Strain engineering of electrocatalysts for hydrogen evolution reaction
As the key half reaction of water-splitting electrolysis, the hydrogen evolution reaction (HER) that occurs at the cathode directly determines the overall efficiency of hydrogen production. To improve the efficiency of electrochemical water splitting for hydrogen generation, efficient and robust cat...
Saved in:
Published in | Materials horizons Vol. 1; no. 2; pp. 34 - 36 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
06.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As the key half reaction of water-splitting electrolysis, the hydrogen evolution reaction (HER) that occurs at the cathode directly determines the overall efficiency of hydrogen production. To improve the efficiency of electrochemical water splitting for hydrogen generation, efficient and robust catalysts need to be developed. Strain engineering, which represents an effective and promising category of strategies, can regulate the electronic structures of catalysts by modulating the lattice strain and ultimately optimizing the HER dynamics. This work critically reviews the recent progress of strain engineering in HER and provides future perspectives for this area. The methods and characterization techniques are also introduced in detail. Hopefully this review can provide guidelines for the design and manufacturing of advanced catalysts for HER and other heterogeneous catalysis reactions such as chemical sensing, CO
2
reduction and NH
3
synthesis.
As the key half reaction of water-splitting electrolysis, the hydrogen evolution reaction (HER) that occurs at the cathode directly determines the overall efficiency of hydrogen production. |
---|---|
AbstractList | As the key half reaction of water-splitting electrolysis, the hydrogen evolution reaction (HER) that occurs at the cathode directly determines the overall efficiency of hydrogen production. To improve the efficiency of electrochemical water splitting for hydrogen generation, efficient and robust catalysts need to be developed. Strain engineering, which represents an effective and promising category of strategies, can regulate the electronic structures of catalysts by modulating the lattice strain and ultimately optimizing the HER dynamics. This work critically reviews the recent progress of strain engineering in HER and provides future perspectives for this area. The methods and characterization techniques are also introduced in detail. Hopefully this review can provide guidelines for the design and manufacturing of advanced catalysts for HER and other heterogeneous catalysis reactions such as chemical sensing, CO
reduction and NH
synthesis. As the key half reaction of water-splitting electrolysis, the hydrogen evolution reaction (HER) that occurs at the cathode directly determines the overall efficiency of hydrogen production. To improve the efficiency of electrochemical water splitting for hydrogen generation, efficient and robust catalysts need to be developed. Strain engineering, which represents an effective and promising category of strategies, can regulate the electronic structures of catalysts by modulating the lattice strain and ultimately optimizing the HER dynamics. This work critically reviews the recent progress of strain engineering in HER and provides future perspectives for this area. The methods and characterization techniques are also introduced in detail. Hopefully this review can provide guidelines for the design and manufacturing of advanced catalysts for HER and other heterogeneous catalysis reactions such as chemical sensing, CO2 reduction and NH3 synthesis. As the key half reaction of water-splitting electrolysis, the hydrogen evolution reaction (HER) that occurs at the cathode directly determines the overall efficiency of hydrogen production. To improve the efficiency of electrochemical water splitting for hydrogen generation, efficient and robust catalysts need to be developed. Strain engineering, which represents an effective and promising category of strategies, can regulate the electronic structures of catalysts by modulating the lattice strain and ultimately optimizing the HER dynamics. This work critically reviews the recent progress of strain engineering in HER and provides future perspectives for this area. The methods and characterization techniques are also introduced in detail. Hopefully this review can provide guidelines for the design and manufacturing of advanced catalysts for HER and other heterogeneous catalysis reactions such as chemical sensing, CO 2 reduction and NH 3 synthesis. As the key half reaction of water-splitting electrolysis, the hydrogen evolution reaction (HER) that occurs at the cathode directly determines the overall efficiency of hydrogen production. As the key half reaction of water-splitting electrolysis, the hydrogen evolution reaction (HER) that occurs at the cathode directly determines the overall efficiency of hydrogen production. To improve the efficiency of electrochemical water splitting for hydrogen generation, efficient and robust catalysts need to be developed. Strain engineering, which represents an effective and promising category of strategies, can regulate the electronic structures of catalysts by modulating the lattice strain and ultimately optimizing the HER dynamics. This work critically reviews the recent progress of strain engineering in HER and provides future perspectives for this area. The methods and characterization techniques are also introduced in detail. Hopefully this review can provide guidelines for the design and manufacturing of advanced catalysts for HER and other heterogeneous catalysis reactions such as chemical sensing, CO 2 reduction and NH 3 synthesis. |
Author | Rong, Chao Mao, Xinyuan Zhang, Bowei Qin, Zhuhui Ge, Shundong Xuan, Fuzhen |
AuthorAffiliation | East China University of Science and Technology Key Laboratory of Pressure Systems and Safety of Ministry of Education Shanghai Key Laboratory of Intelligent Sensing and Detection Technology School of Mechanical and Power Engineering |
AuthorAffiliation_xml | – name: School of Mechanical and Power Engineering – name: Key Laboratory of Pressure Systems and Safety of Ministry of Education – name: Shanghai Key Laboratory of Intelligent Sensing and Detection Technology – name: East China University of Science and Technology |
Author_xml | – sequence: 1 givenname: Xinyuan surname: Mao fullname: Mao, Xinyuan – sequence: 2 givenname: Zhuhui surname: Qin fullname: Qin, Zhuhui – sequence: 3 givenname: Shundong surname: Ge fullname: Ge, Shundong – sequence: 4 givenname: Chao surname: Rong fullname: Rong, Chao – sequence: 5 givenname: Bowei surname: Zhang fullname: Zhang, Bowei – sequence: 6 givenname: Fuzhen surname: Xuan fullname: Xuan, Fuzhen |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36541087$$D View this record in MEDLINE/PubMed |
BookMark | eNpd0U1Lw0AQBuBFKrbWXrwrAS8iRPcr2eRYqlWh4kE9h81mtk1Jd-tuIvTfu7W1gqcZmIdheOcU9Yw1gNA5wbcEs_yuoqsFJkQQeYQGFCckTlmS9A49F3008n6JMSaMJzjDJ6jP0oQTnIkBmr61TtYmAjOvDYCrzTyyOoIGVOuskq1sNr71kbYuWmwqZ-cQ8Jdtura2JnIg1bY5Q8daNh5G-zpEH9OH98lTPHt9fJ6MZ7FiTLQxr1TOGS4z0FzkPM0oLkFpmVNQnAION5cagBMKPAeVaKZTAcBkRWXGOLAhut7tXTv72YFvi1XtFTSNNGA7X1CRpKmgVOSBXv2jS9s5E64LStA8zfIkDepmp5Sz3jvQxdrVK-k2BcHFNuDinr48_QQ8Dvhyv7IrV1Ad6G-cAVzsgPPqMP37EPsGhoyBbw |
CitedBy_id | crossref_primary_10_1021_acs_jpclett_3c01697 crossref_primary_10_1002_smtd_202400158 crossref_primary_10_1002_adsu_202300380 crossref_primary_10_1039_D3NR04822E crossref_primary_10_1016_j_apsusc_2024_159555 crossref_primary_10_1021_acs_jpcc_4c00779 crossref_primary_10_1016_j_ccr_2024_215901 crossref_primary_10_1016_j_cej_2023_145348 crossref_primary_10_1016_j_ijhydene_2023_07_134 crossref_primary_10_1002_smll_202310603 crossref_primary_10_1021_acs_est_3c05129 crossref_primary_10_1002_slct_202304266 crossref_primary_10_1021_acs_inorgchem_3c03005 crossref_primary_10_1039_D3NR06194A crossref_primary_10_3390_molecules28155736 crossref_primary_10_1039_D4TA02322F crossref_primary_10_1088_1361_648X_acc22a crossref_primary_10_1039_D4CY00213J crossref_primary_10_1002_adma_202312524 crossref_primary_10_1002_smll_202304573 crossref_primary_10_1039_D3CY00787A crossref_primary_10_1016_j_cej_2023_146172 crossref_primary_10_1039_D3MH00416C |
Cites_doi | 10.1002/anie.201508613 10.1038/s41565-018-0089-z 10.1016/j.apenergy.2014.10.080 10.1038/nmat3462 10.1021/nl5016848 10.1021/acsami.6b01828 10.1017/dsj.2017.32 10.1021/acs.nanolett.7b01735 10.1103/PhysRevLett.81.2819 10.1038/ncomms8381 10.1021/acs.nanolett.6b01853 10.1002/smtd.201700341 10.1039/c2cs35189g 10.1039/C9NR06541E 10.1021/acs.energyfuels.1c02501 10.1021/acs.nanolett.6b02615 10.1021/nl402875m 10.1038/s41467-016-0009-6 10.1103/PhysRevB.79.205433 10.1021/acsami.9b06435 10.1021/acsnano.7b01666 10.1021/acs.jpcc.1c02770 10.1002/aenm.202102261 10.1021/acs.nanolett.7b00730 10.1039/D1EE02603H 10.1038/ncomms12272 10.1039/C6TA09409K 10.1038/nmat3700 10.1021/acsenergylett.8b00454 10.1038/s41467-019-13993-7 10.1038/nchem.1095 10.1002/cssc.202002163 10.1002/advs.202105299 10.1021/acs.jpcc.1c03961 10.1021/jz300192b 10.1002/advs.201600180 10.1038/nmat4564 10.1038/s41699-017-0013-7 10.1126/science.aaf9050 10.1016/j.pmatsci.2020.100757 10.1021/acscatal.6b01466 10.1126/science.abj9980 10.1021/acs.jpcc.7b07081 10.1002/adfm.202107651 10.1038/s41563-021-01097-x 10.1002/ange.202013985 10.1039/C7TA00816C 10.1021/acsnano.0c09983 10.1021/acs.nanolett.8b04466 10.1126/science.aad4998 10.1007/s12274-011-0183-0 10.1021/acsnano.6b07661 10.1038/s41699-021-00259-4 10.1021/acs.chemmater.6b00500 10.1039/C5CP06475A 10.1016/j.apsusc.2020.145937 10.1016/j.cclet.2021.03.082 10.1021/jp4121035 10.1021/la501349k 10.1016/j.jallcom.2014.01.199 10.1021/acscatal.0c00224 10.1016/j.jechem.2022.02.024 10.1021/acs.nanolett.9b03460 10.1021/acs.jpcc.6b04692 10.1039/C7CP03495D 10.1126/science.1157996 10.1021/acs.nanolett.0c05029 10.1039/C9NR01321K 10.1021/acsami.0c20500 10.1016/j.carbon.2020.12.088 10.1016/j.xcrp.2021.100357 10.1039/C5NR02529J 10.1021/acsnano.1c08348 10.1126/science.aaf7680 10.1039/C9NR02172H 10.1002/ange.202014017 10.1038/s41467-022-31971-4 10.1021/nl203359n 10.1038/s41467-021-21956-0 10.1021/acsami.8b00069 10.1016/S1872-2067(17)62949-8 10.1002/anie.200250845 10.1021/nl5016552 10.1038/s41586-021-03870-z 10.1021/acsanm.1c00537 10.1016/j.mseb.2016.01.012 10.1021/nn203879f 10.1021/acs.accounts.0c00564 10.1016/j.envres.2020.109547 10.1016/j.mattod.2018.01.034 10.1002/adma.201103965 10.1016/j.apsusc.2019.143694 10.1007/s12274-014-0677-7 10.1007/s11467-019-0903-6 10.1021/acs.jpcc.0c09513 10.1016/j.msec.2017.02.044 10.1021/acs.chemrev.9b00443 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2023 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2023 |
DBID | NPM AAYXX CITATION 7SR 7TB 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
DOI | 10.1039/d2mh01171a |
DatabaseName | PubMed CrossRef Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2051-6355 |
EndPage | 36 |
ExternalDocumentID | 10_1039_D2MH01171A 36541087 d2mh01171a |
Genre | Journal Article Review |
GroupedDBID | 0R~ 4.4 AAEMU AAGNR AAIWI AANOJ ABASK ABDVN ABGFH ABRYZ ACIWK ACLDK ADMRA ADSRN AENEX AFOGI AGRSR AGSTE ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV BLAPV BSQNT C6K EBS ECGLT EE0 EF- H13 HZ~ H~N J3I O-G O9- RAOCF RCNCU RPMJG RRC RSCEA RVUXY AAJAE AARTK AAWGC AAXHV ABEMK ABPDG ABXOH AEFDR AENGV AETIL AFLYV AGEGJ AHGCF AKBGW APEMP GGIMP NPM AAYXX CITATION 7SR 7TB 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c337t-4dc9430b8ef47946820becfa92ec42e0205bfee412e49ec5f3f67ee3ad2a834e3 |
ISSN | 2051-6347 |
IngestDate | Sat Oct 05 05:36:35 EDT 2024 Thu Oct 10 18:43:30 EDT 2024 Fri Aug 23 10:25:24 EDT 2024 Tue Aug 27 13:44:52 EDT 2024 Tue Feb 07 16:41:10 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c337t-4dc9430b8ef47946820becfa92ec42e0205bfee412e49ec5f3f67ee3ad2a834e3 |
Notes | Chao Rong is currently a master's candidate at East China University of Science and Technology. His main research interests cover the multi-scale mechanical properties of two-dimensional material films, including the preparation of composites and their applications in multifunctional wearable electronic products. Bowei Zhang obtained his PhD degree from the Mechanical Engineering of Iowa State University in 2019 and then joined the Northwestern University as a postdoctoral fellow. From 2020, he joined the East China University of Science and Technology at Shanghai as an associate professor. He has been awarded a series of prestigious honors such as the CSC-self funded scholarship for excellent students abroad and the Zaffarano Prize offered by Sigma Xi association of the U.S. His research focuses on the intelligent sensing and hydrogen-production technologies. Fuzhen Xuan works on the intersection of mechanical strength, intelligent sensing, and health monitoring of equipment. He has been awarded the honors of National Outstanding Youth Scholar and Cheung Kong Scholars Program of China. Currently, he serves as president of the East China University of Science and Technology. Shundong Ge is currently pursuing his PhD degree in the East China University of Science and Technology. He received his MS degree from the Lanzhou University of Technology, China, in 2022. His research interests mainly focus on intelligent sensing, including the fabrication of flexible conductive composites and their applications in multifunctional wearable electronics and self-powered microsystems. Xinyuan Mao received his bachelor's degree from Yangzhou University in 2021. He is currently pursuing for his master's degree in the research group of Professor Bowei Zhang at East China University of Science and Technology. His research interests mainly focus on the intelligent sensing and structural regulation engineering of nanomaterials. Zhuhui Qin is now studying in East China University of Science and Technology. He is pursuing his academic master's degree in School of Mechanical and Power Engineering, conducting research in the Intelligent Sensing and Microenergy Devices Research Group under supervision of Dr. Bowei Zhang. His research interests focus on gas sensors. ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ORCID | 0000-0002-7404-2671 0000-0002-6228-5238 0000-0001-7124-4561 |
PMID | 36541087 |
PQID | 2772968956 |
PQPubID | 2047518 |
PageCount | 21 |
ParticipantIDs | proquest_miscellaneous_2756672279 crossref_primary_10_1039_D2MH01171A rsc_primary_d2mh01171a pubmed_primary_36541087 proquest_journals_2772968956 |
PublicationCentury | 2000 |
PublicationDate | 2023-02-06 |
PublicationDateYYYYMMDD | 2023-02-06 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-06 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Materials horizons |
PublicationTitleAlternate | Mater Horiz |
PublicationYear | 2023 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Su (D2MH01171A/cit76/1) 2021; 32 Li (D2MH01171A/cit82/1) 2016; 15 Liang (D2MH01171A/cit113/1) 2019; 11 Wang (D2MH01171A/cit73/1) 2016; 354 Bai (D2MH01171A/cit98/1) 2021; 5 Gradisher (D2MH01171A/cit8/1) 2015; 139 Zhang (D2MH01171A/cit1/1) 2019; 294 Asano (D2MH01171A/cit88/1) 2016; 6 Wang (D2MH01171A/cit14/1) 2017; 5 Bolar (D2MH01171A/cit104/1) 2021; 13 Li (D2MH01171A/cit110/1) 2018; 13 Rajesh (D2MH01171A/cit29/1) 2017; 76 Yang (D2MH01171A/cit84/1) 2021; 374 Dobrota (D2MH01171A/cit23/1) 2020; 514 Behura (D2MH01171A/cit49/1) 2017; 11 Gao (D2MH01171A/cit107/1) 2016; 120 Lloyd (D2MH01171A/cit44/1) 2017; 17 Jiao (D2MH01171A/cit21/1) 2022; 32 Sun (D2MH01171A/cit32/1) 2018; 14 Yang (D2MH01171A/cit62/1) 2017; 17 Pierucci (D2MH01171A/cit39/1) 2017; 11 Megia (D2MH01171A/cit2/1) 2021; 35 Liu (D2MH01171A/cit72/1) 2021; 20 Deng (D2MH01171A/cit4/1) 2021; 21 Mohiuddin (D2MH01171A/cit61/1) 2009; 79 Li (D2MH01171A/cit75/1) 2018; 2 Zhao (D2MH01171A/cit26/1) 2020; 32 Ling (D2MH01171A/cit22/1) 2017; 8 Hwang (D2MH01171A/cit37/1) 2017; 19 Wang (D2MH01171A/cit87/1) 2018; 3 Tolladay (D2MH01171A/cit28/1) 2021; 175 Wang (D2MH01171A/cit53/1) 2021; 15 Lin (D2MH01171A/cit34/1) 2022; 70 Zheng (D2MH01171A/cit15/1) 2019; 496 Li (D2MH01171A/cit45/1) 2021; 4 Di (D2MH01171A/cit94/1) 2018; 21 Ozden (D2MH01171A/cit16/1) 2019; 11 Han (D2MH01171A/cit68/1) 2021; 133 Wei (D2MH01171A/cit101/1) 2021; 125 Frisenda (D2MH01171A/cit51/1) 2017; 1 Goris (D2MH01171A/cit69/1) 2012; 11 Liu (D2MH01171A/cit31/1) 2020; 120 Castellanos-Gomez (D2MH01171A/cit55/1) 2012; 24 Du (D2MH01171A/cit60/1) 2016; 207 Shan (D2MH01171A/cit18/1) 2020; 384 Maark (D2MH01171A/cit86/1) 2014; 118 Zhang (D2MH01171A/cit54/1) 2021; 15 Yan (D2MH01171A/cit115/1) 2016; 55 Chen (D2MH01171A/cit36/1) 2016; 28 Kim (D2MH01171A/cit48/1) 2016; 8 Castellanos-Gomez (D2MH01171A/cit80/1) 2013; 13 Azcatl (D2MH01171A/cit38/1) 2016; 16 Voiry (D2MH01171A/cit96/1) 2013; 12 Wu (D2MH01171A/cit19/1) 2022; 13 Bertolazzi (D2MH01171A/cit56/1) 2011; 5 Cao (D2MH01171A/cit3/1) 2020; 186 Ling (D2MH01171A/cit102/1) 2016; 3 Lipatov (D2MH01171A/cit40/1) 2018; 4 Castellanos-Gomez (D2MH01171A/cit63/1) 2013; 13 Chu (D2MH01171A/cit109/1) 2022; 2206783 Shekhirev (D2MH01171A/cit65/1) 2021; 120 Lloyd (D2MH01171A/cit43/1) 2016; 16 Wang (D2MH01171A/cit74/1) 2020; 30 Sneed (D2MH01171A/cit27/1) 2015; 7 Zhang (D2MH01171A/cit10/1) 2019; 19 Zhou (D2MH01171A/cit35/1) 2014; 596 Zabel (D2MH01171A/cit42/1) 2012; 12 He (D2MH01171A/cit66/1) 2021; 598 Li (D2MH01171A/cit91/1) 2021; 133 Yang (D2MH01171A/cit24/1) 2022; 12 Dai (D2MH01171A/cit50/1) 2022; 9 Liu (D2MH01171A/cit89/1) 2021; 2 Zhu (D2MH01171A/cit90/1) 2018; 30 Liu (D2MH01171A/cit92/1) 2020; 32 Mukherjee (D2MH01171A/cit70/1) 2020; 10 Zhang (D2MH01171A/cit99/1) 2022; 6 Kumar (D2MH01171A/cit112/1) 2021; 14 Zhu (D2MH01171A/cit12/1) 2016; 7 Wu (D2MH01171A/cit71/1) 2012; 41 Gan (D2MH01171A/cit67/1) 2012; 3 Huang (D2MH01171A/cit77/1) 2022; 2201654 Wang (D2MH01171A/cit20/1) Gao (D2MH01171A/cit30/1) 2019; 29 Reserbat-Plantey (D2MH01171A/cit57/1) 2014; 14 Wang (D2MH01171A/cit17/1) 2021; 125 Zhu (D2MH01171A/cit79/1) 2019; 11 Chen (D2MH01171A/cit93/1) 2017; 5 Shi (D2MH01171A/cit95/1) 2017; 8 Chen (D2MH01171A/cit11/1) 2021; 125 Li (D2MH01171A/cit58/1) 2015; 6 Pérez Garza (D2MH01171A/cit46/1) 2014; 14 Qiao (D2MH01171A/cit108/1) 2011; 3 Chen (D2MH01171A/cit105/1) 2016; 18 Jiang (D2MH01171A/cit78/1) 2021; 12 Scalise (D2MH01171A/cit106/1) 2012; 5 Wang (D2MH01171A/cit103/1) 2015; 8 Wu (D2MH01171A/cit83/1) 2020; 53 Mavrikakis (D2MH01171A/cit114/1) 1998; 81 Li (D2MH01171A/cit33/1) 2016; 354 Zhao (D2MH01171A/cit64/1) 2019; 11 Dai (D2MH01171A/cit25/1) 2019; 31 Cao (D2MH01171A/cit47/1) 2020; 11 Han (D2MH01171A/cit97/1) 2020; 32 Zhang (D2MH01171A/cit9/1) 2018; 10 She (D2MH01171A/cit13/1) 2017; 355 Tsai (D2MH01171A/cit111/1) 2017; 8 Ahn (D2MH01171A/cit52/1) 2017; 8 Chi (D2MH01171A/cit6/1) 2018; 39 Liu (D2MH01171A/cit85/1) 2017; 121 Zhang (D2MH01171A/cit7/1) 2020; 20 Lui (D2MH01171A/cit5/1) 2019; 14 Gan (D2MH01171A/cit100/1) 2020; 13 Lee (D2MH01171A/cit59/1) 2014; 30 Wintterlin (D2MH01171A/cit81/1) 2003; 42 Lee (D2MH01171A/cit41/1) 2008; 321 |
References_xml | – doi: Wang Wang Xie Zhao Liu Ejtuvscbodf Uifz Xjui – volume: 55 start-page: 6175 year: 2016 ident: D2MH01171A/cit115/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201508613 contributor: fullname: Yan – volume: 13 start-page: 411 year: 2018 ident: D2MH01171A/cit110/1 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0089-z contributor: fullname: Li – volume: 139 start-page: 335 year: 2015 ident: D2MH01171A/cit8/1 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.10.080 contributor: fullname: Gradisher – volume: 30 start-page: 1 year: 2018 ident: D2MH01171A/cit90/1 publication-title: Adv. Mater. contributor: fullname: Zhu – volume: 11 start-page: 930 year: 2012 ident: D2MH01171A/cit69/1 publication-title: Nat. Mater. doi: 10.1038/nmat3462 contributor: fullname: Goris – volume: 14 start-page: 4107 year: 2014 ident: D2MH01171A/cit46/1 publication-title: Nano Lett. doi: 10.1021/nl5016848 contributor: fullname: Pérez Garza – volume: 8 start-page: 13512 year: 2016 ident: D2MH01171A/cit48/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b01828 contributor: fullname: Kim – volume: 4 start-page: 1 year: 2018 ident: D2MH01171A/cit40/1 publication-title: Science doi: 10.1017/dsj.2017.32 contributor: fullname: Lipatov – volume: 17 start-page: 5329 year: 2017 ident: D2MH01171A/cit44/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b01735 contributor: fullname: Lloyd – volume: 81 start-page: 2819 year: 1998 ident: D2MH01171A/cit114/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.81.2819 contributor: fullname: Mavrikakis – volume: 6 start-page: 7381 year: 2015 ident: D2MH01171A/cit58/1 publication-title: Nat. Commun. doi: 10.1038/ncomms8381 contributor: fullname: Li – volume: 16 start-page: 5437 year: 2016 ident: D2MH01171A/cit38/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b01853 contributor: fullname: Azcatl – volume: 2 start-page: 1700341 year: 2018 ident: D2MH01171A/cit75/1 publication-title: Small Methods doi: 10.1002/smtd.201700341 contributor: fullname: Li – volume: 41 start-page: 8066 year: 2012 ident: D2MH01171A/cit71/1 publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs35189g contributor: fullname: Wu – volume: 11 start-page: 18329 year: 2019 ident: D2MH01171A/cit113/1 publication-title: Nanoscale doi: 10.1039/C9NR06541E contributor: fullname: Liang – volume: 35 start-page: 16403 year: 2021 ident: D2MH01171A/cit2/1 publication-title: Energy and Fuels doi: 10.1021/acs.energyfuels.1c02501 contributor: fullname: Megia – volume: 16 start-page: 5836 year: 2016 ident: D2MH01171A/cit43/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b02615 contributor: fullname: Lloyd – volume: 13 start-page: 5361 year: 2013 ident: D2MH01171A/cit80/1 publication-title: Nano Lett. doi: 10.1021/nl402875m contributor: fullname: Castellanos-Gomez – volume: 8 start-page: 1 year: 2017 ident: D2MH01171A/cit52/1 publication-title: Nat. Commun. doi: 10.1038/s41467-016-0009-6 contributor: fullname: Ahn – volume: 79 start-page: 205433 year: 2009 ident: D2MH01171A/cit61/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.79.205433 contributor: fullname: Mohiuddin – volume: 11 start-page: 32887 year: 2019 ident: D2MH01171A/cit79/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b06435 contributor: fullname: Zhu – volume: 11 start-page: 4985 year: 2017 ident: D2MH01171A/cit49/1 publication-title: ACS Nano doi: 10.1021/acsnano.7b01666 contributor: fullname: Behura – volume: 125 start-page: 16955 year: 2021 ident: D2MH01171A/cit17/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.1c02770 contributor: fullname: Wang – volume: 12 start-page: 2102261 year: 2022 ident: D2MH01171A/cit24/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202102261 contributor: fullname: Yang – volume: 17 start-page: 4568 year: 2017 ident: D2MH01171A/cit62/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b00730 contributor: fullname: Yang – volume: 14 start-page: 6494 year: 2021 ident: D2MH01171A/cit112/1 publication-title: Energy Environ. Sci. doi: 10.1039/D1EE02603H contributor: fullname: Kumar – volume: 31 start-page: 1 year: 2019 ident: D2MH01171A/cit25/1 publication-title: Adv. Mater. contributor: fullname: Dai – volume: 7 start-page: 12272 year: 2016 ident: D2MH01171A/cit12/1 publication-title: Nat. Commun. doi: 10.1038/ncomms12272 contributor: fullname: Zhu – volume: 5 start-page: 2681 year: 2017 ident: D2MH01171A/cit14/1 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA09409K contributor: fullname: Wang – volume: 12 start-page: 850 year: 2013 ident: D2MH01171A/cit96/1 publication-title: Nat. Mater. doi: 10.1038/nmat3700 contributor: fullname: Voiry – volume: 3 start-page: 1198 year: 2018 ident: D2MH01171A/cit87/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00454 contributor: fullname: Wang – volume: 11 start-page: 1 year: 2020 ident: D2MH01171A/cit47/1 publication-title: Nat. Commun. doi: 10.1038/s41467-019-13993-7 contributor: fullname: Cao – volume: 3 start-page: 634 year: 2011 ident: D2MH01171A/cit108/1 publication-title: Nat. Chem. doi: 10.1038/nchem.1095 contributor: fullname: Qiao – volume: 13 start-page: 6005 year: 2020 ident: D2MH01171A/cit100/1 publication-title: ChemSusChem doi: 10.1002/cssc.202002163 contributor: fullname: Gan – volume: 9 start-page: 2105299 year: 2022 ident: D2MH01171A/cit50/1 publication-title: Adv. Sci. doi: 10.1002/advs.202105299 contributor: fullname: Dai – volume: 8 start-page: 1 year: 2017 ident: D2MH01171A/cit95/1 publication-title: Nat. Commun. doi: 10.1038/s41467-016-0009-6 contributor: fullname: Shi – volume: 125 start-page: 15292 year: 2021 ident: D2MH01171A/cit11/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.1c03961 contributor: fullname: Chen – volume: 3 start-page: 934 year: 2012 ident: D2MH01171A/cit67/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz300192b contributor: fullname: Gan – volume: 3 start-page: 1 year: 2016 ident: D2MH01171A/cit102/1 publication-title: Adv. Sci. doi: 10.1002/advs.201600180 contributor: fullname: Ling – volume: 15 start-page: 364 year: 2016 ident: D2MH01171A/cit82/1 publication-title: Nat. Mater. doi: 10.1038/nmat4564 contributor: fullname: Li – volume: 1 start-page: 1 year: 2017 ident: D2MH01171A/cit51/1 publication-title: npj 2D Mater. Appl. doi: 10.1038/s41699-017-0013-7 contributor: fullname: Frisenda – volume: 354 start-page: 1414 year: 2016 ident: D2MH01171A/cit33/1 publication-title: Science doi: 10.1126/science.aaf9050 contributor: fullname: Li – volume: 2206783 start-page: 2206783 year: 2022 ident: D2MH01171A/cit109/1 publication-title: Adv. Mater. contributor: fullname: Chu – volume: 384 start-page: 126368 year: 2020 ident: D2MH01171A/cit18/1 publication-title: Phys. Lett. Sect. A Gen. At. Solid State Phys. contributor: fullname: Shan – volume: 8 start-page: 1 year: 2017 ident: D2MH01171A/cit22/1 publication-title: Nat. Commun. doi: 10.1038/s41467-016-0009-6 contributor: fullname: Ling – volume: 120 start-page: 100757 year: 2021 ident: D2MH01171A/cit65/1 publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2020.100757 contributor: fullname: Shekhirev – volume: 6 start-page: 5285 year: 2016 ident: D2MH01171A/cit88/1 publication-title: ACS Catal. doi: 10.1021/acscatal.6b01466 contributor: fullname: Asano – volume: 374 start-page: 459 year: 2021 ident: D2MH01171A/cit84/1 publication-title: Science doi: 10.1126/science.abj9980 contributor: fullname: Yang – volume: 121 start-page: 22139 year: 2017 ident: D2MH01171A/cit85/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b07081 contributor: fullname: Liu – volume: 32 start-page: 1 year: 2022 ident: D2MH01171A/cit21/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202107651 contributor: fullname: Jiao – volume: 20 start-page: 1337 year: 2021 ident: D2MH01171A/cit72/1 publication-title: Nat. Mater. doi: 10.1038/s41563-021-01097-x contributor: fullname: Liu – volume: 13 start-page: 5361 year: 2013 ident: D2MH01171A/cit63/1 publication-title: Nano Lett. doi: 10.1021/nl402875m contributor: fullname: Castellanos-Gomez – volume: 133 start-page: 3327 year: 2021 ident: D2MH01171A/cit91/1 publication-title: Angew. Chemie doi: 10.1002/ange.202013985 contributor: fullname: Li – volume: 5 start-page: 8187 year: 2017 ident: D2MH01171A/cit93/1 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA00816C contributor: fullname: Chen – volume: 15 start-page: 6633 year: 2021 ident: D2MH01171A/cit53/1 publication-title: ACS Nano doi: 10.1021/acsnano.0c09983 contributor: fullname: Wang – volume: 19 start-page: 530 year: 2019 ident: D2MH01171A/cit10/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b04466 contributor: fullname: Zhang – volume: 355 start-page: 4998 year: 2017 ident: D2MH01171A/cit13/1 publication-title: Science doi: 10.1126/science.aad4998 contributor: fullname: She – volume: 5 start-page: 43 year: 2012 ident: D2MH01171A/cit106/1 publication-title: Nano Res. doi: 10.1007/s12274-011-0183-0 contributor: fullname: Scalise – volume: 29 start-page: 1 year: 2019 ident: D2MH01171A/cit30/1 publication-title: Adv. Funct. Mater. contributor: fullname: Gao – volume: 11 start-page: 1755 year: 2017 ident: D2MH01171A/cit39/1 publication-title: ACS Nano doi: 10.1021/acsnano.6b07661 contributor: fullname: Pierucci – volume: 32 start-page: 1 year: 2020 ident: D2MH01171A/cit97/1 publication-title: Adv. Mater. contributor: fullname: Han – volume: 5 start-page: 78 year: 2021 ident: D2MH01171A/cit98/1 publication-title: npj 2D Mater. Appl. doi: 10.1038/s41699-021-00259-4 contributor: fullname: Bai – volume: 294 start-page: 97 year: 2019 ident: D2MH01171A/cit1/1 publication-title: Electrochim. Acta contributor: fullname: Zhang – volume: 32 start-page: 1 year: 2020 ident: D2MH01171A/cit26/1 publication-title: Adv. Mater. contributor: fullname: Zhao – volume: 28 start-page: 5274 year: 2016 ident: D2MH01171A/cit36/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b00500 contributor: fullname: Chen – volume: 18 start-page: 9388 year: 2016 ident: D2MH01171A/cit105/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C5CP06475A contributor: fullname: Chen – volume: 514 start-page: 145937 year: 2020 ident: D2MH01171A/cit23/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.145937 contributor: fullname: Dobrota – volume: 32 start-page: 2947 year: 2021 ident: D2MH01171A/cit76/1 publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2021.03.082 contributor: fullname: Su – volume: 118 start-page: 4275 year: 2014 ident: D2MH01171A/cit86/1 publication-title: J. Phys. Chem. C doi: 10.1021/jp4121035 contributor: fullname: Maark – volume: 30 start-page: 9866 year: 2014 ident: D2MH01171A/cit59/1 publication-title: Langmuir doi: 10.1021/la501349k contributor: fullname: Lee – volume: 596 start-page: 63 year: 2014 ident: D2MH01171A/cit35/1 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2014.01.199 contributor: fullname: Zhou – volume: 10 start-page: 5529 year: 2020 ident: D2MH01171A/cit70/1 publication-title: ACS Catal. doi: 10.1021/acscatal.0c00224 contributor: fullname: Mukherjee – volume: 30 start-page: 1 year: 2020 ident: D2MH01171A/cit74/1 publication-title: Adv. Funct. Mater. contributor: fullname: Wang – volume: 70 start-page: 27 year: 2022 ident: D2MH01171A/cit34/1 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2022.02.024 contributor: fullname: Lin – volume: 8 start-page: 1 year: 2017 ident: D2MH01171A/cit111/1 publication-title: Nat. Commun. doi: 10.1038/s41467-016-0009-6 contributor: fullname: Tsai – volume: 20 start-page: 136 year: 2020 ident: D2MH01171A/cit7/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b03460 contributor: fullname: Zhang – volume: 120 start-page: 16761 year: 2016 ident: D2MH01171A/cit107/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b04692 contributor: fullname: Gao – volume: 19 start-page: 18356 year: 2017 ident: D2MH01171A/cit37/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP03495D contributor: fullname: Hwang – volume: 321 start-page: 385 year: 2008 ident: D2MH01171A/cit41/1 publication-title: Science doi: 10.1126/science.1157996 contributor: fullname: Lee – volume: 6 start-page: 1 year: 2022 ident: D2MH01171A/cit99/1 publication-title: Sol. RRL contributor: fullname: Zhang – volume: 21 start-page: 1523 year: 2021 ident: D2MH01171A/cit4/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c05029 contributor: fullname: Deng – volume: 11 start-page: 12489 year: 2019 ident: D2MH01171A/cit16/1 publication-title: Nanoscale doi: 10.1039/C9NR01321K contributor: fullname: Ozden – volume: 32 start-page: 1 year: 2020 ident: D2MH01171A/cit92/1 publication-title: Adv. Mater. contributor: fullname: Liu – volume: 13 start-page: 765 year: 2021 ident: D2MH01171A/cit104/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c20500 contributor: fullname: Bolar – volume: 175 start-page: 420 year: 2021 ident: D2MH01171A/cit28/1 publication-title: Carbon N. Y. doi: 10.1016/j.carbon.2020.12.088 contributor: fullname: Tolladay – ident: D2MH01171A/cit20/1 contributor: fullname: Wang – volume: 2201654 start-page: 1 year: 2022 ident: D2MH01171A/cit77/1 publication-title: Adv. Sci. contributor: fullname: Huang – volume: 2 start-page: 100357 year: 2021 ident: D2MH01171A/cit89/1 publication-title: Cell Reports Phys. Sci. doi: 10.1016/j.xcrp.2021.100357 contributor: fullname: Liu – volume: 7 start-page: 12248 year: 2015 ident: D2MH01171A/cit27/1 publication-title: Nanoscale doi: 10.1039/C5NR02529J contributor: fullname: Sneed – volume: 15 start-page: 20253 year: 2021 ident: D2MH01171A/cit54/1 publication-title: ACS Nano doi: 10.1021/acsnano.1c08348 contributor: fullname: Zhang – volume: 354 start-page: 1031 year: 2016 ident: D2MH01171A/cit73/1 publication-title: Science doi: 10.1126/science.aaf7680 contributor: fullname: Wang – volume: 11 start-page: 9845 year: 2019 ident: D2MH01171A/cit64/1 publication-title: Nanoscale doi: 10.1039/C9NR02172H contributor: fullname: Zhao – volume: 133 start-page: 4524 year: 2021 ident: D2MH01171A/cit68/1 publication-title: Angew. Chemie doi: 10.1002/ange.202014017 contributor: fullname: Han – volume: 13 start-page: 4200 year: 2022 ident: D2MH01171A/cit19/1 publication-title: Nat. Commun. doi: 10.1038/s41467-022-31971-4 contributor: fullname: Wu – volume: 12 start-page: 617 year: 2012 ident: D2MH01171A/cit42/1 publication-title: Nano Lett. doi: 10.1021/nl203359n contributor: fullname: Zabel – volume: 12 start-page: 1687 year: 2021 ident: D2MH01171A/cit78/1 publication-title: Nat. Commun. doi: 10.1038/s41467-021-21956-0 contributor: fullname: Jiang – volume: 10 start-page: 8739 year: 2018 ident: D2MH01171A/cit9/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b00069 contributor: fullname: Zhang – volume: 39 start-page: 390 year: 2018 ident: D2MH01171A/cit6/1 publication-title: Cuihua Xuebao/Chinese J. Catal. doi: 10.1016/S1872-2067(17)62949-8 contributor: fullname: Chi – volume: 42 start-page: 2850 year: 2003 ident: D2MH01171A/cit81/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200250845 contributor: fullname: Wintterlin – volume: 14 start-page: 5044 year: 2014 ident: D2MH01171A/cit57/1 publication-title: Nano Lett. doi: 10.1021/nl5016552 contributor: fullname: Reserbat-Plantey – volume: 598 start-page: 76 year: 2021 ident: D2MH01171A/cit66/1 publication-title: Nature doi: 10.1038/s41586-021-03870-z contributor: fullname: He – volume: 4 start-page: 5058 year: 2021 ident: D2MH01171A/cit45/1 publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.1c00537 contributor: fullname: Li – volume: 207 start-page: 7 year: 2016 ident: D2MH01171A/cit60/1 publication-title: Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. doi: 10.1016/j.mseb.2016.01.012 contributor: fullname: Du – volume: 5 start-page: 9703 year: 2011 ident: D2MH01171A/cit56/1 publication-title: ACS Nano doi: 10.1021/nn203879f contributor: fullname: Bertolazzi – volume: 53 start-page: 2913 year: 2020 ident: D2MH01171A/cit83/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.0c00564 contributor: fullname: Wu – volume: 186 start-page: 109547 year: 2020 ident: D2MH01171A/cit3/1 publication-title: Environ. Res. doi: 10.1016/j.envres.2020.109547 contributor: fullname: Cao – volume: 21 start-page: 749 year: 2018 ident: D2MH01171A/cit94/1 publication-title: Mater. Today doi: 10.1016/j.mattod.2018.01.034 contributor: fullname: Di – volume: 24 start-page: 772 year: 2012 ident: D2MH01171A/cit55/1 publication-title: Adv. Mater. doi: 10.1002/adma.201103965 contributor: fullname: Castellanos-Gomez – volume: 14 start-page: 1 year: 2018 ident: D2MH01171A/cit32/1 publication-title: Small contributor: fullname: Sun – volume: 496 start-page: 143694 year: 2019 ident: D2MH01171A/cit15/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.143694 contributor: fullname: Zheng – volume: 8 start-page: 566 year: 2015 ident: D2MH01171A/cit103/1 publication-title: Nano Res. doi: 10.1007/s12274-014-0677-7 contributor: fullname: Wang – volume: 14 start-page: 6 year: 2019 ident: D2MH01171A/cit5/1 publication-title: Front. Phys. doi: 10.1007/s11467-019-0903-6 contributor: fullname: Lui – volume: 125 start-page: 4477 year: 2021 ident: D2MH01171A/cit101/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.0c09513 contributor: fullname: Wei – volume: 76 start-page: 203 year: 2017 ident: D2MH01171A/cit29/1 publication-title: Mater. Sci. Eng., C doi: 10.1016/j.msec.2017.02.044 contributor: fullname: Rajesh – volume: 120 start-page: 2123 year: 2020 ident: D2MH01171A/cit31/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00443 contributor: fullname: Liu |
SSID | ssj0001345080 |
Score | 2.428614 |
SecondaryResourceType | review_article |
Snippet | As the key half reaction of water-splitting electrolysis, the hydrogen evolution reaction (HER) that occurs at the cathode directly determines the overall... |
SourceID | proquest crossref pubmed rsc |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 34 |
SubjectTerms | Ammonia Catalysis Catalysts Chemical synthesis Electrocatalysts Electrolysis Hydrogen evolution reactions Hydrogen production Lattice strain Water splitting |
Title | Strain engineering of electrocatalysts for hydrogen evolution reaction |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36541087 https://www.proquest.com/docview/2772968956 https://search.proquest.com/docview/2756672279 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWglVA5VHy1BAoygtsqkLW9yfq4Kq0WRJEQW2nFJXIcu9lDk2qbIG1_fcd2nGQpSMAlipxPzbMnbyb2G4TeUUFZBswi5IKLkMmxDjOdsZBqledAz3VkS7KcfY3n5-zzcrLsqzja1SV19l7e_HZdyf-gCm2Aq1kl-w_IdjeFBtgHfGELCMP2rzD-bgs8jFSvKWi4X1vZxiZmNte1FVwYFZt8XV0YSf-f7SuNgC7KDhZf1EnU7sVHRbVe3fhcnk1Z26TqclVumr5HfXMSBD-KpmhW3Vwel9YuGlMp5KL_pePcynEhqmGugVA7PblVqrY-icAYDg1H2XKg0aCjkIE3pE6J6Y6XjqgROc3JZWEU6cZieBJY-OrS4kVNifKo_Rxva2L7Q_fRLgEHA55td3ay-PSlz65RBswz8nq0lH_on7aHHvjrt8nInQgD-Mba14GxfGPxCO23gQKeOdQfo3uqfIIeDuQjn6JThz8e4I8rjX_FHwP-2OOPO_yxx_8ZOj89WRzPw7YuRigpTeqQ5dKI5mdTpW19ACBxMBK14ERJRhQEAJNMK8XGRDGu5ERTHSdKUZETMaVM0QO0U1aleo5wTJhU-WQ85bFkMD45ISJXMiYkEXkieYDeegOlV07-JLXTFihPP5KzubXoLEBH3nZpOzyuU2LitngK8XeA3nSHwXmZP1KiVFVjzoFoIjEilgE6dDbvHuMxCtABgNA19zi--OMlL9Fe33uP0E69btQr4I519rrtKLcUKXGA |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strain+engineering+of+electrocatalysts+for+hydrogen+evolution+reaction&rft.jtitle=Materials+horizons&rft.au=Mao%2C+Xinyuan&rft.au=Qin%2C+Zhuhui&rft.au=Ge%2C+Shundong&rft.au=Rong%2C+Chao&rft.date=2023-02-06&rft.eissn=2051-6355&rft.volume=10&rft.issue=2&rft.spage=340&rft_id=info:doi/10.1039%2Fd2mh01171a&rft_id=info%3Apmid%2F36541087&rft.externalDocID=36541087 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-6347&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-6347&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-6347&client=summon |