Compression-induced crimping of boron nanotubes from borophenes: a DFT study

Several borophenes have been prepared successfully, but the synthesis of boron nanotubes is still very difficult. Our results suggest that the high flexibility of borophene in combination with van der Waals interactions makes it possible to coil boron nanotubes from rippled borophenes, which is conf...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 24; no. 23; pp. 14566 - 14572
Main Authors Qin, Xueqin, Liu, Jia, Mu, Yuewen, Li, Si-Dian
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 15.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Several borophenes have been prepared successfully, but the synthesis of boron nanotubes is still very difficult. Our results suggest that the high flexibility of borophene in combination with van der Waals interactions makes it possible to coil boron nanotubes from rippled borophenes, which is confirmed by ab initio molecular dynamics simulations. The plane structures transform into rippled structures almost without any barrier under very small compression and weak perturbations like molecular adsorption. The compression energies of the rippled structures increase linearly and slowly with the increase of the compression. This suggests how the geometry of the borophene evolves with compression. Based on the evaluation of the free energy of hydrogen adsorption, a stronger compression suggests the improved hydrogen evolution performance of the borophene and even makes it better than Pt catalysts. Meanwhile, good hydrogen evolution performance is also suggested for boron nanotubes. Our results suggest a novel preparation method for boron nanotubes from borophenes and a possible way to improve their hydrogen evolution performance. High flexibility of borophene and vdW interactions make it possible to coil boron nanotubes from rippled borophenes, and the compressions improve the HER performance of borophenes.
AbstractList Several borophenes have been prepared successfully, but the synthesis of boron nanotubes is still very difficult. Our results suggest that the high flexibility of borophene in combination with van der Waals interactions makes it possible to coil boron nanotubes from rippled borophenes, which is confirmed by ab initio molecular dynamics simulations. The plane structures transform into rippled structures almost without any barrier under very small compression and weak perturbations like molecular adsorption. The compression energies of the rippled structures increase linearly and slowly with the increase of the compression. This suggests how the geometry of the borophene evolves with compression. Based on the evaluation of the free energy of hydrogen adsorption, a stronger compression suggests the improved hydrogen evolution performance of the borophene and even makes it better than Pt catalysts. Meanwhile, good hydrogen evolution performance is also suggested for boron nanotubes. Our results suggest a novel preparation method for boron nanotubes from borophenes and a possible way to improve their hydrogen evolution performance.
Several borophenes have been prepared successfully, but the synthesis of boron nanotubes is still very difficult. Our results suggest that the high flexibility of borophene in combination with van der Waals interactions makes it possible to coil boron nanotubes from rippled borophenes, which is confirmed by ab initio molecular dynamics simulations. The plane structures transform into rippled structures almost without any barrier under very small compression and weak perturbations like molecular adsorption. The compression energies of the rippled structures increase linearly and slowly with the increase of the compression. This suggests how the geometry of the borophene evolves with compression. Based on the evaluation of the free energy of hydrogen adsorption, a stronger compression suggests the improved hydrogen evolution performance of the borophene and even makes it better than Pt catalysts. Meanwhile, good hydrogen evolution performance is also suggested for boron nanotubes. Our results suggest a novel preparation method for boron nanotubes from borophenes and a possible way to improve their hydrogen evolution performance. High flexibility of borophene and vdW interactions make it possible to coil boron nanotubes from rippled borophenes, and the compressions improve the HER performance of borophenes.
Several borophenes have been prepared successfully, but the synthesis of boron nanotubes is still very difficult. Our results suggest that the high flexibility of borophene in combination with van der Waals interactions makes it possible to coil boron nanotubes from rippled borophenes, which is confirmed by ab initio molecular dynamics simulations. The plane structures transform into rippled structures almost without any barrier under very small compression and weak perturbations like molecular adsorption. The compression energies of the rippled structures increase linearly and slowly with the increase of the compression. This suggests how the geometry of the borophene evolves with compression. Based on the evaluation of the free energy of hydrogen adsorption, a stronger compression suggests the improved hydrogen evolution performance of the borophene and even makes it better than Pt catalysts. Meanwhile, good hydrogen evolution performance is also suggested for boron nanotubes. Our results suggest a novel preparation method for boron nanotubes from borophenes and a possible way to improve their hydrogen evolution performance.Several borophenes have been prepared successfully, but the synthesis of boron nanotubes is still very difficult. Our results suggest that the high flexibility of borophene in combination with van der Waals interactions makes it possible to coil boron nanotubes from rippled borophenes, which is confirmed by ab initio molecular dynamics simulations. The plane structures transform into rippled structures almost without any barrier under very small compression and weak perturbations like molecular adsorption. The compression energies of the rippled structures increase linearly and slowly with the increase of the compression. This suggests how the geometry of the borophene evolves with compression. Based on the evaluation of the free energy of hydrogen adsorption, a stronger compression suggests the improved hydrogen evolution performance of the borophene and even makes it better than Pt catalysts. Meanwhile, good hydrogen evolution performance is also suggested for boron nanotubes. Our results suggest a novel preparation method for boron nanotubes from borophenes and a possible way to improve their hydrogen evolution performance.
Several borophenes have been prepared successfully, but the synthesis of boron nanotubes is still very difficult. Our results suggest that the high flexibility of borophene in combination with van der Waals interactions makes it possible to coil boron nanotubes from rippled borophenes, which is confirmed by molecular dynamics simulations. The plane structures transform into rippled structures almost without any barrier under very small compression and weak perturbations like molecular adsorption. The compression energies of the rippled structures increase linearly and slowly with the increase of the compression. This suggests how the geometry of the borophene evolves with compression. Based on the evaluation of the free energy of hydrogen adsorption, a stronger compression suggests the improved hydrogen evolution performance of the borophene and even makes it better than Pt catalysts. Meanwhile, good hydrogen evolution performance is also suggested for boron nanotubes. Our results suggest a novel preparation method for boron nanotubes from borophenes and a possible way to improve their hydrogen evolution performance.
Several borophenes have been prepared successfully, but the synthesis of boron nanotubes is still very difficult. Our results suggest that the high flexibility of borophene in combination with van der Waals interactions makes it possible to coil boron nanotubes from rippled borophenes, which is confirmed by ab initio molecular dynamics simulations. The plane structures transform into rippled structures almost without any barrier under very small compression and weak perturbations like molecular adsorption. The compression energies of the rippled structures increase linearly and slowly with the increase of the compression. This suggests how the geometry of the borophene evolves with compression. Based on the evaluation of the free energy of hydrogen adsorption, a stronger compression suggests the improved hydrogen evolution performance of the borophene and even makes it better than Pt catalysts. Meanwhile, good hydrogen evolution performance is also suggested for boron nanotubes. Our results suggest a novel preparation method for boron nanotubes from borophenes and a possible way to improve their hydrogen evolution performance.
Author Qin, Xueqin
Li, Si-Dian
Mu, Yuewen
Liu, Jia
AuthorAffiliation Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province
Shanxi University
Institute of Molecular Science
AuthorAffiliation_xml – name: Institute of Molecular Science
– name: Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province
– name: Shanxi University
Author_xml – sequence: 1
  givenname: Xueqin
  surname: Qin
  fullname: Qin, Xueqin
– sequence: 2
  givenname: Jia
  surname: Liu
  fullname: Liu, Jia
– sequence: 3
  givenname: Yuewen
  surname: Mu
  fullname: Mu, Yuewen
– sequence: 4
  givenname: Si-Dian
  surname: Li
  fullname: Li, Si-Dian
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35666227$$D View this record in MEDLINE/PubMed
BookMark eNpt0c9LwzAUB_AginPqxbtS8CJCNb-apN5k8xcM9DDPJU1etbImNWkP_vfWbU4YnvIIn_d4vO8Y7TrvAKETgq8IZvm1pabFRFGud9AB4YKlOVZ8d1NLMULjGD8wxiQjbB-NWCaEoFQeoNnEN22AGGvv0trZ3oBNTKibtnZvia-S0gfvEqed7_oSYlIF3yw_23dwEG8SnUzv50nsevt1hPYqvYhwvH4P0ev93XzymM6eH54mt7PUMCa7dNiBQKVkBsTQjJJMcuCV4MpklpdMUEW0lrICrYQtLVhuyhxsRakCXZY5O0QXq7lt8J89xK5o6mhgsdAOfB8LKiTHmDIlB3q-RT98H9yw3Y8SWZ4rKgZ1tlZ92YAt2uEAOnwVv3caAF4BE3yMAarC1J3uhqN1QdeLguDiJ4piSicvyyhuh5bLrZbfqf_i0xUO0WzcX67sG3wakd0
CitedBy_id crossref_primary_10_1002_cctc_202301527
crossref_primary_10_1016_j_apsusc_2024_161210
crossref_primary_10_1039_D3CP04543A
crossref_primary_10_1021_acs_energyfuels_4c02646
Cites_doi 10.1126/science.1102896
10.1103/PhysRevB.76.075131
10.1038/nmat4465
10.1039/C6NR06621F
10.1039/c3ta12639k
10.1021/acs.jpclett.1c03452
10.1063/1.477976
10.1038/nnano.2008.172
10.1016/j.cpc.2021.108033
10.1016/0263-7855(96)00018-5
10.1038/nmat1752
10.1103/PhysRevB.77.041402
10.1103/PhysRevB.59.1758
10.3367/UFNe.2019.07.038637
10.1126/science.abg1874
10.1021/cs400384h
10.1039/D0CY02192J
10.1002/adfm.201605059
10.1016/j.physleta.2014.10.048
10.1038/nchem.2491
10.1021/acs.jpclett.5b01197
10.1021/nl101669u
10.1039/b919260c
10.1063/1.1578614
10.1016/j.apsusc.2019.05.143
10.1021/nl403661s
10.1039/D0CP06613C
10.1039/C4RA14684K
10.1103/PhysRevLett.100.177207
10.1063/1.3382344
10.1021/acs.jpcc.0c09297
10.1103/PhysRevB.82.115412
10.1021/ar400310g
10.1021/acs.jpcc.0c01890
10.1063/1.1329672
10.1103/PhysRevB.13.5188
10.1002/advs.201600180
10.1038/nature04235
10.1002/adma.201400909
10.1021/acs.nanolett.7b02518
10.1039/C6TC01328G
10.1039/C7CP04570K
10.1038/srep06677
10.1103/PhysRevLett.99.216802
10.1126/science.aad1080
10.1149/1.1856988
10.1038/nature11458
10.1021/nl903868w
10.1002/jcc.21759
10.1039/C5NR07755A
10.1002/jcc.24300
10.1021/jp047349j
10.1088/1367-2630/18/7/073016
10.1103/PhysRevB.54.11169
10.1038/nmat2082
10.1063/1.4963179
10.1021/nl073295o
10.1016/j.physleta.2016.09.052
10.1021/nn201099a
10.1103/PhysRevB.94.024501
10.3390/molecules26154636
10.1103/PhysRevB.50.17953
10.1103/PhysRevLett.77.3865
10.1021/jp049301b
10.1039/C8CP04850A
10.1021/nl301073q
10.1021/ja0504690
10.1038/s41598-017-09916-5
10.1039/C7RA07400J
10.1088/1367-2630/17/3/035008
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2022
Copyright_xml – notice: Copyright Royal Society of Chemistry 2022
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/d2cp01824a
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database

MEDLINE - Academic
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1463-9084
EndPage 14572
ExternalDocumentID 35666227
10_1039_D2CP01824A
d2cp01824a
Genre Journal Article
GroupedDBID -
0-7
0R
123
1TJ
29O
4.4
70
705
70J
7~J
87K
AAEMU
AAGNR
AAIWI
AAJAE
AANOJ
AAXPP
ABASK
ABDVN
ABFLS
ABGFH
ABRYZ
ACGFO
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AENEX
AFVBQ
AGKEF
AGRSR
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CS3
D0L
DU5
DZ
EBS
ECGLT
EE0
EF-
F5P
GNO
H13
HZ
H~N
IDZ
J3G
J3I
JG
M4U
N9A
NHB
O9-
OK1
P2P
R7B
R7C
RCNCU
RIG
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UCJ
UHB
VH6
WH7
X
YNT
---
-DZ
-~X
0R~
2WC
53G
70~
AAMEH
AAWGC
AAXHV
AAYXX
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AHGCF
AKMSF
ALUYA
APEMP
CITATION
GGIMP
HZ~
R56
RAOCF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c337t-5131ef875e1c2521574e4f648c5d4b36281aa77fea86dbded4cb9edf228eabb93
ISSN 1463-9076
1463-9084
IngestDate Fri Jul 11 14:58:43 EDT 2025
Mon Jun 30 04:49:56 EDT 2025
Thu Apr 03 07:08:24 EDT 2025
Tue Jul 01 00:54:13 EDT 2025
Thu Apr 24 23:01:52 EDT 2025
Thu Jun 16 12:57:34 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c337t-5131ef875e1c2521574e4f648c5d4b36281aa77fea86dbded4cb9edf228eabb93
Notes 12
β
2
ELF of
borophene; geometries of
Electronic supplementary information (ESI) available
borophene under compression; adsorption sites of an H adatom; AIMD simulations of borophene and boron nanotubes with OH. See DOI
https://doi.org/10.1039/d2cp01824a
borophene under compression; band structures of
borophene with an H adatom and H
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0162-5091
0000-0001-5666-0591
PMID 35666227
PQID 2676599826
PQPubID 2047499
PageCount 7
ParticipantIDs crossref_citationtrail_10_1039_D2CP01824A
proquest_journals_2676599826
rsc_primary_d2cp01824a
proquest_miscellaneous_2674002387
crossref_primary_10_1039_D2CP01824A
pubmed_primary_35666227
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-15
PublicationDateYYYYMMDD 2022-06-15
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-15
  day: 15
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Physical chemistry chemical physics : PCCP
PublicationTitleAlternate Phys Chem Chem Phys
PublicationYear 2022
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Maintz (D2CP01824A/cit66/1) 2016; 37
Shang (D2CP01824A/cit15/1) 2018; 20
Chen (D2CP01824A/cit1/1) 2021; 26
Zhou (D2CP01824A/cit9/1) 2015; 379
Mu (D2CP01824A/cit18/1) 2020; 124
Grimme (D2CP01824A/cit46/1) 2010; 132
Kaur (D2CP01824A/cit63/1) 2015; 6
Tang (D2CP01824A/cit30/1) 2010; 82
Junior (D2CP01824A/cit35/1) 2021; 23
Wang (D2CP01824A/cit20/1) 2016; 18
Chun (D2CP01824A/cit33/1) 2010; 10
Zhang (D2CP01824A/cit58/1) 2017; 27
Viktor (D2CP01824A/cit29/1) 2011; 5
Liu (D2CP01824A/cit22/1) 2016; 4
Manz (D2CP01824A/cit67/1) 2017; 7
Castro (D2CP01824A/cit5/1) 2007; 99
Ciuparu (D2CP01824A/cit26/1) 2004; 108
Kresse (D2CP01824A/cit41/1) 1996; 54
Lee (D2CP01824A/cit7/1) 2012; 12
Greeley (D2CP01824A/cit54/1) 2006; 5
Shcherbinin (D2CP01824A/cit34/1) 2020; 124
Lee (D2CP01824A/cit60/1) 2008; 3
Li (D2CP01824A/cit24/1) 2016; 380
Boustani (D2CP01824A/cit28/1) 1999; 110
Ling (D2CP01824A/cit71/1) 2017; 17
Shakya (D2CP01824A/cit64/1) 2017; 7
Zeng (D2CP01824A/cit39/1) 2016; 94
Novoselov (D2CP01824A/cit3/1) 2004; 306
Yang (D2CP01824A/cit59/1) 2017; 19
Jalil (D2CP01824A/cit32/1) 2019; 487
Monkhorst (D2CP01824A/cit48/1) 1976; 13
Zhang (D2CP01824A/cit6/1) 2005; 438
Wang (D2CP01824A/cit55/1) 2021; 267
Si (D2CP01824A/cit56/1) 2016; 8
Norskov (D2CP01824A/cit51/1) 2004; 108
Blöchl (D2CP01824A/cit44/1) 1994; 50
Guzmán-Verri (D2CP01824A/cit11/1) 2007; 76
Feng (D2CP01824A/cit14/1) 2016; 8
Mu (D2CP01824A/cit40/1) 2015; 5
Oostinga (D2CP01824A/cit4/1) 2008; 7
Sergeeva (D2CP01824A/cit16/1) 2014; 47
Yang (D2CP01824A/cit23/1) 2008; 77
Abhishek (D2CP01824A/cit31/1) 2008; 8
Hinnemann (D2CP01824A/cit68/1) 2005; 127
Yu (D2CP01824A/cit61/1) 2013; 1
Wu (D2CP01824A/cit53/1) 2021; 11
Liu (D2CP01824A/cit27/1) 2010; 20
Zhou (D2CP01824A/cit65/1) 2021; 12
Li (D2CP01824A/cit25/1) 2017; 9
Grimme (D2CP01824A/cit47/1) 2011; 32
Kresse (D2CP01824A/cit42/1) 1994; 6
Ling (D2CP01824A/cit36/1) 2016; 3
Li (D2CP01824A/cit19/1) 2021; 371
Li (D2CP01824A/cit37/1) 2015; 15
Cai (D2CP01824A/cit62/1) 2015; 4
Ge (D2CP01824A/cit38/1) 2015; 17
Mannix (D2CP01824A/cit17/1) 2015; 350
Humphrey (D2CP01824A/cit50/1) 1996; 14
Voiry (D2CP01824A/cit69/1) 2013; 13
Muravev (D2CP01824A/cit2/1) 2020; 63
Novoselov (D2CP01824A/cit10/1) 2012; 490
Wu (D2CP01824A/cit70/1) 2013; 3
Splendiani (D2CP01824A/cit13/1) 2010; 10
Perdew (D2CP01824A/cit45/1) 1996; 77
Li (D2CP01824A/cit12/1) 2014; 26
Nørskov (D2CP01824A/cit52/1) 2005; 152
Wimmer (D2CP01824A/cit8/1) 2008; 100
Kresse (D2CP01824A/cit43/1) 1999; 59
Henkelman (D2CP01824A/cit49/1) 2000; 113
Xiao (D2CP01824A/cit21/1) 2016; 109
Gu (D2CP01824A/cit57/1) 2003; 119
References_xml – volume: 306
  start-page: 666
  year: 2004
  ident: D2CP01824A/cit3/1
  publication-title: Science
  doi: 10.1126/science.1102896
– volume: 76
  start-page: 075131
  year: 2007
  ident: D2CP01824A/cit11/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.76.075131
– volume: 15
  start-page: 48
  year: 2015
  ident: D2CP01824A/cit37/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4465
– volume: 9
  start-page: 533
  year: 2017
  ident: D2CP01824A/cit25/1
  publication-title: Nanoscale
  doi: 10.1039/C6NR06621F
– volume: 1
  start-page: 13559
  year: 2013
  ident: D2CP01824A/cit61/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta12639k
– volume: 12
  start-page: 11652
  year: 2021
  ident: D2CP01824A/cit65/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.1c03452
– volume: 110
  start-page: 3176
  year: 1999
  ident: D2CP01824A/cit28/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.477976
– volume: 3
  start-page: 486
  year: 2008
  ident: D2CP01824A/cit60/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2008.172
– volume: 267
  start-page: 108033
  year: 2021
  ident: D2CP01824A/cit55/1
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2021.108033
– volume: 14
  start-page: 33
  year: 1996
  ident: D2CP01824A/cit50/1
  publication-title: J. Mol. Graphics
  doi: 10.1016/0263-7855(96)00018-5
– volume: 5
  start-page: 909
  year: 2006
  ident: D2CP01824A/cit54/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1752
– volume: 77
  start-page: 041402(R)
  year: 2008
  ident: D2CP01824A/cit23/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.77.041402
– volume: 59
  start-page: 1758
  year: 1999
  ident: D2CP01824A/cit43/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.59.1758
– volume: 63
  start-page: 975
  year: 2020
  ident: D2CP01824A/cit2/1
  publication-title: Phys.-Usp.
  doi: 10.3367/UFNe.2019.07.038637
– volume: 371
  start-page: 1143
  year: 2021
  ident: D2CP01824A/cit19/1
  publication-title: Science
  doi: 10.1126/science.abg1874
– volume: 3
  start-page: 2101
  year: 2013
  ident: D2CP01824A/cit70/1
  publication-title: ACS Catal.
  doi: 10.1021/cs400384h
– volume: 11
  start-page: 1419
  year: 2021
  ident: D2CP01824A/cit53/1
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/D0CY02192J
– volume: 27
  start-page: 1605059
  year: 2017
  ident: D2CP01824A/cit58/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201605059
– volume: 379
  start-page: 452
  year: 2015
  ident: D2CP01824A/cit9/1
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2014.10.048
– volume: 8
  start-page: 563
  year: 2016
  ident: D2CP01824A/cit14/1
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2491
– volume: 6
  start-page: 2870
  year: 2015
  ident: D2CP01824A/cit63/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b01197
– volume: 10
  start-page: 3927
  year: 2010
  ident: D2CP01824A/cit33/1
  publication-title: Nano Lett.
  doi: 10.1021/nl101669u
– volume: 20
  start-page: 2197
  year: 2010
  ident: D2CP01824A/cit27/1
  publication-title: J. Mater. Chem.
  doi: 10.1039/b919260c
– volume: 119
  start-page: 488
  year: 2003
  ident: D2CP01824A/cit57/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1578614
– volume: 487
  start-page: 550
  year: 2019
  ident: D2CP01824A/cit32/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.05.143
– volume: 13
  start-page: 6222
  year: 2013
  ident: D2CP01824A/cit69/1
  publication-title: Nano Lett.
  doi: 10.1021/nl403661s
– volume: 23
  start-page: 9089
  year: 2021
  ident: D2CP01824A/cit35/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D0CP06613C
– volume: 5
  start-page: 11392
  year: 2015
  ident: D2CP01824A/cit40/1
  publication-title: RSC Adv.
  doi: 10.1039/C4RA14684K
– volume: 100
  start-page: 177207
  year: 2008
  ident: D2CP01824A/cit8/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.177207
– volume: 132
  start-page: 154104
  year: 2010
  ident: D2CP01824A/cit46/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3382344
– volume: 124
  start-page: 28145
  year: 2020
  ident: D2CP01824A/cit18/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.0c09297
– volume: 82
  start-page: 115412
  year: 2010
  ident: D2CP01824A/cit30/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.82.115412
– volume: 47
  start-page: 1349
  year: 2014
  ident: D2CP01824A/cit16/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar400310g
– volume: 124
  start-page: 10235
  year: 2020
  ident: D2CP01824A/cit34/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.0c01890
– volume: 6
  start-page: 8245
  year: 1994
  ident: D2CP01824A/cit42/1
  publication-title: J. Phys.: Condens. Matter
– volume: 113
  start-page: 9901
  year: 2000
  ident: D2CP01824A/cit49/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1329672
– volume: 13
  start-page: 5188
  year: 1976
  ident: D2CP01824A/cit48/1
  publication-title: Phys. Rev. B: Solid State
  doi: 10.1103/PhysRevB.13.5188
– volume: 3
  start-page: 1600180
  year: 2016
  ident: D2CP01824A/cit36/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201600180
– volume: 438
  start-page: 201
  year: 2005
  ident: D2CP01824A/cit6/1
  publication-title: Nature
  doi: 10.1038/nature04235
– volume: 26
  start-page: 4820
  year: 2014
  ident: D2CP01824A/cit12/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201400909
– volume: 17
  start-page: 5133
  year: 2017
  ident: D2CP01824A/cit71/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b02518
– volume: 4
  start-page: 6380
  year: 2016
  ident: D2CP01824A/cit22/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC01328G
– volume: 19
  start-page: 23982
  year: 2017
  ident: D2CP01824A/cit59/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C7CP04570K
– volume: 4
  start-page: 6677
  year: 2015
  ident: D2CP01824A/cit62/1
  publication-title: Sci. Rep.
  doi: 10.1038/srep06677
– volume: 99
  start-page: 216802
  year: 2007
  ident: D2CP01824A/cit5/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.216802
– volume: 350
  start-page: 1513
  year: 2015
  ident: D2CP01824A/cit17/1
  publication-title: Science
  doi: 10.1126/science.aad1080
– volume: 152
  start-page: J23
  year: 2005
  ident: D2CP01824A/cit52/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1856988
– volume: 490
  start-page: 192
  year: 2012
  ident: D2CP01824A/cit10/1
  publication-title: Nature
  doi: 10.1038/nature11458
– volume: 10
  start-page: 1271
  year: 2010
  ident: D2CP01824A/cit13/1
  publication-title: Nano Lett.
  doi: 10.1021/nl903868w
– volume: 32
  start-page: 1456
  year: 2011
  ident: D2CP01824A/cit47/1
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21759
– volume: 8
  start-page: 3207
  year: 2016
  ident: D2CP01824A/cit56/1
  publication-title: Nanoscale
  doi: 10.1039/C5NR07755A
– volume: 37
  start-page: 1030
  year: 2016
  ident: D2CP01824A/cit66/1
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.24300
– volume: 108
  start-page: 17886
  year: 2004
  ident: D2CP01824A/cit51/1
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp047349j
– volume: 18
  start-page: 073016
  year: 2016
  ident: D2CP01824A/cit20/1
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/18/7/073016
– volume: 54
  start-page: 11169
  year: 1996
  ident: D2CP01824A/cit41/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.54.11169
– volume: 7
  start-page: 151
  year: 2008
  ident: D2CP01824A/cit4/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2082
– volume: 109
  start-page: 122604
  year: 2016
  ident: D2CP01824A/cit21/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4963179
– volume: 8
  start-page: 1314
  year: 2008
  ident: D2CP01824A/cit31/1
  publication-title: Nano Lett.
  doi: 10.1021/nl073295o
– volume: 380
  start-page: 3928
  year: 2016
  ident: D2CP01824A/cit24/1
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2016.09.052
– volume: 5
  start-page: 4997
  year: 2011
  ident: D2CP01824A/cit29/1
  publication-title: ACS Nano
  doi: 10.1021/nn201099a
– volume: 94
  start-page: 024501
  year: 2016
  ident: D2CP01824A/cit39/1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.94.024501
– volume: 26
  start-page: 4636
  year: 2021
  ident: D2CP01824A/cit1/1
  publication-title: Molecules
  doi: 10.3390/molecules26154636
– volume: 50
  start-page: 17953
  year: 1994
  ident: D2CP01824A/cit44/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.50.17953
– volume: 77
  start-page: 3865
  year: 1996
  ident: D2CP01824A/cit45/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 108
  start-page: 3967
  year: 2004
  ident: D2CP01824A/cit26/1
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp049301b
– volume: 20
  start-page: 28964
  year: 2018
  ident: D2CP01824A/cit15/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C8CP04850A
– volume: 12
  start-page: 4444
  year: 2012
  ident: D2CP01824A/cit7/1
  publication-title: Nano Lett.
  doi: 10.1021/nl301073q
– volume: 127
  start-page: 5308
  year: 2005
  ident: D2CP01824A/cit68/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0504690
– volume: 7
  start-page: 9576
  year: 2017
  ident: D2CP01824A/cit64/1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-09916-5
– volume: 7
  start-page: 45552
  year: 2017
  ident: D2CP01824A/cit67/1
  publication-title: RSC Adv.
  doi: 10.1039/C7RA07400J
– volume: 17
  start-page: 035008
  year: 2015
  ident: D2CP01824A/cit38/1
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/17/3/035008
SSID ssj0001513
Score 2.408825
Snippet Several borophenes have been prepared successfully, but the synthesis of boron nanotubes is still very difficult. Our results suggest that the high flexibility...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 14566
SubjectTerms Adsorption
Boron
Borophene
Coils
Folding
Free energy
Hydrogen
Hydrogen evolution
Hydrogen-based energy
Molecular dynamics
Nanotubes
Perturbation
Title Compression-induced crimping of boron nanotubes from borophenes: a DFT study
URI https://www.ncbi.nlm.nih.gov/pubmed/35666227
https://www.proquest.com/docview/2676599826
https://www.proquest.com/docview/2674002387
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3vi9MwGMeD7kDvjfjrtHpKRN_IUd2SNG19N7o7Tjlkwg72riRpAgOvm7cWwb_eJ0nTTm-C-qaUNF22fNLs-6RPngehN8xQkisYvCadsJhlnMVZptK44qrKTGLGRDlvi8_8_JJ9WibLIXGi213SyHfqx959Jf9DFcqAq90l-w9k-w-FAjgHvnAEwnD8K8b2YfZ-rHUMtnVr3-XDLHC16VyZpQ1PcFKLet20Um_9XhJbaB27vDOcOJmdLXaCzHY6dR7wqZAQzp_ZIr8YsnWLCfOi6DeIffHhCJat_rYaHH1WrRsoKzGgddN-q7_rnVpuFXYVz8Jo7RYiwIa1GXz8G2ntJ0_GaZyPfcq3G1PzmNrIphVRmzHYNEzsVoIvvLlykCjIS058uIDfAmGHS7fRAQGbgIzQwfR08fGi_-MF8UJDBFqavx-aOkR3ws2_yo8bNgUojOuQ-cUpjMV9dK8zDfDUc36Abun6IbpbBACP0MUe3jjwxmuDHW_c88aWNx54f8ACA23saD9Gl2eni-I87rJhxIrStInhx020AfNSTxQB0ZWkTDPDWaaSiknQIdlEiDQ1WmS8kpWumJK5rgwhmRZS5vQIjep1rZ8irKByZQyRieQsr7i1KUHGp4QZ0H8midDb0Eml6kLF24wlX0vnskDzckaKuevbaYRe93U3PkDK3lrHoa_L7gHaltAiT8DcJzxCr_rL0Kf2nZWo9bp1dZjTlWmEnnhGfTOBaYSOAFpfPHB_9sdbnqPDYQgfo1Fz3eoXoC4b-bIbVT8BDVl4Nw
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Compression-induced+crimping+of+boron+nanotubes+from+borophenes%3A+a+DFT+study&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Qin%2C+Xueqin&rft.au=Liu%2C+Jia&rft.au=Mu%2C+Yuewen&rft.au=Li%2C+Si-Dian&rft.date=2022-06-15&rft.eissn=1463-9084&rft_id=info:doi/10.1039%2Fd2cp01824a&rft_id=info%3Apmid%2F35666227&rft.externalDocID=35666227
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon