018; 6 Denton, Ashcroft (bib30) 1991; 43 Kudo, Yanagi, Hosono, Kawazoe (bib6) 1998; 73 Gujar, Shinde, Lokhande, Mane, Han (bib41) 2006; 252 Kresse, Furthmüller (bib17) 1996; 54 Chatratin, Sabino, Reunchan, Limpijumnong, Varley, Van de Walle, Janotti (bib20) 2019; 3 Kawazoe, Yasukawa, Hyodo, Kurita, Yanagi, Hosono (bib4) 1997; 389 Uchida, Ayame (bib32) 1996; 357–358 Ueda, Inoue, Hirose, Kawazoe, Hosono (bib8) 2000; 77 Sabino, Wei, Janotti (bib12) 2019; 3 Hautier, Miglio, Ceder, Rignanese, Gonze (bib5) 2013; 4 Kawazoe (10.1016/j.jallcom.2021.160339_bib4) 1997; 389 Bhatia (10.1016/j.jallcom.2021.160339_bib10) 2016; 28 Fan (10.1016/j.jallcom.2021.160339_bib34) 1977; 48 Biswas (10.1016/j.jallcom.2021.160339_bib36) 2006; 29 Colin (10.1016/j.jallcom.2021.160339_bib28) 2012; 85 Hautier (10.1016/j.jallcom.2021.160339_bib5) 2013; 4 Chatratin (10.1016/j.jallcom.2021.160339_bib20) 2019; 3 Dong (10.1016/j.jallcom.2021.160339_bib13) 2018; 5 Epifani (10.1016/j.jallcom.2021.160339_bib29) 2004; 126 Young (10.1016/j.jallcom.2021.160339_bib43) 1995 Pandey (10.1016/j.jallcom.2021.160339_bib22) 2017; 121 Galazka (10.1016/j.jallcom.2021.160339_bib40) 2013; 362 Schuhl (10.1016/j.jallcom.2021.160339_bib33) 1983; 1 Ueda (10.1016/j.jallcom.2021.160339_bib8) 2000; 77 Gujar (10.1016/j.jallcom.2021.160339_bib41) 2006; 252 Ahila (10.1016/j.jallcom.2021.160339_bib25) 2016; 298 Ginley (10.1016/j.jallcom.2021.160339_bib3) 2010 Jiang (10.1016/j.jallcom.2021.160339_bib31) 2009; 203 Moulder (10.1016/j.jallcom.2021.160339_bib15) 1995 Kresse (10.1016/j.jallcom.2021.160339_bib17) 1996; 54 Walsh (10.1016/j.jallcom.2021.160339_bib23) 2008; 100 Denton (10.1016/j.jallcom.2021.160339_bib30) 1991; 43 Kresse (10.1016/j.jallcom.2021.160339_bib19) 1999; 59 Frank (10.1016/j.jallcom.2021.160339_bib39) 1982; 27 Yu (10.1016/j.jallcom.2021.160339_bib7) 2018; 6 Laguna-Marco (10.1016/j.jallcom.2021.160339_bib38) 2014; 16 Kim (10.1016/j.jallcom.2021.160339_bib42) 2020; 10 Perdew (10.1016/j.jallcom.2021.160339_bib18) 1996; 77 Song (10.1016/j.jallcom.2021.160339_bib2) 2016; 6 Irmscher (10.1016/j.jallcom.2021.160339_bib21) 2014; 211 Reineke (10.1016/j.jallcom.2021.160339_bib1) 2013; 85 Lee (10.1016/j.jallcom.2021.160339_bib11) 2011; 95 Mistonov (10.1016/j.jallcom.2021.160339_bib37) 2018; 753 van der Pauw (10.1016/j.jallcom.2021.160339_bib16) 1991 Erhart (10.1016/j.jallcom.2021.160339_bib24) 2007; 75 Pérez-Tomás (10.1016/j.jallcom.2021.160339_bib14) 2018 Marezio (10.1016/j.jallcom.2021.160339_bib27) 1966; 20 Uchida (10.1016/j.jallcom.2021.160339_bib32) 1996; 357–358 Sabino (10.1016/j.jallcom.2021.160339_bib12) 2019; 3 Kudo (10.1016/j.jallcom.2021.160339_bib6) 1998; 73 Will (10.1016/j.jallcom.2021.160339_bib26) 2006 Xing (10.1016/j.jallcom.2021.160339_bib35) 2015; 5 Hiramatsu (10.1016/j.jallcom.2021.160339_bib9) 2003; 82 |
References_xml | – volume: 85 start-page: 1245 year: 2013 end-page: 1293 ident: bib1 article-title: White organic light-emitting diodes: status and perspective publication-title: Rev. Mod. Phys. – volume: 77 start-page: 2701 year: 2000 end-page: 2703 ident: bib8 article-title: Transparent p-type semiconductor: LaCuOS layered oxysulfide publication-title: Appl. Phys. Lett. – volume: 1 start-page: 2055 year: 1983 end-page: 2069 ident: bib33 article-title: Study of mixed-oxide catalysts containing bismuth, vanadium and antimony. Preparation, phase composition, spectroscopic characterization and catalytic oxidation of propene publication-title: J. Chem. Soc. Faraday Trans. – volume: 6 start-page: 11202 year: 2018 end-page: 11208 ident: bib7 article-title: Design of p-type transparent conducting oxides Sn publication-title: J. Mater. Chem. C – volume: 203 start-page: 3750 year: 2009 end-page: 3753 ident: bib31 article-title: Conductive and transparent Bi-doped ZnO thin films prepared by rf magnetron sputtering publication-title: Surf. Coat. Technol. – volume: 59 start-page: 1758 year: 1999 end-page: 1775 ident: bib19 article-title: From ultrasoft pseudopotentials to the projector augmented-wave method publication-title: Phys. Rev. B – year: 1995 ident: bib15 publication-title: Handbook of X-ray Photoelectron Spectroscopy – volume: 121 start-page: 481 year: 2017 end-page: 489 ident: bib22 article-title: Nonreducible, basic La publication-title: J. Phys. Chem. C – volume: 5 start-page: 10717 year: 2015 ident: bib35 article-title: Preparation and gas sensing properties of In publication-title: Sci. Rep. – volume: 6 year: 2016 ident: bib2 article-title: Visibly-transparent organic solar cells on flexible substrates with all-graphene electrodes publication-title: Adv. Energy Mater. – volume: 77 start-page: 3865 year: 1996 end-page: 3868 ident: bib18 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. – volume: 75 year: 2007 ident: bib24 article-title: Band structure of indium oxide: indirect versus direct band gap publication-title: Phys. Rev. B – volume: 389 start-page: 939 year: 1997 end-page: 942 ident: bib4 article-title: P-type electrical conduction in transparent thin films of CuAlO publication-title: Nature – volume: 29 start-page: 323 year: 2006 end-page: 330 ident: bib36 article-title: Surface characterization of sol-gel derived indium tin oxide films on glass publication-title: Bull. Mater. Sci. – volume: 43 start-page: 3161 year: 1991 end-page: 3164 ident: bib30 article-title: Vegard’s law publication-title: Phys. Rev. A – year: 2010 ident: bib3 publication-title: Handbook of Transparent Conductors – start-page: 267 year: 2018 end-page: 356 ident: bib14 article-title: Chapter 8 - metal oxides in photovoltaics: all-oxide, ferroic, and perovskite solar cells publication-title: The Future of Semiconductor Oxides in Next-Generation Solar Cells – volume: 3 year: 2019 ident: bib20 article-title: Role of point defects in the electrical and optical properties of In publication-title: Phys. Rev. Mater. – volume: 126 start-page: 4078 year: 2004 end-page: 4079 ident: bib29 article-title: Ambient pressure synthesis of corundum-type In publication-title: J. Am. Chem. Soc. – volume: 48 start-page: 3524 year: 1977 end-page: 3531 ident: bib34 article-title: X‐ray photoemission spectroscopy studies of Sn‐doped indium‐oxide films publication-title: J. Appl. Phys. – year: 2006 ident: bib26 publication-title: Powder Diffraction: The Rietveld Method and the Two Stage Method to Determine and Refine Crystal Structures from Powder Diffraction Data – volume: 298 start-page: 23 year: 2016 end-page: 34 ident: bib25 article-title: Controllable synthesis of α and β-Bi publication-title: Solid State Ion. – volume: 753 start-page: 646 year: 2018 end-page: 654 ident: bib37 article-title: Electronic structure studies of bismuth compounds using high energy resolution X-ray spectroscopy and ab initio calculations publication-title: J. Alloy. Comp. – volume: 10 start-page: 12486 year: 2020 ident: bib42 article-title: High-temperature optical properties of indium tin oxide thin-films publication-title: Sci. Rep. – volume: 27 start-page: 197 year: 1982 end-page: 206 ident: bib39 article-title: Electrical properties and defect model of tin-doped indium oxide layers publication-title: Appl. Phys. A – volume: 357–358 start-page: 170 year: 1996 end-page: 175 ident: bib32 article-title: Dynamic XPS measurements on bismuth molybdate surfaces publication-title: Surf. Sci. – volume: 28 start-page: 30 year: 2016 end-page: 34 ident: bib10 article-title: High-mobility Bismuth-based transparent p-type oxide from high-throughput material screening publication-title: Chem. Mater. – volume: 5 year: 2018 ident: bib13 article-title: Tailoring surface frustrated Lewis pairs of In publication-title: Adv. Sci. – volume: 20 start-page: 723 year: 1966 end-page: 728 ident: bib27 article-title: Refinement of the crystal structure of In publication-title: Acta Crystallogr. – volume: 16 start-page: 18301 year: 2014 end-page: 18310 ident: bib38 article-title: Structural determination of Bi-doped magnetite multifunctional nanoparticles for contrast imaging publication-title: Phys. Chem. Chem. Phys. – volume: 362 start-page: 349 year: 2013 end-page: 352 ident: bib40 article-title: Melt growth, characterization and properties of bulk In publication-title: J. Cryst. Growth – volume: 100 year: 2008 ident: bib23 article-title: Nature of the band gap of In publication-title: Phys. Rev. Lett. – volume: 73 start-page: 220 year: 1998 end-page: 222 ident: bib6 article-title: SrCu publication-title: Appl. Phys. Lett. – volume: 4 start-page: 2292 year: 2013 ident: bib5 article-title: Identification and design principles of low hole effective mass p-type transparent conducting oxides publication-title: Nat. Commun. – volume: 54 start-page: 11169 year: 1996 end-page: 11186 ident: bib17 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B – volume: 211 start-page: 54 year: 2014 end-page: 58 ident: bib21 article-title: On the nature and temperature dependence of the fundamental band gap of In publication-title: Phys. Status Solidi A – volume: 82 start-page: 1048 year: 2003 end-page: 1050 ident: bib9 article-title: Degenerate p-type conductivity in wide-gap LaCuOS publication-title: Appl. Phys. Lett. – year: 1995 ident: bib43 publication-title: The Rietveld Method – volume: 95 start-page: 47002 year: 2011 ident: bib11 article-title: Study of stable p-type conductivity in bismuth-doped ZnO films grown by pulsed-laser deposition publication-title: EPL (Europhys. Lett.) – volume: 3 year: 2019 ident: bib12 article-title: Enabling visible-light absorption and p-type doping in In publication-title: Phys. Rev. Mater. – volume: 252 start-page: 2747 year: 2006 end-page: 2751 ident: bib41 article-title: Formation of highly textured (111) Bi publication-title: Appl. Surf. Sci. – year: 1991 ident: bib16 publication-title: Semiconductor Devices: Pioneering Papers – volume: 85 year: 2012 ident: bib28 article-title: Symmetry adapted analysis of the magnetic and structural phase diagram of Bi publication-title: Phys. Rev. B – volume: 10 start-page: 12486 year: 2020 ident: 10.1016/j.jallcom.2021.160339_bib42 article-title: High-temperature optical properties of indium tin oxide thin-films publication-title: Sci. Rep. doi: 10.1038/s41598-020-69463-4 – volume: 82 start-page: 1048 year: 2003 ident: 10.1016/j.jallcom.2021.160339_bib9 article-title: Degenerate p-type conductivity in wide-gap LaCuOS1−xSex (x=0–1) epitaxial films publication-title: Appl. Phys. Lett. doi: 10.1063/1.1544643 – volume: 48 start-page: 3524 year: 1977 ident: 10.1016/j.jallcom.2021.160339_bib34 article-title: X‐ray photoemission spectroscopy studies of Sn‐doped indium‐oxide films publication-title: J. Appl. Phys. doi: 10.1063/1.324149 – volume: 4 start-page: 2292 year: 2013 ident: 10.1016/j.jallcom.2021.160339_bib5 article-title: Identification and design principles of low hole effective mass p-type transparent conducting oxides publication-title: Nat. Commun. doi: 10.1038/ncomms3292 – volume: 29 start-page: 323 year: 2006 ident: 10.1016/j.jallcom.2021.160339_bib36 article-title: Surface characterization of sol-gel derived indium tin oxide films on glass publication-title: Bull. Mater. Sci. doi: 10.1007/BF02706504 – volume: 6 start-page: 11202 year: 2018 ident: 10.1016/j.jallcom.2021.160339_bib7 article-title: Design of p-type transparent conducting oxides Sn2GeO4 by an ab initio evolutionary structure search publication-title: J. Mater. Chem. C doi: 10.1039/C8TC04024A – volume: 203 start-page: 3750 year: 2009 ident: 10.1016/j.jallcom.2021.160339_bib31 article-title: Conductive and transparent Bi-doped ZnO thin films prepared by rf magnetron sputtering publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2009.06.014 – volume: 27 start-page: 197 year: 1982 ident: 10.1016/j.jallcom.2021.160339_bib39 article-title: Electrical properties and defect model of tin-doped indium oxide layers publication-title: Appl. Phys. A doi: 10.1007/BF00619080 – volume: 54 start-page: 11169 year: 1996 ident: 10.1016/j.jallcom.2021.160339_bib17 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 3 year: 2019 ident: 10.1016/j.jallcom.2021.160339_bib12 article-title: Enabling visible-light absorption and p-type doping in In2O3 by adding Bi publication-title: Phys. Rev. Mater. – start-page: 267 year: 2018 ident: 10.1016/j.jallcom.2021.160339_bib14 article-title: Chapter 8 - metal oxides in photovoltaics: all-oxide, ferroic, and perovskite solar cells – volume: 357–358 start-page: 170 year: 1996 ident: 10.1016/j.jallcom.2021.160339_bib32 article-title: Dynamic XPS measurements on bismuth molybdate surfaces publication-title: Surf. Sci. doi: 10.1016/0039-6028(96)00083-0 – volume: 75 year: 2007 ident: 10.1016/j.jallcom.2021.160339_bib24 article-title: Band structure of indium oxide: indirect versus direct band gap publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.75.153205 – year: 1991 ident: 10.1016/j.jallcom.2021.160339_bib16 – volume: 362 start-page: 349 year: 2013 ident: 10.1016/j.jallcom.2021.160339_bib40 article-title: Melt growth, characterization and properties of bulk In2O3 single crystals publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2011.10.029 – volume: 5 start-page: 10717 year: 2015 ident: 10.1016/j.jallcom.2021.160339_bib35 article-title: Preparation and gas sensing properties of In2O3/Au nanorods for detection of volatile organic compounds in exhaled breath publication-title: Sci. Rep. doi: 10.1038/srep10717 – volume: 252 start-page: 2747 year: 2006 ident: 10.1016/j.jallcom.2021.160339_bib41 article-title: Formation of highly textured (111) Bi2O3 films by anodization of electrodeposited bismuth films publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2005.04.034 – volume: 100 year: 2008 ident: 10.1016/j.jallcom.2021.160339_bib23 article-title: Nature of the band gap of In2O3 revealed by first-principles calculations and X-ray spectroscopy publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.167402 – volume: 16 start-page: 18301 year: 2014 ident: 10.1016/j.jallcom.2021.160339_bib38 article-title: Structural determination of Bi-doped magnetite multifunctional nanoparticles for contrast imaging publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP01392A – year: 1995 ident: 10.1016/j.jallcom.2021.160339_bib43 – volume: 298 start-page: 23 year: 2016 ident: 10.1016/j.jallcom.2021.160339_bib25 article-title: Controllable synthesis of α and β-Bi2O3 through anodization of thermally evaporated bismuth and its characterization publication-title: Solid State Ion. doi: 10.1016/j.ssi.2016.10.017 – volume: 1 start-page: 2055 issue: 79 year: 1983 ident: 10.1016/j.jallcom.2021.160339_bib33 article-title: Study of mixed-oxide catalysts containing bismuth, vanadium and antimony. Preparation, phase composition, spectroscopic characterization and catalytic oxidation of propene publication-title: J. Chem. Soc. Faraday Trans. doi: 10.1039/f19837902055 – volume: 59 start-page: 1758 year: 1999 ident: 10.1016/j.jallcom.2021.160339_bib19 article-title: From ultrasoft pseudopotentials to the projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – year: 2010 ident: 10.1016/j.jallcom.2021.160339_bib3 – volume: 95 start-page: 47002 year: 2011 ident: 10.1016/j.jallcom.2021.160339_bib11 article-title: Study of stable p-type conductivity in bismuth-doped ZnO films grown by pulsed-laser deposition publication-title: EPL (Europhys. Lett.) doi: 10.1209/0295-5075/95/47002 – volume: 6 year: 2016 ident: 10.1016/j.jallcom.2021.160339_bib2 article-title: Visibly-transparent organic solar cells on flexible substrates with all-graphene electrodes publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201600847 – year: 1995 ident: 10.1016/j.jallcom.2021.160339_bib15 – volume: 85 start-page: 1245 year: 2013 ident: 10.1016/j.jallcom.2021.160339_bib1 article-title: White organic light-emitting diodes: status and perspective publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.85.1245 – volume: 389 start-page: 939 year: 1997 ident: 10.1016/j.jallcom.2021.160339_bib4 article-title: P-type electrical conduction in transparent thin films of CuAlO2 publication-title: Nature doi: 10.1038/40087 – volume: 20 start-page: 723 year: 1966 ident: 10.1016/j.jallcom.2021.160339_bib27 article-title: Refinement of the crystal structure of In2O3 at two wavelengths publication-title: Acta Crystallogr. doi: 10.1107/S0365110X66001749 – volume: 43 start-page: 3161 year: 1991 ident: 10.1016/j.jallcom.2021.160339_bib30 article-title: Vegard’s law publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.43.3161 – volume: 753 start-page: 646 year: 2018 ident: 10.1016/j.jallcom.2021.160339_bib37 article-title: Electronic structure studies of bismuth compounds using high energy resolution X-ray spectroscopy and ab initio calculations publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2018.04.190 – volume: 121 start-page: 481 year: 2017 ident: 10.1016/j.jallcom.2021.160339_bib22 article-title: Nonreducible, basic La2O3 to reducible, acidic La2–xSbxO3 with significant oxygen storage capacity, lower band gap, and effect on the catalytic activity publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b10821 – volume: 77 start-page: 3865 year: 1996 ident: 10.1016/j.jallcom.2021.160339_bib18 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 211 start-page: 54 year: 2014 ident: 10.1016/j.jallcom.2021.160339_bib21 article-title: On the nature and temperature dependence of the fundamental band gap of In2O3 publication-title: Phys. Status Solidi A doi: 10.1002/pssa.201330184 – volume: 5 year: 2018 ident: 10.1016/j.jallcom.2021.160339_bib13 article-title: Tailoring surface frustrated Lewis pairs of In2O3−x(OH)y for gas-phase heterogeneous photocatalytic reduction of CO2 by isomorphous substitution of In3+ with Bi3+ publication-title: Adv. Sci. – volume: 3 year: 2019 ident: 10.1016/j.jallcom.2021.160339_bib20 article-title: Role of point defects in the electrical and optical properties of In2O3 publication-title: Phys. Rev. Mater. – volume: 85 year: 2012 ident: 10.1016/j.jallcom.2021.160339_bib28 article-title: Symmetry adapted analysis of the magnetic and structural phase diagram of Bi1−xYxCrO3 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.224103 – volume: 73 start-page: 220 year: 1998 ident: 10.1016/j.jallcom.2021.160339_bib6 article-title: SrCu2O2: a p-type conductive oxide with wide band gap publication-title: Appl. Phys. Lett. doi: 10.1063/1.121761 – year: 2006 ident: 10.1016/j.jallcom.2021.160339_bib26 – volume: 77 start-page: 2701 year: 2000 ident: 10.1016/j.jallcom.2021.160339_bib8 article-title: Transparent p-type semiconductor: LaCuOS layered oxysulfide publication-title: Appl. Phys. Lett. doi: 10.1063/1.1319507 – volume: 28 start-page: 30 year: 2016 ident: 10.1016/j.jallcom.2021.160339_bib10 article-title: High-mobility Bismuth-based transparent p-type oxide from high-throughput material screening publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b03794 – volume: 126 start-page: 4078 year: 2004 ident: 10.1016/j.jallcom.2021.160339_bib29 article-title: Ambient pressure synthesis of corundum-type In2O3 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0318075 |
SSID | ssj0001931 |
Score | 2.4149716 |
Snippet | •Trivalent Bi doping in wide bandgap In2O3 exhibits visible light absorption.•Bi-doping in the In2O3 generates an in-gap state increasing the valence band... Bandgap engineering in semiconductors is a long-term subject in many interests. Doping Bi modifies the wide-bandgap semiconductor In2O3 by generating an in-gap... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 160339 |
SubjectTerms | Bismuth oxides Bismuth trioxide Density functional theory Doping Electromagnetic absorption Electronic structure Free electrons Free energy Heat of formation Indium oxides Mathematical analysis Optical transition p-type oxide semiconductor P-type semiconductors Semiconductors Transparent conducting oxide Vacancies Valence band engineering Visible light absorption Wide bandgap semiconductors |
Title | Bi doping stimulation on the visible-light absorption of In2O3 ceramics |
URI | https://dx.doi.org/10.1016/j.jallcom.2021.160339 https://www.proquest.com/docview/2549726532 |
Volume | 878 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED4h0LTxgFjZxK9Vfthr2sZ2XOcRKli7aewBkHizHMeWWoVSteWVv527xAGGkJCQ8pLEjqLz-e675O4-gJ-l1yG4kCbo3eqSHJ7kUgTceLni3mM8VlJx8t8LNb6Wv2-ymw0YtbUwlFYZbX9j02trHa_0ozT7i-m0fznIOf3z05y0SmoqNJdySFree3hO80CAUrPm4eCERj9X8fRnvZmtKkoa4ejp6DuLIM7wt_3TK0tdu5_zXdiJuJGdNK_2FTb8vAOfRy1dWwe2X3QW7MCnOrPTrfbg1-mUlXVVFMPdfBvZuhgeCP0YlZYXlU8qitGZLVZ3y0VzP7DJnP8TzPklUdavvsH1-dnVaJxE9oTECTFcJ1lqpbdpLpUrEZUoJa3nNkjEZ1oUiFaD1MHpwtrSImhBmKUtxjelctLJwJ34Dpvzu7nfB6Yym6KvKwaq5BJDnMLZrMCY2uUD7UUpD0C2MjMuthYnhovKtDlkMxNFbUjUphH1AfSepi2a3hrvTdDtgpj_lMSg_X9v6nG7gCbu0pWh4HjIVSb44ceffARf6Iz8WZodw-Z6ee9_IFBZF91aE7uwdTL5M754BO355hY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED6xogl4QFs3xM_hh72GNrZjnEeogHZA9zCQeLMcx5ZahVK15f_nLnHYmCYhTcpTnIuis333nXN3H8D30usQXEgT9G51SQ5PcikCbrxcce8xHiupOPl2rIb38sdD9rAGg7YWhtIqo-1vbHptreOdXtRmbz6Z9H71c07__DSnVSV19gHWqTtV1oH1s9H1cPxqkBGj1MR5-HxCAr8LeXrTk6mtKsob4ejs6KhFEG34v13UX8a69kCXn2A7Qkd21nzdZ1jzsy5sDFrGti5s_dFcsAsf6-ROt_wCV-cTVtaFUQw39GMk7GJ4IfpjVF1eVD6pKExntlg-LebNeGCjGf8pmPMLYq1ffoX7y4u7wTCJBAqJE-J0lWSpld6muVSuRGCilLSe2yARomlRIGANUgenC2tLi7gFkZa2GOKUykknA3diBzqzp5nfBaYym6K7K_qq5KhlXTibFRhWu7yvvSjlHshWZ8bF7uJEclGZNo1saqKqDanaNKreg5NXsXnTXuM9Ad1OiHmzTgy6gPdED9sJNHGjLg3Fx6dcZYLv__-bj2FjeHd7Y25G4-sD2KQRcm9pdgid1eLZHyFuWRXf4rp8AdtJ6Mc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bi+doping+stimulation+on+the+visible-light+absorption+of+In2O3+ceramics&rft.jtitle=Journal+of+alloys+and+compounds&rft.au=Kim%2C+Jiwoong&rft.au=Park%2C+Hongjun&rft.au=Kim%2C+Doukyun&rft.au=Yang%2C+Seojin&rft.date=2021-10-15&rft.issn=0925-8388&rft.volume=878&rft.spage=160339&rft_id=info:doi/10.1016%2Fj.jallcom.2021.160339&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jallcom_2021_160339 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-8388&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-8388&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-8388&client=summon |