Analyzing the structure of solutions for weakly singular integro-differential equations with partial derivatives

In this work, we analyze the approximate solution of a specific partial integro-differential equation (PIDE) with a weakly singular kernel using the spectral Tau method. It present a numerical solution procedure for this PIDE, which is transferred into a Volterra–Fredholm integral equation (VFIE), a...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 9; no. 9; pp. 23182 - 23196
Main Authors Rajab, Ahmed M., Pishbin, Saeed, Shokri, Javad
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this work, we analyze the approximate solution of a specific partial integro-differential equation (PIDE) with a weakly singular kernel using the spectral Tau method. It present a numerical solution procedure for this PIDE, which is transferred into a Volterra–Fredholm integral equation (VFIE), and the spectral method is performed on VFIE. In some illustrated examples, we show that the VFIE problem has high numerical stability with respect to the original form of the PIDE problem. For this aim, we apply the spectral Tau method in two cases, first for the problem in the form of VFIE and then also for the problem in the form of PIDE. The remarkable numerical results obtained from the VFIE problem form compared to those gained from the PIDE problem form show the efficiency of the proposal method. Also, we prove the convergence theorem of the numerical solution of the Tau method for the VFIE problem, and then it is generalized to the PIDE problem.
AbstractList In this work, we analyze the approximate solution of a specific partial integro-differential equation (PIDE) with a weakly singular kernel using the spectral Tau method. It present a numerical solution procedure for this PIDE, which is transferred into a Volterra–Fredholm integral equation (VFIE), and the spectral method is performed on VFIE. In some illustrated examples, we show that the VFIE problem has high numerical stability with respect to the original form of the PIDE problem. For this aim, we apply the spectral Tau method in two cases, first for the problem in the form of VFIE and then also for the problem in the form of PIDE. The remarkable numerical results obtained from the VFIE problem form compared to those gained from the PIDE problem form show the efficiency of the proposal method. Also, we prove the convergence theorem of the numerical solution of the Tau method for the VFIE problem, and then it is generalized to the PIDE problem.
Author Rajab, Ahmed M.
Shokri, Javad
Pishbin, Saeed
Author_xml – sequence: 1
  givenname: Ahmed M.
  surname: Rajab
  fullname: Rajab, Ahmed M.
– sequence: 2
  givenname: Saeed
  surname: Pishbin
  fullname: Pishbin, Saeed
– sequence: 3
  givenname: Javad
  surname: Shokri
  fullname: Shokri, Javad
BookMark eNpNkMtOxDAMRSMEEs8l-_xAIa82zRIhXhISG1hXTurMBEozJClo-Ho6DCDsha1r-8i6h2R3jCMScsrZmTRSnb9CWZ4JJhTnQu-QA6G0rBrTtrv_-n1ykvMzY0xwoYRWB2R1McKw_gzjgpYl0lzS5MqUkEZPcxymEuKYqY-JfiC8DGua59VpgETDWHCRYtUH7zHhWAIMFN8m2J58hLKkK0jfco8pvM-Dd8zHZM_DkPHkpx6Rp-urx8vb6v7h5u7y4r5yUupSKa96rWusG7C8V62UbdP2mmnnvTBetNDMYRm3DlDI1hpw1jLrW9fMaeQRudty-wjP3SqFV0jrLkLovoWYFt3mOTdgx6XR1tfOcY2qd7WtpamNAWTgJAg5s6oty6WYc0L_x-Os27jfbdzvft2XXwyVfgQ
Cites_doi 10.1016/j.amc.2013.01.012
10.37256/cm.5220244559
10.1007/s40314-022-02096-7
10.1016/0022-247X(78)90234-2
10.1016/0022-247X(74)90171-1
10.1016/0362-546X(88)90039-9
10.1007/s11075-009-9297-9
10.1007/BF00281373
10.1007/BF02238819
10.35741/issn.0258-2724.55.2.24
10.1007/BFb0103248
10.34198/ejms.4120.99113
10.29304/jqcm.2020.12.1.660
10.1080/00036817908839258
10.1007/s11082-019-2162-8
10.1007/s11464-012-0170-0
10.1146/annurev.fl.21.010189.000321
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.20241127
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 23196
ExternalDocumentID oai_doaj_org_article_1397bf5cc17e4dc5b539599ae0ac3a23
10_3934_math_20241127
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c337t-4f4d775e56ab1d4833868d707cff29f28a6666b01bcae238b9acbb0bf8c6c6c93
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Wed Aug 27 01:29:06 EDT 2025
Tue Jul 01 03:57:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-4f4d775e56ab1d4833868d707cff29f28a6666b01bcae238b9acbb0bf8c6c6c93
OpenAccessLink https://doaj.org/article/1397bf5cc17e4dc5b539599ae0ac3a23
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_1397bf5cc17e4dc5b539599ae0ac3a23
crossref_primary_10_3934_math_20241127
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2024
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.20241127-15
key-10.3934/math.20241127-14
key-10.3934/math.20241127-17
key-10.3934/math.20241127-16
key-10.3934/math.20241127-11
key-10.3934/math.20241127-10
key-10.3934/math.20241127-21
key-10.3934/math.20241127-13
key-10.3934/math.20241127-12
key-10.3934/math.20241127-9
key-10.3934/math.20241127-20
key-10.3934/math.20241127-2
key-10.3934/math.20241127-1
key-10.3934/math.20241127-4
key-10.3934/math.20241127-3
key-10.3934/math.20241127-6
key-10.3934/math.20241127-5
key-10.3934/math.20241127-8
key-10.3934/math.20241127-7
key-10.3934/math.20241127-19
key-10.3934/math.20241127-18
References_xml – ident: key-10.3934/math.20241127-16
  doi: 10.1016/j.amc.2013.01.012
– ident: key-10.3934/math.20241127-18
  doi: 10.37256/cm.5220244559
– ident: key-10.3934/math.20241127-17
  doi: 10.1007/s40314-022-02096-7
– ident: key-10.3934/math.20241127-7
  doi: 10.1016/0022-247X(78)90234-2
– ident: key-10.3934/math.20241127-1
  doi: 10.1016/0022-247X(74)90171-1
– ident: key-10.3934/math.20241127-20
– ident: key-10.3934/math.20241127-4
  doi: 10.1016/0362-546X(88)90039-9
– ident: key-10.3934/math.20241127-6
– ident: key-10.3934/math.20241127-9
  doi: 10.1007/s11075-009-9297-9
– ident: key-10.3934/math.20241127-10
  doi: 10.1007/BF00281373
– ident: key-10.3934/math.20241127-5
  doi: 10.1007/BF02238819
– ident: key-10.3934/math.20241127-15
  doi: 10.35741/issn.0258-2724.55.2.24
– ident: key-10.3934/math.20241127-3
  doi: 10.1007/BFb0103248
– ident: key-10.3934/math.20241127-13
  doi: 10.34198/ejms.4120.99113
– ident: key-10.3934/math.20241127-14
  doi: 10.29304/jqcm.2020.12.1.660
– ident: key-10.3934/math.20241127-2
  doi: 10.1080/00036817908839258
– ident: key-10.3934/math.20241127-8
  doi: 10.1007/s11082-019-2162-8
– ident: key-10.3934/math.20241127-21
  doi: 10.1007/s11464-012-0170-0
– ident: key-10.3934/math.20241127-12
– ident: key-10.3934/math.20241127-11
  doi: 10.1146/annurev.fl.21.010189.000321
– ident: key-10.3934/math.20241127-19
SSID ssj0002124274
Score 2.2426803
Snippet In this work, we analyze the approximate solution of a specific partial integro-differential equation (PIDE) with a weakly singular kernel using the spectral...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 23182
SubjectTerms convergence analysis
integro-differential equations
spectral method
volterra–fredholm integral equations
weakly singular integral equations
Title Analyzing the structure of solutions for weakly singular integro-differential equations with partial derivatives
URI https://doaj.org/article/1397bf5cc17e4dc5b539599ae0ac3a23
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7Skx7EJ9YXOYi3pbt5bo4qShH0ZKG3JckmF0tbbVX01zuTtGVvXmRhD8OyhG9m881kh28IuQoWu3B1KJzzphDC6cKIFm6lsZVqyxBzg-yzGo7E41iOO6O-sCcsywNn4AaYobgova90EK2XTnIjjbGhtJ5blnQ-gfM6xRTuwbAhC6i3sqgmN1wMIP_Dfw9AWGmCTIeEOlr9iVQe9sjuKhukN3kV-2QrTA_IztNGSnVxSOZJNuQHGIaClWa914_3QGeRbuKGQupJv4J9nXxTLP6xt5RmJYhZsZ6BAt_yhIa3rO29oHgCS-cIAJhbCMTPpAG-OCKjh_uXu2GxGpNQeM71shARwNUySGVd1Yoaik5Vt7rUPkZmIqstlCjKlZXzNgBDO2O9c6WLtVdwGX5MetPZNJwQqoDRjZdMegCbs2hEZIEZprGzyqiqT67XuDXzrIbRQBWBADcIcLMGuE9uEdXNQyhinQzg2mbl2uYv157-x0vOyDYuKp-anJMeeClcQB6xdJcpZH4BfSHKkg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analyzing+the+structure+of+solutions+for+weakly+singular+integro-differential+equations+with+partial+derivatives&rft.jtitle=AIMS+mathematics&rft.au=Ahmed+M.+Rajab&rft.au=Saeed+Pishbin&rft.au=Javad+Shokri&rft.date=2024-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=9&rft.issue=9&rft.spage=23182&rft.epage=23196&rft_id=info:doi/10.3934%2Fmath.20241127&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1397bf5cc17e4dc5b539599ae0ac3a23
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon