Compression-induced crimping of boron nanotubes from borophenes: a DFT study
Several borophenes have been prepared successfully, but the synthesis of boron nanotubes is still very difficult. Our results suggest that the high flexibility of borophene in combination with van der Waals interactions makes it possible to coil boron nanotubes from rippled borophenes, which is conf...
Saved in:
Published in | Physical chemistry chemical physics : PCCP Vol. 24; no. 23; pp. 14566 - 14572 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
15.06.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Several borophenes have been prepared successfully, but the synthesis of boron nanotubes is still very difficult. Our results suggest that the high flexibility of borophene in combination with van der Waals interactions makes it possible to coil boron nanotubes from rippled borophenes, which is confirmed by
ab initio
molecular dynamics simulations. The plane structures transform into rippled structures almost without any barrier under very small compression and weak perturbations like molecular adsorption. The compression energies of the rippled structures increase linearly and slowly with the increase of the compression. This suggests how the geometry of the borophene evolves with compression. Based on the evaluation of the free energy of hydrogen adsorption, a stronger compression suggests the improved hydrogen evolution performance of the borophene and even makes it better than Pt catalysts. Meanwhile, good hydrogen evolution performance is also suggested for boron nanotubes. Our results suggest a novel preparation method for boron nanotubes from borophenes and a possible way to improve their hydrogen evolution performance.
High flexibility of borophene and vdW interactions make it possible to coil boron nanotubes from rippled borophenes, and the compressions improve the HER performance of borophenes. |
---|---|
AbstractList | Several borophenes have been prepared successfully, but the synthesis of boron nanotubes is still very difficult. Our results suggest that the high flexibility of borophene in combination with van der Waals interactions makes it possible to coil boron nanotubes from rippled borophenes, which is confirmed by ab initio molecular dynamics simulations. The plane structures transform into rippled structures almost without any barrier under very small compression and weak perturbations like molecular adsorption. The compression energies of the rippled structures increase linearly and slowly with the increase of the compression. This suggests how the geometry of the borophene evolves with compression. Based on the evaluation of the free energy of hydrogen adsorption, a stronger compression suggests the improved hydrogen evolution performance of the borophene and even makes it better than Pt catalysts. Meanwhile, good hydrogen evolution performance is also suggested for boron nanotubes. Our results suggest a novel preparation method for boron nanotubes from borophenes and a possible way to improve their hydrogen evolution performance. Several borophenes have been prepared successfully, but the synthesis of boron nanotubes is still very difficult. Our results suggest that the high flexibility of borophene in combination with van der Waals interactions makes it possible to coil boron nanotubes from rippled borophenes, which is confirmed by ab initio molecular dynamics simulations. The plane structures transform into rippled structures almost without any barrier under very small compression and weak perturbations like molecular adsorption. The compression energies of the rippled structures increase linearly and slowly with the increase of the compression. This suggests how the geometry of the borophene evolves with compression. Based on the evaluation of the free energy of hydrogen adsorption, a stronger compression suggests the improved hydrogen evolution performance of the borophene and even makes it better than Pt catalysts. Meanwhile, good hydrogen evolution performance is also suggested for boron nanotubes. Our results suggest a novel preparation method for boron nanotubes from borophenes and a possible way to improve their hydrogen evolution performance. High flexibility of borophene and vdW interactions make it possible to coil boron nanotubes from rippled borophenes, and the compressions improve the HER performance of borophenes. Several borophenes have been prepared successfully, but the synthesis of boron nanotubes is still very difficult. Our results suggest that the high flexibility of borophene in combination with van der Waals interactions makes it possible to coil boron nanotubes from rippled borophenes, which is confirmed by ab initio molecular dynamics simulations. The plane structures transform into rippled structures almost without any barrier under very small compression and weak perturbations like molecular adsorption. The compression energies of the rippled structures increase linearly and slowly with the increase of the compression. This suggests how the geometry of the borophene evolves with compression. Based on the evaluation of the free energy of hydrogen adsorption, a stronger compression suggests the improved hydrogen evolution performance of the borophene and even makes it better than Pt catalysts. Meanwhile, good hydrogen evolution performance is also suggested for boron nanotubes. Our results suggest a novel preparation method for boron nanotubes from borophenes and a possible way to improve their hydrogen evolution performance.Several borophenes have been prepared successfully, but the synthesis of boron nanotubes is still very difficult. Our results suggest that the high flexibility of borophene in combination with van der Waals interactions makes it possible to coil boron nanotubes from rippled borophenes, which is confirmed by ab initio molecular dynamics simulations. The plane structures transform into rippled structures almost without any barrier under very small compression and weak perturbations like molecular adsorption. The compression energies of the rippled structures increase linearly and slowly with the increase of the compression. This suggests how the geometry of the borophene evolves with compression. Based on the evaluation of the free energy of hydrogen adsorption, a stronger compression suggests the improved hydrogen evolution performance of the borophene and even makes it better than Pt catalysts. Meanwhile, good hydrogen evolution performance is also suggested for boron nanotubes. Our results suggest a novel preparation method for boron nanotubes from borophenes and a possible way to improve their hydrogen evolution performance. Several borophenes have been prepared successfully, but the synthesis of boron nanotubes is still very difficult. Our results suggest that the high flexibility of borophene in combination with van der Waals interactions makes it possible to coil boron nanotubes from rippled borophenes, which is confirmed by molecular dynamics simulations. The plane structures transform into rippled structures almost without any barrier under very small compression and weak perturbations like molecular adsorption. The compression energies of the rippled structures increase linearly and slowly with the increase of the compression. This suggests how the geometry of the borophene evolves with compression. Based on the evaluation of the free energy of hydrogen adsorption, a stronger compression suggests the improved hydrogen evolution performance of the borophene and even makes it better than Pt catalysts. Meanwhile, good hydrogen evolution performance is also suggested for boron nanotubes. Our results suggest a novel preparation method for boron nanotubes from borophenes and a possible way to improve their hydrogen evolution performance. Several borophenes have been prepared successfully, but the synthesis of boron nanotubes is still very difficult. Our results suggest that the high flexibility of borophene in combination with van der Waals interactions makes it possible to coil boron nanotubes from rippled borophenes, which is confirmed by ab initio molecular dynamics simulations. The plane structures transform into rippled structures almost without any barrier under very small compression and weak perturbations like molecular adsorption. The compression energies of the rippled structures increase linearly and slowly with the increase of the compression. This suggests how the geometry of the borophene evolves with compression. Based on the evaluation of the free energy of hydrogen adsorption, a stronger compression suggests the improved hydrogen evolution performance of the borophene and even makes it better than Pt catalysts. Meanwhile, good hydrogen evolution performance is also suggested for boron nanotubes. Our results suggest a novel preparation method for boron nanotubes from borophenes and a possible way to improve their hydrogen evolution performance. |
Author | Qin, Xueqin Li, Si-Dian Mu, Yuewen Liu, Jia |
AuthorAffiliation | Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province Shanxi University Institute of Molecular Science |
AuthorAffiliation_xml | – name: Institute of Molecular Science – name: Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province – name: Shanxi University |
Author_xml | – sequence: 1 givenname: Xueqin surname: Qin fullname: Qin, Xueqin – sequence: 2 givenname: Jia surname: Liu fullname: Liu, Jia – sequence: 3 givenname: Yuewen surname: Mu fullname: Mu, Yuewen – sequence: 4 givenname: Si-Dian surname: Li fullname: Li, Si-Dian |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35666227$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0c9LwzAUB_AginPqxbtS8CJCNb-apN5k8xcM9DDPJU1etbImNWkP_vfWbU4YnvIIn_d4vO8Y7TrvAKETgq8IZvm1pabFRFGud9AB4YKlOVZ8d1NLMULjGD8wxiQjbB-NWCaEoFQeoNnEN22AGGvv0trZ3oBNTKibtnZvia-S0gfvEqed7_oSYlIF3yw_23dwEG8SnUzv50nsevt1hPYqvYhwvH4P0ev93XzymM6eH54mt7PUMCa7dNiBQKVkBsTQjJJMcuCV4MpklpdMUEW0lrICrYQtLVhuyhxsRakCXZY5O0QXq7lt8J89xK5o6mhgsdAOfB8LKiTHmDIlB3q-RT98H9yw3Y8SWZ4rKgZ1tlZ92YAt2uEAOnwVv3caAF4BE3yMAarC1J3uhqN1QdeLguDiJ4piSicvyyhuh5bLrZbfqf_i0xUO0WzcX67sG3wakd0 |
CitedBy_id | crossref_primary_10_1002_cctc_202301527 crossref_primary_10_1016_j_apsusc_2024_161210 crossref_primary_10_1039_D3CP04543A crossref_primary_10_1021_acs_energyfuels_4c02646 |
Cites_doi | 10.1126/science.1102896 10.1103/PhysRevB.76.075131 10.1038/nmat4465 10.1039/C6NR06621F 10.1039/c3ta12639k 10.1021/acs.jpclett.1c03452 10.1063/1.477976 10.1038/nnano.2008.172 10.1016/j.cpc.2021.108033 10.1016/0263-7855(96)00018-5 10.1038/nmat1752 10.1103/PhysRevB.77.041402 10.1103/PhysRevB.59.1758 10.3367/UFNe.2019.07.038637 10.1126/science.abg1874 10.1021/cs400384h 10.1039/D0CY02192J 10.1002/adfm.201605059 10.1016/j.physleta.2014.10.048 10.1038/nchem.2491 10.1021/acs.jpclett.5b01197 10.1021/nl101669u 10.1039/b919260c 10.1063/1.1578614 10.1016/j.apsusc.2019.05.143 10.1021/nl403661s 10.1039/D0CP06613C 10.1039/C4RA14684K 10.1103/PhysRevLett.100.177207 10.1063/1.3382344 10.1021/acs.jpcc.0c09297 10.1103/PhysRevB.82.115412 10.1021/ar400310g 10.1021/acs.jpcc.0c01890 10.1063/1.1329672 10.1103/PhysRevB.13.5188 10.1002/advs.201600180 10.1038/nature04235 10.1002/adma.201400909 10.1021/acs.nanolett.7b02518 10.1039/C6TC01328G 10.1039/C7CP04570K 10.1038/srep06677 10.1103/PhysRevLett.99.216802 10.1126/science.aad1080 10.1149/1.1856988 10.1038/nature11458 10.1021/nl903868w 10.1002/jcc.21759 10.1039/C5NR07755A 10.1002/jcc.24300 10.1021/jp047349j 10.1088/1367-2630/18/7/073016 10.1103/PhysRevB.54.11169 10.1038/nmat2082 10.1063/1.4963179 10.1021/nl073295o 10.1016/j.physleta.2016.09.052 10.1021/nn201099a 10.1103/PhysRevB.94.024501 10.3390/molecules26154636 10.1103/PhysRevB.50.17953 10.1103/PhysRevLett.77.3865 10.1021/jp049301b 10.1039/C8CP04850A 10.1021/nl301073q 10.1021/ja0504690 10.1038/s41598-017-09916-5 10.1039/C7RA07400J 10.1088/1367-2630/17/3/035008 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2022 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2022 |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1039/d2cp01824a |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1463-9084 |
EndPage | 14572 |
ExternalDocumentID | 35666227 10_1039_D2CP01824A d2cp01824a |
Genre | Journal Article |
GroupedDBID | - 0-7 0R 123 1TJ 29O 4.4 70 705 70J 7~J 87K AAEMU AAGNR AAIWI AAJAE AANOJ AAXPP ABASK ABDVN ABFLS ABGFH ABRYZ ACGFO ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AENEX AFVBQ AGKEF AGRSR AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV AZFZN BLAPV BSQNT C6K CS3 D0L DU5 DZ EBS ECGLT EE0 EF- F5P GNO H13 HZ H~N IDZ J3G J3I JG M4U N9A NHB O9- OK1 P2P R7B R7C RCNCU RIG RNS RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UCJ UHB VH6 WH7 X YNT --- -DZ -~X 0R~ 2WC 53G 70~ AAMEH AAWGC AAXHV AAYXX ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AHGCF AKMSF ALUYA APEMP CITATION GGIMP HZ~ R56 RAOCF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c337t-5131ef875e1c2521574e4f648c5d4b36281aa77fea86dbded4cb9edf228eabb93 |
ISSN | 1463-9076 1463-9084 |
IngestDate | Fri Jul 11 14:58:43 EDT 2025 Mon Jun 30 04:49:56 EDT 2025 Thu Apr 03 07:08:24 EDT 2025 Tue Jul 01 00:54:13 EDT 2025 Thu Apr 24 23:01:52 EDT 2025 Thu Jun 16 12:57:34 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c337t-5131ef875e1c2521574e4f648c5d4b36281aa77fea86dbded4cb9edf228eabb93 |
Notes | 12 β 2 ELF of borophene; geometries of Electronic supplementary information (ESI) available borophene under compression; adsorption sites of an H adatom; AIMD simulations of borophene and boron nanotubes with OH. See DOI https://doi.org/10.1039/d2cp01824a borophene under compression; band structures of borophene with an H adatom and H ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0162-5091 0000-0001-5666-0591 |
PMID | 35666227 |
PQID | 2676599826 |
PQPubID | 2047499 |
PageCount | 7 |
ParticipantIDs | crossref_citationtrail_10_1039_D2CP01824A proquest_journals_2676599826 rsc_primary_d2cp01824a proquest_miscellaneous_2674002387 crossref_primary_10_1039_D2CP01824A pubmed_primary_35666227 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-15 |
PublicationDateYYYYMMDD | 2022-06-15 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Physical chemistry chemical physics : PCCP |
PublicationTitleAlternate | Phys Chem Chem Phys |
PublicationYear | 2022 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Maintz (D2CP01824A/cit66/1) 2016; 37 Shang (D2CP01824A/cit15/1) 2018; 20 Chen (D2CP01824A/cit1/1) 2021; 26 Zhou (D2CP01824A/cit9/1) 2015; 379 Mu (D2CP01824A/cit18/1) 2020; 124 Grimme (D2CP01824A/cit46/1) 2010; 132 Kaur (D2CP01824A/cit63/1) 2015; 6 Tang (D2CP01824A/cit30/1) 2010; 82 Junior (D2CP01824A/cit35/1) 2021; 23 Wang (D2CP01824A/cit20/1) 2016; 18 Chun (D2CP01824A/cit33/1) 2010; 10 Zhang (D2CP01824A/cit58/1) 2017; 27 Viktor (D2CP01824A/cit29/1) 2011; 5 Liu (D2CP01824A/cit22/1) 2016; 4 Manz (D2CP01824A/cit67/1) 2017; 7 Castro (D2CP01824A/cit5/1) 2007; 99 Ciuparu (D2CP01824A/cit26/1) 2004; 108 Kresse (D2CP01824A/cit41/1) 1996; 54 Lee (D2CP01824A/cit7/1) 2012; 12 Greeley (D2CP01824A/cit54/1) 2006; 5 Shcherbinin (D2CP01824A/cit34/1) 2020; 124 Lee (D2CP01824A/cit60/1) 2008; 3 Li (D2CP01824A/cit24/1) 2016; 380 Boustani (D2CP01824A/cit28/1) 1999; 110 Ling (D2CP01824A/cit71/1) 2017; 17 Shakya (D2CP01824A/cit64/1) 2017; 7 Zeng (D2CP01824A/cit39/1) 2016; 94 Novoselov (D2CP01824A/cit3/1) 2004; 306 Yang (D2CP01824A/cit59/1) 2017; 19 Jalil (D2CP01824A/cit32/1) 2019; 487 Monkhorst (D2CP01824A/cit48/1) 1976; 13 Zhang (D2CP01824A/cit6/1) 2005; 438 Wang (D2CP01824A/cit55/1) 2021; 267 Si (D2CP01824A/cit56/1) 2016; 8 Norskov (D2CP01824A/cit51/1) 2004; 108 Blöchl (D2CP01824A/cit44/1) 1994; 50 Guzmán-Verri (D2CP01824A/cit11/1) 2007; 76 Feng (D2CP01824A/cit14/1) 2016; 8 Mu (D2CP01824A/cit40/1) 2015; 5 Oostinga (D2CP01824A/cit4/1) 2008; 7 Sergeeva (D2CP01824A/cit16/1) 2014; 47 Yang (D2CP01824A/cit23/1) 2008; 77 Abhishek (D2CP01824A/cit31/1) 2008; 8 Hinnemann (D2CP01824A/cit68/1) 2005; 127 Yu (D2CP01824A/cit61/1) 2013; 1 Wu (D2CP01824A/cit53/1) 2021; 11 Liu (D2CP01824A/cit27/1) 2010; 20 Zhou (D2CP01824A/cit65/1) 2021; 12 Li (D2CP01824A/cit25/1) 2017; 9 Grimme (D2CP01824A/cit47/1) 2011; 32 Kresse (D2CP01824A/cit42/1) 1994; 6 Ling (D2CP01824A/cit36/1) 2016; 3 Li (D2CP01824A/cit19/1) 2021; 371 Li (D2CP01824A/cit37/1) 2015; 15 Cai (D2CP01824A/cit62/1) 2015; 4 Ge (D2CP01824A/cit38/1) 2015; 17 Mannix (D2CP01824A/cit17/1) 2015; 350 Humphrey (D2CP01824A/cit50/1) 1996; 14 Voiry (D2CP01824A/cit69/1) 2013; 13 Muravev (D2CP01824A/cit2/1) 2020; 63 Novoselov (D2CP01824A/cit10/1) 2012; 490 Wu (D2CP01824A/cit70/1) 2013; 3 Splendiani (D2CP01824A/cit13/1) 2010; 10 Perdew (D2CP01824A/cit45/1) 1996; 77 Li (D2CP01824A/cit12/1) 2014; 26 Nørskov (D2CP01824A/cit52/1) 2005; 152 Wimmer (D2CP01824A/cit8/1) 2008; 100 Kresse (D2CP01824A/cit43/1) 1999; 59 Henkelman (D2CP01824A/cit49/1) 2000; 113 Xiao (D2CP01824A/cit21/1) 2016; 109 Gu (D2CP01824A/cit57/1) 2003; 119 |
References_xml | – volume: 306 start-page: 666 year: 2004 ident: D2CP01824A/cit3/1 publication-title: Science doi: 10.1126/science.1102896 – volume: 76 start-page: 075131 year: 2007 ident: D2CP01824A/cit11/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.76.075131 – volume: 15 start-page: 48 year: 2015 ident: D2CP01824A/cit37/1 publication-title: Nat. Mater. doi: 10.1038/nmat4465 – volume: 9 start-page: 533 year: 2017 ident: D2CP01824A/cit25/1 publication-title: Nanoscale doi: 10.1039/C6NR06621F – volume: 1 start-page: 13559 year: 2013 ident: D2CP01824A/cit61/1 publication-title: J. Mater. Chem. A doi: 10.1039/c3ta12639k – volume: 12 start-page: 11652 year: 2021 ident: D2CP01824A/cit65/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.1c03452 – volume: 110 start-page: 3176 year: 1999 ident: D2CP01824A/cit28/1 publication-title: J. Chem. Phys. doi: 10.1063/1.477976 – volume: 3 start-page: 486 year: 2008 ident: D2CP01824A/cit60/1 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2008.172 – volume: 267 start-page: 108033 year: 2021 ident: D2CP01824A/cit55/1 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2021.108033 – volume: 14 start-page: 33 year: 1996 ident: D2CP01824A/cit50/1 publication-title: J. Mol. Graphics doi: 10.1016/0263-7855(96)00018-5 – volume: 5 start-page: 909 year: 2006 ident: D2CP01824A/cit54/1 publication-title: Nat. Mater. doi: 10.1038/nmat1752 – volume: 77 start-page: 041402(R) year: 2008 ident: D2CP01824A/cit23/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.77.041402 – volume: 59 start-page: 1758 year: 1999 ident: D2CP01824A/cit43/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.59.1758 – volume: 63 start-page: 975 year: 2020 ident: D2CP01824A/cit2/1 publication-title: Phys.-Usp. doi: 10.3367/UFNe.2019.07.038637 – volume: 371 start-page: 1143 year: 2021 ident: D2CP01824A/cit19/1 publication-title: Science doi: 10.1126/science.abg1874 – volume: 3 start-page: 2101 year: 2013 ident: D2CP01824A/cit70/1 publication-title: ACS Catal. doi: 10.1021/cs400384h – volume: 11 start-page: 1419 year: 2021 ident: D2CP01824A/cit53/1 publication-title: Catal. Sci. Technol. doi: 10.1039/D0CY02192J – volume: 27 start-page: 1605059 year: 2017 ident: D2CP01824A/cit58/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201605059 – volume: 379 start-page: 452 year: 2015 ident: D2CP01824A/cit9/1 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2014.10.048 – volume: 8 start-page: 563 year: 2016 ident: D2CP01824A/cit14/1 publication-title: Nat. Chem. doi: 10.1038/nchem.2491 – volume: 6 start-page: 2870 year: 2015 ident: D2CP01824A/cit63/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b01197 – volume: 10 start-page: 3927 year: 2010 ident: D2CP01824A/cit33/1 publication-title: Nano Lett. doi: 10.1021/nl101669u – volume: 20 start-page: 2197 year: 2010 ident: D2CP01824A/cit27/1 publication-title: J. Mater. Chem. doi: 10.1039/b919260c – volume: 119 start-page: 488 year: 2003 ident: D2CP01824A/cit57/1 publication-title: J. Chem. Phys. doi: 10.1063/1.1578614 – volume: 487 start-page: 550 year: 2019 ident: D2CP01824A/cit32/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.05.143 – volume: 13 start-page: 6222 year: 2013 ident: D2CP01824A/cit69/1 publication-title: Nano Lett. doi: 10.1021/nl403661s – volume: 23 start-page: 9089 year: 2021 ident: D2CP01824A/cit35/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D0CP06613C – volume: 5 start-page: 11392 year: 2015 ident: D2CP01824A/cit40/1 publication-title: RSC Adv. doi: 10.1039/C4RA14684K – volume: 100 start-page: 177207 year: 2008 ident: D2CP01824A/cit8/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.177207 – volume: 132 start-page: 154104 year: 2010 ident: D2CP01824A/cit46/1 publication-title: J. Chem. Phys. doi: 10.1063/1.3382344 – volume: 124 start-page: 28145 year: 2020 ident: D2CP01824A/cit18/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.0c09297 – volume: 82 start-page: 115412 year: 2010 ident: D2CP01824A/cit30/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.82.115412 – volume: 47 start-page: 1349 year: 2014 ident: D2CP01824A/cit16/1 publication-title: Acc. Chem. Res. doi: 10.1021/ar400310g – volume: 124 start-page: 10235 year: 2020 ident: D2CP01824A/cit34/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.0c01890 – volume: 6 start-page: 8245 year: 1994 ident: D2CP01824A/cit42/1 publication-title: J. Phys.: Condens. Matter – volume: 113 start-page: 9901 year: 2000 ident: D2CP01824A/cit49/1 publication-title: J. Chem. Phys. doi: 10.1063/1.1329672 – volume: 13 start-page: 5188 year: 1976 ident: D2CP01824A/cit48/1 publication-title: Phys. Rev. B: Solid State doi: 10.1103/PhysRevB.13.5188 – volume: 3 start-page: 1600180 year: 2016 ident: D2CP01824A/cit36/1 publication-title: Adv. Sci. doi: 10.1002/advs.201600180 – volume: 438 start-page: 201 year: 2005 ident: D2CP01824A/cit6/1 publication-title: Nature doi: 10.1038/nature04235 – volume: 26 start-page: 4820 year: 2014 ident: D2CP01824A/cit12/1 publication-title: Adv. Mater. doi: 10.1002/adma.201400909 – volume: 17 start-page: 5133 year: 2017 ident: D2CP01824A/cit71/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b02518 – volume: 4 start-page: 6380 year: 2016 ident: D2CP01824A/cit22/1 publication-title: J. Mater. Chem. C doi: 10.1039/C6TC01328G – volume: 19 start-page: 23982 year: 2017 ident: D2CP01824A/cit59/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP04570K – volume: 4 start-page: 6677 year: 2015 ident: D2CP01824A/cit62/1 publication-title: Sci. Rep. doi: 10.1038/srep06677 – volume: 99 start-page: 216802 year: 2007 ident: D2CP01824A/cit5/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.216802 – volume: 350 start-page: 1513 year: 2015 ident: D2CP01824A/cit17/1 publication-title: Science doi: 10.1126/science.aad1080 – volume: 152 start-page: J23 year: 2005 ident: D2CP01824A/cit52/1 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1856988 – volume: 490 start-page: 192 year: 2012 ident: D2CP01824A/cit10/1 publication-title: Nature doi: 10.1038/nature11458 – volume: 10 start-page: 1271 year: 2010 ident: D2CP01824A/cit13/1 publication-title: Nano Lett. doi: 10.1021/nl903868w – volume: 32 start-page: 1456 year: 2011 ident: D2CP01824A/cit47/1 publication-title: J. Comput. Chem. doi: 10.1002/jcc.21759 – volume: 8 start-page: 3207 year: 2016 ident: D2CP01824A/cit56/1 publication-title: Nanoscale doi: 10.1039/C5NR07755A – volume: 37 start-page: 1030 year: 2016 ident: D2CP01824A/cit66/1 publication-title: J. Comput. Chem. doi: 10.1002/jcc.24300 – volume: 108 start-page: 17886 year: 2004 ident: D2CP01824A/cit51/1 publication-title: J. Phys. Chem. B doi: 10.1021/jp047349j – volume: 18 start-page: 073016 year: 2016 ident: D2CP01824A/cit20/1 publication-title: New J. Phys. doi: 10.1088/1367-2630/18/7/073016 – volume: 54 start-page: 11169 year: 1996 ident: D2CP01824A/cit41/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.54.11169 – volume: 7 start-page: 151 year: 2008 ident: D2CP01824A/cit4/1 publication-title: Nat. Mater. doi: 10.1038/nmat2082 – volume: 109 start-page: 122604 year: 2016 ident: D2CP01824A/cit21/1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4963179 – volume: 8 start-page: 1314 year: 2008 ident: D2CP01824A/cit31/1 publication-title: Nano Lett. doi: 10.1021/nl073295o – volume: 380 start-page: 3928 year: 2016 ident: D2CP01824A/cit24/1 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2016.09.052 – volume: 5 start-page: 4997 year: 2011 ident: D2CP01824A/cit29/1 publication-title: ACS Nano doi: 10.1021/nn201099a – volume: 94 start-page: 024501 year: 2016 ident: D2CP01824A/cit39/1 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.024501 – volume: 26 start-page: 4636 year: 2021 ident: D2CP01824A/cit1/1 publication-title: Molecules doi: 10.3390/molecules26154636 – volume: 50 start-page: 17953 year: 1994 ident: D2CP01824A/cit44/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.50.17953 – volume: 77 start-page: 3865 year: 1996 ident: D2CP01824A/cit45/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 108 start-page: 3967 year: 2004 ident: D2CP01824A/cit26/1 publication-title: J. Phys. Chem. B doi: 10.1021/jp049301b – volume: 20 start-page: 28964 year: 2018 ident: D2CP01824A/cit15/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C8CP04850A – volume: 12 start-page: 4444 year: 2012 ident: D2CP01824A/cit7/1 publication-title: Nano Lett. doi: 10.1021/nl301073q – volume: 127 start-page: 5308 year: 2005 ident: D2CP01824A/cit68/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0504690 – volume: 7 start-page: 9576 year: 2017 ident: D2CP01824A/cit64/1 publication-title: Sci. Rep. doi: 10.1038/s41598-017-09916-5 – volume: 7 start-page: 45552 year: 2017 ident: D2CP01824A/cit67/1 publication-title: RSC Adv. doi: 10.1039/C7RA07400J – volume: 17 start-page: 035008 year: 2015 ident: D2CP01824A/cit38/1 publication-title: New J. Phys. doi: 10.1088/1367-2630/17/3/035008 |
SSID | ssj0001513 |
Score | 2.408825 |
Snippet | Several borophenes have been prepared successfully, but the synthesis of boron nanotubes is still very difficult. Our results suggest that the high flexibility... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 14566 |
SubjectTerms | Adsorption Boron Borophene Coils Folding Free energy Hydrogen Hydrogen evolution Hydrogen-based energy Molecular dynamics Nanotubes Perturbation |
Title | Compression-induced crimping of boron nanotubes from borophenes: a DFT study |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35666227 https://www.proquest.com/docview/2676599826 https://www.proquest.com/docview/2674002387 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3vi9MwGMeD7kDvjfjrtHpKRN_IUd2SNG19N7o7Tjlkwg72riRpAgOvm7cWwb_eJ0nTTm-C-qaUNF22fNLs-6RPngehN8xQkisYvCadsJhlnMVZptK44qrKTGLGRDlvi8_8_JJ9WibLIXGi213SyHfqx959Jf9DFcqAq90l-w9k-w-FAjgHvnAEwnD8K8b2YfZ-rHUMtnVr3-XDLHC16VyZpQ1PcFKLet20Um_9XhJbaB27vDOcOJmdLXaCzHY6dR7wqZAQzp_ZIr8YsnWLCfOi6DeIffHhCJat_rYaHH1WrRsoKzGgddN-q7_rnVpuFXYVz8Jo7RYiwIa1GXz8G2ntJ0_GaZyPfcq3G1PzmNrIphVRmzHYNEzsVoIvvLlykCjIS058uIDfAmGHS7fRAQGbgIzQwfR08fGi_-MF8UJDBFqavx-aOkR3ws2_yo8bNgUojOuQ-cUpjMV9dK8zDfDUc36Abun6IbpbBACP0MUe3jjwxmuDHW_c88aWNx54f8ACA23saD9Gl2eni-I87rJhxIrStInhx020AfNSTxQB0ZWkTDPDWaaSiknQIdlEiDQ1WmS8kpWumJK5rgwhmRZS5vQIjep1rZ8irKByZQyRieQsr7i1KUHGp4QZ0H8midDb0Eml6kLF24wlX0vnskDzckaKuevbaYRe93U3PkDK3lrHoa_L7gHaltAiT8DcJzxCr_rL0Kf2nZWo9bp1dZjTlWmEnnhGfTOBaYSOAFpfPHB_9sdbnqPDYQgfo1Fz3eoXoC4b-bIbVT8BDVl4Nw |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Compression-induced+crimping+of+boron+nanotubes+from+borophenes%3A+a+DFT+study&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Qin%2C+Xueqin&rft.au=Liu%2C+Jia&rft.au=Mu%2C+Yuewen&rft.au=Li%2C+Si-Dian&rft.date=2022-06-15&rft.eissn=1463-9084&rft_id=info:doi/10.1039%2Fd2cp01824a&rft_id=info%3Apmid%2F35666227&rft.externalDocID=35666227 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon |