Microstructures and mechanical properties of CrMnFeCoNi high entropy alloys fabricated using laser metal deposition technique
In this paper, a laser metal deposition (LMD) process has been applied to the fabrications of CrMnFeCoNi high entropy alloys. The microstructures and mechanical properties of the CrMnFeCoNi alloys prepared using casting technique and LMD technique have been investigated. It has been found that the C...
Saved in:
Published in | Journal of alloys and compounds Vol. 773; pp. 387 - 392 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
30.01.2019
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, a laser metal deposition (LMD) process has been applied to the fabrications of CrMnFeCoNi high entropy alloys. The microstructures and mechanical properties of the CrMnFeCoNi alloys prepared using casting technique and LMD technique have been investigated. It has been found that the CrMnFeCoNi samples prepared using casting show a coarse dendritic structure. The microstructures of LMD samples contain both columnar grains and/or equiaxed grains, and the proportion of columnar grains and equiaxed grains can be adjusted by changing the laser power. Besides, the mechanical properties of LMD samples can be adjusted by changing laser power, due to columnar to equiaxed transitions (CET) that are effected by solidification mode and the heat flux direction of LMD process. It is worth to mention that the mechanical properties of the 1400 W samples produced using LMD are better than those produced by casting, which is rarely observed. Furthermore, CrMnFeCoNi alloys prepared using LMD show excellent mechanical properties at cryogenic temperatures.
•The microstructures of LMD high entropy alloy can be adjusted by changing the LMD laser power.•The both strength and ductility of LMD high entropy alloy increase as temperature decreases.•The mechanical properties of LMD samples are better than those of as-cast samples. |
---|---|
AbstractList | In this paper, a laser metal deposition (LMD) process has been applied to the fabrications of CrMnFeCoNi high entropy alloys. The microstructures and mechanical properties of the CrMnFeCoNi alloys prepared using casting technique and LMD technique have been investigated. It has been found that the CrMnFeCoNi samples prepared using casting show a coarse dendritic structure. The microstructures of LMD samples contain both columnar grains and/or equiaxed grains, and the proportion of columnar grains and equiaxed grains can be adjusted by changing the laser power. Besides, the mechanical properties of LMD samples can be adjusted by changing laser power, due to columnar to equiaxed transitions (CET) that are effected by solidification mode and the heat flux direction of LMD process. It is worth to mention that the mechanical properties of the 1400 W samples produced using LMD are better than those produced by casting, which is rarely observed. Furthermore, CrMnFeCoNi alloys prepared using LMD show excellent mechanical properties at cryogenic temperatures.
•The microstructures of LMD high entropy alloy can be adjusted by changing the LMD laser power.•The both strength and ductility of LMD high entropy alloy increase as temperature decreases.•The mechanical properties of LMD samples are better than those of as-cast samples. In this paper, a laser metal deposition (LMD) process has been applied to the fabrications of CrMnFeCoNi high entropy alloys. The microstructures and mechanical properties of the CrMnFeCoNi alloys prepared using casting technique and LMD technique have been investigated. It has been found that the CrMnFeCoNi samples prepared using casting show a coarse dendritic structure. The microstructures of LMD samples contain both columnar grains and/or equiaxed grains, and the proportion of columnar grains and equiaxed grains can be adjusted by changing the laser power. Besides, the mechanical properties of LMD samples can be adjusted by changing laser power, due to columnar to equiaxed transitions (CET) that are effected by solidification mode and the heat flux direction of LMD process. It is worth to mention that the mechanical properties of the 1400 W samples produced using LMD are better than those produced by casting, which is rarely observed. Furthermore, CrMnFeCoNi alloys prepared using LMD show excellent mechanical properties at cryogenic temperatures. |
Author | Xiang, Shuo Li, Qiang Yao, Ke-Fu Li, Jinfeng Wu, Jian Bai, Hua Luan, Hengwei Liu, Xue Mao, Wenlue Le, Guomin Tian, Yanzhong |
Author_xml | – sequence: 1 givenname: Shuo surname: Xiang fullname: Xiang, Shuo organization: School of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830046, China – sequence: 2 givenname: Hengwei orcidid: 0000-0003-0095-4528 surname: Luan fullname: Luan, Hengwei organization: School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China – sequence: 3 givenname: Jian surname: Wu fullname: Wu, Jian organization: Institute of Materials, China Academy of Engineering Physics, Mianyang, 621907, China – sequence: 4 givenname: Ke-Fu surname: Yao fullname: Yao, Ke-Fu organization: School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China – sequence: 5 givenname: Jinfeng surname: Li fullname: Li, Jinfeng email: lijinfeng305@126.com organization: Institute of Materials, China Academy of Engineering Physics, Mianyang, 621907, China – sequence: 6 givenname: Xue orcidid: 0000-0002-4966-3417 surname: Liu fullname: Liu, Xue organization: Institute of Materials, China Academy of Engineering Physics, Mianyang, 621907, China – sequence: 7 givenname: Yanzhong orcidid: 0000-0002-6361-4785 surname: Tian fullname: Tian, Yanzhong organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China – sequence: 8 givenname: Wenlue surname: Mao fullname: Mao, Wenlue organization: School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China – sequence: 9 givenname: Hua surname: Bai fullname: Bai, Hua organization: School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China – sequence: 10 givenname: Guomin surname: Le fullname: Le, Guomin email: leguomin@126.com organization: Institute of Materials, China Academy of Engineering Physics, Mianyang, 621907, China – sequence: 11 givenname: Qiang orcidid: 0000-0002-1891-5490 surname: Li fullname: Li, Qiang email: qli@xju.edu.cn organization: School of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830046, China |
BookMark | eNqFkD9v2zAQxYnABWqn-QgFCHSWwj-WRCJDURhNU8BOlmQmKOoYU5BJl6QKeOh3Dw1n6pLphnu_9-7eCi188IDQV0pqSmh7O9ajniYTDjUjVNRE1ow3V2hJRcerddvKBVoSyZpKcCE-o1VKIyGESk6X6N_OmRhSjrPJc4SEtR_wAcxee2f0hI8xHCFmVzbB4k3c-XvYhEeH9-51j8Hnsj_hEh9OCVvdx0JlGPCcnH_Fk04Qi10uTgMcQ3LZBY9z8ffuzwxf0CerpwQ37_Mavdz_fN48VNunX783P7aV4bzL1RoE1V1ny1tdb6xseWuGvu-bNbOSdMA4W3M7CGsJY23Liba817QIhbFUEH6Nvl18yzslNmU1hjn6EqkYbaTknHWiqO4uqnMjKYJVxmV9vjhH7SZFiTr3rUb13rc6962IVOWwQjf_0cfoDjqePuS-XzgoBfx1EFUyDryBwUUwWQ3BfeDwBi0eosI |
CitedBy_id | crossref_primary_10_1016_j_optlastec_2023_110226 crossref_primary_10_1007_s41871_022_00175_1 crossref_primary_10_1016_j_msea_2024_146229 crossref_primary_10_4028_p_ferx3a crossref_primary_10_1038_s41598_020_65073_2 crossref_primary_10_1016_j_intermet_2019_04_005 crossref_primary_10_1016_j_jmrt_2025_02_090 crossref_primary_10_1002_maco_202213480 crossref_primary_10_1007_s00170_024_13669_7 crossref_primary_10_1016_j_jmrt_2024_09_006 crossref_primary_10_1016_j_addma_2023_103421 crossref_primary_10_1016_j_matchar_2024_113679 crossref_primary_10_3389_fmats_2020_00242 crossref_primary_10_3390_coatings14081068 crossref_primary_10_1007_s11665_024_09985_4 crossref_primary_10_1016_j_jmst_2019_05_062 crossref_primary_10_1016_j_jmst_2024_03_075 crossref_primary_10_1016_j_matdes_2022_110875 crossref_primary_10_1016_j_optlastec_2021_107167 crossref_primary_10_1146_annurev_matsci_080619_022100 crossref_primary_10_1002_adma_201903855 crossref_primary_10_1016_j_jallcom_2021_161323 crossref_primary_10_54939_1859_1043_j_mst_98_2024_164_170 crossref_primary_10_1016_j_jallcom_2019_07_106 crossref_primary_10_1016_j_jmrt_2024_03_207 crossref_primary_10_1016_j_msea_2022_142718 crossref_primary_10_1557_jmr_2020_256 crossref_primary_10_1016_j_jallcom_2019_01_213 crossref_primary_10_1088_1757_899X_1222_1_012009 crossref_primary_10_1016_j_jallcom_2025_178900 crossref_primary_10_1016_j_optlastec_2021_107447 crossref_primary_10_1016_j_vacuum_2020_109387 crossref_primary_10_1016_j_mtcomm_2024_110537 crossref_primary_10_1016_j_surfcoat_2023_130327 crossref_primary_10_1016_j_jallcom_2021_159521 crossref_primary_10_1016_j_optlastec_2021_106915 crossref_primary_10_1016_j_addma_2023_103716 crossref_primary_10_1016_j_scriptamat_2023_115587 crossref_primary_10_1016_j_optlastec_2023_110122 crossref_primary_10_1016_j_jmapro_2022_04_014 crossref_primary_10_1016_j_matdes_2019_108202 crossref_primary_10_1007_s11669_021_00913_w crossref_primary_10_1016_j_jmst_2021_10_001 crossref_primary_10_1038_s41529_021_00177_2 crossref_primary_10_1016_j_mtcomm_2024_108639 crossref_primary_10_1016_j_jmrt_2024_09_143 crossref_primary_10_1016_S1003_6326_22_66086_2 crossref_primary_10_1002_adem_202401048 crossref_primary_10_1016_j_apmt_2020_100560 crossref_primary_10_3390_met13020343 crossref_primary_10_1016_j_msea_2024_146214 crossref_primary_10_1016_j_vacuum_2020_109211 crossref_primary_10_1007_s10853_022_06961_y crossref_primary_10_1016_j_addma_2019_100833 crossref_primary_10_1016_j_addma_2020_101340 crossref_primary_10_3390_met15010009 crossref_primary_10_3390_ma14195662 crossref_primary_10_1016_j_msea_2024_147421 crossref_primary_10_1007_s10946_024_10194_6 crossref_primary_10_1016_j_msea_2022_144357 crossref_primary_10_1108_WJE_09_2021_0523 crossref_primary_10_1016_j_addma_2020_101202 crossref_primary_10_3390_met13030534 crossref_primary_10_1016_j_matchar_2024_113730 crossref_primary_10_1016_j_jallcom_2022_165403 crossref_primary_10_1016_j_jallcom_2022_166735 crossref_primary_10_1016_j_optlastec_2024_111621 crossref_primary_10_1016_j_msea_2020_139814 crossref_primary_10_1016_j_jmst_2022_02_026 crossref_primary_10_3390_met14040437 crossref_primary_10_1007_s40964_024_00885_6 crossref_primary_10_1016_j_jallcom_2021_161416 crossref_primary_10_3390_ma15082894 crossref_primary_10_1088_2631_7990_abcca8 crossref_primary_10_1016_j_vacuum_2025_114036 crossref_primary_10_3390_ma16062454 crossref_primary_10_2139_ssrn_4002371 crossref_primary_10_1016_j_intermet_2022_107710 crossref_primary_10_1016_j_jallcom_2024_174859 crossref_primary_10_1016_j_jallcom_2023_171226 crossref_primary_10_1016_j_msea_2020_140039 crossref_primary_10_1016_j_addma_2022_103345 crossref_primary_10_1016_j_optlastec_2020_106326 crossref_primary_10_1016_j_promfg_2021_06_046 crossref_primary_10_1016_j_surfcoat_2021_127233 crossref_primary_10_3389_fmats_2020_537812 crossref_primary_10_1007_s40195_022_01400_y crossref_primary_10_1016_j_ijmachtools_2023_104103 crossref_primary_10_1016_j_matpr_2022_06_472 crossref_primary_10_1016_j_vacuum_2020_109875 crossref_primary_10_1016_j_actamat_2022_118187 crossref_primary_10_1016_j_msea_2021_142110 crossref_primary_10_1016_j_apmt_2024_102296 crossref_primary_10_1016_j_addma_2021_102016 crossref_primary_10_1016_j_jmrt_2023_05_131 crossref_primary_10_1016_j_intermet_2020_106727 crossref_primary_10_1016_j_matdes_2019_108358 crossref_primary_10_1016_j_matdes_2020_108999 crossref_primary_10_1016_j_vacuum_2021_110111 crossref_primary_10_1007_s11665_024_10289_w crossref_primary_10_1016_j_addma_2022_102918 crossref_primary_10_1007_s11837_023_05800_y crossref_primary_10_3390_ma17235917 crossref_primary_10_1007_s11696_022_02336_4 crossref_primary_10_1016_j_jmst_2020_11_029 crossref_primary_10_1016_j_ijplas_2024_104045 crossref_primary_10_1016_j_compositesb_2023_110540 crossref_primary_10_1007_s10854_025_14472_0 crossref_primary_10_1016_j_ijlmm_2021_04_002 crossref_primary_10_3390_ma16134701 crossref_primary_10_1016_j_jallcom_2021_159443 crossref_primary_10_1016_j_actamat_2021_117240 crossref_primary_10_1016_j_jmrt_2025_02_104 crossref_primary_10_1016_j_addma_2020_101410 crossref_primary_10_1016_j_addma_2023_103914 crossref_primary_10_1016_j_ssc_2022_114980 crossref_primary_10_1080_00325899_2023_2225284 crossref_primary_10_3390_ma15165544 crossref_primary_10_1016_j_smmf_2024_100058 crossref_primary_10_1016_j_addma_2023_103877 crossref_primary_10_1177_25165984241228094 crossref_primary_10_3390_met10050639 crossref_primary_10_1088_1742_6596_1948_1_012194 crossref_primary_10_1088_2631_7990_ab9ead crossref_primary_10_1016_j_jmapro_2020_04_018 crossref_primary_10_1016_j_jmrt_2021_08_050 crossref_primary_10_1007_s11696_024_03617_w crossref_primary_10_3390_ma17153826 crossref_primary_10_1016_j_jmst_2022_09_006 crossref_primary_10_1016_j_matchar_2023_113217 crossref_primary_10_1016_j_addma_2023_103522 crossref_primary_10_1016_j_matdes_2024_112720 crossref_primary_10_3390_met12030456 crossref_primary_10_1016_j_addma_2024_104410 crossref_primary_10_1007_s40735_024_00922_5 crossref_primary_10_1016_j_msea_2023_144596 crossref_primary_10_1016_j_intermet_2019_106592 crossref_primary_10_3390_mi15010123 crossref_primary_10_1016_j_matchar_2023_113350 crossref_primary_10_3390_coatings15020116 crossref_primary_10_1016_j_matdes_2020_109262 crossref_primary_10_1016_j_surfcoat_2024_130918 crossref_primary_10_1016_j_msea_2019_138056 crossref_primary_10_1088_2053_1591_ab01be crossref_primary_10_1016_j_msea_2018_11_110 crossref_primary_10_1016_j_jallcom_2023_169545 crossref_primary_10_1016_j_jmrt_2022_10_099 crossref_primary_10_3390_met15030260 crossref_primary_10_1002_adem_202300615 crossref_primary_10_1016_j_jallcom_2024_173539 crossref_primary_10_3389_fmats_2022_825276 crossref_primary_10_1016_j_matlet_2021_129445 crossref_primary_10_1002_maco_201911353 crossref_primary_10_1007_s11661_024_07661_9 crossref_primary_10_1016_j_addma_2023_103897 crossref_primary_10_1016_j_mtcomm_2023_107694 crossref_primary_10_3390_met11121980 crossref_primary_10_1016_j_intermet_2023_108157 crossref_primary_10_1016_j_jmapro_2021_10_022 |
Cites_doi | 10.1002/latj.201090029 10.1016/j.jallcom.2008.07.124 10.1016/j.jallcom.2014.12.234 10.1002/adem.200300567 10.1080/21663831.2014.912690 10.1002/adem.200700240 10.1016/j.jallcom.2017.09.293 10.1016/j.actamat.2015.01.068 10.1016/j.ijhydene.2013.05.071 10.1007/s11837-015-1540-3 10.1016/j.ijhydene.2014.02.067 10.1016/j.ultramic.2013.06.006 10.1016/S1468-6996(01)00047-X 10.1016/j.scriptamat.2012.12.002 10.1016/j.msea.2005.05.017 10.1016/j.intermet.2011.01.004 10.1016/j.pmatsci.2013.10.001 10.1016/j.msea.2015.02.072 10.1016/j.matdes.2017.07.054 10.1126/science.1254581 10.1016/j.actamat.2013.06.018 10.1016/j.scriptamat.2013.09.030 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. Copyright Elsevier BV Jan 30, 2019 |
Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright Elsevier BV Jan 30, 2019 |
DBID | AAYXX CITATION 8BQ 8FD JG9 |
DOI | 10.1016/j.jallcom.2018.09.235 |
DatabaseName | CrossRef METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Physics |
EISSN | 1873-4669 |
EndPage | 392 |
ExternalDocumentID | 10_1016_j_jallcom_2018_09_235 S0925838818334753 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNCT ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SPD SSM SSZ T5K TWZ XPP ZMT ~G- 29J AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ R2- SEW SMS SSH T9H WUQ 8BQ 8FD AFXIZ EFKBS JG9 |
ID | FETCH-LOGICAL-c337t-4e81a77f2357bcf9636cdbbb542f907e23243fd8ff0226630af3ba1f968cf1803 |
IEDL.DBID | .~1 |
ISSN | 0925-8388 |
IngestDate | Mon Jul 14 08:22:07 EDT 2025 Thu Apr 24 23:06:49 EDT 2025 Tue Jul 01 01:54:55 EDT 2025 Fri Feb 23 02:26:11 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Casting Laser metal deposition Microstructures High entropy alloy Tensile test |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c337t-4e81a77f2357bcf9636cdbbb542f907e23243fd8ff0226630af3ba1f968cf1803 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4966-3417 0000-0002-6361-4785 0000-0003-0095-4528 0000-0002-1891-5490 |
PQID | 2159933278 |
PQPubID | 2045454 |
PageCount | 6 |
ParticipantIDs | proquest_journals_2159933278 crossref_citationtrail_10_1016_j_jallcom_2018_09_235 crossref_primary_10_1016_j_jallcom_2018_09_235 elsevier_sciencedirect_doi_10_1016_j_jallcom_2018_09_235 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-01-30 |
PublicationDateYYYYMMDD | 2019-01-30 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-30 day: 30 |
PublicationDecade | 2010 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Journal of alloys and compounds |
PublicationYear | 2019 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Senkov, Wilks, Scott, Miracle (bib5) 2011; 19 Kunce, Polanski, Bystrzycki (bib9) 2014; 39 Jang, Praveen, Sung, Bae, Moon, Kim (bib16) 2018; 730 Qiu, Yao, Feng, Li, Chu (bib22) 2018; 1 Qiu, Ravi, Dance, Ranson, Dilworth, Attallah (bib11) 2015; 629 Asgharzadeh, Simchi (bib12) 2005; 403 Yao, Pradeep, Tasan, Raabe (bib23) 2014; 72–73 Gasser, Backes, Kelbassa, Weisheit, Wissenbach (bib15) 2010; 7 Tsai, Yeh (bib2) 2014; 2 Kunce, Polanski, Bystrzycki (bib10) 2013; 38 Jablonski, Licavoli, Gao, Hawk (bib8) 2015; 67 Zhang, Zuo, Tang, Gao, Dahmen, Liaw, Lu (bib6) 2014; 61 Yeh, Chen, Lin, Gan, Chin, Shun, Tsau, Chang (bib1) 2004; 6 Otto, Dlouhý, Somsen, Bei, Eggeler, George (bib21) 2013; 61 Kurz, Bezençon, Gäumann (bib17) 2001; 2 Zhang, Zhou, Lin, Chen, Liaw (bib3) 2010; 10 Laurent-Brocq, Akhatova, Perrière, Chebini, Sauvage, Leroy, Champion (bib18) 2015; 88 Welk, Williams, Viswanathan, Gibson, Liaw, Fraser (bib13) 2013; 134 Gludovatz, Hohenwarter, Catoor, Chang, George, Ritchie (bib7) 2014; 345 Joseph, Jarvis, Wu, Stanford, Hodgson, Fabijanic (bib14) 2015; 633 Sun, Tian, Lin, Dong, Wang, Zhang, Zhang (bib19) 2017; 133 Li, Li, Zhao, Jiang (bib4) 2009; 475 Liu, Wu, He, Nieh, Lu (bib20) 2013; 68 Laurent-Brocq (10.1016/j.jallcom.2018.09.235_bib18) 2015; 88 Qiu (10.1016/j.jallcom.2018.09.235_bib11) 2015; 629 Liu (10.1016/j.jallcom.2018.09.235_bib20) 2013; 68 Li (10.1016/j.jallcom.2018.09.235_bib4) 2009; 475 Yeh (10.1016/j.jallcom.2018.09.235_bib1) 2004; 6 Kurz (10.1016/j.jallcom.2018.09.235_bib17) 2001; 2 Senkov (10.1016/j.jallcom.2018.09.235_bib5) 2011; 19 Qiu (10.1016/j.jallcom.2018.09.235_bib22) 2018; 1 Zhang (10.1016/j.jallcom.2018.09.235_bib6) 2014; 61 Kunce (10.1016/j.jallcom.2018.09.235_bib9) 2014; 39 Kunce (10.1016/j.jallcom.2018.09.235_bib10) 2013; 38 Yao (10.1016/j.jallcom.2018.09.235_bib23) 2014; 72–73 Otto (10.1016/j.jallcom.2018.09.235_bib21) 2013; 61 Gasser (10.1016/j.jallcom.2018.09.235_bib15) 2010; 7 Asgharzadeh (10.1016/j.jallcom.2018.09.235_bib12) 2005; 403 Jang (10.1016/j.jallcom.2018.09.235_bib16) 2018; 730 Tsai (10.1016/j.jallcom.2018.09.235_bib2) 2014; 2 Zhang (10.1016/j.jallcom.2018.09.235_bib3) 2010; 10 Gludovatz (10.1016/j.jallcom.2018.09.235_bib7) 2014; 345 Jablonski (10.1016/j.jallcom.2018.09.235_bib8) 2015; 67 Joseph (10.1016/j.jallcom.2018.09.235_bib14) 2015; 633 Welk (10.1016/j.jallcom.2018.09.235_bib13) 2013; 134 Sun (10.1016/j.jallcom.2018.09.235_bib19) 2017; 133 |
References_xml | – volume: 134 start-page: 193 year: 2013 end-page: 199 ident: bib13 article-title: Nature of the interfaces between the constituent phases in the high entropy alloy CoCrCuFeNiAl publication-title: Ultramicroscopy – volume: 475 start-page: 752 year: 2009 end-page: 757 ident: bib4 article-title: Effect of alloying elements on microstructure and properties of multiprincipal elements high-entropy alloys publication-title: J. Alloys Compd. – volume: 68 start-page: 526 year: 2013 end-page: 529 ident: bib20 article-title: Grain growth and the Hall–Petch relationship in a high-entropy FeCrNiCoMn alloy publication-title: Scripta Mater. – volume: 1 start-page: 33 year: 2018 end-page: 39 ident: bib22 article-title: Cryogenic deformation mechanism of CrMnFeCoNi high-entropy alloy fabricated by laser additive manufacturing process publication-title: Int. J. Lightweight Mater. Manuf. – volume: 345 start-page: 1153 year: 2014 ident: bib7 article-title: A fracture-resistant high-entropy alloy for cryogenic applications publication-title: Science – volume: 39 start-page: 9904 year: 2014 end-page: 9910 ident: bib9 article-title: Microstructure and hydrogen storage properties of a TiZrNbMoV high entropy alloy synthesized using Laser Engineered Net Shaping (LENS) publication-title: Int. J. Hydrogen Energy – volume: 67 start-page: 2278 year: 2015 end-page: 2287 ident: bib8 article-title: Manufacturing of high entropy alloys publication-title: JOM – volume: 10 start-page: 534 year: 2010 end-page: 538 ident: bib3 article-title: Solid-solution phase formation rules for multi-component alloys publication-title: Adv. Eng. Mater. – volume: 19 start-page: 698 year: 2011 end-page: 706 ident: bib5 article-title: Mechanical properties of Nb25Mo25Ta 25W25 and V20Nb20Mo 20Ta20W20 refractory high entropy alloys publication-title: Intermetallics – volume: 2 start-page: 185 year: 2001 end-page: 191 ident: bib17 article-title: Columnar to equiaxed transition in solidification processing publication-title: Sci. Technol. Adv. Mater. – volume: 88 start-page: 355 year: 2015 end-page: 365 ident: bib18 article-title: Insights into the phase diagram of the CrMnFeCoNi high entropy alloy publication-title: Acta Mater. – volume: 61 start-page: 1 year: 2014 end-page: 93 ident: bib6 article-title: Microstructures and properties of high-entropy alloys publication-title: Prog. Mater. Sci. – volume: 633 start-page: 184 year: 2015 end-page: 193 ident: bib14 article-title: Comparative study of the microstructures and mechanical properties of direct laser fabricated and arc-melted Al x CoCrFeNi high entropy alloys publication-title: Mater. Sci. Eng. A – volume: 7 start-page: 58 year: 2010 end-page: 63 ident: bib15 article-title: Laser additive manufacturing: laser metal deposition (LMD) and selective laser melting (SLM) in turbo-engine applications publication-title: Laser Technol. J. – volume: 61 start-page: 5743 year: 2013 end-page: 5755 ident: bib21 article-title: The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy publication-title: Acta Mater. – volume: 72–73 start-page: 5 year: 2014 end-page: 8 ident: bib23 article-title: A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility publication-title: Scripta Mater. – volume: 2 start-page: 107 year: 2014 end-page: 123 ident: bib2 article-title: High-entropy alloys: a critical review publication-title: Mater. Res. Lett. – volume: 38 start-page: 12180 year: 2013 end-page: 12189 ident: bib10 article-title: Structure and hydrogen storage properties of a high entropy ZrTiVCrFeNi alloy synthesized using laser engineered net shaping (LENS) publication-title: Int. J. Hydrogen Energy – volume: 6 start-page: 299 year: 2004 end-page: 303 ident: bib1 article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes publication-title: Adv. Eng. Mater. – volume: 730 start-page: 242 year: 2018 end-page: 248 ident: bib16 article-title: High-temperature tensile deformation behavior of hot rolled CrMnFeCoNi high-entropy alloy publication-title: J. Alloys Compd. – volume: 133 start-page: 122 year: 2017 end-page: 127 ident: bib19 article-title: Enhanced strength and ductility of bulk CoCrFeMnNi high entropy alloy having fully recrystallized ultrafine-grained structure publication-title: Mater. Des. – volume: 629 start-page: 351 year: 2015 end-page: 361 ident: bib11 article-title: Fabrication of large Ti–6Al–4V structures by direct laser deposition publication-title: J. Alloys Compd. – volume: 403 start-page: 290 year: 2005 end-page: 298 ident: bib12 article-title: Effect of sintering atmosphere and carbon content on the densification and microstructure of laser-sintered M2 high-speed steel powder publication-title: Mater. Sci. Eng. A – volume: 1 start-page: 33 year: 2018 ident: 10.1016/j.jallcom.2018.09.235_bib22 article-title: Cryogenic deformation mechanism of CrMnFeCoNi high-entropy alloy fabricated by laser additive manufacturing process publication-title: Int. J. Lightweight Mater. Manuf. – volume: 7 start-page: 58 year: 2010 ident: 10.1016/j.jallcom.2018.09.235_bib15 article-title: Laser additive manufacturing: laser metal deposition (LMD) and selective laser melting (SLM) in turbo-engine applications publication-title: Laser Technol. J. doi: 10.1002/latj.201090029 – volume: 475 start-page: 752 year: 2009 ident: 10.1016/j.jallcom.2018.09.235_bib4 article-title: Effect of alloying elements on microstructure and properties of multiprincipal elements high-entropy alloys publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2008.07.124 – volume: 629 start-page: 351 year: 2015 ident: 10.1016/j.jallcom.2018.09.235_bib11 article-title: Fabrication of large Ti–6Al–4V structures by direct laser deposition publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2014.12.234 – volume: 6 start-page: 299 year: 2004 ident: 10.1016/j.jallcom.2018.09.235_bib1 article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes publication-title: Adv. Eng. Mater. doi: 10.1002/adem.200300567 – volume: 2 start-page: 107 year: 2014 ident: 10.1016/j.jallcom.2018.09.235_bib2 article-title: High-entropy alloys: a critical review publication-title: Mater. Res. Lett. doi: 10.1080/21663831.2014.912690 – volume: 10 start-page: 534 year: 2010 ident: 10.1016/j.jallcom.2018.09.235_bib3 article-title: Solid-solution phase formation rules for multi-component alloys publication-title: Adv. Eng. Mater. doi: 10.1002/adem.200700240 – volume: 730 start-page: 242 year: 2018 ident: 10.1016/j.jallcom.2018.09.235_bib16 article-title: High-temperature tensile deformation behavior of hot rolled CrMnFeCoNi high-entropy alloy publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2017.09.293 – volume: 88 start-page: 355 year: 2015 ident: 10.1016/j.jallcom.2018.09.235_bib18 article-title: Insights into the phase diagram of the CrMnFeCoNi high entropy alloy publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.01.068 – volume: 38 start-page: 12180 year: 2013 ident: 10.1016/j.jallcom.2018.09.235_bib10 article-title: Structure and hydrogen storage properties of a high entropy ZrTiVCrFeNi alloy synthesized using laser engineered net shaping (LENS) publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2013.05.071 – volume: 67 start-page: 2278 year: 2015 ident: 10.1016/j.jallcom.2018.09.235_bib8 article-title: Manufacturing of high entropy alloys publication-title: JOM doi: 10.1007/s11837-015-1540-3 – volume: 39 start-page: 9904 year: 2014 ident: 10.1016/j.jallcom.2018.09.235_bib9 article-title: Microstructure and hydrogen storage properties of a TiZrNbMoV high entropy alloy synthesized using Laser Engineered Net Shaping (LENS) publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2014.02.067 – volume: 134 start-page: 193 year: 2013 ident: 10.1016/j.jallcom.2018.09.235_bib13 article-title: Nature of the interfaces between the constituent phases in the high entropy alloy CoCrCuFeNiAl publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2013.06.006 – volume: 2 start-page: 185 year: 2001 ident: 10.1016/j.jallcom.2018.09.235_bib17 article-title: Columnar to equiaxed transition in solidification processing publication-title: Sci. Technol. Adv. Mater. doi: 10.1016/S1468-6996(01)00047-X – volume: 68 start-page: 526 year: 2013 ident: 10.1016/j.jallcom.2018.09.235_bib20 article-title: Grain growth and the Hall–Petch relationship in a high-entropy FeCrNiCoMn alloy publication-title: Scripta Mater. doi: 10.1016/j.scriptamat.2012.12.002 – volume: 403 start-page: 290 year: 2005 ident: 10.1016/j.jallcom.2018.09.235_bib12 article-title: Effect of sintering atmosphere and carbon content on the densification and microstructure of laser-sintered M2 high-speed steel powder publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2005.05.017 – volume: 19 start-page: 698 year: 2011 ident: 10.1016/j.jallcom.2018.09.235_bib5 article-title: Mechanical properties of Nb25Mo25Ta 25W25 and V20Nb20Mo 20Ta20W20 refractory high entropy alloys publication-title: Intermetallics doi: 10.1016/j.intermet.2011.01.004 – volume: 61 start-page: 1 year: 2014 ident: 10.1016/j.jallcom.2018.09.235_bib6 article-title: Microstructures and properties of high-entropy alloys publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2013.10.001 – volume: 633 start-page: 184 year: 2015 ident: 10.1016/j.jallcom.2018.09.235_bib14 article-title: Comparative study of the microstructures and mechanical properties of direct laser fabricated and arc-melted Al x CoCrFeNi high entropy alloys publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2015.02.072 – volume: 133 start-page: 122 year: 2017 ident: 10.1016/j.jallcom.2018.09.235_bib19 article-title: Enhanced strength and ductility of bulk CoCrFeMnNi high entropy alloy having fully recrystallized ultrafine-grained structure publication-title: Mater. Des. doi: 10.1016/j.matdes.2017.07.054 – volume: 345 start-page: 1153 year: 2014 ident: 10.1016/j.jallcom.2018.09.235_bib7 article-title: A fracture-resistant high-entropy alloy for cryogenic applications publication-title: Science doi: 10.1126/science.1254581 – volume: 61 start-page: 5743 year: 2013 ident: 10.1016/j.jallcom.2018.09.235_bib21 article-title: The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy publication-title: Acta Mater. doi: 10.1016/j.actamat.2013.06.018 – volume: 72–73 start-page: 5 year: 2014 ident: 10.1016/j.jallcom.2018.09.235_bib23 article-title: A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility publication-title: Scripta Mater. doi: 10.1016/j.scriptamat.2013.09.030 |
SSID | ssj0001931 |
Score | 2.6178458 |
Snippet | In this paper, a laser metal deposition (LMD) process has been applied to the fabrications of CrMnFeCoNi high entropy alloys. The microstructures and... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 387 |
SubjectTerms | Alloys Casting Casting alloys Columnar structure Cryogenic temperature Dendritic structure Entropy Equiaxed structure Grains Heat flux High entropy alloy High entropy alloys Laser deposition Laser metal deposition Mechanical properties Microstructure Microstructures Solidification Tensile strength Tensile test |
Title | Microstructures and mechanical properties of CrMnFeCoNi high entropy alloys fabricated using laser metal deposition technique |
URI | https://dx.doi.org/10.1016/j.jallcom.2018.09.235 https://www.proquest.com/docview/2159933278 |
Volume | 773 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT-MwEB0hVgg4ICggWD7kw17TpnFSO0cUbVVA7QWQuFn-RK1KWrVw4LD723cmTYBFSEgcE9mW5bE9z_abNwC_jJbO5dZHRpCotk9kpNGTRUZnXtpM8Cyl4OThqDe4S6_us_s1KJpYGKJV1nv_ak-vduv6T6cezc58PO7cxHlCb37ocThPEXVTBHsqaJa3_77RPBCgVFnzsHBEpd-ieDqT9kRPp0QaQS8oSe40qbK-feqfPuzUlfvp78JOjRvZxapre7DmyxZsFk26thZsv1MWbMFGxey0y334MyTK3Uom9hnP1kyXjj16Cvgl-7A53cYvSFaVzQIrFsOy74vZaMxIyJjR3e9s_sLoef5lyYI2VVoh7xgR5h8YYm-_wOYQwjPnGwYYe1WGPYC7_u_bYhDVORciy7l4QmvJrhYikAqOsQGXZ886Y0yWJgHP0Z4AGA9OhoDOH9FKrAM3uosFpQ1dGfNDWC9npT8Cxm0IwniR616eWm20y3KPxsLarptYewxpM9LK1oLklBdjqhrm2UTVBlJkIBXnCrt1DO3XavOVIsdXFWRjRvXf1FLoNb6qetqYXdVre6kQJCGo44mQP7_f8gls4RdR1SIen8I6zgJ_hvDmyZxX8_ccflxcXg9G_wAVN_5L |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9tAEB1Rqor2gGhaVFpK99AenTheO14fekCBKHwkl4LEbbufKFFwooSqyqH9U_2DnXHW0CIkJCSutme12hnPm7XfvgH4rJWwtjAu0jmJartERAqRLNIqc8JkOc9SOpw8GHb65-nxRXaxBn_qszBEqwy5f5XTq2wdrrTCarZmo1HrW1wk9M8PEYfzFKvuwKw8ccufuG9bfD06QCd_SZLe4Vm3H4XWApHhPL_GSYm2ynNPYi_aeIzCjrFa6yxNPG4XHdUZ3FvhPWIcgnKsPNeqjQ8K49si5jjuM3ieYrqgtgnN37e8EqyIqjZ9OLuIpnd7bKg1bo7VZEIsFYRdQfqqSdVm7l5AvAMNFd71tmAzFKpsf7UWr2HNlQ3Y6Nb94Rrw6h8pwwa8qKikZvEGfg2I47fSpf2Bm3mmSsuuHJ0wpoBgM_r8PycdVzb1rDsflD3XnQ5HjJSTGX1sns6WjPgAywXzSld9jJxlxNC_ZFjsuzkOh3sGZl1NOWM3UrRv4fxJPLEN6-W0dO-AceN9rl1eqE6RGqWVzQqH0YHWtp0YswNpvdLSBAV0asQxkTXVbSyDgyQ5SMaFxGntQPPGbLaSAHnIQNRulP_FskSYesh0t3a7DMlkIbEqwyqSJ7l4__iRP8FG_2xwKk-Phicf4CXeIZ5cxONdWMeIcB-xtrrWe1UsM_j-1C_PX9jcOcw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microstructures+and+mechanical+properties+of+CrMnFeCoNi+high+entropy+alloys+fabricated+using+laser+metal+deposition+technique&rft.jtitle=Journal+of+alloys+and+compounds&rft.au=Xiang%2C+Shuo&rft.au=Luan%2C+Hengwei&rft.au=Wu%2C+Jian&rft.au=Yao%2C+Ke-Fu&rft.date=2019-01-30&rft.issn=0925-8388&rft.volume=773&rft.spage=387&rft.epage=392&rft_id=info:doi/10.1016%2Fj.jallcom.2018.09.235&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jallcom_2018_09_235 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-8388&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-8388&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-8388&client=summon |