Degradation processes in high-temperature creep of cast cobalt-based superalloys

Degradation processes in high-temperature creep of two cast high-chromium cobalt-based superalloys strengthened by niobium and tantalum for use in the glass industry were analysed via various experimental techniques. Constant load creep tests were conducted at 900, 950 and 1000 °C in a tensile stres...

Full description

Saved in:
Bibliographic Details
Published inMaterials characterization Vol. 144; pp. 479 - 489
Main Authors Sklenička, Václav, Kvapilová, Marie, Král, Petr, Dvořák, Jiří, Svoboda, Milan, Podhorná, Božena, Zýka, Jiří, Hrbáček, Karel, Joch, Antonín
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.10.2018
Subjects
Online AccessGet full text
ISSN1044-5803
1873-4189
DOI10.1016/j.matchar.2018.08.006

Cover

Loading…
Abstract Degradation processes in high-temperature creep of two cast high-chromium cobalt-based superalloys strengthened by niobium and tantalum for use in the glass industry were analysed via various experimental techniques. Constant load creep tests were conducted at 900, 950 and 1000 °C in a tensile stress range from 40 to 80 MPa. It was found that the CoNb superalloy possesses considerably longer creep life compared to the CoTa superalloy under the same loading conditions. Conversely, the creep ductility of the fractured specimens shows the opposite order of the creep life. The creep behaviour of both superalloys obeys the Monkman-Grant formula indicating that the creep deformation mechanism and fracture processes are mutually interlinked. The homogeneously distributed creep damage of the CoNb superalloy is closely connected with primary carbides and is predominantly initiated either as interface decohesion between the carbide/matrix and carbide eutectics/matrix or by breakage of bulk M23C6 carbides. The dominant type of creep damage in the CoTa superalloy is localized breakage of M23C6 carbides in close proximity of the fracture path. The final brittle fracture in the CoNb superalloy occurs via relatively fast propagation of the longest cracks after the ultimate state of damage is reached. Due to premature fracture, the inherent creep ductility of the CoNb matrix is not exhausted. The final ductile transgranular creep fracture of the CoTa superalloy is caused by a local strain-induced instability of the dislocation microstructure leading to a loss of an external section of specimen (necking). •Creep degradation processes in Nb or Ta strengthened cobalt-based superalloys were investigated.•CoNb superalloy exhibits longer creep life compared to CoTa superalloy.•Creep fracture ductility of CoTa superalloy is higher than CoNb superalloy.•Low fracture ductility of CoNb superalloy resulted from a premature fracture.•Ductile creep fracture in CoTa superalloy is caused by instability of dislocation microstructure.
AbstractList Highlights: • Creep degradation processes in Nb or Ta strengthened cobalt-based superalloys were investigated. • CoNb superalloy exhibits longer creep life compared to CoTa superalloy. • Creep fracture ductility of CoTa superalloy is higher than CoNb superalloy. • Low fracture ductility of CoNb superalloy resulted from a premature fracture. • Ductile creep fracture in CoTa superalloy is caused by instability of dislocation microstructure. - Abstract: Degradation processes in high-temperature creep of two cast high-chromium cobalt-based superalloys strengthened by niobium and tantalum for use in the glass industry were analysed via various experimental techniques. Constant load creep tests were conducted at 900, 950 and 1000 °C in a tensile stress range from 40 to 80 MPa. It was found that the CoNb superalloy possesses considerably longer creep life compared to the CoTa superalloy under the same loading conditions. Conversely, the creep ductility of the fractured specimens shows the opposite order of the creep life. The creep behaviour of both superalloys obeys the Monkman-Grant formula indicating that the creep deformation mechanism and fracture processes are mutually interlinked. The homogeneously distributed creep damage of the CoNb superalloy is closely connected with primary carbides and is predominantly initiated either as interface decohesion between the carbide/matrix and carbide eutectics/matrix or by breakage of bulk M{sub 23}C{sub 6} carbides. The dominant type of creep damage in the CoTa superalloy is localized breakage of M{sub 23}C{sub 6} carbides in close proximity of the fracture path. The final brittle fracture in the CoNb superalloy occurs via relatively fast propagation of the longest cracks after the ultimate state of damage is reached. Due to premature fracture, the inherent creep ductility of the CoNb matrix is not exhausted. The final ductile transgranular creep fracture of the CoTa superalloy is caused by a local strain-induced instability of the dislocation microstructure leading to a loss of an external section of specimen (necking).
Degradation processes in high-temperature creep of two cast high-chromium cobalt-based superalloys strengthened by niobium and tantalum for use in the glass industry were analysed via various experimental techniques. Constant load creep tests were conducted at 900, 950 and 1000 °C in a tensile stress range from 40 to 80 MPa. It was found that the CoNb superalloy possesses considerably longer creep life compared to the CoTa superalloy under the same loading conditions. Conversely, the creep ductility of the fractured specimens shows the opposite order of the creep life. The creep behaviour of both superalloys obeys the Monkman-Grant formula indicating that the creep deformation mechanism and fracture processes are mutually interlinked. The homogeneously distributed creep damage of the CoNb superalloy is closely connected with primary carbides and is predominantly initiated either as interface decohesion between the carbide/matrix and carbide eutectics/matrix or by breakage of bulk M23C6 carbides. The dominant type of creep damage in the CoTa superalloy is localized breakage of M23C6 carbides in close proximity of the fracture path. The final brittle fracture in the CoNb superalloy occurs via relatively fast propagation of the longest cracks after the ultimate state of damage is reached. Due to premature fracture, the inherent creep ductility of the CoNb matrix is not exhausted. The final ductile transgranular creep fracture of the CoTa superalloy is caused by a local strain-induced instability of the dislocation microstructure leading to a loss of an external section of specimen (necking). •Creep degradation processes in Nb or Ta strengthened cobalt-based superalloys were investigated.•CoNb superalloy exhibits longer creep life compared to CoTa superalloy.•Creep fracture ductility of CoTa superalloy is higher than CoNb superalloy.•Low fracture ductility of CoNb superalloy resulted from a premature fracture.•Ductile creep fracture in CoTa superalloy is caused by instability of dislocation microstructure.
Author Svoboda, Milan
Hrbáček, Karel
Sklenička, Václav
Dvořák, Jiří
Zýka, Jiří
Podhorná, Božena
Král, Petr
Kvapilová, Marie
Joch, Antonín
Author_xml – sequence: 1
  givenname: Václav
  surname: Sklenička
  fullname: Sklenička, Václav
  email: sklen@ipm.cz
  organization: Institute of Physics of Materials, Academy of Sciences of the Czech Republic,616 62 Brno, Czech Republic
– sequence: 2
  givenname: Marie
  surname: Kvapilová
  fullname: Kvapilová, Marie
  organization: Institute of Physics of Materials, Academy of Sciences of the Czech Republic,616 62 Brno, Czech Republic
– sequence: 3
  givenname: Petr
  surname: Král
  fullname: Král, Petr
  organization: Institute of Physics of Materials, Academy of Sciences of the Czech Republic,616 62 Brno, Czech Republic
– sequence: 4
  givenname: Jiří
  surname: Dvořák
  fullname: Dvořák, Jiří
  organization: Institute of Physics of Materials, Academy of Sciences of the Czech Republic,616 62 Brno, Czech Republic
– sequence: 5
  givenname: Milan
  orcidid: 0000-0003-1368-9663
  surname: Svoboda
  fullname: Svoboda, Milan
  organization: Institute of Physics of Materials, Academy of Sciences of the Czech Republic,616 62 Brno, Czech Republic
– sequence: 6
  givenname: Božena
  surname: Podhorná
  fullname: Podhorná, Božena
  organization: UJP PRAHA a.s., 156 10 Praha Zbraslav, Czech Republic
– sequence: 7
  givenname: Jiří
  surname: Zýka
  fullname: Zýka, Jiří
  organization: UJP PRAHA a.s., 156 10 Praha Zbraslav, Czech Republic
– sequence: 8
  givenname: Karel
  surname: Hrbáček
  fullname: Hrbáček, Karel
  organization: Institute of Physics of Materials, Academy of Sciences of the Czech Republic,616 62 Brno, Czech Republic
– sequence: 9
  givenname: Antonín
  surname: Joch
  fullname: Joch, Antonín
  organization: PBS Velká Bíteš a.s., 595 12 Velká Bíteš, Czech Republic
BackLink https://www.osti.gov/biblio/22805817$$D View this record in Osti.gov
BookMark eNqFkE9LAzEQxYNUsK1-BCHgeddkk92meBCpf6GgBz2HbHbSTdluliQV-u3NWk9eCgMzh98b3nszNOldDwhdU5JTQqvbbb5TUbfK5wWhIidpSHWGplQsWMapWE7STTjPSkHYBZqFsCWJEHQxRR-PsPGqUdG6Hg_eaQgBArY9bu2mzSLsBvAq7j1g7QEG7AzWKkSsXa26mNUqQIPDfqS6zh3CJTo3qgtw9bfn6Ov56XP1mq3fX95WD-tMM7aIGRfNsiyAMlMrqKgGIYhInqrKUMMI1HVNlqRhDAxozQ1XAMBNUfECdMU4m6Ob418XopVB2wi61a7vQUdZFIKUKV-i7o6U9i4ED0Ym8Dds9Mp2khI5Vii38q9COVYoSRpSJXX5Tz14u1P-cFJ3f9RBKuDbgh_9Qa-hsX601zh74sMP_j2SOA
CitedBy_id crossref_primary_10_1557_s43580_021_00165_3
crossref_primary_10_1016_j_matchar_2024_114236
crossref_primary_10_1007_s43452_022_00466_w
crossref_primary_10_1016_j_matchemphys_2021_125324
crossref_primary_10_1016_j_prostr_2023_12_009
crossref_primary_10_1557_s43580_022_00359_3
crossref_primary_10_1016_j_jmrt_2023_12_236
crossref_primary_10_1007_s11665_023_08568_z
crossref_primary_10_1016_j_jallcom_2020_156944
crossref_primary_10_1016_j_jallcom_2024_177522
crossref_primary_10_4028_p_g50t0t
crossref_primary_10_1016_j_jallcom_2024_177994
crossref_primary_10_1016_j_matlet_2023_134143
crossref_primary_10_1016_j_msea_2021_140891
Cites_doi 10.1016/j.jallcom.2017.08.287
10.1016/j.matdes.2010.02.021
10.1016/0921-5093(88)90051-2
10.1007/s11661-011-0990-7
10.1080/01418619108204594
10.1016/j.jallcom.2017.12.254
10.4149/km_2017_2_69
10.4028/www.scientific.net/SSP.270.21
10.1016/j.matchar.2016.06.033
10.1016/j.engfailanal.2017.11.018
10.1016/j.jallcom.2016.10.256
10.1016/j.matchar.2003.09.012
10.1016/j.jallcom.2009.03.091
10.1016/j.actamat.2017.06.025
10.1016/0001-6160(82)90195-X
10.1016/j.actamat.2010.10.013
10.1016/0001-6160(81)90156-5
10.1016/j.intermet.2009.07.019
10.1002/9781118405949.ch22
10.1016/S0921-5093(97)00172-X
10.1016/0001-6160(74)90088-1
10.1016/S0364-5916(02)00037-8
10.1016/j.matdes.2014.08.007
10.1016/0001-6160(87)90083-6
10.1016/j.intermet.2010.10.018
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright_xml – notice: 2018 Elsevier Inc.
DBID AAYXX
CITATION
OTOTI
DOI 10.1016/j.matchar.2018.08.006
DatabaseName CrossRef
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-4189
EndPage 489
ExternalDocumentID 22805817
10_1016_j_matchar_2018_08_006
S1044580318320850
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABTAH
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HX~
HZ~
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SSM
SSQ
SSZ
T5K
WH7
WUQ
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
AALMO
ABPIF
ABPTK
OTOTI
ID FETCH-LOGICAL-c337t-48d952e13fbae61ce880806866f1f30ebbb090d33efecc4f4aeee4f2642ec6343
IEDL.DBID .~1
ISSN 1044-5803
IngestDate Fri May 19 00:38:07 EDT 2023
Thu Apr 24 22:58:08 EDT 2025
Tue Jul 01 01:35:58 EDT 2025
Fri Feb 23 02:28:47 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Cobalt-based superalloys
Creep life
Creep fracture
Microstructure
Creep damage
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-48d952e13fbae61ce880806866f1f30ebbb090d33efecc4f4aeee4f2642ec6343
ORCID 0000-0003-1368-9663
PageCount 11
ParticipantIDs osti_scitechconnect_22805817
crossref_citationtrail_10_1016_j_matchar_2018_08_006
crossref_primary_10_1016_j_matchar_2018_08_006
elsevier_sciencedirect_doi_10_1016_j_matchar_2018_08_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-10-01
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Materials characterization
PublicationYear 2018
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Sullivan, Varin, Donachie (bb0010) 1969; 9
Martino, Michon, Aranda, Berthod, Podor, Rapin (bb0055) 2003; 28
Čadek (bb0085) 1988
Divya, Ramamurty, Paul (bb0095) 2010; 18
Sklenicka, Kucharova, Svoboda, Bursik, Kroupa (bb0195) 2003; 51
Zangeneh, Farhangi (bb0015) 2010; 31
Jonšta, Vlčková, Jonšta, Król (bb0040) 2017; 270
Coakley, Lass, Ma, Frost, Stone, Seidman, Dunand (bb0190) 2017; 136
Zhi'an, Zhongguang (bb0155) 1991; 63
Martino, Michon, Berthod, Rapin, Podor, Steinmetz (bb0045) 2004; 141
Sklenička (bb0050) 1997; 234
Berthod (bb0060) 2009; 481
Sklenicka (bb0115) 2018
Sklenička, Kuchařová, Svobodová, Kvapilova, Král, Horváth (bb0070) 2016; 119
Zhi'an, Yaotian, Changxu (bb0175) 1988; 101
Burton (bb0150) 1981; 30
P. Berthod, J.L. Bernard, C. Liébaut, Patent WO99/16919.
Ravi, Paul (bb0100) 2011; 19
Mukherjee, Bird, Dorn (bb0170) 1968; 62
Berthod, Himeur, Panteix (bb0030) 2018; 739
Beltran (bb0005) 1987
Divya, Ramamurty, Paul (bb0105) 2012; 43
Gui, Zhang, Yang, Jin, Sun, Zheng (bb0020) 2017; 695
Dobeš, Milička (bb0140) 1976; 10
Seiser, Drautz, Pettifor (bb0110) 2011; 59
Tian, Han, Cui, Sun (bb0180) 2014; 64
Evans (bb0200) 1984
Andersson, Helander, Holund, Shi, Sundman (bb0080) 2002; 26
Dvorak, Kvapilova, Kucharova, Hrbacek, Kral, Sklenicka (bb0125) 2017
Argon, Moffatt (bb0145) 1981; 29
Mohamed, Langdon (bb0160) 1974; 22
Sklenička, Kuchařová, Král, Kvapilová, Dvořák (bb0135) 2017; 55
Gui, Zhang, Yang, Jin, Sun, Zheng (bb0065) 2017; 728
Saunders, Miodownik (bb0075) 1998
Kassner (bb0090) 2009
Dyson, Gibbons (bb0205) 1987; 35
Zangeneh, Lashgari, Asnavandi (bb0025) 2018; 84
Barrett, Sherby (bb0165) 1965; 233
Monkman, Grant (bb0130) 1956; 56
Sklenička, Kloc (bb0120) 2011
Pollock, Field, Murphy (bb0185) 1999
Mukherjee (10.1016/j.matchar.2018.08.006_bb0170) 1968; 62
Zangeneh (10.1016/j.matchar.2018.08.006_bb0015) 2010; 31
Sullivan (10.1016/j.matchar.2018.08.006_bb0010) 1969; 9
Čadek (10.1016/j.matchar.2018.08.006_bb0085) 1988
Ravi (10.1016/j.matchar.2018.08.006_bb0100) 2011; 19
Beltran (10.1016/j.matchar.2018.08.006_bb0005) 1987
Gui (10.1016/j.matchar.2018.08.006_bb0020) 2017; 695
Martino (10.1016/j.matchar.2018.08.006_bb0055) 2003; 28
Gui (10.1016/j.matchar.2018.08.006_bb0065) 2017; 728
Divya (10.1016/j.matchar.2018.08.006_bb0095) 2010; 18
Tian (10.1016/j.matchar.2018.08.006_bb0180) 2014; 64
Sklenička (10.1016/j.matchar.2018.08.006_bb0050) 1997; 234
Pollock (10.1016/j.matchar.2018.08.006_bb0185) 1999
Monkman (10.1016/j.matchar.2018.08.006_bb0130) 1956; 56
Barrett (10.1016/j.matchar.2018.08.006_bb0165) 1965; 233
Mohamed (10.1016/j.matchar.2018.08.006_bb0160) 1974; 22
Sklenička (10.1016/j.matchar.2018.08.006_bb0070) 2016; 119
10.1016/j.matchar.2018.08.006_bb0035
Andersson (10.1016/j.matchar.2018.08.006_bb0080) 2002; 26
Dobeš (10.1016/j.matchar.2018.08.006_bb0140) 1976; 10
Sklenička (10.1016/j.matchar.2018.08.006_bb0120) 2011
Zhi'an (10.1016/j.matchar.2018.08.006_bb0175) 1988; 101
Saunders (10.1016/j.matchar.2018.08.006_bb0075) 1998
Sklenicka (10.1016/j.matchar.2018.08.006_bb0115) 2018
Coakley (10.1016/j.matchar.2018.08.006_bb0190) 2017; 136
Dvorak (10.1016/j.matchar.2018.08.006_bb0125) 2017
Sklenicka (10.1016/j.matchar.2018.08.006_bb0195) 2003; 51
Kassner (10.1016/j.matchar.2018.08.006_bb0090) 2009
Dyson (10.1016/j.matchar.2018.08.006_bb0205) 1987; 35
Burton (10.1016/j.matchar.2018.08.006_bb0150) 1981; 30
Zhi'an (10.1016/j.matchar.2018.08.006_bb0155) 1991; 63
Divya (10.1016/j.matchar.2018.08.006_bb0105) 2012; 43
Argon (10.1016/j.matchar.2018.08.006_bb0145) 1981; 29
Berthod (10.1016/j.matchar.2018.08.006_bb0030) 2018; 739
Sklenička (10.1016/j.matchar.2018.08.006_bb0135) 2017; 55
Jonšta (10.1016/j.matchar.2018.08.006_bb0040) 2017; 270
Berthod (10.1016/j.matchar.2018.08.006_bb0060) 2009; 481
Martino (10.1016/j.matchar.2018.08.006_bb0045) 2004; 141
Seiser (10.1016/j.matchar.2018.08.006_bb0110) 2011; 59
Zangeneh (10.1016/j.matchar.2018.08.006_bb0025) 2018; 84
Evans (10.1016/j.matchar.2018.08.006_bb0200) 1984
References_xml – reference: P. Berthod, J.L. Bernard, C. Liébaut, Patent WO99/16919.
– volume: 695
  start-page: 1271
  year: 2017
  end-page: 1278
  ident: bb0020
  article-title: The investigation of carbides evolution in a cobal-base superalloy at elevated temperatures
  publication-title: J. Alloys Compd.
– year: 1988
  ident: bb0085
  article-title: Creep in Metallic Materials
– volume: 63
  start-page: 87
  year: 1991
  end-page: 94
  ident: bb0155
  article-title: The dependence of creep on stacking-fault energy
  publication-title: Phil. Mag. A
– volume: 51
  start-page: 36
  year: 2003
  end-page: 48
  ident: bb0195
  article-title: Long-term creep behaviour of 9–12%Cr power plant steels
  publication-title: Mater. Charact.
– volume: 18
  start-page: 259
  year: 2010
  end-page: 266
  ident: bb0095
  article-title: Topological close packed μ phase formation and the determination of diffusion parameters in the Co-Mo systém
  publication-title: Intermetallics
– year: 1984
  ident: bb0200
  article-title: Mechanisms of Creep Fracture
– volume: 728
  start-page: 145
  year: 2017
  end-page: 151
  ident: bb0065
  article-title: Influence of type and morphology of carbides on stress-rupture behavior of a cast cobalt-base superalloy
  publication-title: J. Alloys Compd.
– volume: 10
  start-page: 382
  year: 1976
  end-page: 384
  ident: bb0140
  article-title: The relation between minimum creep rate and time to fracture
  publication-title: Mater. Sci.
– volume: 233
  start-page: 1116
  year: 1965
  end-page: 1119
  ident: bb0165
  article-title: Influence of stacking-fault energy on high-temperature creep of pure metals
  publication-title: Trans. Metall. Soc. AIME
– volume: 270
  start-page: 21
  year: 2017
  end-page: 26
  ident: bb0040
  article-title: Material analysis of the extended-life cobalt-based superalloys used in the manufacturing of glass tools
  publication-title: Solid State Phenom.
– volume: 19
  start-page: 426
  year: 2011
  end-page: 428
  ident: bb0100
  article-title: Interdiffusion study on Co(W) solid solution and topological close-packed μ phase in Co-W system
  publication-title: Intermetallics
– start-page: 180
  year: 2011
  end-page: 221
  ident: bb0120
  article-title: Creep in boiler materials: mechanisms, measurement and modelling
  publication-title: Power Plant Life Management and Performance Improvement
– volume: 84
  start-page: 276
  year: 2018
  end-page: 286
  ident: bb0025
  article-title: The effect of long-term service exposure on the stability of carbides in Co-Cr-Ni-W (X-45) superalloy
  publication-title: Eng. Fail. Anal.
– volume: 35
  start-page: 2355
  year: 1987
  end-page: 2369
  ident: bb0205
  article-title: Tertiary creep in nickel-base superalloys: analysis of experimental data and theoretical synthesis
  publication-title: Acta Metall. Mater.
– volume: 9
  start-page: 16
  year: 1969
  end-page: 29
  ident: bb0010
  article-title: Relationship of properties to microstructure in cobalt-base superalloys
  publication-title: Met. Eng. Quart.
– volume: 136
  start-page: 118
  year: 2017
  end-page: 125
  ident: bb0190
  article-title: Lattice parameter misfit evolution during creep of a cobalt-based superalloy single crystal with cuboidal and rafted gamma-prime microstructures
  publication-title: Acta Mater.
– volume: 234
  start-page: 30
  year: 1997
  end-page: 36
  ident: bb0050
  article-title: High temperature intergranular damage and fracture
  publication-title: Mater. Sci. Eng. A
– start-page: 177
  year: 2018
  end-page: 192
  ident: bb0115
  article-title: Quantitative assessment of creep damage and creep life prediction
  publication-title: Modelling of Microstructural Evolution in Creep Resistant Materials
– volume: 64
  start-page: 316
  year: 2014
  end-page: 323
  ident: bb0180
  article-title: Effect of stacking fault energy on the creep behavior of Ni/base superalloy
  publication-title: Mater. Des.
– volume: 739
  start-page: 447
  year: 2018
  end-page: 456
  ident: bb0030
  article-title: Influences of the Co content and of the level of high temperature on the microstructure and oxidation of cast {Ni,Co} – based Cr- rich TaC-containing cast alloys
  publication-title: J. Alloys Compd.
– volume: 119
  start-page: 1
  year: 2016
  end-page: 12
  ident: bb0070
  article-title: Creep properties in similar weld joint of a thick-walled P92 steel pipe
  publication-title: Mater. Charact.
– volume: 55
  start-page: 69
  year: 2017
  end-page: 80
  ident: bb0135
  article-title: Applicability of empirical formulas and fractography for assessment of creep life and creep fracture modes of tempered martensitic 9% Cr steel
  publication-title: Kovove Mater.
– start-page: 135
  year: 1987
  end-page: 163
  ident: bb0005
  article-title: Cobalt-base Alloys
  publication-title: Superalloys II
– volume: 56
  start-page: 593
  year: 1956
  end-page: 620
  ident: bb0130
  article-title: An empirical relationship between rupture life and minimum creep rate in creep-rupture tests
  publication-title: Proc. ASTM
– volume: 31
  start-page: 3504
  year: 2010
  end-page: 3511
  ident: bb0015
  article-title: Influence of service-induced microstructural changes on the failure of a cobalt-based superalloy first stage nozzle
  publication-title: Mater. Des.
– volume: 481
  start-page: 746
  year: 2009
  end-page: 754
  ident: bb0060
  article-title: High temperature properties of several chromium-containing Co-based alloys reinforced by different types of MC carbides (M = Ta, Nb, Hf and/or Zr)
  publication-title: J. Alloys Compd.
– volume: 22
  start-page: 779
  year: 1974
  end-page: 788
  ident: bb0160
  article-title: The transition from dislocation climb to viscous glide in creep of solid solution alloys
  publication-title: Acta Metall.
– start-page: 193
  year: 1999
  end-page: 212
  ident: bb0185
  article-title: Creep deformation and the evolution of precipitate morphology in nickel-based single crystals
  publication-title: Modelling of Microstructural Evolution in Creep Resistant Materials
– year: 2009
  ident: bb0090
  article-title: Fundamentals of Creep in Metals and Alloys
– volume: 62
  start-page: 155
  year: 1968
  end-page: 179
  ident: bb0170
  article-title: Experimental correlations for high-temperature creep
  publication-title: Trans. Am. Soc. Met.
– volume: 43
  start-page: 1564
  year: 2012
  end-page: 1577
  ident: bb0105
  article-title: Interdiffusion and growth of the phases in CoNi/Mo and CoNi/W systems
  publication-title: Metall. Mater. Trans. A
– year: 2017
  ident: bb0125
  article-title: Creep properties of cast superalloys for application in glass industry
  publication-title: Proceedings of the 14th Conference on Creep & Fracture (ECCC 2017), Paper ID 54
– year: 1998
  ident: bb0075
  article-title: CALPHD (Calculation of Phase Diagrams); A Comprehensive Guide
– volume: 141
  start-page: 241
  year: 2004
  end-page: 248
  ident: bb0045
  article-title: Electrochemical study of cobalt-base superalloy corrosion by a molten glass: influence of alloy microstructure and chemical composition of the glass
  publication-title: Ceram. Trans.
– volume: 59
  start-page: 749
  year: 2011
  end-page: 763
  ident: bb0110
  article-title: TCP phase predictions in Ni-based superalloys: Structure maps revisited
  publication-title: Acta Mater.
– volume: 29
  start-page: 293
  year: 1981
  end-page: 299
  ident: bb0145
  article-title: Climb of extended dislocations
  publication-title: Acta Metall.
– volume: 30
  start-page: 905
  year: 1981
  end-page: 909
  ident: bb0150
  article-title: The influence of stacking fault energy on creep
  publication-title: Acta Metall.
– volume: 101
  start-page: 65
  year: 1988
  end-page: 73
  ident: bb0175
  article-title: The role of cobalt in the high temperature creep of γ′-strengthened nickel-base superalloys
  publication-title: Mater. Sci. Eng. A
– volume: 26
  start-page: 273
  year: 2002
  end-page: 312
  ident: bb0080
  article-title: Thermo-Calc % DICTRA, computational tools for materials science
  publication-title: Calphad
– volume: 28
  start-page: S231
  year: 2003
  end-page: S238
  ident: bb0055
  article-title: High temperature oxidation and glass corrosion of cobalt-base superalloys
  publication-title: Ann. Chimie Sci. Materiaux
– volume: 10
  start-page: 382
  year: 1976
  ident: 10.1016/j.matchar.2018.08.006_bb0140
  article-title: The relation between minimum creep rate and time to fracture
  publication-title: Mater. Sci.
– volume: 728
  start-page: 145
  year: 2017
  ident: 10.1016/j.matchar.2018.08.006_bb0065
  article-title: Influence of type and morphology of carbides on stress-rupture behavior of a cast cobalt-base superalloy
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2017.08.287
– volume: 56
  start-page: 593
  year: 1956
  ident: 10.1016/j.matchar.2018.08.006_bb0130
  article-title: An empirical relationship between rupture life and minimum creep rate in creep-rupture tests
  publication-title: Proc. ASTM
– volume: 31
  start-page: 3504
  year: 2010
  ident: 10.1016/j.matchar.2018.08.006_bb0015
  article-title: Influence of service-induced microstructural changes on the failure of a cobalt-based superalloy first stage nozzle
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2010.02.021
– volume: 101
  start-page: 65
  year: 1988
  ident: 10.1016/j.matchar.2018.08.006_bb0175
  article-title: The role of cobalt in the high temperature creep of γ′-strengthened nickel-base superalloys
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/0921-5093(88)90051-2
– volume: 43
  start-page: 1564
  year: 2012
  ident: 10.1016/j.matchar.2018.08.006_bb0105
  article-title: Interdiffusion and growth of the phases in CoNi/Mo and CoNi/W systems
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-011-0990-7
– volume: 63
  start-page: 87
  year: 1991
  ident: 10.1016/j.matchar.2018.08.006_bb0155
  article-title: The dependence of creep on stacking-fault energy
  publication-title: Phil. Mag. A
  doi: 10.1080/01418619108204594
– volume: 739
  start-page: 447
  year: 2018
  ident: 10.1016/j.matchar.2018.08.006_bb0030
  article-title: Influences of the Co content and of the level of high temperature on the microstructure and oxidation of cast {Ni,Co} – based Cr- rich TaC-containing cast alloys
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2017.12.254
– volume: 55
  start-page: 69
  year: 2017
  ident: 10.1016/j.matchar.2018.08.006_bb0135
  article-title: Applicability of empirical formulas and fractography for assessment of creep life and creep fracture modes of tempered martensitic 9% Cr steel
  publication-title: Kovove Mater.
  doi: 10.4149/km_2017_2_69
– volume: 270
  start-page: 21
  year: 2017
  ident: 10.1016/j.matchar.2018.08.006_bb0040
  article-title: Material analysis of the extended-life cobalt-based superalloys used in the manufacturing of glass tools
  publication-title: Solid State Phenom.
  doi: 10.4028/www.scientific.net/SSP.270.21
– volume: 119
  start-page: 1
  year: 2016
  ident: 10.1016/j.matchar.2018.08.006_bb0070
  article-title: Creep properties in similar weld joint of a thick-walled P92 steel pipe
  publication-title: Mater. Charact.
  doi: 10.1016/j.matchar.2016.06.033
– start-page: 177
  year: 2018
  ident: 10.1016/j.matchar.2018.08.006_bb0115
  article-title: Quantitative assessment of creep damage and creep life prediction
– volume: 233
  start-page: 1116
  year: 1965
  ident: 10.1016/j.matchar.2018.08.006_bb0165
  article-title: Influence of stacking-fault energy on high-temperature creep of pure metals
  publication-title: Trans. Metall. Soc. AIME
– volume: 84
  start-page: 276
  year: 2018
  ident: 10.1016/j.matchar.2018.08.006_bb0025
  article-title: The effect of long-term service exposure on the stability of carbides in Co-Cr-Ni-W (X-45) superalloy
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2017.11.018
– start-page: 193
  year: 1999
  ident: 10.1016/j.matchar.2018.08.006_bb0185
  article-title: Creep deformation and the evolution of precipitate morphology in nickel-based single crystals
– volume: 695
  start-page: 1271
  year: 2017
  ident: 10.1016/j.matchar.2018.08.006_bb0020
  article-title: The investigation of carbides evolution in a cobal-base superalloy at elevated temperatures
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2016.10.256
– year: 1998
  ident: 10.1016/j.matchar.2018.08.006_bb0075
– volume: 51
  start-page: 36
  year: 2003
  ident: 10.1016/j.matchar.2018.08.006_bb0195
  article-title: Long-term creep behaviour of 9–12%Cr power plant steels
  publication-title: Mater. Charact.
  doi: 10.1016/j.matchar.2003.09.012
– volume: 481
  start-page: 746
  year: 2009
  ident: 10.1016/j.matchar.2018.08.006_bb0060
  article-title: High temperature properties of several chromium-containing Co-based alloys reinforced by different types of MC carbides (M = Ta, Nb, Hf and/or Zr)
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2009.03.091
– start-page: 180
  year: 2011
  ident: 10.1016/j.matchar.2018.08.006_bb0120
  article-title: Creep in boiler materials: mechanisms, measurement and modelling
– start-page: 135
  year: 1987
  ident: 10.1016/j.matchar.2018.08.006_bb0005
  article-title: Cobalt-base Alloys
– volume: 136
  start-page: 118
  year: 2017
  ident: 10.1016/j.matchar.2018.08.006_bb0190
  article-title: Lattice parameter misfit evolution during creep of a cobalt-based superalloy single crystal with cuboidal and rafted gamma-prime microstructures
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.06.025
– volume: 30
  start-page: 905
  year: 1981
  ident: 10.1016/j.matchar.2018.08.006_bb0150
  article-title: The influence of stacking fault energy on creep
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(82)90195-X
– volume: 9
  start-page: 16
  year: 1969
  ident: 10.1016/j.matchar.2018.08.006_bb0010
  article-title: Relationship of properties to microstructure in cobalt-base superalloys
  publication-title: Met. Eng. Quart.
– year: 2009
  ident: 10.1016/j.matchar.2018.08.006_bb0090
– volume: 59
  start-page: 749
  year: 2011
  ident: 10.1016/j.matchar.2018.08.006_bb0110
  article-title: TCP phase predictions in Ni-based superalloys: Structure maps revisited
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2010.10.013
– volume: 29
  start-page: 293
  year: 1981
  ident: 10.1016/j.matchar.2018.08.006_bb0145
  article-title: Climb of extended dislocations
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(81)90156-5
– volume: 18
  start-page: 259
  year: 2010
  ident: 10.1016/j.matchar.2018.08.006_bb0095
  article-title: Topological close packed μ phase formation and the determination of diffusion parameters in the Co-Mo systém
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2009.07.019
– year: 1984
  ident: 10.1016/j.matchar.2018.08.006_bb0200
– volume: 141
  start-page: 241
  year: 2004
  ident: 10.1016/j.matchar.2018.08.006_bb0045
  article-title: Electrochemical study of cobalt-base superalloy corrosion by a molten glass: influence of alloy microstructure and chemical composition of the glass
  publication-title: Ceram. Trans.
  doi: 10.1002/9781118405949.ch22
– ident: 10.1016/j.matchar.2018.08.006_bb0035
– volume: 28
  start-page: S231
  year: 2003
  ident: 10.1016/j.matchar.2018.08.006_bb0055
  article-title: High temperature oxidation and glass corrosion of cobalt-base superalloys
  publication-title: Ann. Chimie Sci. Materiaux
– volume: 234
  start-page: 30
  year: 1997
  ident: 10.1016/j.matchar.2018.08.006_bb0050
  article-title: High temperature intergranular damage and fracture
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/S0921-5093(97)00172-X
– volume: 22
  start-page: 779
  year: 1974
  ident: 10.1016/j.matchar.2018.08.006_bb0160
  article-title: The transition from dislocation climb to viscous glide in creep of solid solution alloys
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(74)90088-1
– volume: 26
  start-page: 273
  year: 2002
  ident: 10.1016/j.matchar.2018.08.006_bb0080
  article-title: Thermo-Calc % DICTRA, computational tools for materials science
  publication-title: Calphad
  doi: 10.1016/S0364-5916(02)00037-8
– volume: 64
  start-page: 316
  year: 2014
  ident: 10.1016/j.matchar.2018.08.006_bb0180
  article-title: Effect of stacking fault energy on the creep behavior of Ni/base superalloy
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2014.08.007
– volume: 35
  start-page: 2355
  year: 1987
  ident: 10.1016/j.matchar.2018.08.006_bb0205
  article-title: Tertiary creep in nickel-base superalloys: analysis of experimental data and theoretical synthesis
  publication-title: Acta Metall. Mater.
  doi: 10.1016/0001-6160(87)90083-6
– volume: 19
  start-page: 426
  year: 2011
  ident: 10.1016/j.matchar.2018.08.006_bb0100
  article-title: Interdiffusion study on Co(W) solid solution and topological close-packed μ phase in Co-W system
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2010.10.018
– volume: 62
  start-page: 155
  year: 1968
  ident: 10.1016/j.matchar.2018.08.006_bb0170
  article-title: Experimental correlations for high-temperature creep
  publication-title: Trans. Am. Soc. Met.
– year: 2017
  ident: 10.1016/j.matchar.2018.08.006_bb0125
  article-title: Creep properties of cast superalloys for application in glass industry
– year: 1988
  ident: 10.1016/j.matchar.2018.08.006_bb0085
SSID ssj0006817
Score 2.2803895
Snippet Degradation processes in high-temperature creep of two cast high-chromium cobalt-based superalloys strengthened by niobium and tantalum for use in the glass...
Highlights: • Creep degradation processes in Nb or Ta strengthened cobalt-based superalloys were investigated. • CoNb superalloy exhibits longer creep life...
SourceID osti
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 479
SubjectTerms CARBIDES
COBALT BASE ALLOYS
Cobalt-based superalloys
CRACKS
CREEP
Creep damage
Creep fracture
Creep life
DEFORMATION
DISLOCATIONS
DUCTILITY
HEAT RESISTING ALLOYS
MATERIALS SCIENCE
MICROSTRUCTURE
STRESSES
Title Degradation processes in high-temperature creep of cast cobalt-based superalloys
URI https://dx.doi.org/10.1016/j.matchar.2018.08.006
https://www.osti.gov/biblio/22805817
Volume 144
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KPagH0apYrWUPXrd57Ga7PZZqqYpF0EJvIdkHtJQk2PTgxd_uTh62glDwmLATwuzs7Dcw830I3Smlgti4lNhSISZMMZsHOY2IrzzXNdLXSsCg8MuUT2bsaR7MG2hUz8JAW2WV-8ucXmTr6o1TedPJFgvnzRYSLBBlUALxGkywsz5Eee9r2-bBRaG6C4sJrN5O8TjLngWFMNwEHV6iYPIE4aO_76dmao_cztUzPkUnFWbEw_K3zlBDJy10OKql2lroeIdV8By93gMBRKmVhLNyEECv8SLBwE1MgIyqYlLGFjLqDKcGy2idYwncIDmBi03h9QZWrVbp5_oCzcYP76MJqYQTiKS0nxMm1CDwtUdNHGnuSS2APZILzo1nqKvjOHYHrqJUG7uDzLBIa82MxUa-lpwyeomaSZroK4QZpZRzqAPjiPkygvJI9ZWFgRarSC7aiNXuCmXFKg7iFquwbh9bhpWXQ_ByCKKXLm-j3o9ZVtJq7DMQ9V6Ev-IjtKl_n2kH9g7MgBdXQgORtQMeoMAGx_X_v3yDjuCp7O3roGb-sdG3FqPkcbcIwi46GD4-T6bf43bm7w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NTwIxEJ0gHtCDUdSInz14LSzbbilHgxIUISZi4m2z248EQoDIcvDf22G7iokJidfdzmYznU7fJDPvAdxqraPUBoy6UiGlXHOXBwVLaKibQWBVaLTEQeHBUPTe-NN79F6CTjELg22VPvfnOX2drf2ThvdmYzEeN15dIcEjmQclEq_twC6yU0Vl2L177PeG3wlZyLXwLq6naPAzyNOY1B0uxPkmbPKSazJP1D76-4oqz92p27h9uodw4GEjucv_7AhKZlaFSqdQa6vC_gax4DG83CMHRC6XRBb5LIBZkvGMID0xRT4qT6ZMHGo0CzK3RCXLjCikB8ko3m2aLFe4ajqdfy5P4K37MOr0qNdOoIqxVka51O0oNE1m08SIpjISCSSFFMI2LQtMmqZBO9CMGes2kVueGGO4dfAoNEowzk6hPJvPzBkQzhgTAkvBNOGhSrBC0i3tkKCDK0rIGvDCXbHyxOKobzGNiw6ySey9HKOXY9S9DEQN6t9mi5xZY5uBLPYi_hUiscv-20wvce_QDKlxFfYQOTukAopccJz__8s3UOmNBs_x8-OwfwF7-CZv9buEcvaxMlcOsmTptQ_JL9MC6aA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Degradation+processes+in+high-temperature+creep+of+cast+cobalt-based+superalloys&rft.jtitle=Materials+characterization&rft.au=V%C3%A1clav%2C+Sklenicka&rft.au=Marie%2C+Kvapilova&rft.au=Petr%2C+Kral&rft.au=Ji%C5%99%C3%AD%2C+Dvorak&rft.date=2018-10-01&rft.issn=1044-5803&rft.eissn=1873-4189&rft.volume=144&rft_id=info:doi/10.1016%2FJ.MATCHAR.2018.08.006&rft.externalDocID=22805817
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1044-5803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1044-5803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1044-5803&client=summon