Degradation processes in high-temperature creep of cast cobalt-based superalloys
Degradation processes in high-temperature creep of two cast high-chromium cobalt-based superalloys strengthened by niobium and tantalum for use in the glass industry were analysed via various experimental techniques. Constant load creep tests were conducted at 900, 950 and 1000 °C in a tensile stres...
Saved in:
Published in | Materials characterization Vol. 144; pp. 479 - 489 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.10.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1044-5803 1873-4189 |
DOI | 10.1016/j.matchar.2018.08.006 |
Cover
Loading…
Abstract | Degradation processes in high-temperature creep of two cast high-chromium cobalt-based superalloys strengthened by niobium and tantalum for use in the glass industry were analysed via various experimental techniques. Constant load creep tests were conducted at 900, 950 and 1000 °C in a tensile stress range from 40 to 80 MPa. It was found that the CoNb superalloy possesses considerably longer creep life compared to the CoTa superalloy under the same loading conditions. Conversely, the creep ductility of the fractured specimens shows the opposite order of the creep life. The creep behaviour of both superalloys obeys the Monkman-Grant formula indicating that the creep deformation mechanism and fracture processes are mutually interlinked. The homogeneously distributed creep damage of the CoNb superalloy is closely connected with primary carbides and is predominantly initiated either as interface decohesion between the carbide/matrix and carbide eutectics/matrix or by breakage of bulk M23C6 carbides. The dominant type of creep damage in the CoTa superalloy is localized breakage of M23C6 carbides in close proximity of the fracture path. The final brittle fracture in the CoNb superalloy occurs via relatively fast propagation of the longest cracks after the ultimate state of damage is reached. Due to premature fracture, the inherent creep ductility of the CoNb matrix is not exhausted. The final ductile transgranular creep fracture of the CoTa superalloy is caused by a local strain-induced instability of the dislocation microstructure leading to a loss of an external section of specimen (necking).
•Creep degradation processes in Nb or Ta strengthened cobalt-based superalloys were investigated.•CoNb superalloy exhibits longer creep life compared to CoTa superalloy.•Creep fracture ductility of CoTa superalloy is higher than CoNb superalloy.•Low fracture ductility of CoNb superalloy resulted from a premature fracture.•Ductile creep fracture in CoTa superalloy is caused by instability of dislocation microstructure. |
---|---|
AbstractList | Highlights: • Creep degradation processes in Nb or Ta strengthened cobalt-based superalloys were investigated. • CoNb superalloy exhibits longer creep life compared to CoTa superalloy. • Creep fracture ductility of CoTa superalloy is higher than CoNb superalloy. • Low fracture ductility of CoNb superalloy resulted from a premature fracture. • Ductile creep fracture in CoTa superalloy is caused by instability of dislocation microstructure. - Abstract: Degradation processes in high-temperature creep of two cast high-chromium cobalt-based superalloys strengthened by niobium and tantalum for use in the glass industry were analysed via various experimental techniques. Constant load creep tests were conducted at 900, 950 and 1000 °C in a tensile stress range from 40 to 80 MPa. It was found that the CoNb superalloy possesses considerably longer creep life compared to the CoTa superalloy under the same loading conditions. Conversely, the creep ductility of the fractured specimens shows the opposite order of the creep life. The creep behaviour of both superalloys obeys the Monkman-Grant formula indicating that the creep deformation mechanism and fracture processes are mutually interlinked. The homogeneously distributed creep damage of the CoNb superalloy is closely connected with primary carbides and is predominantly initiated either as interface decohesion between the carbide/matrix and carbide eutectics/matrix or by breakage of bulk M{sub 23}C{sub 6} carbides. The dominant type of creep damage in the CoTa superalloy is localized breakage of M{sub 23}C{sub 6} carbides in close proximity of the fracture path. The final brittle fracture in the CoNb superalloy occurs via relatively fast propagation of the longest cracks after the ultimate state of damage is reached. Due to premature fracture, the inherent creep ductility of the CoNb matrix is not exhausted. The final ductile transgranular creep fracture of the CoTa superalloy is caused by a local strain-induced instability of the dislocation microstructure leading to a loss of an external section of specimen (necking). Degradation processes in high-temperature creep of two cast high-chromium cobalt-based superalloys strengthened by niobium and tantalum for use in the glass industry were analysed via various experimental techniques. Constant load creep tests were conducted at 900, 950 and 1000 °C in a tensile stress range from 40 to 80 MPa. It was found that the CoNb superalloy possesses considerably longer creep life compared to the CoTa superalloy under the same loading conditions. Conversely, the creep ductility of the fractured specimens shows the opposite order of the creep life. The creep behaviour of both superalloys obeys the Monkman-Grant formula indicating that the creep deformation mechanism and fracture processes are mutually interlinked. The homogeneously distributed creep damage of the CoNb superalloy is closely connected with primary carbides and is predominantly initiated either as interface decohesion between the carbide/matrix and carbide eutectics/matrix or by breakage of bulk M23C6 carbides. The dominant type of creep damage in the CoTa superalloy is localized breakage of M23C6 carbides in close proximity of the fracture path. The final brittle fracture in the CoNb superalloy occurs via relatively fast propagation of the longest cracks after the ultimate state of damage is reached. Due to premature fracture, the inherent creep ductility of the CoNb matrix is not exhausted. The final ductile transgranular creep fracture of the CoTa superalloy is caused by a local strain-induced instability of the dislocation microstructure leading to a loss of an external section of specimen (necking). •Creep degradation processes in Nb or Ta strengthened cobalt-based superalloys were investigated.•CoNb superalloy exhibits longer creep life compared to CoTa superalloy.•Creep fracture ductility of CoTa superalloy is higher than CoNb superalloy.•Low fracture ductility of CoNb superalloy resulted from a premature fracture.•Ductile creep fracture in CoTa superalloy is caused by instability of dislocation microstructure. |
Author | Svoboda, Milan Hrbáček, Karel Sklenička, Václav Dvořák, Jiří Zýka, Jiří Podhorná, Božena Král, Petr Kvapilová, Marie Joch, Antonín |
Author_xml | – sequence: 1 givenname: Václav surname: Sklenička fullname: Sklenička, Václav email: sklen@ipm.cz organization: Institute of Physics of Materials, Academy of Sciences of the Czech Republic,616 62 Brno, Czech Republic – sequence: 2 givenname: Marie surname: Kvapilová fullname: Kvapilová, Marie organization: Institute of Physics of Materials, Academy of Sciences of the Czech Republic,616 62 Brno, Czech Republic – sequence: 3 givenname: Petr surname: Král fullname: Král, Petr organization: Institute of Physics of Materials, Academy of Sciences of the Czech Republic,616 62 Brno, Czech Republic – sequence: 4 givenname: Jiří surname: Dvořák fullname: Dvořák, Jiří organization: Institute of Physics of Materials, Academy of Sciences of the Czech Republic,616 62 Brno, Czech Republic – sequence: 5 givenname: Milan orcidid: 0000-0003-1368-9663 surname: Svoboda fullname: Svoboda, Milan organization: Institute of Physics of Materials, Academy of Sciences of the Czech Republic,616 62 Brno, Czech Republic – sequence: 6 givenname: Božena surname: Podhorná fullname: Podhorná, Božena organization: UJP PRAHA a.s., 156 10 Praha Zbraslav, Czech Republic – sequence: 7 givenname: Jiří surname: Zýka fullname: Zýka, Jiří organization: UJP PRAHA a.s., 156 10 Praha Zbraslav, Czech Republic – sequence: 8 givenname: Karel surname: Hrbáček fullname: Hrbáček, Karel organization: Institute of Physics of Materials, Academy of Sciences of the Czech Republic,616 62 Brno, Czech Republic – sequence: 9 givenname: Antonín surname: Joch fullname: Joch, Antonín organization: PBS Velká Bíteš a.s., 595 12 Velká Bíteš, Czech Republic |
BackLink | https://www.osti.gov/biblio/22805817$$D View this record in Osti.gov |
BookMark | eNqFkE9LAzEQxYNUsK1-BCHgeddkk92meBCpf6GgBz2HbHbSTdluliQV-u3NWk9eCgMzh98b3nszNOldDwhdU5JTQqvbbb5TUbfK5wWhIidpSHWGplQsWMapWE7STTjPSkHYBZqFsCWJEHQxRR-PsPGqUdG6Hg_eaQgBArY9bu2mzSLsBvAq7j1g7QEG7AzWKkSsXa26mNUqQIPDfqS6zh3CJTo3qgtw9bfn6Ov56XP1mq3fX95WD-tMM7aIGRfNsiyAMlMrqKgGIYhInqrKUMMI1HVNlqRhDAxozQ1XAMBNUfECdMU4m6Ob418XopVB2wi61a7vQUdZFIKUKV-i7o6U9i4ED0Ym8Dds9Mp2khI5Vii38q9COVYoSRpSJXX5Tz14u1P-cFJ3f9RBKuDbgh_9Qa-hsX601zh74sMP_j2SOA |
CitedBy_id | crossref_primary_10_1557_s43580_021_00165_3 crossref_primary_10_1016_j_matchar_2024_114236 crossref_primary_10_1007_s43452_022_00466_w crossref_primary_10_1016_j_matchemphys_2021_125324 crossref_primary_10_1016_j_prostr_2023_12_009 crossref_primary_10_1557_s43580_022_00359_3 crossref_primary_10_1016_j_jmrt_2023_12_236 crossref_primary_10_1007_s11665_023_08568_z crossref_primary_10_1016_j_jallcom_2020_156944 crossref_primary_10_1016_j_jallcom_2024_177522 crossref_primary_10_4028_p_g50t0t crossref_primary_10_1016_j_jallcom_2024_177994 crossref_primary_10_1016_j_matlet_2023_134143 crossref_primary_10_1016_j_msea_2021_140891 |
Cites_doi | 10.1016/j.jallcom.2017.08.287 10.1016/j.matdes.2010.02.021 10.1016/0921-5093(88)90051-2 10.1007/s11661-011-0990-7 10.1080/01418619108204594 10.1016/j.jallcom.2017.12.254 10.4149/km_2017_2_69 10.4028/www.scientific.net/SSP.270.21 10.1016/j.matchar.2016.06.033 10.1016/j.engfailanal.2017.11.018 10.1016/j.jallcom.2016.10.256 10.1016/j.matchar.2003.09.012 10.1016/j.jallcom.2009.03.091 10.1016/j.actamat.2017.06.025 10.1016/0001-6160(82)90195-X 10.1016/j.actamat.2010.10.013 10.1016/0001-6160(81)90156-5 10.1016/j.intermet.2009.07.019 10.1002/9781118405949.ch22 10.1016/S0921-5093(97)00172-X 10.1016/0001-6160(74)90088-1 10.1016/S0364-5916(02)00037-8 10.1016/j.matdes.2014.08.007 10.1016/0001-6160(87)90083-6 10.1016/j.intermet.2010.10.018 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Inc. |
Copyright_xml | – notice: 2018 Elsevier Inc. |
DBID | AAYXX CITATION OTOTI |
DOI | 10.1016/j.matchar.2018.08.006 |
DatabaseName | CrossRef OSTI.GOV |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-4189 |
EndPage | 489 |
ExternalDocumentID | 22805817 10_1016_j_matchar_2018_08_006 S1044580318320850 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNEU ABTAH ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HX~ HZ~ IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCC SDF SDG SDP SES SEW SMS SPC SPCBC SPD SSM SSQ SSZ T5K WH7 WUQ XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH AALMO ABPIF ABPTK OTOTI |
ID | FETCH-LOGICAL-c337t-48d952e13fbae61ce880806866f1f30ebbb090d33efecc4f4aeee4f2642ec6343 |
IEDL.DBID | .~1 |
ISSN | 1044-5803 |
IngestDate | Fri May 19 00:38:07 EDT 2023 Thu Apr 24 22:58:08 EDT 2025 Tue Jul 01 01:35:58 EDT 2025 Fri Feb 23 02:28:47 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Cobalt-based superalloys Creep life Creep fracture Microstructure Creep damage |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c337t-48d952e13fbae61ce880806866f1f30ebbb090d33efecc4f4aeee4f2642ec6343 |
ORCID | 0000-0003-1368-9663 |
PageCount | 11 |
ParticipantIDs | osti_scitechconnect_22805817 crossref_citationtrail_10_1016_j_matchar_2018_08_006 crossref_primary_10_1016_j_matchar_2018_08_006 elsevier_sciencedirect_doi_10_1016_j_matchar_2018_08_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-10-01 |
PublicationDateYYYYMMDD | 2018-10-01 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Materials characterization |
PublicationYear | 2018 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Sullivan, Varin, Donachie (bb0010) 1969; 9 Martino, Michon, Aranda, Berthod, Podor, Rapin (bb0055) 2003; 28 Čadek (bb0085) 1988 Divya, Ramamurty, Paul (bb0095) 2010; 18 Sklenicka, Kucharova, Svoboda, Bursik, Kroupa (bb0195) 2003; 51 Zangeneh, Farhangi (bb0015) 2010; 31 Jonšta, Vlčková, Jonšta, Król (bb0040) 2017; 270 Coakley, Lass, Ma, Frost, Stone, Seidman, Dunand (bb0190) 2017; 136 Zhi'an, Zhongguang (bb0155) 1991; 63 Martino, Michon, Berthod, Rapin, Podor, Steinmetz (bb0045) 2004; 141 Sklenička (bb0050) 1997; 234 Berthod (bb0060) 2009; 481 Sklenicka (bb0115) 2018 Sklenička, Kuchařová, Svobodová, Kvapilova, Král, Horváth (bb0070) 2016; 119 Zhi'an, Yaotian, Changxu (bb0175) 1988; 101 Burton (bb0150) 1981; 30 P. Berthod, J.L. Bernard, C. Liébaut, Patent WO99/16919. Ravi, Paul (bb0100) 2011; 19 Mukherjee, Bird, Dorn (bb0170) 1968; 62 Berthod, Himeur, Panteix (bb0030) 2018; 739 Beltran (bb0005) 1987 Divya, Ramamurty, Paul (bb0105) 2012; 43 Gui, Zhang, Yang, Jin, Sun, Zheng (bb0020) 2017; 695 Dobeš, Milička (bb0140) 1976; 10 Seiser, Drautz, Pettifor (bb0110) 2011; 59 Tian, Han, Cui, Sun (bb0180) 2014; 64 Evans (bb0200) 1984 Andersson, Helander, Holund, Shi, Sundman (bb0080) 2002; 26 Dvorak, Kvapilova, Kucharova, Hrbacek, Kral, Sklenicka (bb0125) 2017 Argon, Moffatt (bb0145) 1981; 29 Mohamed, Langdon (bb0160) 1974; 22 Sklenička, Kuchařová, Král, Kvapilová, Dvořák (bb0135) 2017; 55 Gui, Zhang, Yang, Jin, Sun, Zheng (bb0065) 2017; 728 Saunders, Miodownik (bb0075) 1998 Kassner (bb0090) 2009 Dyson, Gibbons (bb0205) 1987; 35 Zangeneh, Lashgari, Asnavandi (bb0025) 2018; 84 Barrett, Sherby (bb0165) 1965; 233 Monkman, Grant (bb0130) 1956; 56 Sklenička, Kloc (bb0120) 2011 Pollock, Field, Murphy (bb0185) 1999 Mukherjee (10.1016/j.matchar.2018.08.006_bb0170) 1968; 62 Zangeneh (10.1016/j.matchar.2018.08.006_bb0015) 2010; 31 Sullivan (10.1016/j.matchar.2018.08.006_bb0010) 1969; 9 Čadek (10.1016/j.matchar.2018.08.006_bb0085) 1988 Ravi (10.1016/j.matchar.2018.08.006_bb0100) 2011; 19 Beltran (10.1016/j.matchar.2018.08.006_bb0005) 1987 Gui (10.1016/j.matchar.2018.08.006_bb0020) 2017; 695 Martino (10.1016/j.matchar.2018.08.006_bb0055) 2003; 28 Gui (10.1016/j.matchar.2018.08.006_bb0065) 2017; 728 Divya (10.1016/j.matchar.2018.08.006_bb0095) 2010; 18 Tian (10.1016/j.matchar.2018.08.006_bb0180) 2014; 64 Sklenička (10.1016/j.matchar.2018.08.006_bb0050) 1997; 234 Pollock (10.1016/j.matchar.2018.08.006_bb0185) 1999 Monkman (10.1016/j.matchar.2018.08.006_bb0130) 1956; 56 Barrett (10.1016/j.matchar.2018.08.006_bb0165) 1965; 233 Mohamed (10.1016/j.matchar.2018.08.006_bb0160) 1974; 22 Sklenička (10.1016/j.matchar.2018.08.006_bb0070) 2016; 119 10.1016/j.matchar.2018.08.006_bb0035 Andersson (10.1016/j.matchar.2018.08.006_bb0080) 2002; 26 Dobeš (10.1016/j.matchar.2018.08.006_bb0140) 1976; 10 Sklenička (10.1016/j.matchar.2018.08.006_bb0120) 2011 Zhi'an (10.1016/j.matchar.2018.08.006_bb0175) 1988; 101 Saunders (10.1016/j.matchar.2018.08.006_bb0075) 1998 Sklenicka (10.1016/j.matchar.2018.08.006_bb0115) 2018 Coakley (10.1016/j.matchar.2018.08.006_bb0190) 2017; 136 Dvorak (10.1016/j.matchar.2018.08.006_bb0125) 2017 Sklenicka (10.1016/j.matchar.2018.08.006_bb0195) 2003; 51 Kassner (10.1016/j.matchar.2018.08.006_bb0090) 2009 Dyson (10.1016/j.matchar.2018.08.006_bb0205) 1987; 35 Burton (10.1016/j.matchar.2018.08.006_bb0150) 1981; 30 Zhi'an (10.1016/j.matchar.2018.08.006_bb0155) 1991; 63 Divya (10.1016/j.matchar.2018.08.006_bb0105) 2012; 43 Argon (10.1016/j.matchar.2018.08.006_bb0145) 1981; 29 Berthod (10.1016/j.matchar.2018.08.006_bb0030) 2018; 739 Sklenička (10.1016/j.matchar.2018.08.006_bb0135) 2017; 55 Jonšta (10.1016/j.matchar.2018.08.006_bb0040) 2017; 270 Berthod (10.1016/j.matchar.2018.08.006_bb0060) 2009; 481 Martino (10.1016/j.matchar.2018.08.006_bb0045) 2004; 141 Seiser (10.1016/j.matchar.2018.08.006_bb0110) 2011; 59 Zangeneh (10.1016/j.matchar.2018.08.006_bb0025) 2018; 84 Evans (10.1016/j.matchar.2018.08.006_bb0200) 1984 |
References_xml | – reference: P. Berthod, J.L. Bernard, C. Liébaut, Patent WO99/16919. – volume: 695 start-page: 1271 year: 2017 end-page: 1278 ident: bb0020 article-title: The investigation of carbides evolution in a cobal-base superalloy at elevated temperatures publication-title: J. Alloys Compd. – year: 1988 ident: bb0085 article-title: Creep in Metallic Materials – volume: 63 start-page: 87 year: 1991 end-page: 94 ident: bb0155 article-title: The dependence of creep on stacking-fault energy publication-title: Phil. Mag. A – volume: 51 start-page: 36 year: 2003 end-page: 48 ident: bb0195 article-title: Long-term creep behaviour of 9–12%Cr power plant steels publication-title: Mater. Charact. – volume: 18 start-page: 259 year: 2010 end-page: 266 ident: bb0095 article-title: Topological close packed μ phase formation and the determination of diffusion parameters in the Co-Mo systém publication-title: Intermetallics – year: 1984 ident: bb0200 article-title: Mechanisms of Creep Fracture – volume: 728 start-page: 145 year: 2017 end-page: 151 ident: bb0065 article-title: Influence of type and morphology of carbides on stress-rupture behavior of a cast cobalt-base superalloy publication-title: J. Alloys Compd. – volume: 10 start-page: 382 year: 1976 end-page: 384 ident: bb0140 article-title: The relation between minimum creep rate and time to fracture publication-title: Mater. Sci. – volume: 233 start-page: 1116 year: 1965 end-page: 1119 ident: bb0165 article-title: Influence of stacking-fault energy on high-temperature creep of pure metals publication-title: Trans. Metall. Soc. AIME – volume: 270 start-page: 21 year: 2017 end-page: 26 ident: bb0040 article-title: Material analysis of the extended-life cobalt-based superalloys used in the manufacturing of glass tools publication-title: Solid State Phenom. – volume: 19 start-page: 426 year: 2011 end-page: 428 ident: bb0100 article-title: Interdiffusion study on Co(W) solid solution and topological close-packed μ phase in Co-W system publication-title: Intermetallics – start-page: 180 year: 2011 end-page: 221 ident: bb0120 article-title: Creep in boiler materials: mechanisms, measurement and modelling publication-title: Power Plant Life Management and Performance Improvement – volume: 84 start-page: 276 year: 2018 end-page: 286 ident: bb0025 article-title: The effect of long-term service exposure on the stability of carbides in Co-Cr-Ni-W (X-45) superalloy publication-title: Eng. Fail. Anal. – volume: 35 start-page: 2355 year: 1987 end-page: 2369 ident: bb0205 article-title: Tertiary creep in nickel-base superalloys: analysis of experimental data and theoretical synthesis publication-title: Acta Metall. Mater. – volume: 9 start-page: 16 year: 1969 end-page: 29 ident: bb0010 article-title: Relationship of properties to microstructure in cobalt-base superalloys publication-title: Met. Eng. Quart. – volume: 136 start-page: 118 year: 2017 end-page: 125 ident: bb0190 article-title: Lattice parameter misfit evolution during creep of a cobalt-based superalloy single crystal with cuboidal and rafted gamma-prime microstructures publication-title: Acta Mater. – volume: 234 start-page: 30 year: 1997 end-page: 36 ident: bb0050 article-title: High temperature intergranular damage and fracture publication-title: Mater. Sci. Eng. A – start-page: 177 year: 2018 end-page: 192 ident: bb0115 article-title: Quantitative assessment of creep damage and creep life prediction publication-title: Modelling of Microstructural Evolution in Creep Resistant Materials – volume: 64 start-page: 316 year: 2014 end-page: 323 ident: bb0180 article-title: Effect of stacking fault energy on the creep behavior of Ni/base superalloy publication-title: Mater. Des. – volume: 739 start-page: 447 year: 2018 end-page: 456 ident: bb0030 article-title: Influences of the Co content and of the level of high temperature on the microstructure and oxidation of cast {Ni,Co} – based Cr- rich TaC-containing cast alloys publication-title: J. Alloys Compd. – volume: 119 start-page: 1 year: 2016 end-page: 12 ident: bb0070 article-title: Creep properties in similar weld joint of a thick-walled P92 steel pipe publication-title: Mater. Charact. – volume: 55 start-page: 69 year: 2017 end-page: 80 ident: bb0135 article-title: Applicability of empirical formulas and fractography for assessment of creep life and creep fracture modes of tempered martensitic 9% Cr steel publication-title: Kovove Mater. – start-page: 135 year: 1987 end-page: 163 ident: bb0005 article-title: Cobalt-base Alloys publication-title: Superalloys II – volume: 56 start-page: 593 year: 1956 end-page: 620 ident: bb0130 article-title: An empirical relationship between rupture life and minimum creep rate in creep-rupture tests publication-title: Proc. ASTM – volume: 31 start-page: 3504 year: 2010 end-page: 3511 ident: bb0015 article-title: Influence of service-induced microstructural changes on the failure of a cobalt-based superalloy first stage nozzle publication-title: Mater. Des. – volume: 481 start-page: 746 year: 2009 end-page: 754 ident: bb0060 article-title: High temperature properties of several chromium-containing Co-based alloys reinforced by different types of MC carbides (M = Ta, Nb, Hf and/or Zr) publication-title: J. Alloys Compd. – volume: 22 start-page: 779 year: 1974 end-page: 788 ident: bb0160 article-title: The transition from dislocation climb to viscous glide in creep of solid solution alloys publication-title: Acta Metall. – start-page: 193 year: 1999 end-page: 212 ident: bb0185 article-title: Creep deformation and the evolution of precipitate morphology in nickel-based single crystals publication-title: Modelling of Microstructural Evolution in Creep Resistant Materials – year: 2009 ident: bb0090 article-title: Fundamentals of Creep in Metals and Alloys – volume: 62 start-page: 155 year: 1968 end-page: 179 ident: bb0170 article-title: Experimental correlations for high-temperature creep publication-title: Trans. Am. Soc. Met. – volume: 43 start-page: 1564 year: 2012 end-page: 1577 ident: bb0105 article-title: Interdiffusion and growth of the phases in CoNi/Mo and CoNi/W systems publication-title: Metall. Mater. Trans. A – year: 2017 ident: bb0125 article-title: Creep properties of cast superalloys for application in glass industry publication-title: Proceedings of the 14th Conference on Creep & Fracture (ECCC 2017), Paper ID 54 – year: 1998 ident: bb0075 article-title: CALPHD (Calculation of Phase Diagrams); A Comprehensive Guide – volume: 141 start-page: 241 year: 2004 end-page: 248 ident: bb0045 article-title: Electrochemical study of cobalt-base superalloy corrosion by a molten glass: influence of alloy microstructure and chemical composition of the glass publication-title: Ceram. Trans. – volume: 59 start-page: 749 year: 2011 end-page: 763 ident: bb0110 article-title: TCP phase predictions in Ni-based superalloys: Structure maps revisited publication-title: Acta Mater. – volume: 29 start-page: 293 year: 1981 end-page: 299 ident: bb0145 article-title: Climb of extended dislocations publication-title: Acta Metall. – volume: 30 start-page: 905 year: 1981 end-page: 909 ident: bb0150 article-title: The influence of stacking fault energy on creep publication-title: Acta Metall. – volume: 101 start-page: 65 year: 1988 end-page: 73 ident: bb0175 article-title: The role of cobalt in the high temperature creep of γ′-strengthened nickel-base superalloys publication-title: Mater. Sci. Eng. A – volume: 26 start-page: 273 year: 2002 end-page: 312 ident: bb0080 article-title: Thermo-Calc % DICTRA, computational tools for materials science publication-title: Calphad – volume: 28 start-page: S231 year: 2003 end-page: S238 ident: bb0055 article-title: High temperature oxidation and glass corrosion of cobalt-base superalloys publication-title: Ann. Chimie Sci. Materiaux – volume: 10 start-page: 382 year: 1976 ident: 10.1016/j.matchar.2018.08.006_bb0140 article-title: The relation between minimum creep rate and time to fracture publication-title: Mater. Sci. – volume: 728 start-page: 145 year: 2017 ident: 10.1016/j.matchar.2018.08.006_bb0065 article-title: Influence of type and morphology of carbides on stress-rupture behavior of a cast cobalt-base superalloy publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2017.08.287 – volume: 56 start-page: 593 year: 1956 ident: 10.1016/j.matchar.2018.08.006_bb0130 article-title: An empirical relationship between rupture life and minimum creep rate in creep-rupture tests publication-title: Proc. ASTM – volume: 31 start-page: 3504 year: 2010 ident: 10.1016/j.matchar.2018.08.006_bb0015 article-title: Influence of service-induced microstructural changes on the failure of a cobalt-based superalloy first stage nozzle publication-title: Mater. Des. doi: 10.1016/j.matdes.2010.02.021 – volume: 101 start-page: 65 year: 1988 ident: 10.1016/j.matchar.2018.08.006_bb0175 article-title: The role of cobalt in the high temperature creep of γ′-strengthened nickel-base superalloys publication-title: Mater. Sci. Eng. A doi: 10.1016/0921-5093(88)90051-2 – volume: 43 start-page: 1564 year: 2012 ident: 10.1016/j.matchar.2018.08.006_bb0105 article-title: Interdiffusion and growth of the phases in CoNi/Mo and CoNi/W systems publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-011-0990-7 – volume: 63 start-page: 87 year: 1991 ident: 10.1016/j.matchar.2018.08.006_bb0155 article-title: The dependence of creep on stacking-fault energy publication-title: Phil. Mag. A doi: 10.1080/01418619108204594 – volume: 739 start-page: 447 year: 2018 ident: 10.1016/j.matchar.2018.08.006_bb0030 article-title: Influences of the Co content and of the level of high temperature on the microstructure and oxidation of cast {Ni,Co} – based Cr- rich TaC-containing cast alloys publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2017.12.254 – volume: 55 start-page: 69 year: 2017 ident: 10.1016/j.matchar.2018.08.006_bb0135 article-title: Applicability of empirical formulas and fractography for assessment of creep life and creep fracture modes of tempered martensitic 9% Cr steel publication-title: Kovove Mater. doi: 10.4149/km_2017_2_69 – volume: 270 start-page: 21 year: 2017 ident: 10.1016/j.matchar.2018.08.006_bb0040 article-title: Material analysis of the extended-life cobalt-based superalloys used in the manufacturing of glass tools publication-title: Solid State Phenom. doi: 10.4028/www.scientific.net/SSP.270.21 – volume: 119 start-page: 1 year: 2016 ident: 10.1016/j.matchar.2018.08.006_bb0070 article-title: Creep properties in similar weld joint of a thick-walled P92 steel pipe publication-title: Mater. Charact. doi: 10.1016/j.matchar.2016.06.033 – start-page: 177 year: 2018 ident: 10.1016/j.matchar.2018.08.006_bb0115 article-title: Quantitative assessment of creep damage and creep life prediction – volume: 233 start-page: 1116 year: 1965 ident: 10.1016/j.matchar.2018.08.006_bb0165 article-title: Influence of stacking-fault energy on high-temperature creep of pure metals publication-title: Trans. Metall. Soc. AIME – volume: 84 start-page: 276 year: 2018 ident: 10.1016/j.matchar.2018.08.006_bb0025 article-title: The effect of long-term service exposure on the stability of carbides in Co-Cr-Ni-W (X-45) superalloy publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2017.11.018 – start-page: 193 year: 1999 ident: 10.1016/j.matchar.2018.08.006_bb0185 article-title: Creep deformation and the evolution of precipitate morphology in nickel-based single crystals – volume: 695 start-page: 1271 year: 2017 ident: 10.1016/j.matchar.2018.08.006_bb0020 article-title: The investigation of carbides evolution in a cobal-base superalloy at elevated temperatures publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2016.10.256 – year: 1998 ident: 10.1016/j.matchar.2018.08.006_bb0075 – volume: 51 start-page: 36 year: 2003 ident: 10.1016/j.matchar.2018.08.006_bb0195 article-title: Long-term creep behaviour of 9–12%Cr power plant steels publication-title: Mater. Charact. doi: 10.1016/j.matchar.2003.09.012 – volume: 481 start-page: 746 year: 2009 ident: 10.1016/j.matchar.2018.08.006_bb0060 article-title: High temperature properties of several chromium-containing Co-based alloys reinforced by different types of MC carbides (M = Ta, Nb, Hf and/or Zr) publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2009.03.091 – start-page: 180 year: 2011 ident: 10.1016/j.matchar.2018.08.006_bb0120 article-title: Creep in boiler materials: mechanisms, measurement and modelling – start-page: 135 year: 1987 ident: 10.1016/j.matchar.2018.08.006_bb0005 article-title: Cobalt-base Alloys – volume: 136 start-page: 118 year: 2017 ident: 10.1016/j.matchar.2018.08.006_bb0190 article-title: Lattice parameter misfit evolution during creep of a cobalt-based superalloy single crystal with cuboidal and rafted gamma-prime microstructures publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.06.025 – volume: 30 start-page: 905 year: 1981 ident: 10.1016/j.matchar.2018.08.006_bb0150 article-title: The influence of stacking fault energy on creep publication-title: Acta Metall. doi: 10.1016/0001-6160(82)90195-X – volume: 9 start-page: 16 year: 1969 ident: 10.1016/j.matchar.2018.08.006_bb0010 article-title: Relationship of properties to microstructure in cobalt-base superalloys publication-title: Met. Eng. Quart. – year: 2009 ident: 10.1016/j.matchar.2018.08.006_bb0090 – volume: 59 start-page: 749 year: 2011 ident: 10.1016/j.matchar.2018.08.006_bb0110 article-title: TCP phase predictions in Ni-based superalloys: Structure maps revisited publication-title: Acta Mater. doi: 10.1016/j.actamat.2010.10.013 – volume: 29 start-page: 293 year: 1981 ident: 10.1016/j.matchar.2018.08.006_bb0145 article-title: Climb of extended dislocations publication-title: Acta Metall. doi: 10.1016/0001-6160(81)90156-5 – volume: 18 start-page: 259 year: 2010 ident: 10.1016/j.matchar.2018.08.006_bb0095 article-title: Topological close packed μ phase formation and the determination of diffusion parameters in the Co-Mo systém publication-title: Intermetallics doi: 10.1016/j.intermet.2009.07.019 – year: 1984 ident: 10.1016/j.matchar.2018.08.006_bb0200 – volume: 141 start-page: 241 year: 2004 ident: 10.1016/j.matchar.2018.08.006_bb0045 article-title: Electrochemical study of cobalt-base superalloy corrosion by a molten glass: influence of alloy microstructure and chemical composition of the glass publication-title: Ceram. Trans. doi: 10.1002/9781118405949.ch22 – ident: 10.1016/j.matchar.2018.08.006_bb0035 – volume: 28 start-page: S231 year: 2003 ident: 10.1016/j.matchar.2018.08.006_bb0055 article-title: High temperature oxidation and glass corrosion of cobalt-base superalloys publication-title: Ann. Chimie Sci. Materiaux – volume: 234 start-page: 30 year: 1997 ident: 10.1016/j.matchar.2018.08.006_bb0050 article-title: High temperature intergranular damage and fracture publication-title: Mater. Sci. Eng. A doi: 10.1016/S0921-5093(97)00172-X – volume: 22 start-page: 779 year: 1974 ident: 10.1016/j.matchar.2018.08.006_bb0160 article-title: The transition from dislocation climb to viscous glide in creep of solid solution alloys publication-title: Acta Metall. doi: 10.1016/0001-6160(74)90088-1 – volume: 26 start-page: 273 year: 2002 ident: 10.1016/j.matchar.2018.08.006_bb0080 article-title: Thermo-Calc % DICTRA, computational tools for materials science publication-title: Calphad doi: 10.1016/S0364-5916(02)00037-8 – volume: 64 start-page: 316 year: 2014 ident: 10.1016/j.matchar.2018.08.006_bb0180 article-title: Effect of stacking fault energy on the creep behavior of Ni/base superalloy publication-title: Mater. Des. doi: 10.1016/j.matdes.2014.08.007 – volume: 35 start-page: 2355 year: 1987 ident: 10.1016/j.matchar.2018.08.006_bb0205 article-title: Tertiary creep in nickel-base superalloys: analysis of experimental data and theoretical synthesis publication-title: Acta Metall. Mater. doi: 10.1016/0001-6160(87)90083-6 – volume: 19 start-page: 426 year: 2011 ident: 10.1016/j.matchar.2018.08.006_bb0100 article-title: Interdiffusion study on Co(W) solid solution and topological close-packed μ phase in Co-W system publication-title: Intermetallics doi: 10.1016/j.intermet.2010.10.018 – volume: 62 start-page: 155 year: 1968 ident: 10.1016/j.matchar.2018.08.006_bb0170 article-title: Experimental correlations for high-temperature creep publication-title: Trans. Am. Soc. Met. – year: 2017 ident: 10.1016/j.matchar.2018.08.006_bb0125 article-title: Creep properties of cast superalloys for application in glass industry – year: 1988 ident: 10.1016/j.matchar.2018.08.006_bb0085 |
SSID | ssj0006817 |
Score | 2.2803895 |
Snippet | Degradation processes in high-temperature creep of two cast high-chromium cobalt-based superalloys strengthened by niobium and tantalum for use in the glass... Highlights: • Creep degradation processes in Nb or Ta strengthened cobalt-based superalloys were investigated. • CoNb superalloy exhibits longer creep life... |
SourceID | osti crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 479 |
SubjectTerms | CARBIDES COBALT BASE ALLOYS Cobalt-based superalloys CRACKS CREEP Creep damage Creep fracture Creep life DEFORMATION DISLOCATIONS DUCTILITY HEAT RESISTING ALLOYS MATERIALS SCIENCE MICROSTRUCTURE STRESSES |
Title | Degradation processes in high-temperature creep of cast cobalt-based superalloys |
URI | https://dx.doi.org/10.1016/j.matchar.2018.08.006 https://www.osti.gov/biblio/22805817 |
Volume | 144 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KPagH0apYrWUPXrd57Ga7PZZqqYpF0EJvIdkHtJQk2PTgxd_uTh62glDwmLATwuzs7Dcw830I3Smlgti4lNhSISZMMZsHOY2IrzzXNdLXSsCg8MuUT2bsaR7MG2hUz8JAW2WV-8ucXmTr6o1TedPJFgvnzRYSLBBlUALxGkywsz5Eee9r2-bBRaG6C4sJrN5O8TjLngWFMNwEHV6iYPIE4aO_76dmao_cztUzPkUnFWbEw_K3zlBDJy10OKql2lroeIdV8By93gMBRKmVhLNyEECv8SLBwE1MgIyqYlLGFjLqDKcGy2idYwncIDmBi03h9QZWrVbp5_oCzcYP76MJqYQTiKS0nxMm1CDwtUdNHGnuSS2APZILzo1nqKvjOHYHrqJUG7uDzLBIa82MxUa-lpwyeomaSZroK4QZpZRzqAPjiPkygvJI9ZWFgRarSC7aiNXuCmXFKg7iFquwbh9bhpWXQ_ByCKKXLm-j3o9ZVtJq7DMQ9V6Ev-IjtKl_n2kH9g7MgBdXQgORtQMeoMAGx_X_v3yDjuCp7O3roGb-sdG3FqPkcbcIwi46GD4-T6bf43bm7w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NTwIxEJ0gHtCDUdSInz14LSzbbilHgxIUISZi4m2z248EQoDIcvDf22G7iokJidfdzmYznU7fJDPvAdxqraPUBoy6UiGlXHOXBwVLaKibQWBVaLTEQeHBUPTe-NN79F6CTjELg22VPvfnOX2drf2ThvdmYzEeN15dIcEjmQclEq_twC6yU0Vl2L177PeG3wlZyLXwLq6naPAzyNOY1B0uxPkmbPKSazJP1D76-4oqz92p27h9uodw4GEjucv_7AhKZlaFSqdQa6vC_gax4DG83CMHRC6XRBb5LIBZkvGMID0xRT4qT6ZMHGo0CzK3RCXLjCikB8ko3m2aLFe4ajqdfy5P4K37MOr0qNdOoIqxVka51O0oNE1m08SIpjISCSSFFMI2LQtMmqZBO9CMGes2kVueGGO4dfAoNEowzk6hPJvPzBkQzhgTAkvBNOGhSrBC0i3tkKCDK0rIGvDCXbHyxOKobzGNiw6ySey9HKOXY9S9DEQN6t9mi5xZY5uBLPYi_hUiscv-20wvce_QDKlxFfYQOTukAopccJz__8s3UOmNBs_x8-OwfwF7-CZv9buEcvaxMlcOsmTptQ_JL9MC6aA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Degradation+processes+in+high-temperature+creep+of+cast+cobalt-based+superalloys&rft.jtitle=Materials+characterization&rft.au=V%C3%A1clav%2C+Sklenicka&rft.au=Marie%2C+Kvapilova&rft.au=Petr%2C+Kral&rft.au=Ji%C5%99%C3%AD%2C+Dvorak&rft.date=2018-10-01&rft.issn=1044-5803&rft.eissn=1873-4189&rft.volume=144&rft_id=info:doi/10.1016%2FJ.MATCHAR.2018.08.006&rft.externalDocID=22805817 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1044-5803&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1044-5803&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1044-5803&client=summon |