Microstructures and mechanical properties of CrMnFeCoNi high entropy alloys fabricated using laser metal deposition technique

In this paper, a laser metal deposition (LMD) process has been applied to the fabrications of CrMnFeCoNi high entropy alloys. The microstructures and mechanical properties of the CrMnFeCoNi alloys prepared using casting technique and LMD technique have been investigated. It has been found that the C...

Full description

Saved in:
Bibliographic Details
Published inJournal of alloys and compounds Vol. 773; pp. 387 - 392
Main Authors Xiang, Shuo, Luan, Hengwei, Wu, Jian, Yao, Ke-Fu, Li, Jinfeng, Liu, Xue, Tian, Yanzhong, Mao, Wenlue, Bai, Hua, Le, Guomin, Li, Qiang
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 30.01.2019
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, a laser metal deposition (LMD) process has been applied to the fabrications of CrMnFeCoNi high entropy alloys. The microstructures and mechanical properties of the CrMnFeCoNi alloys prepared using casting technique and LMD technique have been investigated. It has been found that the CrMnFeCoNi samples prepared using casting show a coarse dendritic structure. The microstructures of LMD samples contain both columnar grains and/or equiaxed grains, and the proportion of columnar grains and equiaxed grains can be adjusted by changing the laser power. Besides, the mechanical properties of LMD samples can be adjusted by changing laser power, due to columnar to equiaxed transitions (CET) that are effected by solidification mode and the heat flux direction of LMD process. It is worth to mention that the mechanical properties of the 1400 W samples produced using LMD are better than those produced by casting, which is rarely observed. Furthermore, CrMnFeCoNi alloys prepared using LMD show excellent mechanical properties at cryogenic temperatures. •The microstructures of LMD high entropy alloy can be adjusted by changing the LMD laser power.•The both strength and ductility of LMD high entropy alloy increase as temperature decreases.•The mechanical properties of LMD samples are better than those of as-cast samples.
AbstractList In this paper, a laser metal deposition (LMD) process has been applied to the fabrications of CrMnFeCoNi high entropy alloys. The microstructures and mechanical properties of the CrMnFeCoNi alloys prepared using casting technique and LMD technique have been investigated. It has been found that the CrMnFeCoNi samples prepared using casting show a coarse dendritic structure. The microstructures of LMD samples contain both columnar grains and/or equiaxed grains, and the proportion of columnar grains and equiaxed grains can be adjusted by changing the laser power. Besides, the mechanical properties of LMD samples can be adjusted by changing laser power, due to columnar to equiaxed transitions (CET) that are effected by solidification mode and the heat flux direction of LMD process. It is worth to mention that the mechanical properties of the 1400 W samples produced using LMD are better than those produced by casting, which is rarely observed. Furthermore, CrMnFeCoNi alloys prepared using LMD show excellent mechanical properties at cryogenic temperatures. •The microstructures of LMD high entropy alloy can be adjusted by changing the LMD laser power.•The both strength and ductility of LMD high entropy alloy increase as temperature decreases.•The mechanical properties of LMD samples are better than those of as-cast samples.
In this paper, a laser metal deposition (LMD) process has been applied to the fabrications of CrMnFeCoNi high entropy alloys. The microstructures and mechanical properties of the CrMnFeCoNi alloys prepared using casting technique and LMD technique have been investigated. It has been found that the CrMnFeCoNi samples prepared using casting show a coarse dendritic structure. The microstructures of LMD samples contain both columnar grains and/or equiaxed grains, and the proportion of columnar grains and equiaxed grains can be adjusted by changing the laser power. Besides, the mechanical properties of LMD samples can be adjusted by changing laser power, due to columnar to equiaxed transitions (CET) that are effected by solidification mode and the heat flux direction of LMD process. It is worth to mention that the mechanical properties of the 1400 W samples produced using LMD are better than those produced by casting, which is rarely observed. Furthermore, CrMnFeCoNi alloys prepared using LMD show excellent mechanical properties at cryogenic temperatures.
Author Xiang, Shuo
Li, Qiang
Yao, Ke-Fu
Li, Jinfeng
Wu, Jian
Bai, Hua
Luan, Hengwei
Liu, Xue
Mao, Wenlue
Le, Guomin
Tian, Yanzhong
Author_xml – sequence: 1
  givenname: Shuo
  surname: Xiang
  fullname: Xiang, Shuo
  organization: School of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830046, China
– sequence: 2
  givenname: Hengwei
  orcidid: 0000-0003-0095-4528
  surname: Luan
  fullname: Luan, Hengwei
  organization: School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
– sequence: 3
  givenname: Jian
  surname: Wu
  fullname: Wu, Jian
  organization: Institute of Materials, China Academy of Engineering Physics, Mianyang, 621907, China
– sequence: 4
  givenname: Ke-Fu
  surname: Yao
  fullname: Yao, Ke-Fu
  organization: School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
– sequence: 5
  givenname: Jinfeng
  surname: Li
  fullname: Li, Jinfeng
  email: lijinfeng305@126.com
  organization: Institute of Materials, China Academy of Engineering Physics, Mianyang, 621907, China
– sequence: 6
  givenname: Xue
  orcidid: 0000-0002-4966-3417
  surname: Liu
  fullname: Liu, Xue
  organization: Institute of Materials, China Academy of Engineering Physics, Mianyang, 621907, China
– sequence: 7
  givenname: Yanzhong
  orcidid: 0000-0002-6361-4785
  surname: Tian
  fullname: Tian, Yanzhong
  organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
– sequence: 8
  givenname: Wenlue
  surname: Mao
  fullname: Mao, Wenlue
  organization: School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
– sequence: 9
  givenname: Hua
  surname: Bai
  fullname: Bai, Hua
  organization: School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
– sequence: 10
  givenname: Guomin
  surname: Le
  fullname: Le, Guomin
  email: leguomin@126.com
  organization: Institute of Materials, China Academy of Engineering Physics, Mianyang, 621907, China
– sequence: 11
  givenname: Qiang
  orcidid: 0000-0002-1891-5490
  surname: Li
  fullname: Li, Qiang
  email: qli@xju.edu.cn
  organization: School of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830046, China
BookMark eNqFkD9v2zAQxYnABWqn-QgFCHSWwj-WRCJDURhNU8BOlmQmKOoYU5BJl6QKeOh3Dw1n6pLphnu_9-7eCi188IDQV0pqSmh7O9ajniYTDjUjVNRE1ow3V2hJRcerddvKBVoSyZpKcCE-o1VKIyGESk6X6N_OmRhSjrPJc4SEtR_wAcxee2f0hI8xHCFmVzbB4k3c-XvYhEeH9-51j8Hnsj_hEh9OCVvdx0JlGPCcnH_Fk04Qi10uTgMcQ3LZBY9z8ffuzwxf0CerpwQ37_Mavdz_fN48VNunX783P7aV4bzL1RoE1V1ny1tdb6xseWuGvu-bNbOSdMA4W3M7CGsJY23Liba817QIhbFUEH6Nvl18yzslNmU1hjn6EqkYbaTknHWiqO4uqnMjKYJVxmV9vjhH7SZFiTr3rUb13rc6962IVOWwQjf_0cfoDjqePuS-XzgoBfx1EFUyDryBwUUwWQ3BfeDwBi0eosI
CitedBy_id crossref_primary_10_1016_j_optlastec_2023_110226
crossref_primary_10_1007_s41871_022_00175_1
crossref_primary_10_1016_j_msea_2024_146229
crossref_primary_10_4028_p_ferx3a
crossref_primary_10_1038_s41598_020_65073_2
crossref_primary_10_1016_j_intermet_2019_04_005
crossref_primary_10_1016_j_jmrt_2025_02_090
crossref_primary_10_1002_maco_202213480
crossref_primary_10_1007_s00170_024_13669_7
crossref_primary_10_1016_j_jmrt_2024_09_006
crossref_primary_10_1016_j_addma_2023_103421
crossref_primary_10_1016_j_matchar_2024_113679
crossref_primary_10_3389_fmats_2020_00242
crossref_primary_10_3390_coatings14081068
crossref_primary_10_1007_s11665_024_09985_4
crossref_primary_10_1016_j_jmst_2019_05_062
crossref_primary_10_1016_j_jmst_2024_03_075
crossref_primary_10_1016_j_matdes_2022_110875
crossref_primary_10_1016_j_optlastec_2021_107167
crossref_primary_10_1146_annurev_matsci_080619_022100
crossref_primary_10_1002_adma_201903855
crossref_primary_10_1016_j_jallcom_2021_161323
crossref_primary_10_54939_1859_1043_j_mst_98_2024_164_170
crossref_primary_10_1016_j_jallcom_2019_07_106
crossref_primary_10_1016_j_jmrt_2024_03_207
crossref_primary_10_1016_j_msea_2022_142718
crossref_primary_10_1557_jmr_2020_256
crossref_primary_10_1016_j_jallcom_2019_01_213
crossref_primary_10_1088_1757_899X_1222_1_012009
crossref_primary_10_1016_j_jallcom_2025_178900
crossref_primary_10_1016_j_optlastec_2021_107447
crossref_primary_10_1016_j_vacuum_2020_109387
crossref_primary_10_1016_j_mtcomm_2024_110537
crossref_primary_10_1016_j_surfcoat_2023_130327
crossref_primary_10_1016_j_jallcom_2021_159521
crossref_primary_10_1016_j_optlastec_2021_106915
crossref_primary_10_1016_j_addma_2023_103716
crossref_primary_10_1016_j_scriptamat_2023_115587
crossref_primary_10_1016_j_optlastec_2023_110122
crossref_primary_10_1016_j_jmapro_2022_04_014
crossref_primary_10_1016_j_matdes_2019_108202
crossref_primary_10_1007_s11669_021_00913_w
crossref_primary_10_1016_j_jmst_2021_10_001
crossref_primary_10_1038_s41529_021_00177_2
crossref_primary_10_1016_j_mtcomm_2024_108639
crossref_primary_10_1016_j_jmrt_2024_09_143
crossref_primary_10_1016_S1003_6326_22_66086_2
crossref_primary_10_1002_adem_202401048
crossref_primary_10_1016_j_apmt_2020_100560
crossref_primary_10_3390_met13020343
crossref_primary_10_1016_j_msea_2024_146214
crossref_primary_10_1016_j_vacuum_2020_109211
crossref_primary_10_1007_s10853_022_06961_y
crossref_primary_10_1016_j_addma_2019_100833
crossref_primary_10_1016_j_addma_2020_101340
crossref_primary_10_3390_met15010009
crossref_primary_10_3390_ma14195662
crossref_primary_10_1016_j_msea_2024_147421
crossref_primary_10_1007_s10946_024_10194_6
crossref_primary_10_1016_j_msea_2022_144357
crossref_primary_10_1108_WJE_09_2021_0523
crossref_primary_10_1016_j_addma_2020_101202
crossref_primary_10_3390_met13030534
crossref_primary_10_1016_j_matchar_2024_113730
crossref_primary_10_1016_j_jallcom_2022_165403
crossref_primary_10_1016_j_jallcom_2022_166735
crossref_primary_10_1016_j_optlastec_2024_111621
crossref_primary_10_1016_j_msea_2020_139814
crossref_primary_10_1016_j_jmst_2022_02_026
crossref_primary_10_3390_met14040437
crossref_primary_10_1007_s40964_024_00885_6
crossref_primary_10_1016_j_jallcom_2021_161416
crossref_primary_10_3390_ma15082894
crossref_primary_10_1088_2631_7990_abcca8
crossref_primary_10_1016_j_vacuum_2025_114036
crossref_primary_10_3390_ma16062454
crossref_primary_10_2139_ssrn_4002371
crossref_primary_10_1016_j_intermet_2022_107710
crossref_primary_10_1016_j_jallcom_2024_174859
crossref_primary_10_1016_j_jallcom_2023_171226
crossref_primary_10_1016_j_msea_2020_140039
crossref_primary_10_1016_j_addma_2022_103345
crossref_primary_10_1016_j_optlastec_2020_106326
crossref_primary_10_1016_j_promfg_2021_06_046
crossref_primary_10_1016_j_surfcoat_2021_127233
crossref_primary_10_3389_fmats_2020_537812
crossref_primary_10_1007_s40195_022_01400_y
crossref_primary_10_1016_j_ijmachtools_2023_104103
crossref_primary_10_1016_j_matpr_2022_06_472
crossref_primary_10_1016_j_vacuum_2020_109875
crossref_primary_10_1016_j_actamat_2022_118187
crossref_primary_10_1016_j_msea_2021_142110
crossref_primary_10_1016_j_apmt_2024_102296
crossref_primary_10_1016_j_addma_2021_102016
crossref_primary_10_1016_j_jmrt_2023_05_131
crossref_primary_10_1016_j_intermet_2020_106727
crossref_primary_10_1016_j_matdes_2019_108358
crossref_primary_10_1016_j_matdes_2020_108999
crossref_primary_10_1016_j_vacuum_2021_110111
crossref_primary_10_1007_s11665_024_10289_w
crossref_primary_10_1016_j_addma_2022_102918
crossref_primary_10_1007_s11837_023_05800_y
crossref_primary_10_3390_ma17235917
crossref_primary_10_1007_s11696_022_02336_4
crossref_primary_10_1016_j_jmst_2020_11_029
crossref_primary_10_1016_j_ijplas_2024_104045
crossref_primary_10_1016_j_compositesb_2023_110540
crossref_primary_10_1007_s10854_025_14472_0
crossref_primary_10_1016_j_ijlmm_2021_04_002
crossref_primary_10_3390_ma16134701
crossref_primary_10_1016_j_jallcom_2021_159443
crossref_primary_10_1016_j_actamat_2021_117240
crossref_primary_10_1016_j_jmrt_2025_02_104
crossref_primary_10_1016_j_addma_2020_101410
crossref_primary_10_1016_j_addma_2023_103914
crossref_primary_10_1016_j_ssc_2022_114980
crossref_primary_10_1080_00325899_2023_2225284
crossref_primary_10_3390_ma15165544
crossref_primary_10_1016_j_smmf_2024_100058
crossref_primary_10_1016_j_addma_2023_103877
crossref_primary_10_1177_25165984241228094
crossref_primary_10_3390_met10050639
crossref_primary_10_1088_1742_6596_1948_1_012194
crossref_primary_10_1088_2631_7990_ab9ead
crossref_primary_10_1016_j_jmapro_2020_04_018
crossref_primary_10_1016_j_jmrt_2021_08_050
crossref_primary_10_1007_s11696_024_03617_w
crossref_primary_10_3390_ma17153826
crossref_primary_10_1016_j_jmst_2022_09_006
crossref_primary_10_1016_j_matchar_2023_113217
crossref_primary_10_1016_j_addma_2023_103522
crossref_primary_10_1016_j_matdes_2024_112720
crossref_primary_10_3390_met12030456
crossref_primary_10_1016_j_addma_2024_104410
crossref_primary_10_1007_s40735_024_00922_5
crossref_primary_10_1016_j_msea_2023_144596
crossref_primary_10_1016_j_intermet_2019_106592
crossref_primary_10_3390_mi15010123
crossref_primary_10_1016_j_matchar_2023_113350
crossref_primary_10_3390_coatings15020116
crossref_primary_10_1016_j_matdes_2020_109262
crossref_primary_10_1016_j_surfcoat_2024_130918
crossref_primary_10_1016_j_msea_2019_138056
crossref_primary_10_1088_2053_1591_ab01be
crossref_primary_10_1016_j_msea_2018_11_110
crossref_primary_10_1016_j_jallcom_2023_169545
crossref_primary_10_1016_j_jmrt_2022_10_099
crossref_primary_10_3390_met15030260
crossref_primary_10_1002_adem_202300615
crossref_primary_10_1016_j_jallcom_2024_173539
crossref_primary_10_3389_fmats_2022_825276
crossref_primary_10_1016_j_matlet_2021_129445
crossref_primary_10_1002_maco_201911353
crossref_primary_10_1007_s11661_024_07661_9
crossref_primary_10_1016_j_addma_2023_103897
crossref_primary_10_1016_j_mtcomm_2023_107694
crossref_primary_10_3390_met11121980
crossref_primary_10_1016_j_intermet_2023_108157
crossref_primary_10_1016_j_jmapro_2021_10_022
Cites_doi 10.1002/latj.201090029
10.1016/j.jallcom.2008.07.124
10.1016/j.jallcom.2014.12.234
10.1002/adem.200300567
10.1080/21663831.2014.912690
10.1002/adem.200700240
10.1016/j.jallcom.2017.09.293
10.1016/j.actamat.2015.01.068
10.1016/j.ijhydene.2013.05.071
10.1007/s11837-015-1540-3
10.1016/j.ijhydene.2014.02.067
10.1016/j.ultramic.2013.06.006
10.1016/S1468-6996(01)00047-X
10.1016/j.scriptamat.2012.12.002
10.1016/j.msea.2005.05.017
10.1016/j.intermet.2011.01.004
10.1016/j.pmatsci.2013.10.001
10.1016/j.msea.2015.02.072
10.1016/j.matdes.2017.07.054
10.1126/science.1254581
10.1016/j.actamat.2013.06.018
10.1016/j.scriptamat.2013.09.030
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright Elsevier BV Jan 30, 2019
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright Elsevier BV Jan 30, 2019
DBID AAYXX
CITATION
8BQ
8FD
JG9
DOI 10.1016/j.jallcom.2018.09.235
DatabaseName CrossRef
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Physics
EISSN 1873-4669
EndPage 392
ExternalDocumentID 10_1016_j_jallcom_2018_09_235
S0925838818334753
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SPD
SSM
SSZ
T5K
TWZ
XPP
ZMT
~G-
29J
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SEW
SMS
SSH
T9H
WUQ
8BQ
8FD
AFXIZ
EFKBS
JG9
ID FETCH-LOGICAL-c337t-4e81a77f2357bcf9636cdbbb542f907e23243fd8ff0226630af3ba1f968cf1803
IEDL.DBID .~1
ISSN 0925-8388
IngestDate Mon Jul 14 08:22:07 EDT 2025
Thu Apr 24 23:06:49 EDT 2025
Tue Jul 01 01:54:55 EDT 2025
Fri Feb 23 02:26:11 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Casting
Laser metal deposition
Microstructures
High entropy alloy
Tensile test
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-4e81a77f2357bcf9636cdbbb542f907e23243fd8ff0226630af3ba1f968cf1803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4966-3417
0000-0002-6361-4785
0000-0003-0095-4528
0000-0002-1891-5490
PQID 2159933278
PQPubID 2045454
PageCount 6
ParticipantIDs proquest_journals_2159933278
crossref_citationtrail_10_1016_j_jallcom_2018_09_235
crossref_primary_10_1016_j_jallcom_2018_09_235
elsevier_sciencedirect_doi_10_1016_j_jallcom_2018_09_235
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-30
PublicationDateYYYYMMDD 2019-01-30
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-30
  day: 30
PublicationDecade 2010
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Journal of alloys and compounds
PublicationYear 2019
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Senkov, Wilks, Scott, Miracle (bib5) 2011; 19
Kunce, Polanski, Bystrzycki (bib9) 2014; 39
Jang, Praveen, Sung, Bae, Moon, Kim (bib16) 2018; 730
Qiu, Yao, Feng, Li, Chu (bib22) 2018; 1
Qiu, Ravi, Dance, Ranson, Dilworth, Attallah (bib11) 2015; 629
Asgharzadeh, Simchi (bib12) 2005; 403
Yao, Pradeep, Tasan, Raabe (bib23) 2014; 72–73
Gasser, Backes, Kelbassa, Weisheit, Wissenbach (bib15) 2010; 7
Tsai, Yeh (bib2) 2014; 2
Kunce, Polanski, Bystrzycki (bib10) 2013; 38
Jablonski, Licavoli, Gao, Hawk (bib8) 2015; 67
Zhang, Zuo, Tang, Gao, Dahmen, Liaw, Lu (bib6) 2014; 61
Yeh, Chen, Lin, Gan, Chin, Shun, Tsau, Chang (bib1) 2004; 6
Otto, Dlouhý, Somsen, Bei, Eggeler, George (bib21) 2013; 61
Kurz, Bezençon, Gäumann (bib17) 2001; 2
Zhang, Zhou, Lin, Chen, Liaw (bib3) 2010; 10
Laurent-Brocq, Akhatova, Perrière, Chebini, Sauvage, Leroy, Champion (bib18) 2015; 88
Welk, Williams, Viswanathan, Gibson, Liaw, Fraser (bib13) 2013; 134
Gludovatz, Hohenwarter, Catoor, Chang, George, Ritchie (bib7) 2014; 345
Joseph, Jarvis, Wu, Stanford, Hodgson, Fabijanic (bib14) 2015; 633
Sun, Tian, Lin, Dong, Wang, Zhang, Zhang (bib19) 2017; 133
Li, Li, Zhao, Jiang (bib4) 2009; 475
Liu, Wu, He, Nieh, Lu (bib20) 2013; 68
Laurent-Brocq (10.1016/j.jallcom.2018.09.235_bib18) 2015; 88
Qiu (10.1016/j.jallcom.2018.09.235_bib11) 2015; 629
Liu (10.1016/j.jallcom.2018.09.235_bib20) 2013; 68
Li (10.1016/j.jallcom.2018.09.235_bib4) 2009; 475
Yeh (10.1016/j.jallcom.2018.09.235_bib1) 2004; 6
Kurz (10.1016/j.jallcom.2018.09.235_bib17) 2001; 2
Senkov (10.1016/j.jallcom.2018.09.235_bib5) 2011; 19
Qiu (10.1016/j.jallcom.2018.09.235_bib22) 2018; 1
Zhang (10.1016/j.jallcom.2018.09.235_bib6) 2014; 61
Kunce (10.1016/j.jallcom.2018.09.235_bib9) 2014; 39
Kunce (10.1016/j.jallcom.2018.09.235_bib10) 2013; 38
Yao (10.1016/j.jallcom.2018.09.235_bib23) 2014; 72–73
Otto (10.1016/j.jallcom.2018.09.235_bib21) 2013; 61
Gasser (10.1016/j.jallcom.2018.09.235_bib15) 2010; 7
Asgharzadeh (10.1016/j.jallcom.2018.09.235_bib12) 2005; 403
Jang (10.1016/j.jallcom.2018.09.235_bib16) 2018; 730
Tsai (10.1016/j.jallcom.2018.09.235_bib2) 2014; 2
Zhang (10.1016/j.jallcom.2018.09.235_bib3) 2010; 10
Gludovatz (10.1016/j.jallcom.2018.09.235_bib7) 2014; 345
Jablonski (10.1016/j.jallcom.2018.09.235_bib8) 2015; 67
Joseph (10.1016/j.jallcom.2018.09.235_bib14) 2015; 633
Welk (10.1016/j.jallcom.2018.09.235_bib13) 2013; 134
Sun (10.1016/j.jallcom.2018.09.235_bib19) 2017; 133
References_xml – volume: 134
  start-page: 193
  year: 2013
  end-page: 199
  ident: bib13
  article-title: Nature of the interfaces between the constituent phases in the high entropy alloy CoCrCuFeNiAl
  publication-title: Ultramicroscopy
– volume: 475
  start-page: 752
  year: 2009
  end-page: 757
  ident: bib4
  article-title: Effect of alloying elements on microstructure and properties of multiprincipal elements high-entropy alloys
  publication-title: J. Alloys Compd.
– volume: 68
  start-page: 526
  year: 2013
  end-page: 529
  ident: bib20
  article-title: Grain growth and the Hall–Petch relationship in a high-entropy FeCrNiCoMn alloy
  publication-title: Scripta Mater.
– volume: 1
  start-page: 33
  year: 2018
  end-page: 39
  ident: bib22
  article-title: Cryogenic deformation mechanism of CrMnFeCoNi high-entropy alloy fabricated by laser additive manufacturing process
  publication-title: Int. J. Lightweight Mater. Manuf.
– volume: 345
  start-page: 1153
  year: 2014
  ident: bib7
  article-title: A fracture-resistant high-entropy alloy for cryogenic applications
  publication-title: Science
– volume: 39
  start-page: 9904
  year: 2014
  end-page: 9910
  ident: bib9
  article-title: Microstructure and hydrogen storage properties of a TiZrNbMoV high entropy alloy synthesized using Laser Engineered Net Shaping (LENS)
  publication-title: Int. J. Hydrogen Energy
– volume: 67
  start-page: 2278
  year: 2015
  end-page: 2287
  ident: bib8
  article-title: Manufacturing of high entropy alloys
  publication-title: JOM
– volume: 10
  start-page: 534
  year: 2010
  end-page: 538
  ident: bib3
  article-title: Solid-solution phase formation rules for multi-component alloys
  publication-title: Adv. Eng. Mater.
– volume: 19
  start-page: 698
  year: 2011
  end-page: 706
  ident: bib5
  article-title: Mechanical properties of Nb25Mo25Ta 25W25 and V20Nb20Mo 20Ta20W20 refractory high entropy alloys
  publication-title: Intermetallics
– volume: 2
  start-page: 185
  year: 2001
  end-page: 191
  ident: bib17
  article-title: Columnar to equiaxed transition in solidification processing
  publication-title: Sci. Technol. Adv. Mater.
– volume: 88
  start-page: 355
  year: 2015
  end-page: 365
  ident: bib18
  article-title: Insights into the phase diagram of the CrMnFeCoNi high entropy alloy
  publication-title: Acta Mater.
– volume: 61
  start-page: 1
  year: 2014
  end-page: 93
  ident: bib6
  article-title: Microstructures and properties of high-entropy alloys
  publication-title: Prog. Mater. Sci.
– volume: 633
  start-page: 184
  year: 2015
  end-page: 193
  ident: bib14
  article-title: Comparative study of the microstructures and mechanical properties of direct laser fabricated and arc-melted Al x CoCrFeNi high entropy alloys
  publication-title: Mater. Sci. Eng. A
– volume: 7
  start-page: 58
  year: 2010
  end-page: 63
  ident: bib15
  article-title: Laser additive manufacturing: laser metal deposition (LMD) and selective laser melting (SLM) in turbo-engine applications
  publication-title: Laser Technol. J.
– volume: 61
  start-page: 5743
  year: 2013
  end-page: 5755
  ident: bib21
  article-title: The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy
  publication-title: Acta Mater.
– volume: 72–73
  start-page: 5
  year: 2014
  end-page: 8
  ident: bib23
  article-title: A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility
  publication-title: Scripta Mater.
– volume: 2
  start-page: 107
  year: 2014
  end-page: 123
  ident: bib2
  article-title: High-entropy alloys: a critical review
  publication-title: Mater. Res. Lett.
– volume: 38
  start-page: 12180
  year: 2013
  end-page: 12189
  ident: bib10
  article-title: Structure and hydrogen storage properties of a high entropy ZrTiVCrFeNi alloy synthesized using laser engineered net shaping (LENS)
  publication-title: Int. J. Hydrogen Energy
– volume: 6
  start-page: 299
  year: 2004
  end-page: 303
  ident: bib1
  article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes
  publication-title: Adv. Eng. Mater.
– volume: 730
  start-page: 242
  year: 2018
  end-page: 248
  ident: bib16
  article-title: High-temperature tensile deformation behavior of hot rolled CrMnFeCoNi high-entropy alloy
  publication-title: J. Alloys Compd.
– volume: 133
  start-page: 122
  year: 2017
  end-page: 127
  ident: bib19
  article-title: Enhanced strength and ductility of bulk CoCrFeMnNi high entropy alloy having fully recrystallized ultrafine-grained structure
  publication-title: Mater. Des.
– volume: 629
  start-page: 351
  year: 2015
  end-page: 361
  ident: bib11
  article-title: Fabrication of large Ti–6Al–4V structures by direct laser deposition
  publication-title: J. Alloys Compd.
– volume: 403
  start-page: 290
  year: 2005
  end-page: 298
  ident: bib12
  article-title: Effect of sintering atmosphere and carbon content on the densification and microstructure of laser-sintered M2 high-speed steel powder
  publication-title: Mater. Sci. Eng. A
– volume: 1
  start-page: 33
  year: 2018
  ident: 10.1016/j.jallcom.2018.09.235_bib22
  article-title: Cryogenic deformation mechanism of CrMnFeCoNi high-entropy alloy fabricated by laser additive manufacturing process
  publication-title: Int. J. Lightweight Mater. Manuf.
– volume: 7
  start-page: 58
  year: 2010
  ident: 10.1016/j.jallcom.2018.09.235_bib15
  article-title: Laser additive manufacturing: laser metal deposition (LMD) and selective laser melting (SLM) in turbo-engine applications
  publication-title: Laser Technol. J.
  doi: 10.1002/latj.201090029
– volume: 475
  start-page: 752
  year: 2009
  ident: 10.1016/j.jallcom.2018.09.235_bib4
  article-title: Effect of alloying elements on microstructure and properties of multiprincipal elements high-entropy alloys
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2008.07.124
– volume: 629
  start-page: 351
  year: 2015
  ident: 10.1016/j.jallcom.2018.09.235_bib11
  article-title: Fabrication of large Ti–6Al–4V structures by direct laser deposition
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2014.12.234
– volume: 6
  start-page: 299
  year: 2004
  ident: 10.1016/j.jallcom.2018.09.235_bib1
  article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.200300567
– volume: 2
  start-page: 107
  year: 2014
  ident: 10.1016/j.jallcom.2018.09.235_bib2
  article-title: High-entropy alloys: a critical review
  publication-title: Mater. Res. Lett.
  doi: 10.1080/21663831.2014.912690
– volume: 10
  start-page: 534
  year: 2010
  ident: 10.1016/j.jallcom.2018.09.235_bib3
  article-title: Solid-solution phase formation rules for multi-component alloys
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.200700240
– volume: 730
  start-page: 242
  year: 2018
  ident: 10.1016/j.jallcom.2018.09.235_bib16
  article-title: High-temperature tensile deformation behavior of hot rolled CrMnFeCoNi high-entropy alloy
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2017.09.293
– volume: 88
  start-page: 355
  year: 2015
  ident: 10.1016/j.jallcom.2018.09.235_bib18
  article-title: Insights into the phase diagram of the CrMnFeCoNi high entropy alloy
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2015.01.068
– volume: 38
  start-page: 12180
  year: 2013
  ident: 10.1016/j.jallcom.2018.09.235_bib10
  article-title: Structure and hydrogen storage properties of a high entropy ZrTiVCrFeNi alloy synthesized using laser engineered net shaping (LENS)
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.05.071
– volume: 67
  start-page: 2278
  year: 2015
  ident: 10.1016/j.jallcom.2018.09.235_bib8
  article-title: Manufacturing of high entropy alloys
  publication-title: JOM
  doi: 10.1007/s11837-015-1540-3
– volume: 39
  start-page: 9904
  year: 2014
  ident: 10.1016/j.jallcom.2018.09.235_bib9
  article-title: Microstructure and hydrogen storage properties of a TiZrNbMoV high entropy alloy synthesized using Laser Engineered Net Shaping (LENS)
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.02.067
– volume: 134
  start-page: 193
  year: 2013
  ident: 10.1016/j.jallcom.2018.09.235_bib13
  article-title: Nature of the interfaces between the constituent phases in the high entropy alloy CoCrCuFeNiAl
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2013.06.006
– volume: 2
  start-page: 185
  year: 2001
  ident: 10.1016/j.jallcom.2018.09.235_bib17
  article-title: Columnar to equiaxed transition in solidification processing
  publication-title: Sci. Technol. Adv. Mater.
  doi: 10.1016/S1468-6996(01)00047-X
– volume: 68
  start-page: 526
  year: 2013
  ident: 10.1016/j.jallcom.2018.09.235_bib20
  article-title: Grain growth and the Hall–Petch relationship in a high-entropy FeCrNiCoMn alloy
  publication-title: Scripta Mater.
  doi: 10.1016/j.scriptamat.2012.12.002
– volume: 403
  start-page: 290
  year: 2005
  ident: 10.1016/j.jallcom.2018.09.235_bib12
  article-title: Effect of sintering atmosphere and carbon content on the densification and microstructure of laser-sintered M2 high-speed steel powder
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2005.05.017
– volume: 19
  start-page: 698
  year: 2011
  ident: 10.1016/j.jallcom.2018.09.235_bib5
  article-title: Mechanical properties of Nb25Mo25Ta 25W25 and V20Nb20Mo 20Ta20W20 refractory high entropy alloys
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2011.01.004
– volume: 61
  start-page: 1
  year: 2014
  ident: 10.1016/j.jallcom.2018.09.235_bib6
  article-title: Microstructures and properties of high-entropy alloys
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2013.10.001
– volume: 633
  start-page: 184
  year: 2015
  ident: 10.1016/j.jallcom.2018.09.235_bib14
  article-title: Comparative study of the microstructures and mechanical properties of direct laser fabricated and arc-melted Al x CoCrFeNi high entropy alloys
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2015.02.072
– volume: 133
  start-page: 122
  year: 2017
  ident: 10.1016/j.jallcom.2018.09.235_bib19
  article-title: Enhanced strength and ductility of bulk CoCrFeMnNi high entropy alloy having fully recrystallized ultrafine-grained structure
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2017.07.054
– volume: 345
  start-page: 1153
  year: 2014
  ident: 10.1016/j.jallcom.2018.09.235_bib7
  article-title: A fracture-resistant high-entropy alloy for cryogenic applications
  publication-title: Science
  doi: 10.1126/science.1254581
– volume: 61
  start-page: 5743
  year: 2013
  ident: 10.1016/j.jallcom.2018.09.235_bib21
  article-title: The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2013.06.018
– volume: 72–73
  start-page: 5
  year: 2014
  ident: 10.1016/j.jallcom.2018.09.235_bib23
  article-title: A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility
  publication-title: Scripta Mater.
  doi: 10.1016/j.scriptamat.2013.09.030
SSID ssj0001931
Score 2.6178458
Snippet In this paper, a laser metal deposition (LMD) process has been applied to the fabrications of CrMnFeCoNi high entropy alloys. The microstructures and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 387
SubjectTerms Alloys
Casting
Casting alloys
Columnar structure
Cryogenic temperature
Dendritic structure
Entropy
Equiaxed structure
Grains
Heat flux
High entropy alloy
High entropy alloys
Laser deposition
Laser metal deposition
Mechanical properties
Microstructure
Microstructures
Solidification
Tensile strength
Tensile test
Title Microstructures and mechanical properties of CrMnFeCoNi high entropy alloys fabricated using laser metal deposition technique
URI https://dx.doi.org/10.1016/j.jallcom.2018.09.235
https://www.proquest.com/docview/2159933278
Volume 773
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT-MwEB0hVgg4ICggWD7kw17TpnFSO0cUbVVA7QWQuFn-RK1KWrVw4LD723cmTYBFSEgcE9mW5bE9z_abNwC_jJbO5dZHRpCotk9kpNGTRUZnXtpM8Cyl4OThqDe4S6_us_s1KJpYGKJV1nv_ak-vduv6T6cezc58PO7cxHlCb37ocThPEXVTBHsqaJa3_77RPBCgVFnzsHBEpd-ieDqT9kRPp0QaQS8oSe40qbK-feqfPuzUlfvp78JOjRvZxapre7DmyxZsFk26thZsv1MWbMFGxey0y334MyTK3Uom9hnP1kyXjj16Cvgl-7A53cYvSFaVzQIrFsOy74vZaMxIyJjR3e9s_sLoef5lyYI2VVoh7xgR5h8YYm-_wOYQwjPnGwYYe1WGPYC7_u_bYhDVORciy7l4QmvJrhYikAqOsQGXZ886Y0yWJgHP0Z4AGA9OhoDOH9FKrAM3uosFpQ1dGfNDWC9npT8Cxm0IwniR616eWm20y3KPxsLarptYewxpM9LK1oLklBdjqhrm2UTVBlJkIBXnCrt1DO3XavOVIsdXFWRjRvXf1FLoNb6qetqYXdVre6kQJCGo44mQP7_f8gls4RdR1SIen8I6zgJ_hvDmyZxX8_ccflxcXg9G_wAVN_5L
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9tAEB1Rqor2gGhaVFpK99AenTheO14fekCBKHwkl4LEbbufKFFwooSqyqH9U_2DnXHW0CIkJCSutme12hnPm7XfvgH4rJWwtjAu0jmJartERAqRLNIqc8JkOc9SOpw8GHb65-nxRXaxBn_qszBEqwy5f5XTq2wdrrTCarZmo1HrW1wk9M8PEYfzFKvuwKw8ccufuG9bfD06QCd_SZLe4Vm3H4XWApHhPL_GSYm2ynNPYi_aeIzCjrFa6yxNPG4XHdUZ3FvhPWIcgnKsPNeqjQ8K49si5jjuM3ieYrqgtgnN37e8EqyIqjZ9OLuIpnd7bKg1bo7VZEIsFYRdQfqqSdVm7l5AvAMNFd71tmAzFKpsf7UWr2HNlQ3Y6Nb94Rrw6h8pwwa8qKikZvEGfg2I47fSpf2Bm3mmSsuuHJ0wpoBgM_r8PycdVzb1rDsflD3XnQ5HjJSTGX1sns6WjPgAywXzSld9jJxlxNC_ZFjsuzkOh3sGZl1NOWM3UrRv4fxJPLEN6-W0dO-AceN9rl1eqE6RGqWVzQqH0YHWtp0YswNpvdLSBAV0asQxkTXVbSyDgyQ5SMaFxGntQPPGbLaSAHnIQNRulP_FskSYesh0t3a7DMlkIbEqwyqSJ7l4__iRP8FG_2xwKk-Phicf4CXeIZ5cxONdWMeIcB-xtrrWe1UsM_j-1C_PX9jcOcw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microstructures+and+mechanical+properties+of+CrMnFeCoNi+high+entropy+alloys+fabricated+using+laser+metal+deposition+technique&rft.jtitle=Journal+of+alloys+and+compounds&rft.au=Xiang%2C+Shuo&rft.au=Luan%2C+Hengwei&rft.au=Wu%2C+Jian&rft.au=Yao%2C+Ke-Fu&rft.date=2019-01-30&rft.issn=0925-8388&rft.volume=773&rft.spage=387&rft.epage=392&rft_id=info:doi/10.1016%2Fj.jallcom.2018.09.235&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jallcom_2018_09_235
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-8388&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-8388&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-8388&client=summon