Multistimuli-responsive multicolor solid-state luminescence tuned by NH-dependent switchable hydrogen bonds

Revealing the stimuli-responsive mechanism is the key to the accurate design of stimuli-responsive luminescent materials. We report herein the multistimuli-responsive multicolor solid-state luminescence of a new dicopper( i ) complex [{Cu(bpmtzH)} 2 (μ-dppa) 2 ](ClO 4 ) 2 ( 1 ), and the multistimuli...

Full description

Saved in:
Bibliographic Details
Published inDalton transactions : an international journal of inorganic chemistry Vol. 53; no. 1; pp. 339 - 345
Main Authors Zhang, Rui, He, Li-Hua, Liu, Sui-Jun, Liao, Jin-Sheng, Wen, He-Rui, Chen, Jing-Lin, Zhao, Feng
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 19.12.2023
Subjects
Online AccessGet full text
ISSN1477-9226
1477-9234
1477-9234
DOI10.1039/d3dt03124a

Cover

Loading…
Abstract Revealing the stimuli-responsive mechanism is the key to the accurate design of stimuli-responsive luminescent materials. We report herein the multistimuli-responsive multicolor solid-state luminescence of a new dicopper( i ) complex [{Cu(bpmtzH)} 2 (μ-dppa) 2 ](ClO 4 ) 2 ( 1 ), and the multistimuli-responsive mechanism is clarified by investigating its four different solvated compounds 1 ·2CH 3 COCH 3 ·2H 2 O, 1 ·2DMSO·2H 2 O, 1 ·4CH 3 OH, and 1 ·4CH 2 Cl 2 . It is shown that luminescence mechanochromism is associated with the breakage of the hydrogen bonds of bmptzH-NH with counter-ions such as ClO 4 − induced by grinding, while luminescence vapochromism is attributable to the breaking and forming of hydrogen bonds of dppa-NH with solvents, such as acetone, dimethylsulfoxide, and methanol, caused by heating and vapor fuming. In addition, those results might provide new insights into the design and synthesis of multistimuli-responsive multicolor luminescent materials by using various structure-sensitive functional groups, such as distinct N-H ones, to construct switchable hydrogen bonds. Stimuli-responsive multicolor solid-state luminescence is tuned by NH-dependent switchable hydrogen bonds, in which luminescence vapochromism and mechanochromism are associated with hydrogen bonding with dppa-NH and bpmtzH-NH, respectively.
AbstractList Revealing the stimuli-responsive mechanism is the key to the accurate design of stimuli-responsive luminescent materials. We report herein the multistimuli-responsive multicolor solid-state luminescence of a new dicopper( i ) complex [{Cu(bpmtzH)} 2 (μ-dppa) 2 ](ClO 4 ) 2 ( 1 ), and the multistimuli-responsive mechanism is clarified by investigating its four different solvated compounds 1 ·2CH 3 COCH 3 ·2H 2 O, 1 ·2DMSO·2H 2 O, 1 ·4CH 3 OH, and 1 ·4CH 2 Cl 2 . It is shown that luminescence mechanochromism is associated with the breakage of the hydrogen bonds of bmptzH-NH with counter-ions such as ClO 4 − induced by grinding, while luminescence vapochromism is attributable to the breaking and forming of hydrogen bonds of dppa-NH with solvents, such as acetone, dimethylsulfoxide, and methanol, caused by heating and vapor fuming. In addition, those results might provide new insights into the design and synthesis of multistimuli-responsive multicolor luminescent materials by using various structure-sensitive functional groups, such as distinct N-H ones, to construct switchable hydrogen bonds. Stimuli-responsive multicolor solid-state luminescence is tuned by NH-dependent switchable hydrogen bonds, in which luminescence vapochromism and mechanochromism are associated with hydrogen bonding with dppa-NH and bpmtzH-NH, respectively.
Revealing the stimuli-responsive mechanism is the key to the accurate design of stimuli-responsive luminescent materials. We report herein the multistimuli-responsive multicolor solid-state luminescence of a new dicopper(I) complex [{Cu(bpmtzH)} (μ-dppa) ](ClO ) (1), and the multistimuli-responsive mechanism is clarified by investigating its four different solvated compounds 1·2CH COCH ·2H O, 1·2DMSO·2H O, 1·4CH OH, and 1·4CH Cl . It is shown that luminescence mechanochromism is associated with the breakage of the hydrogen bonds of bmptzH-NH with counter-ions such as ClO induced by grinding, while luminescence vapochromism is attributable to the breaking and forming of hydrogen bonds of dppa-NH with solvents, such as acetone, dimethylsulfoxide, and methanol, caused by heating and vapor fuming. In addition, those results might provide new insights into the design and synthesis of multistimuli-responsive multicolor luminescent materials by using various structure-sensitive functional groups, such as distinct N-H ones, to construct switchable hydrogen bonds.
Revealing the stimuli-responsive mechanism is the key to the accurate design of stimuli-responsive luminescent materials. We report herein the multistimuli-responsive multicolor solid-state luminescence of a new dicopper( i ) complex [{Cu(bpmtzH)} 2 (μ-dppa) 2 ](ClO 4 ) 2 (1), and the multistimuli-responsive mechanism is clarified by investigating its four different solvated compounds 1·2CH 3 COCH 3 ·2H 2 O, 1·2DMSO·2H 2 O, 1·4CH 3 OH, and 1·4CH 2 Cl 2 . It is shown that luminescence mechanochromism is associated with the breakage of the hydrogen bonds of bmptzH-NH with counter-ions such as ClO 4 − induced by grinding, while luminescence vapochromism is attributable to the breaking and forming of hydrogen bonds of dppa-NH with solvents, such as acetone, dimethylsulfoxide, and methanol, caused by heating and vapor fuming. In addition, those results might provide new insights into the design and synthesis of multistimuli-responsive multicolor luminescent materials by using various structure-sensitive functional groups, such as distinct N–H ones, to construct switchable hydrogen bonds.
Revealing the stimuli-responsive mechanism is the key to the accurate design of stimuli-responsive luminescent materials. We report herein the multistimuli-responsive multicolor solid-state luminescence of a new dicopper(I) complex [{Cu(bpmtzH)}2(μ-dppa)2](ClO4)2 (1), and the multistimuli-responsive mechanism is clarified by investigating its four different solvated compounds 1·2CH3COCH3·2H2O, 1·2DMSO·2H2O, 1·4CH3OH, and 1·4CH2Cl2. It is shown that luminescence mechanochromism is associated with the breakage of the hydrogen bonds of bmptzH-NH with counter-ions such as ClO4- induced by grinding, while luminescence vapochromism is attributable to the breaking and forming of hydrogen bonds of dppa-NH with solvents, such as acetone, dimethylsulfoxide, and methanol, caused by heating and vapor fuming. In addition, those results might provide new insights into the design and synthesis of multistimuli-responsive multicolor luminescent materials by using various structure-sensitive functional groups, such as distinct N-H ones, to construct switchable hydrogen bonds.Revealing the stimuli-responsive mechanism is the key to the accurate design of stimuli-responsive luminescent materials. We report herein the multistimuli-responsive multicolor solid-state luminescence of a new dicopper(I) complex [{Cu(bpmtzH)}2(μ-dppa)2](ClO4)2 (1), and the multistimuli-responsive mechanism is clarified by investigating its four different solvated compounds 1·2CH3COCH3·2H2O, 1·2DMSO·2H2O, 1·4CH3OH, and 1·4CH2Cl2. It is shown that luminescence mechanochromism is associated with the breakage of the hydrogen bonds of bmptzH-NH with counter-ions such as ClO4- induced by grinding, while luminescence vapochromism is attributable to the breaking and forming of hydrogen bonds of dppa-NH with solvents, such as acetone, dimethylsulfoxide, and methanol, caused by heating and vapor fuming. In addition, those results might provide new insights into the design and synthesis of multistimuli-responsive multicolor luminescent materials by using various structure-sensitive functional groups, such as distinct N-H ones, to construct switchable hydrogen bonds.
Revealing the stimuli-responsive mechanism is the key to the accurate design of stimuli-responsive luminescent materials. We report herein the multistimuli-responsive multicolor solid-state luminescence of a new dicopper(i) complex [{Cu(bpmtzH)}2(μ-dppa)2](ClO4)2 (1), and the multistimuli-responsive mechanism is clarified by investigating its four different solvated compounds 1·2CH3COCH3·2H2O, 1·2DMSO·2H2O, 1·4CH3OH, and 1·4CH2Cl2. It is shown that luminescence mechanochromism is associated with the breakage of the hydrogen bonds of bmptzH-NH with counter-ions such as ClO4− induced by grinding, while luminescence vapochromism is attributable to the breaking and forming of hydrogen bonds of dppa-NH with solvents, such as acetone, dimethylsulfoxide, and methanol, caused by heating and vapor fuming. In addition, those results might provide new insights into the design and synthesis of multistimuli-responsive multicolor luminescent materials by using various structure-sensitive functional groups, such as distinct N–H ones, to construct switchable hydrogen bonds.
Author Chen, Jing-Lin
He, Li-Hua
Zhao, Feng
Zhang, Rui
Liu, Sui-Jun
Liao, Jin-Sheng
Wen, He-Rui
AuthorAffiliation State Key Laboratory of Structural Chemistry
Jiangxi Science and Technology Normal University
Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry
Chinese Academy of Sciences
Jiangxi University of Science and Technology
Fujian Institute of Research on the Structure of Matter
School of Chemistry and Chemical Engineering
AuthorAffiliation_xml – sequence: 0
  name: State Key Laboratory of Structural Chemistry
– sequence: 0
  name: Jiangxi Science and Technology Normal University
– sequence: 0
  name: School of Chemistry and Chemical Engineering
– sequence: 0
  name: Chinese Academy of Sciences
– sequence: 0
  name: Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry
– sequence: 0
  name: Fujian Institute of Research on the Structure of Matter
– sequence: 0
  name: Jiangxi University of Science and Technology
Author_xml – sequence: 1
  givenname: Rui
  surname: Zhang
  fullname: Zhang, Rui
– sequence: 2
  givenname: Li-Hua
  surname: He
  fullname: He, Li-Hua
– sequence: 3
  givenname: Sui-Jun
  surname: Liu
  fullname: Liu, Sui-Jun
– sequence: 4
  givenname: Jin-Sheng
  surname: Liao
  fullname: Liao, Jin-Sheng
– sequence: 5
  givenname: He-Rui
  surname: Wen
  fullname: Wen, He-Rui
– sequence: 6
  givenname: Jing-Lin
  surname: Chen
  fullname: Chen, Jing-Lin
– sequence: 7
  givenname: Feng
  surname: Zhao
  fullname: Zhao, Feng
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38050406$$D View this record in MEDLINE/PubMed
BookMark eNpt0c9rFTEQB_AgFftDL96VQC8irCaZvN3NsbRqhVYv9bxkk1mbmk2eSVZ5_72pr32F0lOG8Jnhy8wh2QsxICGvOfvAGaiPFmxhwIXUz8gBl13XKAFyb1eLdp8c5nzDmBBsJV6QfejZiknWHpBfl4svLhc3L941CfM6huz-IJ1v_030MdEcvbNNLrog9cvsAmaDwSAtS0BLxw39dt5YXGOwGArNf10x13r0SK83NsWfGOgYg80vyfNJ-4yv7t4j8uPzp6vT8-bi-5evpycXjQHoSiN72yo5sZUaJ9NzwYTqeoUCLTOc6YlpgBofq7HtyFtYja1CzqEbJy0B4Yi8285dp_h7wVyG2dXE3uuAccmD6FUPHKDtKz1-RG_ikkJNNwjFQPRSSVXV2zu1jDPaYZ3crNNmuF9jBe-3wKSYc8JpRzgbbm80nMHZ1f8bnVTMHmHj6m5dDCVp559uebNtSdnsRj-cHf4BLyiduw
CitedBy_id crossref_primary_10_1002_asia_202400413
crossref_primary_10_1016_j_dyepig_2024_112346
Cites_doi 10.1021/acs.inorgchem.2c02506
10.1126/science.aav2865
10.1039/C7TC00443E
10.1002/anie.201209930
10.1021/ic4002829
10.3390/molecules26247651
10.31635/ccschem.020.202000230
10.1021/acs.inorgchem.1c00233
10.1021/ic501720h
10.1021/acs.inorgchem.3c01107
10.1021/acs.inorgchem.3c00383
10.1021/acs.inorgchem.2c03726
10.1021/jacs.5b07394
10.1021/ja953296v
10.1016/j.cej.2013.10.004
10.1021/ja012397s
10.1021/j100785a001
10.1021/acs.inorgchem.1c03092
10.1039/D0SC07058K
10.1021/acs.inorgchem.1c02875
10.1002/anie.201806272
10.1039/C4SC03960B
10.1021/acs.jpclett.0c01462
10.1039/D2QI00359G
10.1021/ic0504893
10.1016/S0009-2614(97)00674-X
10.1021/ja036736o
10.1021/ja306652c
10.1039/C7DT02848B
10.1021/acs.inorgchem.0c01390
10.1021/acs.chemrev.0c00011
10.1021/ja500247b
10.1021/ja1044665
10.1016/j.foodhyd.2019.105424
10.1039/C7DT00532F
10.1039/C5TC03725E
10.1002/chem.201900332
10.1039/C8NJ05924A
10.1021/acs.chemmater.8b02821
10.1021/acs.inorgchem.7b01159
10.1021/ja103112m
10.1002/anie.201905407
10.1038/ncomms4601
10.1021/ja103431d
10.1021/jacs.7b12455
10.1021/acs.inorgchem.7b01870
10.1039/c1dt10358j
10.1063/1.1743279
10.1016/0584-8539(84)80073-2
10.1002/anie.202200236
10.1021/acsmaterialslett.2c00328
10.1016/j.ccr.2017.07.010
10.1021/ja506577g
10.1021/acsami.7b18718
10.1039/c3dt51254a
10.1021/acs.inorgchem.6b03122
10.1021/acs.chemmater.7b01790
10.1021/acs.inorgchem.0c02445
10.1002/adom.202000097
10.1039/D3QI00313B
10.1016/j.saa.2019.117280
10.1007/s10973-018-7784-8
10.1016/j.micromeso.2016.03.024
10.1002/anie.202217054
10.1021/jacs.9b10607
10.1021/jacs.7b00587
10.1021/acs.organomet.0c00301
10.1016/j.molliq.2022.120659
10.1039/D1CE01574E
10.1016/j.cej.2016.03.149
10.1021/ic051412h
10.1021/ic0003067
10.1021/acs.inorgchem.1c00628
10.1021/jacs.9b10497
10.1021/ja017482e
10.1021/acs.inorgchem.1c02807
10.1039/C5CP07386C
10.1039/D0TC04607H
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2024
Copyright_xml – notice: Copyright Royal Society of Chemistry 2024
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/d3dt03124a
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList
PubMed
CrossRef
MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1477-9234
EndPage 345
ExternalDocumentID 38050406
10_1039_D3DT03124A
d3dt03124a
Genre Journal Article
GroupedDBID ---
-DZ
-JG
-~X
0-7
0R~
29F
4.4
53G
5GY
70~
7~J
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFVBQ
AGEGJ
AGKEF
AGRSR
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CS3
D0L
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3G
J3H
J3I
M4U
O9-
R7B
R7C
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UCJ
UPT
VH6
VQA
WH7
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
R56
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c337t-48d694f059bfc812029789e2ed0c10af0a33050e94fd6b1635b69e1137bfa43e3
ISSN 1477-9226
1477-9234
IngestDate Fri Jul 11 08:59:27 EDT 2025
Mon Jun 30 02:34:57 EDT 2025
Mon Jul 21 06:06:36 EDT 2025
Thu Apr 24 22:51:55 EDT 2025
Tue Jul 01 04:27:30 EDT 2025
Tue Dec 17 20:58:16 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c337t-48d694f059bfc812029789e2ed0c10af0a33050e94fd6b1635b69e1137bfa43e3
Notes For ESI and crystallographic data in CIF or other electronic format see DOI
Electronic supplementary information (ESI) available: Crystallographic data of
2286891-2286894
https://doi.org/10.1039/d3dt03124a
1a-1d
(CIF file) and characterization data of
(PDF). CCDC
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6497-2955
0000-0003-2436-5875
0000-0002-0797-5332
0000-0002-1973-9273
0000-0002-7705-0634
PMID 38050406
PQID 2903284949
PQPubID 2047498
PageCount 7
ParticipantIDs crossref_primary_10_1039_D3DT03124A
pubmed_primary_38050406
proquest_journals_2903284949
rsc_primary_d3dt03124a
crossref_citationtrail_10_1039_D3DT03124A
proquest_miscellaneous_2898313368
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-19
PublicationDateYYYYMMDD 2023-12-19
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-19
  day: 19
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Dalton transactions : an international journal of inorganic chemistry
PublicationTitleAlternate Dalton Trans
PublicationYear 2023
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Lin (D3DT03124A/cit62/1) 2014; 237
Dean (D3DT03124A/cit67/1) 2012; 134
Zhang (D3DT03124A/cit68/1) 2020; 3
Smith (D3DT03124A/cit21/1) 2010; 132
Sun (D3DT03124A/cit15/1) 2014; 5
Tunsrichon (D3DT03124A/cit59/1) 2021; 60
Jia (D3DT03124A/cit22/1) 2005; 44
Zheng (D3DT03124A/cit40/1) 2020; 120
Frank (D3DT03124A/cit34/1) 2013; 42
Ding (D3DT03124A/cit73/1) 2020; 8
Hou (D3DT03124A/cit31/1) 2011; 40
Chen (D3DT03124A/cit27/1) 2019; 43
Johnson (D3DT03124A/cit35/1) 2014; 53
Harisomayajula (D3DT03124A/cit45/1) 2019; 25
Aakeröy (D3DT03124A/cit49/1) 1996; 118
Chen (D3DT03124A/cit50/1) 2002; 124
Nejad (D3DT03124A/cit60/1) 2020; 11
Yoon (D3DT03124A/cit1/1) 2010; 132
Jalali (D3DT03124A/cit66/1) 2016; 228
White-Morris (D3DT03124A/cit10/1) 2002; 124
Yu (D3DT03124A/cit46/1) 2017; 29
Zhang (D3DT03124A/cit38/1) 2023; 62
Sun (D3DT03124A/cit30/1) 2022; 24
Ma (D3DT03124A/cit74/1) 2023; 62
Yin (D3DT03124A/cit77/1) 2021; 60
Benito (D3DT03124A/cit78/1) 2014; 136
Ju (D3DT03124A/cit19/1) 2022; 9
Stewart (D3DT03124A/cit57/1) 1957; 26
Leung (D3DT03124A/cit12/1) 2019; 141
Alconchel (D3DT03124A/cit20/1) 2021; 60
Wang (D3DT03124A/cit58/1) 2019; 136
Lü (D3DT03124A/cit53/1) 2014; 136
Seki (D3DT03124A/cit9/1) 2015; 6
Xie (D3DT03124A/cit41/1) 2021; 12
Majerz (D3DT03124A/cit54/1) 1997; 274
Chen (D3DT03124A/cit47/1) 2020; 8
Tang (D3DT03124A/cit44/1) 2023; 10
Jin (D3DT03124A/cit8/1) 2018; 140
Fornaro (D3DT03124A/cit65/1) 2016; 18
Wu (D3DT03124A/cit76/1) 2019; 58
Chen (D3DT03124A/cit55/1) 2013; 52
Yu (D3DT03124A/cit23/1) 2022; 61
Hansen (D3DT03124A/cit69/1) 2021; 26
Nayak (D3DT03124A/cit43/1) 2021; 60
Tian (D3DT03124A/cit72/1) 2016; 297
Jia (D3DT03124A/cit6/1) 2022; 4
Chen (D3DT03124A/cit3/1) 2015; 137
He (D3DT03124A/cit28/1) 2017; 56
Bondi (D3DT03124A/cit42/1) 1964; 68
Huang (D3DT03124A/cit26/1) 2022; 61
Perruchas (D3DT03124A/cit5/1) 2010; 132
Olagunju (D3DT03124A/cit61/1) 2020; 100
Hamze (D3DT03124A/cit25/1) 2019; 363
Wijaya (D3DT03124A/cit52/1) 2019; 141
Zhang (D3DT03124A/cit29/1) 2019; 223
Keller (D3DT03124A/cit33/1) 2016; 4
Zhang (D3DT03124A/cit18/1) 2023; 62
Lather (D3DT03124A/cit56/1) 2019; 58
Brown (D3DT03124A/cit16/1) 2018; 30
Chen (D3DT03124A/cit39/1) 2017; 46
Huitorel (D3DT03124A/cit75/1) 2017; 56
Seki (D3DT03124A/cit11/1) 2017; 139
Hasegawa (D3DT03124A/cit70/1) 2017; 56
Barnes (D3DT03124A/cit64/1) 1984; 40
Xiong (D3DT03124A/cit4/1) 2018; 10
McCormick (D3DT03124A/cit32/1) 2006; 45
Ohara (D3DT03124A/cit71/1) 2017; 46
Jamshidi (D3DT03124A/cit36/1) 2020; 39
Fliedel (D3DT03124A/cit37/1) 2018; 355
Fizer (D3DT03124A/cit63/1) 2022; 368
Tzeng (D3DT03124A/cit14/1) 2023; 62
Lin (D3DT03124A/cit17/1) 2017; 5
Wu (D3DT03124A/cit51/1) 2013; 52
Lien (D3DT03124A/cit13/1) 2020; 59
Onoda (D3DT03124A/cit48/1) 2001; 40
Dai (D3DT03124A/cit2/1) 2022; 61
Peng (D3DT03124A/cit24/1) 2020; 59
Dias (D3DT03124A/cit7/1) 2003; 125
References_xml – volume: 61
  start-page: 15629
  year: 2022
  ident: D3DT03124A/cit26/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.2c02506
– volume: 363
  start-page: 601
  year: 2019
  ident: D3DT03124A/cit25/1
  publication-title: Science
  doi: 10.1126/science.aav2865
– volume: 5
  start-page: 4495
  year: 2017
  ident: D3DT03124A/cit17/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C7TC00443E
– volume: 52
  start-page: 5096
  year: 2013
  ident: D3DT03124A/cit51/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201209930
– volume: 52
  start-page: 9727
  year: 2013
  ident: D3DT03124A/cit55/1
  publication-title: Inorg. Chem.
  doi: 10.1021/ic4002829
– volume: 26
  start-page: 7651
  year: 2021
  ident: D3DT03124A/cit69/1
  publication-title: Molecules
  doi: 10.3390/molecules26247651
– volume: 3
  start-page: 829
  year: 2020
  ident: D3DT03124A/cit68/1
  publication-title: CCS Chem.
  doi: 10.31635/ccschem.020.202000230
– volume: 60
  start-page: 9387
  year: 2021
  ident: D3DT03124A/cit77/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.1c00233
– volume: 53
  start-page: 10611
  year: 2014
  ident: D3DT03124A/cit35/1
  publication-title: Inorg. Chem.
  doi: 10.1021/ic501720h
– volume: 62
  start-page: 11510
  year: 2023
  ident: D3DT03124A/cit38/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.3c01107
– volume: 62
  start-page: 7753
  year: 2023
  ident: D3DT03124A/cit18/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.3c00383
– volume: 62
  start-page: 916
  year: 2023
  ident: D3DT03124A/cit14/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.2c03726
– volume: 137
  start-page: 11590
  year: 2015
  ident: D3DT03124A/cit3/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b07394
– volume: 118
  start-page: 10134
  year: 1996
  ident: D3DT03124A/cit49/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja953296v
– volume: 237
  start-page: 38
  year: 2014
  ident: D3DT03124A/cit62/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.10.004
– volume: 124
  start-page: 2327
  year: 2002
  ident: D3DT03124A/cit10/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja012397s
– volume: 68
  start-page: 441
  year: 1964
  ident: D3DT03124A/cit42/1
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100785a001
– volume: 60
  start-page: 18521
  year: 2021
  ident: D3DT03124A/cit20/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.1c03092
– volume: 12
  start-page: 4425
  year: 2021
  ident: D3DT03124A/cit41/1
  publication-title: Chem. Sci.
  doi: 10.1039/D0SC07058K
– volume: 60
  start-page: 18242
  year: 2021
  ident: D3DT03124A/cit59/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.1c02875
– volume: 58
  start-page: 3027
  year: 2019
  ident: D3DT03124A/cit76/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201806272
– volume: 6
  start-page: 2187
  year: 2015
  ident: D3DT03124A/cit9/1
  publication-title: Chem. Sci.
  doi: 10.1039/C4SC03960B
– volume: 11
  start-page: 5228
  year: 2020
  ident: D3DT03124A/cit60/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.0c01462
– volume: 9
  start-page: 2305
  year: 2022
  ident: D3DT03124A/cit19/1
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/D2QI00359G
– volume: 44
  start-page: 5706
  year: 2005
  ident: D3DT03124A/cit22/1
  publication-title: Inorg. Chem.
  doi: 10.1021/ic0504893
– volume: 274
  start-page: 361
  year: 1997
  ident: D3DT03124A/cit54/1
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(97)00674-X
– volume: 125
  start-page: 12072
  year: 2003
  ident: D3DT03124A/cit7/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja036736o
– volume: 134
  start-page: 17186
  year: 2012
  ident: D3DT03124A/cit67/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja306652c
– volume: 46
  start-page: 13077
  year: 2017
  ident: D3DT03124A/cit39/1
  publication-title: Dalton Trans.
  doi: 10.1039/C7DT02848B
– volume: 59
  start-page: 11584
  year: 2020
  ident: D3DT03124A/cit13/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.0c01390
– volume: 120
  start-page: 9675
  year: 2020
  ident: D3DT03124A/cit40/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c00011
– volume: 136
  start-page: 11311
  year: 2014
  ident: D3DT03124A/cit78/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja500247b
– volume: 132
  start-page: 13675
  year: 2010
  ident: D3DT03124A/cit1/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1044665
– volume: 100
  start-page: 105424
  year: 2020
  ident: D3DT03124A/cit61/1
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2019.105424
– volume: 46
  start-page: 3755
  year: 2017
  ident: D3DT03124A/cit71/1
  publication-title: Dalton Trans.
  doi: 10.1039/C7DT00532F
– volume: 4
  start-page: 3857
  year: 2016
  ident: D3DT03124A/cit33/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C5TC03725E
– volume: 25
  start-page: 8936
  year: 2019
  ident: D3DT03124A/cit45/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201900332
– volume: 43
  start-page: 4261
  year: 2019
  ident: D3DT03124A/cit27/1
  publication-title: New J. Chem.
  doi: 10.1039/C8NJ05924A
– volume: 30
  start-page: 5786
  year: 2018
  ident: D3DT03124A/cit16/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b02821
– volume: 56
  start-page: 10311
  year: 2017
  ident: D3DT03124A/cit28/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.7b01159
– volume: 132
  start-page: 14079
  year: 2010
  ident: D3DT03124A/cit21/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja103112m
– volume: 58
  start-page: 10635
  year: 2019
  ident: D3DT03124A/cit56/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201905407
– volume: 5
  start-page: 3601
  year: 2014
  ident: D3DT03124A/cit15/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4601
– volume: 132
  start-page: 10967
  year: 2010
  ident: D3DT03124A/cit5/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja103431d
– volume: 140
  start-page: 2875
  year: 2018
  ident: D3DT03124A/cit8/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b12455
– volume: 56
  start-page: 12379
  year: 2017
  ident: D3DT03124A/cit75/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.7b01870
– volume: 40
  start-page: 7551
  year: 2011
  ident: D3DT03124A/cit31/1
  publication-title: Dalton Trans.
  doi: 10.1039/c1dt10358j
– volume: 26
  start-page: 248
  year: 1957
  ident: D3DT03124A/cit57/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1743279
– volume: 40
  start-page: 419
  year: 1984
  ident: D3DT03124A/cit64/1
  publication-title: Spectrochim. Acta
  doi: 10.1016/0584-8539(84)80073-2
– volume: 61
  start-page: e202200236
  year: 2022
  ident: D3DT03124A/cit2/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202200236
– volume: 4
  start-page: 1306
  year: 2022
  ident: D3DT03124A/cit6/1
  publication-title: ACS Mater. Lett.
  doi: 10.1021/acsmaterialslett.2c00328
– volume: 355
  start-page: 1
  year: 2018
  ident: D3DT03124A/cit37/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2017.07.010
– volume: 136
  start-page: 12828
  year: 2014
  ident: D3DT03124A/cit53/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja506577g
– volume: 10
  start-page: 5819
  year: 2018
  ident: D3DT03124A/cit4/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b18718
– volume: 42
  start-page: 11252
  year: 2013
  ident: D3DT03124A/cit34/1
  publication-title: Dalton Trans.
  doi: 10.1039/c3dt51254a
– volume: 56
  start-page: 4928
  year: 2017
  ident: D3DT03124A/cit70/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.6b03122
– volume: 29
  start-page: 8093
  year: 2017
  ident: D3DT03124A/cit46/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b01790
– volume: 59
  start-page: 17213
  year: 2020
  ident: D3DT03124A/cit24/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.0c02445
– volume: 8
  start-page: 2000097
  year: 2020
  ident: D3DT03124A/cit73/1
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.202000097
– volume: 10
  start-page: 2594
  year: 2023
  ident: D3DT03124A/cit44/1
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/D3QI00313B
– volume: 223
  start-page: 117280
  year: 2019
  ident: D3DT03124A/cit29/1
  publication-title: Acta, Part A
  doi: 10.1016/j.saa.2019.117280
– volume: 136
  start-page: 1631
  year: 2019
  ident: D3DT03124A/cit58/1
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-018-7784-8
– volume: 228
  start-page: 1
  year: 2016
  ident: D3DT03124A/cit66/1
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2016.03.024
– volume: 62
  start-page: e202217054
  year: 2023
  ident: D3DT03124A/cit74/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202217054
– volume: 141
  start-page: 19466
  year: 2019
  ident: D3DT03124A/cit12/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b10607
– volume: 139
  start-page: 6514
  year: 2017
  ident: D3DT03124A/cit11/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b00587
– volume: 39
  start-page: 3099
  year: 2020
  ident: D3DT03124A/cit36/1
  publication-title: Organometallics
  doi: 10.1021/acs.organomet.0c00301
– volume: 368
  start-page: 120659
  year: 2022
  ident: D3DT03124A/cit63/1
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2022.120659
– volume: 24
  start-page: 1258
  year: 2022
  ident: D3DT03124A/cit30/1
  publication-title: CrystEngComm
  doi: 10.1039/D1CE01574E
– volume: 297
  start-page: 26
  year: 2016
  ident: D3DT03124A/cit72/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.03.149
– volume: 45
  start-page: 147
  year: 2006
  ident: D3DT03124A/cit32/1
  publication-title: Inorg. Chem.
  doi: 10.1021/ic051412h
– volume: 40
  start-page: 516
  year: 2001
  ident: D3DT03124A/cit48/1
  publication-title: Inorg. Chem.
  doi: 10.1021/ic0003067
– volume: 60
  start-page: 8075
  year: 2021
  ident: D3DT03124A/cit43/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.1c00628
– volume: 141
  start-page: 19436
  year: 2019
  ident: D3DT03124A/cit52/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b10497
– volume: 124
  start-page: 3064
  year: 2002
  ident: D3DT03124A/cit50/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja017482e
– volume: 61
  start-page: 254
  year: 2022
  ident: D3DT03124A/cit23/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.1c02807
– volume: 18
  start-page: 8479
  year: 2016
  ident: D3DT03124A/cit65/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP07386C
– volume: 8
  start-page: 16160
  year: 2020
  ident: D3DT03124A/cit47/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/D0TC04607H
SSID ssj0022052
Score 2.4271882
Snippet Revealing the stimuli-responsive mechanism is the key to the accurate design of stimuli-responsive luminescent materials. We report herein the...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 339
SubjectTerms Functional groups
Hydrogen bonds
Luminescence
Solid state
Stimuli
Title Multistimuli-responsive multicolor solid-state luminescence tuned by NH-dependent switchable hydrogen bonds
URI https://www.ncbi.nlm.nih.gov/pubmed/38050406
https://www.proquest.com/docview/2903284949
https://www.proquest.com/docview/2898313368
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZK9wAXxGuhsCAjuKDKkNhpmhyrbVdlVRUJUmlvUew42giUojYBLT-BX834lbRqkRYuUeWO8vB8nhmP54HQW1VGymciJqOCcxLQsU_iPMyJGI8CX-lAwXWU7zKcr4LLq9FVr_d7J2qpqfl78etoXsn_cBXGgK8qS_YfONveFAbgN_AXrsBhuN6Kxzp7FtaoCnEiGxvt-kOaKEFVjnozhBcoc6LThoYgh1SQu9CLuW4qY3wu58R1wq2H258lsFGnU13f5Js1PHrI1zYb2Bmx00y1olbdJVyr8a32LGSVrj7RORj3ylKY_lFiKFyLuQOf9eem7FyzxmFA5k2rNxZlY-KISnLZdJFEZWYOj8qKfLmWVhFbPwZlKibESksjegN1mEyta1MeGbPy2hQX3sOlEb7MlEU6UAoeUzVVc5bXIMFosKP63HH_8lN6sVos0mR2ldxBJxS2HLSPTiaz5OOi3b5TT_dvat_JFbtl8Yfu3vvmzcGeBSyYjessoy2Y5AG6b7ceeGJw9BD1ZPUI3T137HiMvv4FT7jDE97BE97FE9Z4wvwG7-IJd3jCDk9Y4-kJWl3MkvM5sc04iGBsXJMgysM4KMAa54UAq1A1PYtiSWXuCd_LCi9joDo8CTR5yMHKH_Ewlr7PxrzIAibZKepX60o-Q7gAUirlmAaRCIA-i3zh5xmLuAxi6okBeufmMBW2Ur1qmPIt1RETLE6nbJro-Z4M0JuW9rupz3KU6syxIrXQ36Y0VrUkVXWmAXrd_g1Tro7MskquG6CJ4oj5jIXRAD01LGwfwyL4XrCHB-gUeNoOd1h4fovbvkD3usVwhvr1ppEvwcyt-SuLvz9JTq5s
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multistimuli-responsive+multicolor+solid-state+luminescence+tuned+by+NH-dependent+switchable+hydrogen+bonds&rft.jtitle=Dalton+transactions+%3A+an+international+journal+of+inorganic+chemistry&rft.au=Zhang%2C+Rui&rft.au=He%2C+Li-Hua&rft.au=Liu%2C+Sui-Jun&rft.au=Liao%2C+Jin-Sheng&rft.date=2023-12-19&rft.issn=1477-9234&rft.eissn=1477-9234&rft.volume=53&rft.issue=1&rft.spage=339&rft_id=info:doi/10.1039%2Fd3dt03124a&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-9226&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-9226&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-9226&client=summon