Analyzing the structure of solutions for weakly singular integro-differential equations with partial derivatives
In this work, we analyze the approximate solution of a specific partial integro-differential equation (PIDE) with a weakly singular kernel using the spectral Tau method. It present a numerical solution procedure for this PIDE, which is transferred into a Volterra–Fredholm integral equation (VFIE), a...
Saved in:
Published in | AIMS mathematics Vol. 9; no. 9; pp. 23182 - 23196 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this work, we analyze the approximate solution of a specific partial integro-differential equation (PIDE) with a weakly singular kernel using the spectral Tau method. It present a numerical solution procedure for this PIDE, which is transferred into a Volterra–Fredholm integral equation (VFIE), and the spectral method is performed on VFIE. In some illustrated examples, we show that the VFIE problem has high numerical stability with respect to the original form of the PIDE problem. For this aim, we apply the spectral Tau method in two cases, first for the problem in the form of VFIE and then also for the problem in the form of PIDE. The remarkable numerical results obtained from the VFIE problem form compared to those gained from the PIDE problem form show the efficiency of the proposal method. Also, we prove the convergence theorem of the numerical solution of the Tau method for the VFIE problem, and then it is generalized to the PIDE problem. |
---|---|
AbstractList | In this work, we analyze the approximate solution of a specific partial integro-differential equation (PIDE) with a weakly singular kernel using the spectral Tau method. It present a numerical solution procedure for this PIDE, which is transferred into a Volterra–Fredholm integral equation (VFIE), and the spectral method is performed on VFIE. In some illustrated examples, we show that the VFIE problem has high numerical stability with respect to the original form of the PIDE problem. For this aim, we apply the spectral Tau method in two cases, first for the problem in the form of VFIE and then also for the problem in the form of PIDE. The remarkable numerical results obtained from the VFIE problem form compared to those gained from the PIDE problem form show the efficiency of the proposal method. Also, we prove the convergence theorem of the numerical solution of the Tau method for the VFIE problem, and then it is generalized to the PIDE problem. |
Author | Rajab, Ahmed M. Shokri, Javad Pishbin, Saeed |
Author_xml | – sequence: 1 givenname: Ahmed M. surname: Rajab fullname: Rajab, Ahmed M. – sequence: 2 givenname: Saeed surname: Pishbin fullname: Pishbin, Saeed – sequence: 3 givenname: Javad surname: Shokri fullname: Shokri, Javad |
BookMark | eNpNkMtOxDAMRSMEEs8l-_xAIa82zRIhXhISG1hXTurMBEozJClo-Ho6DCDsha1r-8i6h2R3jCMScsrZmTRSnb9CWZ4JJhTnQu-QA6G0rBrTtrv_-n1ykvMzY0xwoYRWB2R1McKw_gzjgpYl0lzS5MqUkEZPcxymEuKYqY-JfiC8DGua59VpgETDWHCRYtUH7zHhWAIMFN8m2J58hLKkK0jfco8pvM-Dd8zHZM_DkPHkpx6Rp-urx8vb6v7h5u7y4r5yUupSKa96rWusG7C8V62UbdP2mmnnvTBetNDMYRm3DlDI1hpw1jLrW9fMaeQRudty-wjP3SqFV0jrLkLovoWYFt3mOTdgx6XR1tfOcY2qd7WtpamNAWTgJAg5s6oty6WYc0L_x-Os27jfbdzvft2XXwyVfgQ |
Cites_doi | 10.1016/j.amc.2013.01.012 10.37256/cm.5220244559 10.1007/s40314-022-02096-7 10.1016/0022-247X(78)90234-2 10.1016/0022-247X(74)90171-1 10.1016/0362-546X(88)90039-9 10.1007/s11075-009-9297-9 10.1007/BF00281373 10.1007/BF02238819 10.35741/issn.0258-2724.55.2.24 10.1007/BFb0103248 10.34198/ejms.4120.99113 10.29304/jqcm.2020.12.1.660 10.1080/00036817908839258 10.1007/s11082-019-2162-8 10.1007/s11464-012-0170-0 10.1146/annurev.fl.21.010189.000321 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3934/math.20241127 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 23196 |
ExternalDocumentID | oai_doaj_org_article_1397bf5cc17e4dc5b539599ae0ac3a23 10_3934_math_20241127 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
ID | FETCH-LOGICAL-c337t-4f4d775e56ab1d4833868d707cff29f28a6666b01bcae238b9acbb0bf8c6c6c93 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Wed Aug 27 01:29:06 EDT 2025 Tue Jul 01 03:57:16 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c337t-4f4d775e56ab1d4833868d707cff29f28a6666b01bcae238b9acbb0bf8c6c6c93 |
OpenAccessLink | https://doaj.org/article/1397bf5cc17e4dc5b539599ae0ac3a23 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1397bf5cc17e4dc5b539599ae0ac3a23 crossref_primary_10_3934_math_20241127 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2024 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/math.20241127-15 key-10.3934/math.20241127-14 key-10.3934/math.20241127-17 key-10.3934/math.20241127-16 key-10.3934/math.20241127-11 key-10.3934/math.20241127-10 key-10.3934/math.20241127-21 key-10.3934/math.20241127-13 key-10.3934/math.20241127-12 key-10.3934/math.20241127-9 key-10.3934/math.20241127-20 key-10.3934/math.20241127-2 key-10.3934/math.20241127-1 key-10.3934/math.20241127-4 key-10.3934/math.20241127-3 key-10.3934/math.20241127-6 key-10.3934/math.20241127-5 key-10.3934/math.20241127-8 key-10.3934/math.20241127-7 key-10.3934/math.20241127-19 key-10.3934/math.20241127-18 |
References_xml | – ident: key-10.3934/math.20241127-16 doi: 10.1016/j.amc.2013.01.012 – ident: key-10.3934/math.20241127-18 doi: 10.37256/cm.5220244559 – ident: key-10.3934/math.20241127-17 doi: 10.1007/s40314-022-02096-7 – ident: key-10.3934/math.20241127-7 doi: 10.1016/0022-247X(78)90234-2 – ident: key-10.3934/math.20241127-1 doi: 10.1016/0022-247X(74)90171-1 – ident: key-10.3934/math.20241127-20 – ident: key-10.3934/math.20241127-4 doi: 10.1016/0362-546X(88)90039-9 – ident: key-10.3934/math.20241127-6 – ident: key-10.3934/math.20241127-9 doi: 10.1007/s11075-009-9297-9 – ident: key-10.3934/math.20241127-10 doi: 10.1007/BF00281373 – ident: key-10.3934/math.20241127-5 doi: 10.1007/BF02238819 – ident: key-10.3934/math.20241127-15 doi: 10.35741/issn.0258-2724.55.2.24 – ident: key-10.3934/math.20241127-3 doi: 10.1007/BFb0103248 – ident: key-10.3934/math.20241127-13 doi: 10.34198/ejms.4120.99113 – ident: key-10.3934/math.20241127-14 doi: 10.29304/jqcm.2020.12.1.660 – ident: key-10.3934/math.20241127-2 doi: 10.1080/00036817908839258 – ident: key-10.3934/math.20241127-8 doi: 10.1007/s11082-019-2162-8 – ident: key-10.3934/math.20241127-21 doi: 10.1007/s11464-012-0170-0 – ident: key-10.3934/math.20241127-12 – ident: key-10.3934/math.20241127-11 doi: 10.1146/annurev.fl.21.010189.000321 – ident: key-10.3934/math.20241127-19 |
SSID | ssj0002124274 |
Score | 2.2426803 |
Snippet | In this work, we analyze the approximate solution of a specific partial integro-differential equation (PIDE) with a weakly singular kernel using the spectral... |
SourceID | doaj crossref |
SourceType | Open Website Index Database |
StartPage | 23182 |
SubjectTerms | convergence analysis integro-differential equations spectral method volterra–fredholm integral equations weakly singular integral equations |
Title | Analyzing the structure of solutions for weakly singular integro-differential equations with partial derivatives |
URI | https://doaj.org/article/1397bf5cc17e4dc5b539599ae0ac3a23 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7Skx7EJ9YXOYi3pbt5bo4qShH0ZKG3JckmF0tbbVX01zuTtGVvXmRhD8OyhG9m881kh28IuQoWu3B1KJzzphDC6cKIFm6lsZVqyxBzg-yzGo7E41iOO6O-sCcsywNn4AaYobgova90EK2XTnIjjbGhtJ5blnQ-gfM6xRTuwbAhC6i3sqgmN1wMIP_Dfw9AWGmCTIeEOlr9iVQe9sjuKhukN3kV-2QrTA_IztNGSnVxSOZJNuQHGIaClWa914_3QGeRbuKGQupJv4J9nXxTLP6xt5RmJYhZsZ6BAt_yhIa3rO29oHgCS-cIAJhbCMTPpAG-OCKjh_uXu2GxGpNQeM71shARwNUySGVd1Yoaik5Vt7rUPkZmIqstlCjKlZXzNgBDO2O9c6WLtVdwGX5MetPZNJwQqoDRjZdMegCbs2hEZIEZprGzyqiqT67XuDXzrIbRQBWBADcIcLMGuE9uEdXNQyhinQzg2mbl2uYv157-x0vOyDYuKp-anJMeeClcQB6xdJcpZH4BfSHKkg |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analyzing+the+structure+of+solutions+for+weakly+singular+integro-differential+equations+with+partial+derivatives&rft.jtitle=AIMS+mathematics&rft.au=Ahmed+M.+Rajab&rft.au=Saeed+Pishbin&rft.au=Javad+Shokri&rft.date=2024-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=9&rft.issue=9&rft.spage=23182&rft.epage=23196&rft_id=info:doi/10.3934%2Fmath.20241127&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1397bf5cc17e4dc5b539599ae0ac3a23 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |