Strain engineering of electrocatalysts for hydrogen evolution reaction

As the key half reaction of water-splitting electrolysis, the hydrogen evolution reaction (HER) that occurs at the cathode directly determines the overall efficiency of hydrogen production. To improve the efficiency of electrochemical water splitting for hydrogen generation, efficient and robust cat...

Full description

Saved in:
Bibliographic Details
Published inMaterials horizons Vol. 1; no. 2; pp. 34 - 36
Main Authors Mao, Xinyuan, Qin, Zhuhui, Ge, Shundong, Rong, Chao, Zhang, Bowei, Xuan, Fuzhen
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 06.02.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As the key half reaction of water-splitting electrolysis, the hydrogen evolution reaction (HER) that occurs at the cathode directly determines the overall efficiency of hydrogen production. To improve the efficiency of electrochemical water splitting for hydrogen generation, efficient and robust catalysts need to be developed. Strain engineering, which represents an effective and promising category of strategies, can regulate the electronic structures of catalysts by modulating the lattice strain and ultimately optimizing the HER dynamics. This work critically reviews the recent progress of strain engineering in HER and provides future perspectives for this area. The methods and characterization techniques are also introduced in detail. Hopefully this review can provide guidelines for the design and manufacturing of advanced catalysts for HER and other heterogeneous catalysis reactions such as chemical sensing, CO 2 reduction and NH 3 synthesis. As the key half reaction of water-splitting electrolysis, the hydrogen evolution reaction (HER) that occurs at the cathode directly determines the overall efficiency of hydrogen production.
AbstractList As the key half reaction of water-splitting electrolysis, the hydrogen evolution reaction (HER) that occurs at the cathode directly determines the overall efficiency of hydrogen production. To improve the efficiency of electrochemical water splitting for hydrogen generation, efficient and robust catalysts need to be developed. Strain engineering, which represents an effective and promising category of strategies, can regulate the electronic structures of catalysts by modulating the lattice strain and ultimately optimizing the HER dynamics. This work critically reviews the recent progress of strain engineering in HER and provides future perspectives for this area. The methods and characterization techniques are also introduced in detail. Hopefully this review can provide guidelines for the design and manufacturing of advanced catalysts for HER and other heterogeneous catalysis reactions such as chemical sensing, CO reduction and NH synthesis.
As the key half reaction of water-splitting electrolysis, the hydrogen evolution reaction (HER) that occurs at the cathode directly determines the overall efficiency of hydrogen production. To improve the efficiency of electrochemical water splitting for hydrogen generation, efficient and robust catalysts need to be developed. Strain engineering, which represents an effective and promising category of strategies, can regulate the electronic structures of catalysts by modulating the lattice strain and ultimately optimizing the HER dynamics. This work critically reviews the recent progress of strain engineering in HER and provides future perspectives for this area. The methods and characterization techniques are also introduced in detail. Hopefully this review can provide guidelines for the design and manufacturing of advanced catalysts for HER and other heterogeneous catalysis reactions such as chemical sensing, CO2 reduction and NH3 synthesis.
As the key half reaction of water-splitting electrolysis, the hydrogen evolution reaction (HER) that occurs at the cathode directly determines the overall efficiency of hydrogen production. To improve the efficiency of electrochemical water splitting for hydrogen generation, efficient and robust catalysts need to be developed. Strain engineering, which represents an effective and promising category of strategies, can regulate the electronic structures of catalysts by modulating the lattice strain and ultimately optimizing the HER dynamics. This work critically reviews the recent progress of strain engineering in HER and provides future perspectives for this area. The methods and characterization techniques are also introduced in detail. Hopefully this review can provide guidelines for the design and manufacturing of advanced catalysts for HER and other heterogeneous catalysis reactions such as chemical sensing, CO 2 reduction and NH 3 synthesis. As the key half reaction of water-splitting electrolysis, the hydrogen evolution reaction (HER) that occurs at the cathode directly determines the overall efficiency of hydrogen production.
As the key half reaction of water-splitting electrolysis, the hydrogen evolution reaction (HER) that occurs at the cathode directly determines the overall efficiency of hydrogen production. To improve the efficiency of electrochemical water splitting for hydrogen generation, efficient and robust catalysts need to be developed. Strain engineering, which represents an effective and promising category of strategies, can regulate the electronic structures of catalysts by modulating the lattice strain and ultimately optimizing the HER dynamics. This work critically reviews the recent progress of strain engineering in HER and provides future perspectives for this area. The methods and characterization techniques are also introduced in detail. Hopefully this review can provide guidelines for the design and manufacturing of advanced catalysts for HER and other heterogeneous catalysis reactions such as chemical sensing, CO 2 reduction and NH 3 synthesis.
Author Rong, Chao
Mao, Xinyuan
Zhang, Bowei
Qin, Zhuhui
Ge, Shundong
Xuan, Fuzhen
AuthorAffiliation East China University of Science and Technology
Key Laboratory of Pressure Systems and Safety of Ministry of Education
Shanghai Key Laboratory of Intelligent Sensing and Detection Technology
School of Mechanical and Power Engineering
AuthorAffiliation_xml – name: School of Mechanical and Power Engineering
– name: Key Laboratory of Pressure Systems and Safety of Ministry of Education
– name: Shanghai Key Laboratory of Intelligent Sensing and Detection Technology
– name: East China University of Science and Technology
Author_xml – sequence: 1
  givenname: Xinyuan
  surname: Mao
  fullname: Mao, Xinyuan
– sequence: 2
  givenname: Zhuhui
  surname: Qin
  fullname: Qin, Zhuhui
– sequence: 3
  givenname: Shundong
  surname: Ge
  fullname: Ge, Shundong
– sequence: 4
  givenname: Chao
  surname: Rong
  fullname: Rong, Chao
– sequence: 5
  givenname: Bowei
  surname: Zhang
  fullname: Zhang, Bowei
– sequence: 6
  givenname: Fuzhen
  surname: Xuan
  fullname: Xuan, Fuzhen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36541087$$D View this record in MEDLINE/PubMed
BookMark eNpd0U1Lw0AQBuBFKrbWXrwrAS8iRPcr2eRYqlWh4kE9h81mtk1Jd-tuIvTfu7W1gqcZmIdheOcU9Yw1gNA5wbcEs_yuoqsFJkQQeYQGFCckTlmS9A49F3008n6JMSaMJzjDJ6jP0oQTnIkBmr61TtYmAjOvDYCrzTyyOoIGVOuskq1sNr71kbYuWmwqZ-cQ8Jdtura2JnIg1bY5Q8daNh5G-zpEH9OH98lTPHt9fJ6MZ7FiTLQxr1TOGS4z0FzkPM0oLkFpmVNQnAION5cagBMKPAeVaKZTAcBkRWXGOLAhut7tXTv72YFvi1XtFTSNNGA7X1CRpKmgVOSBXv2jS9s5E64LStA8zfIkDepmp5Sz3jvQxdrVK-k2BcHFNuDinr48_QQ8Dvhyv7IrV1Ad6G-cAVzsgPPqMP37EPsGhoyBbw
CitedBy_id crossref_primary_10_1021_acs_jpclett_3c01697
crossref_primary_10_1002_smtd_202400158
crossref_primary_10_1002_adsu_202300380
crossref_primary_10_1039_D3NR04822E
crossref_primary_10_1016_j_apsusc_2024_159555
crossref_primary_10_1021_acs_jpcc_4c00779
crossref_primary_10_1016_j_ccr_2024_215901
crossref_primary_10_1016_j_cej_2023_145348
crossref_primary_10_1016_j_ijhydene_2023_07_134
crossref_primary_10_1002_smll_202310603
crossref_primary_10_1021_acs_est_3c05129
crossref_primary_10_1002_slct_202304266
crossref_primary_10_1021_acs_inorgchem_3c03005
crossref_primary_10_1039_D3NR06194A
crossref_primary_10_3390_molecules28155736
crossref_primary_10_1039_D4TA02322F
crossref_primary_10_1088_1361_648X_acc22a
crossref_primary_10_1039_D4CY00213J
crossref_primary_10_1002_adma_202312524
crossref_primary_10_1002_smll_202304573
crossref_primary_10_1039_D3CY00787A
crossref_primary_10_1016_j_cej_2023_146172
crossref_primary_10_1039_D3MH00416C
Cites_doi 10.1002/anie.201508613
10.1038/s41565-018-0089-z
10.1016/j.apenergy.2014.10.080
10.1038/nmat3462
10.1021/nl5016848
10.1021/acsami.6b01828
10.1017/dsj.2017.32
10.1021/acs.nanolett.7b01735
10.1103/PhysRevLett.81.2819
10.1038/ncomms8381
10.1021/acs.nanolett.6b01853
10.1002/smtd.201700341
10.1039/c2cs35189g
10.1039/C9NR06541E
10.1021/acs.energyfuels.1c02501
10.1021/acs.nanolett.6b02615
10.1021/nl402875m
10.1038/s41467-016-0009-6
10.1103/PhysRevB.79.205433
10.1021/acsami.9b06435
10.1021/acsnano.7b01666
10.1021/acs.jpcc.1c02770
10.1002/aenm.202102261
10.1021/acs.nanolett.7b00730
10.1039/D1EE02603H
10.1038/ncomms12272
10.1039/C6TA09409K
10.1038/nmat3700
10.1021/acsenergylett.8b00454
10.1038/s41467-019-13993-7
10.1038/nchem.1095
10.1002/cssc.202002163
10.1002/advs.202105299
10.1021/acs.jpcc.1c03961
10.1021/jz300192b
10.1002/advs.201600180
10.1038/nmat4564
10.1038/s41699-017-0013-7
10.1126/science.aaf9050
10.1016/j.pmatsci.2020.100757
10.1021/acscatal.6b01466
10.1126/science.abj9980
10.1021/acs.jpcc.7b07081
10.1002/adfm.202107651
10.1038/s41563-021-01097-x
10.1002/ange.202013985
10.1039/C7TA00816C
10.1021/acsnano.0c09983
10.1021/acs.nanolett.8b04466
10.1126/science.aad4998
10.1007/s12274-011-0183-0
10.1021/acsnano.6b07661
10.1038/s41699-021-00259-4
10.1021/acs.chemmater.6b00500
10.1039/C5CP06475A
10.1016/j.apsusc.2020.145937
10.1016/j.cclet.2021.03.082
10.1021/jp4121035
10.1021/la501349k
10.1016/j.jallcom.2014.01.199
10.1021/acscatal.0c00224
10.1016/j.jechem.2022.02.024
10.1021/acs.nanolett.9b03460
10.1021/acs.jpcc.6b04692
10.1039/C7CP03495D
10.1126/science.1157996
10.1021/acs.nanolett.0c05029
10.1039/C9NR01321K
10.1021/acsami.0c20500
10.1016/j.carbon.2020.12.088
10.1016/j.xcrp.2021.100357
10.1039/C5NR02529J
10.1021/acsnano.1c08348
10.1126/science.aaf7680
10.1039/C9NR02172H
10.1002/ange.202014017
10.1038/s41467-022-31971-4
10.1021/nl203359n
10.1038/s41467-021-21956-0
10.1021/acsami.8b00069
10.1016/S1872-2067(17)62949-8
10.1002/anie.200250845
10.1021/nl5016552
10.1038/s41586-021-03870-z
10.1021/acsanm.1c00537
10.1016/j.mseb.2016.01.012
10.1021/nn203879f
10.1021/acs.accounts.0c00564
10.1016/j.envres.2020.109547
10.1016/j.mattod.2018.01.034
10.1002/adma.201103965
10.1016/j.apsusc.2019.143694
10.1007/s12274-014-0677-7
10.1007/s11467-019-0903-6
10.1021/acs.jpcc.0c09513
10.1016/j.msec.2017.02.044
10.1021/acs.chemrev.9b00443
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2023
Copyright_xml – notice: Copyright Royal Society of Chemistry 2023
DBID NPM
AAYXX
CITATION
7SR
7TB
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
DOI 10.1039/d2mh01171a
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
Materials Research Database

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2051-6355
EndPage 36
ExternalDocumentID 10_1039_D2MH01171A
36541087
d2mh01171a
Genre Journal Article
Review
GroupedDBID 0R~
4.4
AAEMU
AAGNR
AAIWI
AANOJ
ABASK
ABDVN
ABGFH
ABRYZ
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFOGI
AGRSR
AGSTE
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
H13
HZ~
H~N
J3I
O-G
O9-
RAOCF
RCNCU
RPMJG
RRC
RSCEA
RVUXY
AAJAE
AARTK
AAWGC
AAXHV
ABEMK
ABPDG
ABXOH
AEFDR
AENGV
AETIL
AFLYV
AGEGJ
AHGCF
AKBGW
APEMP
GGIMP
NPM
AAYXX
CITATION
7SR
7TB
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
ID FETCH-LOGICAL-c337t-4dc9430b8ef47946820becfa92ec42e0205bfee412e49ec5f3f67ee3ad2a834e3
ISSN 2051-6347
IngestDate Sat Oct 05 05:36:35 EDT 2024
Thu Oct 10 18:43:30 EDT 2024
Fri Aug 23 10:25:24 EDT 2024
Tue Aug 27 13:44:52 EDT 2024
Tue Feb 07 16:41:10 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c337t-4dc9430b8ef47946820becfa92ec42e0205bfee412e49ec5f3f67ee3ad2a834e3
Notes Chao Rong is currently a master's candidate at East China University of Science and Technology. His main research interests cover the multi-scale mechanical properties of two-dimensional material films, including the preparation of composites and their applications in multifunctional wearable electronic products.
Bowei Zhang obtained his PhD degree from the Mechanical Engineering of Iowa State University in 2019 and then joined the Northwestern University as a postdoctoral fellow. From 2020, he joined the East China University of Science and Technology at Shanghai as an associate professor. He has been awarded a series of prestigious honors such as the CSC-self funded scholarship for excellent students abroad and the Zaffarano Prize offered by Sigma Xi association of the U.S. His research focuses on the intelligent sensing and hydrogen-production technologies.
Fuzhen Xuan works on the intersection of mechanical strength, intelligent sensing, and health monitoring of equipment. He has been awarded the honors of National Outstanding Youth Scholar and Cheung Kong Scholars Program of China. Currently, he serves as president of the East China University of Science and Technology.
Shundong Ge is currently pursuing his PhD degree in the East China University of Science and Technology. He received his MS degree from the Lanzhou University of Technology, China, in 2022. His research interests mainly focus on intelligent sensing, including the fabrication of flexible conductive composites and their applications in multifunctional wearable electronics and self-powered microsystems.
Xinyuan Mao received his bachelor's degree from Yangzhou University in 2021. He is currently pursuing for his master's degree in the research group of Professor Bowei Zhang at East China University of Science and Technology. His research interests mainly focus on the intelligent sensing and structural regulation engineering of nanomaterials.
Zhuhui Qin is now studying in East China University of Science and Technology. He is pursuing his academic master's degree in School of Mechanical and Power Engineering, conducting research in the Intelligent Sensing and Microenergy Devices Research Group under supervision of Dr. Bowei Zhang. His research interests focus on gas sensors.
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ORCID 0000-0002-7404-2671
0000-0002-6228-5238
0000-0001-7124-4561
PMID 36541087
PQID 2772968956
PQPubID 2047518
PageCount 21
ParticipantIDs proquest_miscellaneous_2756672279
crossref_primary_10_1039_D2MH01171A
rsc_primary_d2mh01171a
pubmed_primary_36541087
proquest_journals_2772968956
PublicationCentury 2000
PublicationDate 2023-02-06
PublicationDateYYYYMMDD 2023-02-06
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-06
  day: 06
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Materials horizons
PublicationTitleAlternate Mater Horiz
PublicationYear 2023
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Su (D2MH01171A/cit76/1) 2021; 32
Li (D2MH01171A/cit82/1) 2016; 15
Liang (D2MH01171A/cit113/1) 2019; 11
Wang (D2MH01171A/cit73/1) 2016; 354
Bai (D2MH01171A/cit98/1) 2021; 5
Gradisher (D2MH01171A/cit8/1) 2015; 139
Zhang (D2MH01171A/cit1/1) 2019; 294
Asano (D2MH01171A/cit88/1) 2016; 6
Wang (D2MH01171A/cit14/1) 2017; 5
Bolar (D2MH01171A/cit104/1) 2021; 13
Li (D2MH01171A/cit110/1) 2018; 13
Rajesh (D2MH01171A/cit29/1) 2017; 76
Yang (D2MH01171A/cit84/1) 2021; 374
Dobrota (D2MH01171A/cit23/1) 2020; 514
Behura (D2MH01171A/cit49/1) 2017; 11
Gao (D2MH01171A/cit107/1) 2016; 120
Lloyd (D2MH01171A/cit44/1) 2017; 17
Jiao (D2MH01171A/cit21/1) 2022; 32
Sun (D2MH01171A/cit32/1) 2018; 14
Yang (D2MH01171A/cit62/1) 2017; 17
Pierucci (D2MH01171A/cit39/1) 2017; 11
Megia (D2MH01171A/cit2/1) 2021; 35
Liu (D2MH01171A/cit72/1) 2021; 20
Deng (D2MH01171A/cit4/1) 2021; 21
Mohiuddin (D2MH01171A/cit61/1) 2009; 79
Li (D2MH01171A/cit75/1) 2018; 2
Zhao (D2MH01171A/cit26/1) 2020; 32
Ling (D2MH01171A/cit22/1) 2017; 8
Hwang (D2MH01171A/cit37/1) 2017; 19
Wang (D2MH01171A/cit87/1) 2018; 3
Tolladay (D2MH01171A/cit28/1) 2021; 175
Wang (D2MH01171A/cit53/1) 2021; 15
Lin (D2MH01171A/cit34/1) 2022; 70
Zheng (D2MH01171A/cit15/1) 2019; 496
Li (D2MH01171A/cit45/1) 2021; 4
Di (D2MH01171A/cit94/1) 2018; 21
Ozden (D2MH01171A/cit16/1) 2019; 11
Han (D2MH01171A/cit68/1) 2021; 133
Wei (D2MH01171A/cit101/1) 2021; 125
Frisenda (D2MH01171A/cit51/1) 2017; 1
Goris (D2MH01171A/cit69/1) 2012; 11
Liu (D2MH01171A/cit31/1) 2020; 120
Castellanos-Gomez (D2MH01171A/cit55/1) 2012; 24
Du (D2MH01171A/cit60/1) 2016; 207
Shan (D2MH01171A/cit18/1) 2020; 384
Maark (D2MH01171A/cit86/1) 2014; 118
Zhang (D2MH01171A/cit54/1) 2021; 15
Yan (D2MH01171A/cit115/1) 2016; 55
Chen (D2MH01171A/cit36/1) 2016; 28
Kim (D2MH01171A/cit48/1) 2016; 8
Castellanos-Gomez (D2MH01171A/cit80/1) 2013; 13
Azcatl (D2MH01171A/cit38/1) 2016; 16
Voiry (D2MH01171A/cit96/1) 2013; 12
Wu (D2MH01171A/cit19/1) 2022; 13
Bertolazzi (D2MH01171A/cit56/1) 2011; 5
Cao (D2MH01171A/cit3/1) 2020; 186
Ling (D2MH01171A/cit102/1) 2016; 3
Lipatov (D2MH01171A/cit40/1) 2018; 4
Castellanos-Gomez (D2MH01171A/cit63/1) 2013; 13
Chu (D2MH01171A/cit109/1) 2022; 2206783
Shekhirev (D2MH01171A/cit65/1) 2021; 120
Lloyd (D2MH01171A/cit43/1) 2016; 16
Wang (D2MH01171A/cit74/1) 2020; 30
Sneed (D2MH01171A/cit27/1) 2015; 7
Zhang (D2MH01171A/cit10/1) 2019; 19
Zhou (D2MH01171A/cit35/1) 2014; 596
Zabel (D2MH01171A/cit42/1) 2012; 12
He (D2MH01171A/cit66/1) 2021; 598
Li (D2MH01171A/cit91/1) 2021; 133
Yang (D2MH01171A/cit24/1) 2022; 12
Dai (D2MH01171A/cit50/1) 2022; 9
Liu (D2MH01171A/cit89/1) 2021; 2
Zhu (D2MH01171A/cit90/1) 2018; 30
Liu (D2MH01171A/cit92/1) 2020; 32
Mukherjee (D2MH01171A/cit70/1) 2020; 10
Zhang (D2MH01171A/cit99/1) 2022; 6
Kumar (D2MH01171A/cit112/1) 2021; 14
Zhu (D2MH01171A/cit12/1) 2016; 7
Wu (D2MH01171A/cit71/1) 2012; 41
Gan (D2MH01171A/cit67/1) 2012; 3
Huang (D2MH01171A/cit77/1) 2022; 2201654
Wang (D2MH01171A/cit20/1)
Gao (D2MH01171A/cit30/1) 2019; 29
Reserbat-Plantey (D2MH01171A/cit57/1) 2014; 14
Wang (D2MH01171A/cit17/1) 2021; 125
Zhu (D2MH01171A/cit79/1) 2019; 11
Chen (D2MH01171A/cit93/1) 2017; 5
Shi (D2MH01171A/cit95/1) 2017; 8
Chen (D2MH01171A/cit11/1) 2021; 125
Li (D2MH01171A/cit58/1) 2015; 6
Pérez Garza (D2MH01171A/cit46/1) 2014; 14
Qiao (D2MH01171A/cit108/1) 2011; 3
Chen (D2MH01171A/cit105/1) 2016; 18
Jiang (D2MH01171A/cit78/1) 2021; 12
Scalise (D2MH01171A/cit106/1) 2012; 5
Wang (D2MH01171A/cit103/1) 2015; 8
Wu (D2MH01171A/cit83/1) 2020; 53
Mavrikakis (D2MH01171A/cit114/1) 1998; 81
Li (D2MH01171A/cit33/1) 2016; 354
Zhao (D2MH01171A/cit64/1) 2019; 11
Dai (D2MH01171A/cit25/1) 2019; 31
Cao (D2MH01171A/cit47/1) 2020; 11
Han (D2MH01171A/cit97/1) 2020; 32
Zhang (D2MH01171A/cit9/1) 2018; 10
She (D2MH01171A/cit13/1) 2017; 355
Tsai (D2MH01171A/cit111/1) 2017; 8
Ahn (D2MH01171A/cit52/1) 2017; 8
Chi (D2MH01171A/cit6/1) 2018; 39
Liu (D2MH01171A/cit85/1) 2017; 121
Zhang (D2MH01171A/cit7/1) 2020; 20
Lui (D2MH01171A/cit5/1) 2019; 14
Gan (D2MH01171A/cit100/1) 2020; 13
Lee (D2MH01171A/cit59/1) 2014; 30
Wintterlin (D2MH01171A/cit81/1) 2003; 42
Lee (D2MH01171A/cit41/1) 2008; 321
References_xml – doi: Wang Wang Xie Zhao Liu Ejtuvscbodf Uifz Xjui
– volume: 55
  start-page: 6175
  year: 2016
  ident: D2MH01171A/cit115/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201508613
  contributor:
    fullname: Yan
– volume: 13
  start-page: 411
  year: 2018
  ident: D2MH01171A/cit110/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0089-z
  contributor:
    fullname: Li
– volume: 139
  start-page: 335
  year: 2015
  ident: D2MH01171A/cit8/1
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.10.080
  contributor:
    fullname: Gradisher
– volume: 30
  start-page: 1
  year: 2018
  ident: D2MH01171A/cit90/1
  publication-title: Adv. Mater.
  contributor:
    fullname: Zhu
– volume: 11
  start-page: 930
  year: 2012
  ident: D2MH01171A/cit69/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3462
  contributor:
    fullname: Goris
– volume: 14
  start-page: 4107
  year: 2014
  ident: D2MH01171A/cit46/1
  publication-title: Nano Lett.
  doi: 10.1021/nl5016848
  contributor:
    fullname: Pérez Garza
– volume: 8
  start-page: 13512
  year: 2016
  ident: D2MH01171A/cit48/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b01828
  contributor:
    fullname: Kim
– volume: 4
  start-page: 1
  year: 2018
  ident: D2MH01171A/cit40/1
  publication-title: Science
  doi: 10.1017/dsj.2017.32
  contributor:
    fullname: Lipatov
– volume: 17
  start-page: 5329
  year: 2017
  ident: D2MH01171A/cit44/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b01735
  contributor:
    fullname: Lloyd
– volume: 81
  start-page: 2819
  year: 1998
  ident: D2MH01171A/cit114/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.81.2819
  contributor:
    fullname: Mavrikakis
– volume: 6
  start-page: 7381
  year: 2015
  ident: D2MH01171A/cit58/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8381
  contributor:
    fullname: Li
– volume: 16
  start-page: 5437
  year: 2016
  ident: D2MH01171A/cit38/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b01853
  contributor:
    fullname: Azcatl
– volume: 2
  start-page: 1700341
  year: 2018
  ident: D2MH01171A/cit75/1
  publication-title: Small Methods
  doi: 10.1002/smtd.201700341
  contributor:
    fullname: Li
– volume: 41
  start-page: 8066
  year: 2012
  ident: D2MH01171A/cit71/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c2cs35189g
  contributor:
    fullname: Wu
– volume: 11
  start-page: 18329
  year: 2019
  ident: D2MH01171A/cit113/1
  publication-title: Nanoscale
  doi: 10.1039/C9NR06541E
  contributor:
    fullname: Liang
– volume: 35
  start-page: 16403
  year: 2021
  ident: D2MH01171A/cit2/1
  publication-title: Energy and Fuels
  doi: 10.1021/acs.energyfuels.1c02501
  contributor:
    fullname: Megia
– volume: 16
  start-page: 5836
  year: 2016
  ident: D2MH01171A/cit43/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b02615
  contributor:
    fullname: Lloyd
– volume: 13
  start-page: 5361
  year: 2013
  ident: D2MH01171A/cit80/1
  publication-title: Nano Lett.
  doi: 10.1021/nl402875m
  contributor:
    fullname: Castellanos-Gomez
– volume: 8
  start-page: 1
  year: 2017
  ident: D2MH01171A/cit52/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-016-0009-6
  contributor:
    fullname: Ahn
– volume: 79
  start-page: 205433
  year: 2009
  ident: D2MH01171A/cit61/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.79.205433
  contributor:
    fullname: Mohiuddin
– volume: 11
  start-page: 32887
  year: 2019
  ident: D2MH01171A/cit79/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b06435
  contributor:
    fullname: Zhu
– volume: 11
  start-page: 4985
  year: 2017
  ident: D2MH01171A/cit49/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b01666
  contributor:
    fullname: Behura
– volume: 125
  start-page: 16955
  year: 2021
  ident: D2MH01171A/cit17/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.1c02770
  contributor:
    fullname: Wang
– volume: 12
  start-page: 2102261
  year: 2022
  ident: D2MH01171A/cit24/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202102261
  contributor:
    fullname: Yang
– volume: 17
  start-page: 4568
  year: 2017
  ident: D2MH01171A/cit62/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b00730
  contributor:
    fullname: Yang
– volume: 14
  start-page: 6494
  year: 2021
  ident: D2MH01171A/cit112/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE02603H
  contributor:
    fullname: Kumar
– volume: 31
  start-page: 1
  year: 2019
  ident: D2MH01171A/cit25/1
  publication-title: Adv. Mater.
  contributor:
    fullname: Dai
– volume: 7
  start-page: 12272
  year: 2016
  ident: D2MH01171A/cit12/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12272
  contributor:
    fullname: Zhu
– volume: 5
  start-page: 2681
  year: 2017
  ident: D2MH01171A/cit14/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA09409K
  contributor:
    fullname: Wang
– volume: 12
  start-page: 850
  year: 2013
  ident: D2MH01171A/cit96/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3700
  contributor:
    fullname: Voiry
– volume: 3
  start-page: 1198
  year: 2018
  ident: D2MH01171A/cit87/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00454
  contributor:
    fullname: Wang
– volume: 11
  start-page: 1
  year: 2020
  ident: D2MH01171A/cit47/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13993-7
  contributor:
    fullname: Cao
– volume: 3
  start-page: 634
  year: 2011
  ident: D2MH01171A/cit108/1
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1095
  contributor:
    fullname: Qiao
– volume: 13
  start-page: 6005
  year: 2020
  ident: D2MH01171A/cit100/1
  publication-title: ChemSusChem
  doi: 10.1002/cssc.202002163
  contributor:
    fullname: Gan
– volume: 9
  start-page: 2105299
  year: 2022
  ident: D2MH01171A/cit50/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202105299
  contributor:
    fullname: Dai
– volume: 8
  start-page: 1
  year: 2017
  ident: D2MH01171A/cit95/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-016-0009-6
  contributor:
    fullname: Shi
– volume: 125
  start-page: 15292
  year: 2021
  ident: D2MH01171A/cit11/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.1c03961
  contributor:
    fullname: Chen
– volume: 3
  start-page: 934
  year: 2012
  ident: D2MH01171A/cit67/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz300192b
  contributor:
    fullname: Gan
– volume: 3
  start-page: 1
  year: 2016
  ident: D2MH01171A/cit102/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201600180
  contributor:
    fullname: Ling
– volume: 15
  start-page: 364
  year: 2016
  ident: D2MH01171A/cit82/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4564
  contributor:
    fullname: Li
– volume: 1
  start-page: 1
  year: 2017
  ident: D2MH01171A/cit51/1
  publication-title: npj 2D Mater. Appl.
  doi: 10.1038/s41699-017-0013-7
  contributor:
    fullname: Frisenda
– volume: 354
  start-page: 1414
  year: 2016
  ident: D2MH01171A/cit33/1
  publication-title: Science
  doi: 10.1126/science.aaf9050
  contributor:
    fullname: Li
– volume: 2206783
  start-page: 2206783
  year: 2022
  ident: D2MH01171A/cit109/1
  publication-title: Adv. Mater.
  contributor:
    fullname: Chu
– volume: 384
  start-page: 126368
  year: 2020
  ident: D2MH01171A/cit18/1
  publication-title: Phys. Lett. Sect. A Gen. At. Solid State Phys.
  contributor:
    fullname: Shan
– volume: 8
  start-page: 1
  year: 2017
  ident: D2MH01171A/cit22/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-016-0009-6
  contributor:
    fullname: Ling
– volume: 120
  start-page: 100757
  year: 2021
  ident: D2MH01171A/cit65/1
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2020.100757
  contributor:
    fullname: Shekhirev
– volume: 6
  start-page: 5285
  year: 2016
  ident: D2MH01171A/cit88/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b01466
  contributor:
    fullname: Asano
– volume: 374
  start-page: 459
  year: 2021
  ident: D2MH01171A/cit84/1
  publication-title: Science
  doi: 10.1126/science.abj9980
  contributor:
    fullname: Yang
– volume: 121
  start-page: 22139
  year: 2017
  ident: D2MH01171A/cit85/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b07081
  contributor:
    fullname: Liu
– volume: 32
  start-page: 1
  year: 2022
  ident: D2MH01171A/cit21/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202107651
  contributor:
    fullname: Jiao
– volume: 20
  start-page: 1337
  year: 2021
  ident: D2MH01171A/cit72/1
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-021-01097-x
  contributor:
    fullname: Liu
– volume: 13
  start-page: 5361
  year: 2013
  ident: D2MH01171A/cit63/1
  publication-title: Nano Lett.
  doi: 10.1021/nl402875m
  contributor:
    fullname: Castellanos-Gomez
– volume: 133
  start-page: 3327
  year: 2021
  ident: D2MH01171A/cit91/1
  publication-title: Angew. Chemie
  doi: 10.1002/ange.202013985
  contributor:
    fullname: Li
– volume: 5
  start-page: 8187
  year: 2017
  ident: D2MH01171A/cit93/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA00816C
  contributor:
    fullname: Chen
– volume: 15
  start-page: 6633
  year: 2021
  ident: D2MH01171A/cit53/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c09983
  contributor:
    fullname: Wang
– volume: 19
  start-page: 530
  year: 2019
  ident: D2MH01171A/cit10/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b04466
  contributor:
    fullname: Zhang
– volume: 355
  start-page: 4998
  year: 2017
  ident: D2MH01171A/cit13/1
  publication-title: Science
  doi: 10.1126/science.aad4998
  contributor:
    fullname: She
– volume: 5
  start-page: 43
  year: 2012
  ident: D2MH01171A/cit106/1
  publication-title: Nano Res.
  doi: 10.1007/s12274-011-0183-0
  contributor:
    fullname: Scalise
– volume: 29
  start-page: 1
  year: 2019
  ident: D2MH01171A/cit30/1
  publication-title: Adv. Funct. Mater.
  contributor:
    fullname: Gao
– volume: 11
  start-page: 1755
  year: 2017
  ident: D2MH01171A/cit39/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b07661
  contributor:
    fullname: Pierucci
– volume: 32
  start-page: 1
  year: 2020
  ident: D2MH01171A/cit97/1
  publication-title: Adv. Mater.
  contributor:
    fullname: Han
– volume: 5
  start-page: 78
  year: 2021
  ident: D2MH01171A/cit98/1
  publication-title: npj 2D Mater. Appl.
  doi: 10.1038/s41699-021-00259-4
  contributor:
    fullname: Bai
– volume: 294
  start-page: 97
  year: 2019
  ident: D2MH01171A/cit1/1
  publication-title: Electrochim. Acta
  contributor:
    fullname: Zhang
– volume: 32
  start-page: 1
  year: 2020
  ident: D2MH01171A/cit26/1
  publication-title: Adv. Mater.
  contributor:
    fullname: Zhao
– volume: 28
  start-page: 5274
  year: 2016
  ident: D2MH01171A/cit36/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b00500
  contributor:
    fullname: Chen
– volume: 18
  start-page: 9388
  year: 2016
  ident: D2MH01171A/cit105/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP06475A
  contributor:
    fullname: Chen
– volume: 514
  start-page: 145937
  year: 2020
  ident: D2MH01171A/cit23/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.145937
  contributor:
    fullname: Dobrota
– volume: 32
  start-page: 2947
  year: 2021
  ident: D2MH01171A/cit76/1
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2021.03.082
  contributor:
    fullname: Su
– volume: 118
  start-page: 4275
  year: 2014
  ident: D2MH01171A/cit86/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp4121035
  contributor:
    fullname: Maark
– volume: 30
  start-page: 9866
  year: 2014
  ident: D2MH01171A/cit59/1
  publication-title: Langmuir
  doi: 10.1021/la501349k
  contributor:
    fullname: Lee
– volume: 596
  start-page: 63
  year: 2014
  ident: D2MH01171A/cit35/1
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2014.01.199
  contributor:
    fullname: Zhou
– volume: 10
  start-page: 5529
  year: 2020
  ident: D2MH01171A/cit70/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c00224
  contributor:
    fullname: Mukherjee
– volume: 30
  start-page: 1
  year: 2020
  ident: D2MH01171A/cit74/1
  publication-title: Adv. Funct. Mater.
  contributor:
    fullname: Wang
– volume: 70
  start-page: 27
  year: 2022
  ident: D2MH01171A/cit34/1
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2022.02.024
  contributor:
    fullname: Lin
– volume: 8
  start-page: 1
  year: 2017
  ident: D2MH01171A/cit111/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-016-0009-6
  contributor:
    fullname: Tsai
– volume: 20
  start-page: 136
  year: 2020
  ident: D2MH01171A/cit7/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b03460
  contributor:
    fullname: Zhang
– volume: 120
  start-page: 16761
  year: 2016
  ident: D2MH01171A/cit107/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b04692
  contributor:
    fullname: Gao
– volume: 19
  start-page: 18356
  year: 2017
  ident: D2MH01171A/cit37/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C7CP03495D
  contributor:
    fullname: Hwang
– volume: 321
  start-page: 385
  year: 2008
  ident: D2MH01171A/cit41/1
  publication-title: Science
  doi: 10.1126/science.1157996
  contributor:
    fullname: Lee
– volume: 6
  start-page: 1
  year: 2022
  ident: D2MH01171A/cit99/1
  publication-title: Sol. RRL
  contributor:
    fullname: Zhang
– volume: 21
  start-page: 1523
  year: 2021
  ident: D2MH01171A/cit4/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c05029
  contributor:
    fullname: Deng
– volume: 11
  start-page: 12489
  year: 2019
  ident: D2MH01171A/cit16/1
  publication-title: Nanoscale
  doi: 10.1039/C9NR01321K
  contributor:
    fullname: Ozden
– volume: 32
  start-page: 1
  year: 2020
  ident: D2MH01171A/cit92/1
  publication-title: Adv. Mater.
  contributor:
    fullname: Liu
– volume: 13
  start-page: 765
  year: 2021
  ident: D2MH01171A/cit104/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c20500
  contributor:
    fullname: Bolar
– volume: 175
  start-page: 420
  year: 2021
  ident: D2MH01171A/cit28/1
  publication-title: Carbon N. Y.
  doi: 10.1016/j.carbon.2020.12.088
  contributor:
    fullname: Tolladay
– ident: D2MH01171A/cit20/1
  contributor:
    fullname: Wang
– volume: 2201654
  start-page: 1
  year: 2022
  ident: D2MH01171A/cit77/1
  publication-title: Adv. Sci.
  contributor:
    fullname: Huang
– volume: 2
  start-page: 100357
  year: 2021
  ident: D2MH01171A/cit89/1
  publication-title: Cell Reports Phys. Sci.
  doi: 10.1016/j.xcrp.2021.100357
  contributor:
    fullname: Liu
– volume: 7
  start-page: 12248
  year: 2015
  ident: D2MH01171A/cit27/1
  publication-title: Nanoscale
  doi: 10.1039/C5NR02529J
  contributor:
    fullname: Sneed
– volume: 15
  start-page: 20253
  year: 2021
  ident: D2MH01171A/cit54/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c08348
  contributor:
    fullname: Zhang
– volume: 354
  start-page: 1031
  year: 2016
  ident: D2MH01171A/cit73/1
  publication-title: Science
  doi: 10.1126/science.aaf7680
  contributor:
    fullname: Wang
– volume: 11
  start-page: 9845
  year: 2019
  ident: D2MH01171A/cit64/1
  publication-title: Nanoscale
  doi: 10.1039/C9NR02172H
  contributor:
    fullname: Zhao
– volume: 133
  start-page: 4524
  year: 2021
  ident: D2MH01171A/cit68/1
  publication-title: Angew. Chemie
  doi: 10.1002/ange.202014017
  contributor:
    fullname: Han
– volume: 13
  start-page: 4200
  year: 2022
  ident: D2MH01171A/cit19/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-31971-4
  contributor:
    fullname: Wu
– volume: 12
  start-page: 617
  year: 2012
  ident: D2MH01171A/cit42/1
  publication-title: Nano Lett.
  doi: 10.1021/nl203359n
  contributor:
    fullname: Zabel
– volume: 12
  start-page: 1687
  year: 2021
  ident: D2MH01171A/cit78/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21956-0
  contributor:
    fullname: Jiang
– volume: 10
  start-page: 8739
  year: 2018
  ident: D2MH01171A/cit9/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b00069
  contributor:
    fullname: Zhang
– volume: 39
  start-page: 390
  year: 2018
  ident: D2MH01171A/cit6/1
  publication-title: Cuihua Xuebao/Chinese J. Catal.
  doi: 10.1016/S1872-2067(17)62949-8
  contributor:
    fullname: Chi
– volume: 42
  start-page: 2850
  year: 2003
  ident: D2MH01171A/cit81/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200250845
  contributor:
    fullname: Wintterlin
– volume: 14
  start-page: 5044
  year: 2014
  ident: D2MH01171A/cit57/1
  publication-title: Nano Lett.
  doi: 10.1021/nl5016552
  contributor:
    fullname: Reserbat-Plantey
– volume: 598
  start-page: 76
  year: 2021
  ident: D2MH01171A/cit66/1
  publication-title: Nature
  doi: 10.1038/s41586-021-03870-z
  contributor:
    fullname: He
– volume: 4
  start-page: 5058
  year: 2021
  ident: D2MH01171A/cit45/1
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.1c00537
  contributor:
    fullname: Li
– volume: 207
  start-page: 7
  year: 2016
  ident: D2MH01171A/cit60/1
  publication-title: Mater. Sci. Eng. B Solid-State Mater. Adv. Technol.
  doi: 10.1016/j.mseb.2016.01.012
  contributor:
    fullname: Du
– volume: 5
  start-page: 9703
  year: 2011
  ident: D2MH01171A/cit56/1
  publication-title: ACS Nano
  doi: 10.1021/nn203879f
  contributor:
    fullname: Bertolazzi
– volume: 53
  start-page: 2913
  year: 2020
  ident: D2MH01171A/cit83/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.0c00564
  contributor:
    fullname: Wu
– volume: 186
  start-page: 109547
  year: 2020
  ident: D2MH01171A/cit3/1
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2020.109547
  contributor:
    fullname: Cao
– volume: 21
  start-page: 749
  year: 2018
  ident: D2MH01171A/cit94/1
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2018.01.034
  contributor:
    fullname: Di
– volume: 24
  start-page: 772
  year: 2012
  ident: D2MH01171A/cit55/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201103965
  contributor:
    fullname: Castellanos-Gomez
– volume: 14
  start-page: 1
  year: 2018
  ident: D2MH01171A/cit32/1
  publication-title: Small
  contributor:
    fullname: Sun
– volume: 496
  start-page: 143694
  year: 2019
  ident: D2MH01171A/cit15/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.143694
  contributor:
    fullname: Zheng
– volume: 8
  start-page: 566
  year: 2015
  ident: D2MH01171A/cit103/1
  publication-title: Nano Res.
  doi: 10.1007/s12274-014-0677-7
  contributor:
    fullname: Wang
– volume: 14
  start-page: 6
  year: 2019
  ident: D2MH01171A/cit5/1
  publication-title: Front. Phys.
  doi: 10.1007/s11467-019-0903-6
  contributor:
    fullname: Lui
– volume: 125
  start-page: 4477
  year: 2021
  ident: D2MH01171A/cit101/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.0c09513
  contributor:
    fullname: Wei
– volume: 76
  start-page: 203
  year: 2017
  ident: D2MH01171A/cit29/1
  publication-title: Mater. Sci. Eng., C
  doi: 10.1016/j.msec.2017.02.044
  contributor:
    fullname: Rajesh
– volume: 120
  start-page: 2123
  year: 2020
  ident: D2MH01171A/cit31/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00443
  contributor:
    fullname: Liu
SSID ssj0001345080
Score 2.428614
SecondaryResourceType review_article
Snippet As the key half reaction of water-splitting electrolysis, the hydrogen evolution reaction (HER) that occurs at the cathode directly determines the overall...
SourceID proquest
crossref
pubmed
rsc
SourceType Aggregation Database
Index Database
Publisher
StartPage 34
SubjectTerms Ammonia
Catalysis
Catalysts
Chemical synthesis
Electrocatalysts
Electrolysis
Hydrogen evolution reactions
Hydrogen production
Lattice strain
Water splitting
Title Strain engineering of electrocatalysts for hydrogen evolution reaction
URI https://www.ncbi.nlm.nih.gov/pubmed/36541087
https://www.proquest.com/docview/2772968956
https://search.proquest.com/docview/2756672279
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWglVA5VHy1BAoygtsqkLW9yfq4Kq0WRJEQW2nFJXIcu9lDk2qbIG1_fcd2nGQpSMAlipxPzbMnbyb2G4TeUUFZBswi5IKLkMmxDjOdsZBqledAz3VkS7KcfY3n5-zzcrLsqzja1SV19l7e_HZdyf-gCm2Aq1kl-w_IdjeFBtgHfGELCMP2rzD-bgs8jFSvKWi4X1vZxiZmNte1FVwYFZt8XV0YSf-f7SuNgC7KDhZf1EnU7sVHRbVe3fhcnk1Z26TqclVumr5HfXMSBD-KpmhW3Vwel9YuGlMp5KL_pePcynEhqmGugVA7PblVqrY-icAYDg1H2XKg0aCjkIE3pE6J6Y6XjqgROc3JZWEU6cZieBJY-OrS4kVNifKo_Rxva2L7Q_fRLgEHA55td3ay-PSlz65RBswz8nq0lH_on7aHHvjrt8nInQgD-Mba14GxfGPxCO23gQKeOdQfo3uqfIIeDuQjn6JThz8e4I8rjX_FHwP-2OOPO_yxx_8ZOj89WRzPw7YuRigpTeqQ5dKI5mdTpW19ACBxMBK14ERJRhQEAJNMK8XGRDGu5ERTHSdKUZETMaVM0QO0U1aleo5wTJhU-WQ85bFkMD45ISJXMiYkEXkieYDeegOlV07-JLXTFihPP5KzubXoLEBH3nZpOzyuU2LitngK8XeA3nSHwXmZP1KiVFVjzoFoIjEilgE6dDbvHuMxCtABgNA19zi--OMlL9Fe33uP0E69btQr4I519rrtKLcUKXGA
link.rule.ids 315,783,787,27936,27937
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strain+engineering+of+electrocatalysts+for+hydrogen+evolution+reaction&rft.jtitle=Materials+horizons&rft.au=Mao%2C+Xinyuan&rft.au=Qin%2C+Zhuhui&rft.au=Ge%2C+Shundong&rft.au=Rong%2C+Chao&rft.date=2023-02-06&rft.eissn=2051-6355&rft.volume=10&rft.issue=2&rft.spage=340&rft_id=info:doi/10.1039%2Fd2mh01171a&rft_id=info%3Apmid%2F36541087&rft.externalDocID=36541087
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-6347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-6347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-6347&client=summon