Multistimuli-responsive multicolor solid-state luminescence tuned by NH-dependent switchable hydrogen bonds
Revealing the stimuli-responsive mechanism is the key to the accurate design of stimuli-responsive luminescent materials. We report herein the multistimuli-responsive multicolor solid-state luminescence of a new dicopper( i ) complex [{Cu(bpmtzH)} 2 (μ-dppa) 2 ](ClO 4 ) 2 ( 1 ), and the multistimuli...
Saved in:
Published in | Dalton transactions : an international journal of inorganic chemistry Vol. 53; no. 1; pp. 339 - 345 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
19.12.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1477-9226 1477-9234 1477-9234 |
DOI | 10.1039/d3dt03124a |
Cover
Loading…
Abstract | Revealing the stimuli-responsive mechanism is the key to the accurate design of stimuli-responsive luminescent materials. We report herein the multistimuli-responsive multicolor solid-state luminescence of a new dicopper(
i
) complex [{Cu(bpmtzH)}
2
(μ-dppa)
2
](ClO
4
)
2
(
1
), and the multistimuli-responsive mechanism is clarified by investigating its four different solvated compounds
1
·2CH
3
COCH
3
·2H
2
O,
1
·2DMSO·2H
2
O,
1
·4CH
3
OH, and
1
·4CH
2
Cl
2
. It is shown that luminescence mechanochromism is associated with the breakage of the hydrogen bonds of bmptzH-NH with counter-ions such as ClO
4
−
induced by grinding, while luminescence vapochromism is attributable to the breaking and forming of hydrogen bonds of dppa-NH with solvents, such as acetone, dimethylsulfoxide, and methanol, caused by heating and vapor fuming. In addition, those results might provide new insights into the design and synthesis of multistimuli-responsive multicolor luminescent materials by using various structure-sensitive functional groups, such as distinct N-H ones, to construct switchable hydrogen bonds.
Stimuli-responsive multicolor solid-state luminescence is tuned by NH-dependent switchable hydrogen bonds, in which luminescence vapochromism and mechanochromism are associated with hydrogen bonding with dppa-NH and bpmtzH-NH, respectively. |
---|---|
AbstractList | Revealing the stimuli-responsive mechanism is the key to the accurate design of stimuli-responsive luminescent materials. We report herein the multistimuli-responsive multicolor solid-state luminescence of a new dicopper(
i
) complex [{Cu(bpmtzH)}
2
(μ-dppa)
2
](ClO
4
)
2
(
1
), and the multistimuli-responsive mechanism is clarified by investigating its four different solvated compounds
1
·2CH
3
COCH
3
·2H
2
O,
1
·2DMSO·2H
2
O,
1
·4CH
3
OH, and
1
·4CH
2
Cl
2
. It is shown that luminescence mechanochromism is associated with the breakage of the hydrogen bonds of bmptzH-NH with counter-ions such as ClO
4
−
induced by grinding, while luminescence vapochromism is attributable to the breaking and forming of hydrogen bonds of dppa-NH with solvents, such as acetone, dimethylsulfoxide, and methanol, caused by heating and vapor fuming. In addition, those results might provide new insights into the design and synthesis of multistimuli-responsive multicolor luminescent materials by using various structure-sensitive functional groups, such as distinct N-H ones, to construct switchable hydrogen bonds.
Stimuli-responsive multicolor solid-state luminescence is tuned by NH-dependent switchable hydrogen bonds, in which luminescence vapochromism and mechanochromism are associated with hydrogen bonding with dppa-NH and bpmtzH-NH, respectively. Revealing the stimuli-responsive mechanism is the key to the accurate design of stimuli-responsive luminescent materials. We report herein the multistimuli-responsive multicolor solid-state luminescence of a new dicopper(I) complex [{Cu(bpmtzH)} (μ-dppa) ](ClO ) (1), and the multistimuli-responsive mechanism is clarified by investigating its four different solvated compounds 1·2CH COCH ·2H O, 1·2DMSO·2H O, 1·4CH OH, and 1·4CH Cl . It is shown that luminescence mechanochromism is associated with the breakage of the hydrogen bonds of bmptzH-NH with counter-ions such as ClO induced by grinding, while luminescence vapochromism is attributable to the breaking and forming of hydrogen bonds of dppa-NH with solvents, such as acetone, dimethylsulfoxide, and methanol, caused by heating and vapor fuming. In addition, those results might provide new insights into the design and synthesis of multistimuli-responsive multicolor luminescent materials by using various structure-sensitive functional groups, such as distinct N-H ones, to construct switchable hydrogen bonds. Revealing the stimuli-responsive mechanism is the key to the accurate design of stimuli-responsive luminescent materials. We report herein the multistimuli-responsive multicolor solid-state luminescence of a new dicopper( i ) complex [{Cu(bpmtzH)} 2 (μ-dppa) 2 ](ClO 4 ) 2 (1), and the multistimuli-responsive mechanism is clarified by investigating its four different solvated compounds 1·2CH 3 COCH 3 ·2H 2 O, 1·2DMSO·2H 2 O, 1·4CH 3 OH, and 1·4CH 2 Cl 2 . It is shown that luminescence mechanochromism is associated with the breakage of the hydrogen bonds of bmptzH-NH with counter-ions such as ClO 4 − induced by grinding, while luminescence vapochromism is attributable to the breaking and forming of hydrogen bonds of dppa-NH with solvents, such as acetone, dimethylsulfoxide, and methanol, caused by heating and vapor fuming. In addition, those results might provide new insights into the design and synthesis of multistimuli-responsive multicolor luminescent materials by using various structure-sensitive functional groups, such as distinct N–H ones, to construct switchable hydrogen bonds. Revealing the stimuli-responsive mechanism is the key to the accurate design of stimuli-responsive luminescent materials. We report herein the multistimuli-responsive multicolor solid-state luminescence of a new dicopper(I) complex [{Cu(bpmtzH)}2(μ-dppa)2](ClO4)2 (1), and the multistimuli-responsive mechanism is clarified by investigating its four different solvated compounds 1·2CH3COCH3·2H2O, 1·2DMSO·2H2O, 1·4CH3OH, and 1·4CH2Cl2. It is shown that luminescence mechanochromism is associated with the breakage of the hydrogen bonds of bmptzH-NH with counter-ions such as ClO4- induced by grinding, while luminescence vapochromism is attributable to the breaking and forming of hydrogen bonds of dppa-NH with solvents, such as acetone, dimethylsulfoxide, and methanol, caused by heating and vapor fuming. In addition, those results might provide new insights into the design and synthesis of multistimuli-responsive multicolor luminescent materials by using various structure-sensitive functional groups, such as distinct N-H ones, to construct switchable hydrogen bonds.Revealing the stimuli-responsive mechanism is the key to the accurate design of stimuli-responsive luminescent materials. We report herein the multistimuli-responsive multicolor solid-state luminescence of a new dicopper(I) complex [{Cu(bpmtzH)}2(μ-dppa)2](ClO4)2 (1), and the multistimuli-responsive mechanism is clarified by investigating its four different solvated compounds 1·2CH3COCH3·2H2O, 1·2DMSO·2H2O, 1·4CH3OH, and 1·4CH2Cl2. It is shown that luminescence mechanochromism is associated with the breakage of the hydrogen bonds of bmptzH-NH with counter-ions such as ClO4- induced by grinding, while luminescence vapochromism is attributable to the breaking and forming of hydrogen bonds of dppa-NH with solvents, such as acetone, dimethylsulfoxide, and methanol, caused by heating and vapor fuming. In addition, those results might provide new insights into the design and synthesis of multistimuli-responsive multicolor luminescent materials by using various structure-sensitive functional groups, such as distinct N-H ones, to construct switchable hydrogen bonds. Revealing the stimuli-responsive mechanism is the key to the accurate design of stimuli-responsive luminescent materials. We report herein the multistimuli-responsive multicolor solid-state luminescence of a new dicopper(i) complex [{Cu(bpmtzH)}2(μ-dppa)2](ClO4)2 (1), and the multistimuli-responsive mechanism is clarified by investigating its four different solvated compounds 1·2CH3COCH3·2H2O, 1·2DMSO·2H2O, 1·4CH3OH, and 1·4CH2Cl2. It is shown that luminescence mechanochromism is associated with the breakage of the hydrogen bonds of bmptzH-NH with counter-ions such as ClO4− induced by grinding, while luminescence vapochromism is attributable to the breaking and forming of hydrogen bonds of dppa-NH with solvents, such as acetone, dimethylsulfoxide, and methanol, caused by heating and vapor fuming. In addition, those results might provide new insights into the design and synthesis of multistimuli-responsive multicolor luminescent materials by using various structure-sensitive functional groups, such as distinct N–H ones, to construct switchable hydrogen bonds. |
Author | Chen, Jing-Lin He, Li-Hua Zhao, Feng Zhang, Rui Liu, Sui-Jun Liao, Jin-Sheng Wen, He-Rui |
AuthorAffiliation | State Key Laboratory of Structural Chemistry Jiangxi Science and Technology Normal University Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry Chinese Academy of Sciences Jiangxi University of Science and Technology Fujian Institute of Research on the Structure of Matter School of Chemistry and Chemical Engineering |
AuthorAffiliation_xml | – sequence: 0 name: State Key Laboratory of Structural Chemistry – sequence: 0 name: Jiangxi Science and Technology Normal University – sequence: 0 name: School of Chemistry and Chemical Engineering – sequence: 0 name: Chinese Academy of Sciences – sequence: 0 name: Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry – sequence: 0 name: Fujian Institute of Research on the Structure of Matter – sequence: 0 name: Jiangxi University of Science and Technology |
Author_xml | – sequence: 1 givenname: Rui surname: Zhang fullname: Zhang, Rui – sequence: 2 givenname: Li-Hua surname: He fullname: He, Li-Hua – sequence: 3 givenname: Sui-Jun surname: Liu fullname: Liu, Sui-Jun – sequence: 4 givenname: Jin-Sheng surname: Liao fullname: Liao, Jin-Sheng – sequence: 5 givenname: He-Rui surname: Wen fullname: Wen, He-Rui – sequence: 6 givenname: Jing-Lin surname: Chen fullname: Chen, Jing-Lin – sequence: 7 givenname: Feng surname: Zhao fullname: Zhao, Feng |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38050406$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0c9rFTEQB_AgFftDL96VQC8irCaZvN3NsbRqhVYv9bxkk1mbmk2eSVZ5_72pr32F0lOG8Jnhy8wh2QsxICGvOfvAGaiPFmxhwIXUz8gBl13XKAFyb1eLdp8c5nzDmBBsJV6QfejZiknWHpBfl4svLhc3L941CfM6huz-IJ1v_030MdEcvbNNLrog9cvsAmaDwSAtS0BLxw39dt5YXGOwGArNf10x13r0SK83NsWfGOgYg80vyfNJ-4yv7t4j8uPzp6vT8-bi-5evpycXjQHoSiN72yo5sZUaJ9NzwYTqeoUCLTOc6YlpgBofq7HtyFtYja1CzqEbJy0B4Yi8285dp_h7wVyG2dXE3uuAccmD6FUPHKDtKz1-RG_ikkJNNwjFQPRSSVXV2zu1jDPaYZ3crNNmuF9jBe-3wKSYc8JpRzgbbm80nMHZ1f8bnVTMHmHj6m5dDCVp559uebNtSdnsRj-cHf4BLyiduw |
CitedBy_id | crossref_primary_10_1002_asia_202400413 crossref_primary_10_1016_j_dyepig_2024_112346 |
Cites_doi | 10.1021/acs.inorgchem.2c02506 10.1126/science.aav2865 10.1039/C7TC00443E 10.1002/anie.201209930 10.1021/ic4002829 10.3390/molecules26247651 10.31635/ccschem.020.202000230 10.1021/acs.inorgchem.1c00233 10.1021/ic501720h 10.1021/acs.inorgchem.3c01107 10.1021/acs.inorgchem.3c00383 10.1021/acs.inorgchem.2c03726 10.1021/jacs.5b07394 10.1021/ja953296v 10.1016/j.cej.2013.10.004 10.1021/ja012397s 10.1021/j100785a001 10.1021/acs.inorgchem.1c03092 10.1039/D0SC07058K 10.1021/acs.inorgchem.1c02875 10.1002/anie.201806272 10.1039/C4SC03960B 10.1021/acs.jpclett.0c01462 10.1039/D2QI00359G 10.1021/ic0504893 10.1016/S0009-2614(97)00674-X 10.1021/ja036736o 10.1021/ja306652c 10.1039/C7DT02848B 10.1021/acs.inorgchem.0c01390 10.1021/acs.chemrev.0c00011 10.1021/ja500247b 10.1021/ja1044665 10.1016/j.foodhyd.2019.105424 10.1039/C7DT00532F 10.1039/C5TC03725E 10.1002/chem.201900332 10.1039/C8NJ05924A 10.1021/acs.chemmater.8b02821 10.1021/acs.inorgchem.7b01159 10.1021/ja103112m 10.1002/anie.201905407 10.1038/ncomms4601 10.1021/ja103431d 10.1021/jacs.7b12455 10.1021/acs.inorgchem.7b01870 10.1039/c1dt10358j 10.1063/1.1743279 10.1016/0584-8539(84)80073-2 10.1002/anie.202200236 10.1021/acsmaterialslett.2c00328 10.1016/j.ccr.2017.07.010 10.1021/ja506577g 10.1021/acsami.7b18718 10.1039/c3dt51254a 10.1021/acs.inorgchem.6b03122 10.1021/acs.chemmater.7b01790 10.1021/acs.inorgchem.0c02445 10.1002/adom.202000097 10.1039/D3QI00313B 10.1016/j.saa.2019.117280 10.1007/s10973-018-7784-8 10.1016/j.micromeso.2016.03.024 10.1002/anie.202217054 10.1021/jacs.9b10607 10.1021/jacs.7b00587 10.1021/acs.organomet.0c00301 10.1016/j.molliq.2022.120659 10.1039/D1CE01574E 10.1016/j.cej.2016.03.149 10.1021/ic051412h 10.1021/ic0003067 10.1021/acs.inorgchem.1c00628 10.1021/jacs.9b10497 10.1021/ja017482e 10.1021/acs.inorgchem.1c02807 10.1039/C5CP07386C 10.1039/D0TC04607H |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2024 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2024 |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1039/d3dt03124a |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1477-9234 |
EndPage | 345 |
ExternalDocumentID | 38050406 10_1039_D3DT03124A d3dt03124a |
Genre | Journal Article |
GroupedDBID | --- -DZ -JG -~X 0-7 0R~ 29F 4.4 53G 5GY 70~ 7~J AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFVBQ AGEGJ AGKEF AGRSR AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CS3 D0L DU5 EBS ECGLT EE0 EF- F5P GGIMP GNO H13 HZ~ H~N IDZ J3G J3H J3I M4U O9- R7B R7C RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UCJ UPT VH6 VQA WH7 AAYXX AFRZK AKMSF ALUYA CITATION R56 NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c337t-48d694f059bfc812029789e2ed0c10af0a33050e94fd6b1635b69e1137bfa43e3 |
ISSN | 1477-9226 1477-9234 |
IngestDate | Fri Jul 11 08:59:27 EDT 2025 Mon Jun 30 02:34:57 EDT 2025 Mon Jul 21 06:06:36 EDT 2025 Thu Apr 24 22:51:55 EDT 2025 Tue Jul 01 04:27:30 EDT 2025 Tue Dec 17 20:58:16 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c337t-48d694f059bfc812029789e2ed0c10af0a33050e94fd6b1635b69e1137bfa43e3 |
Notes | For ESI and crystallographic data in CIF or other electronic format see DOI Electronic supplementary information (ESI) available: Crystallographic data of 2286891-2286894 https://doi.org/10.1039/d3dt03124a 1a-1d (CIF file) and characterization data of (PDF). CCDC ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6497-2955 0000-0003-2436-5875 0000-0002-0797-5332 0000-0002-1973-9273 0000-0002-7705-0634 |
PMID | 38050406 |
PQID | 2903284949 |
PQPubID | 2047498 |
PageCount | 7 |
ParticipantIDs | crossref_primary_10_1039_D3DT03124A pubmed_primary_38050406 proquest_journals_2903284949 rsc_primary_d3dt03124a crossref_citationtrail_10_1039_D3DT03124A proquest_miscellaneous_2898313368 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-19 |
PublicationDateYYYYMMDD | 2023-12-19 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Dalton transactions : an international journal of inorganic chemistry |
PublicationTitleAlternate | Dalton Trans |
PublicationYear | 2023 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Lin (D3DT03124A/cit62/1) 2014; 237 Dean (D3DT03124A/cit67/1) 2012; 134 Zhang (D3DT03124A/cit68/1) 2020; 3 Smith (D3DT03124A/cit21/1) 2010; 132 Sun (D3DT03124A/cit15/1) 2014; 5 Tunsrichon (D3DT03124A/cit59/1) 2021; 60 Jia (D3DT03124A/cit22/1) 2005; 44 Zheng (D3DT03124A/cit40/1) 2020; 120 Frank (D3DT03124A/cit34/1) 2013; 42 Ding (D3DT03124A/cit73/1) 2020; 8 Hou (D3DT03124A/cit31/1) 2011; 40 Chen (D3DT03124A/cit27/1) 2019; 43 Johnson (D3DT03124A/cit35/1) 2014; 53 Harisomayajula (D3DT03124A/cit45/1) 2019; 25 Aakeröy (D3DT03124A/cit49/1) 1996; 118 Chen (D3DT03124A/cit50/1) 2002; 124 Nejad (D3DT03124A/cit60/1) 2020; 11 Yoon (D3DT03124A/cit1/1) 2010; 132 Jalali (D3DT03124A/cit66/1) 2016; 228 White-Morris (D3DT03124A/cit10/1) 2002; 124 Yu (D3DT03124A/cit46/1) 2017; 29 Zhang (D3DT03124A/cit38/1) 2023; 62 Sun (D3DT03124A/cit30/1) 2022; 24 Ma (D3DT03124A/cit74/1) 2023; 62 Yin (D3DT03124A/cit77/1) 2021; 60 Benito (D3DT03124A/cit78/1) 2014; 136 Ju (D3DT03124A/cit19/1) 2022; 9 Stewart (D3DT03124A/cit57/1) 1957; 26 Leung (D3DT03124A/cit12/1) 2019; 141 Alconchel (D3DT03124A/cit20/1) 2021; 60 Wang (D3DT03124A/cit58/1) 2019; 136 Lü (D3DT03124A/cit53/1) 2014; 136 Seki (D3DT03124A/cit9/1) 2015; 6 Xie (D3DT03124A/cit41/1) 2021; 12 Majerz (D3DT03124A/cit54/1) 1997; 274 Chen (D3DT03124A/cit47/1) 2020; 8 Tang (D3DT03124A/cit44/1) 2023; 10 Jin (D3DT03124A/cit8/1) 2018; 140 Fornaro (D3DT03124A/cit65/1) 2016; 18 Wu (D3DT03124A/cit76/1) 2019; 58 Chen (D3DT03124A/cit55/1) 2013; 52 Yu (D3DT03124A/cit23/1) 2022; 61 Hansen (D3DT03124A/cit69/1) 2021; 26 Nayak (D3DT03124A/cit43/1) 2021; 60 Tian (D3DT03124A/cit72/1) 2016; 297 Jia (D3DT03124A/cit6/1) 2022; 4 Chen (D3DT03124A/cit3/1) 2015; 137 He (D3DT03124A/cit28/1) 2017; 56 Bondi (D3DT03124A/cit42/1) 1964; 68 Huang (D3DT03124A/cit26/1) 2022; 61 Perruchas (D3DT03124A/cit5/1) 2010; 132 Olagunju (D3DT03124A/cit61/1) 2020; 100 Hamze (D3DT03124A/cit25/1) 2019; 363 Wijaya (D3DT03124A/cit52/1) 2019; 141 Zhang (D3DT03124A/cit29/1) 2019; 223 Keller (D3DT03124A/cit33/1) 2016; 4 Zhang (D3DT03124A/cit18/1) 2023; 62 Lather (D3DT03124A/cit56/1) 2019; 58 Brown (D3DT03124A/cit16/1) 2018; 30 Chen (D3DT03124A/cit39/1) 2017; 46 Huitorel (D3DT03124A/cit75/1) 2017; 56 Seki (D3DT03124A/cit11/1) 2017; 139 Hasegawa (D3DT03124A/cit70/1) 2017; 56 Barnes (D3DT03124A/cit64/1) 1984; 40 Xiong (D3DT03124A/cit4/1) 2018; 10 McCormick (D3DT03124A/cit32/1) 2006; 45 Ohara (D3DT03124A/cit71/1) 2017; 46 Jamshidi (D3DT03124A/cit36/1) 2020; 39 Fliedel (D3DT03124A/cit37/1) 2018; 355 Fizer (D3DT03124A/cit63/1) 2022; 368 Tzeng (D3DT03124A/cit14/1) 2023; 62 Lin (D3DT03124A/cit17/1) 2017; 5 Wu (D3DT03124A/cit51/1) 2013; 52 Lien (D3DT03124A/cit13/1) 2020; 59 Onoda (D3DT03124A/cit48/1) 2001; 40 Dai (D3DT03124A/cit2/1) 2022; 61 Peng (D3DT03124A/cit24/1) 2020; 59 Dias (D3DT03124A/cit7/1) 2003; 125 |
References_xml | – volume: 61 start-page: 15629 year: 2022 ident: D3DT03124A/cit26/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.2c02506 – volume: 363 start-page: 601 year: 2019 ident: D3DT03124A/cit25/1 publication-title: Science doi: 10.1126/science.aav2865 – volume: 5 start-page: 4495 year: 2017 ident: D3DT03124A/cit17/1 publication-title: J. Mater. Chem. C doi: 10.1039/C7TC00443E – volume: 52 start-page: 5096 year: 2013 ident: D3DT03124A/cit51/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201209930 – volume: 52 start-page: 9727 year: 2013 ident: D3DT03124A/cit55/1 publication-title: Inorg. Chem. doi: 10.1021/ic4002829 – volume: 26 start-page: 7651 year: 2021 ident: D3DT03124A/cit69/1 publication-title: Molecules doi: 10.3390/molecules26247651 – volume: 3 start-page: 829 year: 2020 ident: D3DT03124A/cit68/1 publication-title: CCS Chem. doi: 10.31635/ccschem.020.202000230 – volume: 60 start-page: 9387 year: 2021 ident: D3DT03124A/cit77/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.1c00233 – volume: 53 start-page: 10611 year: 2014 ident: D3DT03124A/cit35/1 publication-title: Inorg. Chem. doi: 10.1021/ic501720h – volume: 62 start-page: 11510 year: 2023 ident: D3DT03124A/cit38/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.3c01107 – volume: 62 start-page: 7753 year: 2023 ident: D3DT03124A/cit18/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.3c00383 – volume: 62 start-page: 916 year: 2023 ident: D3DT03124A/cit14/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.2c03726 – volume: 137 start-page: 11590 year: 2015 ident: D3DT03124A/cit3/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b07394 – volume: 118 start-page: 10134 year: 1996 ident: D3DT03124A/cit49/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja953296v – volume: 237 start-page: 38 year: 2014 ident: D3DT03124A/cit62/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.10.004 – volume: 124 start-page: 2327 year: 2002 ident: D3DT03124A/cit10/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja012397s – volume: 68 start-page: 441 year: 1964 ident: D3DT03124A/cit42/1 publication-title: J. Phys. Chem. doi: 10.1021/j100785a001 – volume: 60 start-page: 18521 year: 2021 ident: D3DT03124A/cit20/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.1c03092 – volume: 12 start-page: 4425 year: 2021 ident: D3DT03124A/cit41/1 publication-title: Chem. Sci. doi: 10.1039/D0SC07058K – volume: 60 start-page: 18242 year: 2021 ident: D3DT03124A/cit59/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.1c02875 – volume: 58 start-page: 3027 year: 2019 ident: D3DT03124A/cit76/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201806272 – volume: 6 start-page: 2187 year: 2015 ident: D3DT03124A/cit9/1 publication-title: Chem. Sci. doi: 10.1039/C4SC03960B – volume: 11 start-page: 5228 year: 2020 ident: D3DT03124A/cit60/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.0c01462 – volume: 9 start-page: 2305 year: 2022 ident: D3DT03124A/cit19/1 publication-title: Inorg. Chem. Front. doi: 10.1039/D2QI00359G – volume: 44 start-page: 5706 year: 2005 ident: D3DT03124A/cit22/1 publication-title: Inorg. Chem. doi: 10.1021/ic0504893 – volume: 274 start-page: 361 year: 1997 ident: D3DT03124A/cit54/1 publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(97)00674-X – volume: 125 start-page: 12072 year: 2003 ident: D3DT03124A/cit7/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja036736o – volume: 134 start-page: 17186 year: 2012 ident: D3DT03124A/cit67/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja306652c – volume: 46 start-page: 13077 year: 2017 ident: D3DT03124A/cit39/1 publication-title: Dalton Trans. doi: 10.1039/C7DT02848B – volume: 59 start-page: 11584 year: 2020 ident: D3DT03124A/cit13/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.0c01390 – volume: 120 start-page: 9675 year: 2020 ident: D3DT03124A/cit40/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00011 – volume: 136 start-page: 11311 year: 2014 ident: D3DT03124A/cit78/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja500247b – volume: 132 start-page: 13675 year: 2010 ident: D3DT03124A/cit1/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1044665 – volume: 100 start-page: 105424 year: 2020 ident: D3DT03124A/cit61/1 publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2019.105424 – volume: 46 start-page: 3755 year: 2017 ident: D3DT03124A/cit71/1 publication-title: Dalton Trans. doi: 10.1039/C7DT00532F – volume: 4 start-page: 3857 year: 2016 ident: D3DT03124A/cit33/1 publication-title: J. Mater. Chem. C doi: 10.1039/C5TC03725E – volume: 25 start-page: 8936 year: 2019 ident: D3DT03124A/cit45/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201900332 – volume: 43 start-page: 4261 year: 2019 ident: D3DT03124A/cit27/1 publication-title: New J. Chem. doi: 10.1039/C8NJ05924A – volume: 30 start-page: 5786 year: 2018 ident: D3DT03124A/cit16/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b02821 – volume: 56 start-page: 10311 year: 2017 ident: D3DT03124A/cit28/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.7b01159 – volume: 132 start-page: 14079 year: 2010 ident: D3DT03124A/cit21/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja103112m – volume: 58 start-page: 10635 year: 2019 ident: D3DT03124A/cit56/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201905407 – volume: 5 start-page: 3601 year: 2014 ident: D3DT03124A/cit15/1 publication-title: Nat. Commun. doi: 10.1038/ncomms4601 – volume: 132 start-page: 10967 year: 2010 ident: D3DT03124A/cit5/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja103431d – volume: 140 start-page: 2875 year: 2018 ident: D3DT03124A/cit8/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b12455 – volume: 56 start-page: 12379 year: 2017 ident: D3DT03124A/cit75/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.7b01870 – volume: 40 start-page: 7551 year: 2011 ident: D3DT03124A/cit31/1 publication-title: Dalton Trans. doi: 10.1039/c1dt10358j – volume: 26 start-page: 248 year: 1957 ident: D3DT03124A/cit57/1 publication-title: J. Chem. Phys. doi: 10.1063/1.1743279 – volume: 40 start-page: 419 year: 1984 ident: D3DT03124A/cit64/1 publication-title: Spectrochim. Acta doi: 10.1016/0584-8539(84)80073-2 – volume: 61 start-page: e202200236 year: 2022 ident: D3DT03124A/cit2/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202200236 – volume: 4 start-page: 1306 year: 2022 ident: D3DT03124A/cit6/1 publication-title: ACS Mater. Lett. doi: 10.1021/acsmaterialslett.2c00328 – volume: 355 start-page: 1 year: 2018 ident: D3DT03124A/cit37/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2017.07.010 – volume: 136 start-page: 12828 year: 2014 ident: D3DT03124A/cit53/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja506577g – volume: 10 start-page: 5819 year: 2018 ident: D3DT03124A/cit4/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b18718 – volume: 42 start-page: 11252 year: 2013 ident: D3DT03124A/cit34/1 publication-title: Dalton Trans. doi: 10.1039/c3dt51254a – volume: 56 start-page: 4928 year: 2017 ident: D3DT03124A/cit70/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.6b03122 – volume: 29 start-page: 8093 year: 2017 ident: D3DT03124A/cit46/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b01790 – volume: 59 start-page: 17213 year: 2020 ident: D3DT03124A/cit24/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.0c02445 – volume: 8 start-page: 2000097 year: 2020 ident: D3DT03124A/cit73/1 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.202000097 – volume: 10 start-page: 2594 year: 2023 ident: D3DT03124A/cit44/1 publication-title: Inorg. Chem. Front. doi: 10.1039/D3QI00313B – volume: 223 start-page: 117280 year: 2019 ident: D3DT03124A/cit29/1 publication-title: Acta, Part A doi: 10.1016/j.saa.2019.117280 – volume: 136 start-page: 1631 year: 2019 ident: D3DT03124A/cit58/1 publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-018-7784-8 – volume: 228 start-page: 1 year: 2016 ident: D3DT03124A/cit66/1 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2016.03.024 – volume: 62 start-page: e202217054 year: 2023 ident: D3DT03124A/cit74/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202217054 – volume: 141 start-page: 19466 year: 2019 ident: D3DT03124A/cit12/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b10607 – volume: 139 start-page: 6514 year: 2017 ident: D3DT03124A/cit11/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b00587 – volume: 39 start-page: 3099 year: 2020 ident: D3DT03124A/cit36/1 publication-title: Organometallics doi: 10.1021/acs.organomet.0c00301 – volume: 368 start-page: 120659 year: 2022 ident: D3DT03124A/cit63/1 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2022.120659 – volume: 24 start-page: 1258 year: 2022 ident: D3DT03124A/cit30/1 publication-title: CrystEngComm doi: 10.1039/D1CE01574E – volume: 297 start-page: 26 year: 2016 ident: D3DT03124A/cit72/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.03.149 – volume: 45 start-page: 147 year: 2006 ident: D3DT03124A/cit32/1 publication-title: Inorg. Chem. doi: 10.1021/ic051412h – volume: 40 start-page: 516 year: 2001 ident: D3DT03124A/cit48/1 publication-title: Inorg. Chem. doi: 10.1021/ic0003067 – volume: 60 start-page: 8075 year: 2021 ident: D3DT03124A/cit43/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.1c00628 – volume: 141 start-page: 19436 year: 2019 ident: D3DT03124A/cit52/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b10497 – volume: 124 start-page: 3064 year: 2002 ident: D3DT03124A/cit50/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja017482e – volume: 61 start-page: 254 year: 2022 ident: D3DT03124A/cit23/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.1c02807 – volume: 18 start-page: 8479 year: 2016 ident: D3DT03124A/cit65/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C5CP07386C – volume: 8 start-page: 16160 year: 2020 ident: D3DT03124A/cit47/1 publication-title: J. Mater. Chem. C doi: 10.1039/D0TC04607H |
SSID | ssj0022052 |
Score | 2.4271882 |
Snippet | Revealing the stimuli-responsive mechanism is the key to the accurate design of stimuli-responsive luminescent materials. We report herein the... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 339 |
SubjectTerms | Functional groups Hydrogen bonds Luminescence Solid state Stimuli |
Title | Multistimuli-responsive multicolor solid-state luminescence tuned by NH-dependent switchable hydrogen bonds |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38050406 https://www.proquest.com/docview/2903284949 https://www.proquest.com/docview/2898313368 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZK9wAXxGuhsCAjuKDKkNhpmhyrbVdlVRUJUmlvUew42giUojYBLT-BX834lbRqkRYuUeWO8vB8nhmP54HQW1VGymciJqOCcxLQsU_iPMyJGI8CX-lAwXWU7zKcr4LLq9FVr_d7J2qpqfl78etoXsn_cBXGgK8qS_YfONveFAbgN_AXrsBhuN6Kxzp7FtaoCnEiGxvt-kOaKEFVjnozhBcoc6LThoYgh1SQu9CLuW4qY3wu58R1wq2H258lsFGnU13f5Js1PHrI1zYb2Bmx00y1olbdJVyr8a32LGSVrj7RORj3ylKY_lFiKFyLuQOf9eem7FyzxmFA5k2rNxZlY-KISnLZdJFEZWYOj8qKfLmWVhFbPwZlKibESksjegN1mEyta1MeGbPy2hQX3sOlEb7MlEU6UAoeUzVVc5bXIMFosKP63HH_8lN6sVos0mR2ldxBJxS2HLSPTiaz5OOi3b5TT_dvat_JFbtl8Yfu3vvmzcGeBSyYjessoy2Y5AG6b7ceeGJw9BD1ZPUI3T137HiMvv4FT7jDE97BE97FE9Z4wvwG7-IJd3jCDk9Y4-kJWl3MkvM5sc04iGBsXJMgysM4KMAa54UAq1A1PYtiSWXuCd_LCi9joDo8CTR5yMHKH_Ewlr7PxrzIAibZKepX60o-Q7gAUirlmAaRCIA-i3zh5xmLuAxi6okBeufmMBW2Ur1qmPIt1RETLE6nbJro-Z4M0JuW9rupz3KU6syxIrXQ36Y0VrUkVXWmAXrd_g1Tro7MskquG6CJ4oj5jIXRAD01LGwfwyL4XrCHB-gUeNoOd1h4fovbvkD3usVwhvr1ppEvwcyt-SuLvz9JTq5s |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multistimuli-responsive+multicolor+solid-state+luminescence+tuned+by+NH-dependent+switchable+hydrogen+bonds&rft.jtitle=Dalton+transactions+%3A+an+international+journal+of+inorganic+chemistry&rft.au=Zhang%2C+Rui&rft.au=He%2C+Li-Hua&rft.au=Liu%2C+Sui-Jun&rft.au=Liao%2C+Jin-Sheng&rft.date=2023-12-19&rft.issn=1477-9234&rft.eissn=1477-9234&rft.volume=53&rft.issue=1&rft.spage=339&rft_id=info:doi/10.1039%2Fd3dt03124a&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-9226&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-9226&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-9226&client=summon |