Influence of trivalent Al–Cr co-substitution on the structural, morphological and Mössbauer properties of nickel ferrite nanoparticles
Here, we report the influence of nonmagnetic Al3+ and magnetic Cr3+ co-substitution on the structural, morphological, magnetic and Mössbauer properties of nickel ferrite nanoparticles synthesized via sol-gel auto combustion route. Citric acid was used as a fuel and metal nitrate to fuel ratio was ch...
Saved in:
Published in | Journal of alloys and compounds Vol. 821; p. 153501 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
25.04.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Here, we report the influence of nonmagnetic Al3+ and magnetic Cr3+ co-substitution on the structural, morphological, magnetic and Mössbauer properties of nickel ferrite nanoparticles synthesized via sol-gel auto combustion route. Citric acid was used as a fuel and metal nitrate to fuel ratio was chosen to be 1:3. The resultant powder was sintered at 550 °C for 4 h and used for further characterizations. Single phase formation and nanocrystalline nature was confirmed through X-ray diffraction analysis. The crystallite size of all the samples calculated through Debye-Scherrer’s formula found to be in the range of 18–55 nm. The lattice constant calculated from XRD data show decreasing trend. Scanning electron microscopy technique was used to study the surface morphology of typical samples (x = 0.0 and 0.4). The average grain size determined through SEM images found to be 70 nm–35 nm respectively for x = 0.0 and 0.4 samples. The magnetic properties were investigated through magnetization and Mössbauer spectroscopy technique. The saturation magnetization measured from M-H hysteresis plot show decreasing trend with increase in Al–Cr content x. Using Mössbauer spectra the relative area of a sextet (T), Isomer shift (δ), Hyperfine Field (Hf), Quadrupole Splitting (Δ) and Line width (Γ) were calculated. Overall, the co-substitution of Al–Cr has significantly influenced the structural, morphological and magnetic properties of nickel ferrite nanoparticles.
•Al3+ and Cr3+ co-substituted nickel ferrite nanoparticles have been successfully prepared by wet chemical route.•XRD studies confirmed the formation of cubic spinel structure.•It’s morphological, magnetic and Mossbauer properties were investigated.•Magnetic properties were influenced significantly by nonmagnetic Al3+ and magnetic Cr3+ ion substitution in nickel ferrite.•Al3+ and Cr3+ co-substituted nickel ferrite nanoparticles are desirable in high frequency electronic devices. |
---|---|
AbstractList | Here, we report the influence of nonmagnetic Al3+ and magnetic Cr3+ co-substitution on the structural, morphological, magnetic and Mössbauer properties of nickel ferrite nanoparticles synthesized via sol-gel auto combustion route. Citric acid was used as a fuel and metal nitrate to fuel ratio was chosen to be 1:3. The resultant powder was sintered at 550 °C for 4 h and used for further characterizations. Single phase formation and nanocrystalline nature was confirmed through X-ray diffraction analysis. The crystallite size of all the samples calculated through Debye-Scherrer's formula found to be in the range of 18–55 nm. The lattice constant calculated from XRD data show decreasing trend. Scanning electron microscopy technique was used to study the surface morphology of typical samples (x = 0.0 and 0.4). The average grain size determined through SEM images found to be 70 nm–35 nm respectively for x = 0.0 and 0.4 samples. The magnetic properties were investigated through magnetization and Mössbauer spectroscopy technique. The saturation magnetization measured from M-H hysteresis plot show decreasing trend with increase in Al–Cr content x. Using Mössbauer spectra the relative area of a sextet (T), Isomer shift (δ), Hyperfine Field (Hf), Quadrupole Splitting (Δ) and Line width (Γ) were calculated. Overall, the co-substitution of Al–Cr has significantly influenced the structural, morphological and magnetic properties of nickel ferrite nanoparticles. Here, we report the influence of nonmagnetic Al3+ and magnetic Cr3+ co-substitution on the structural, morphological, magnetic and Mössbauer properties of nickel ferrite nanoparticles synthesized via sol-gel auto combustion route. Citric acid was used as a fuel and metal nitrate to fuel ratio was chosen to be 1:3. The resultant powder was sintered at 550 °C for 4 h and used for further characterizations. Single phase formation and nanocrystalline nature was confirmed through X-ray diffraction analysis. The crystallite size of all the samples calculated through Debye-Scherrer’s formula found to be in the range of 18–55 nm. The lattice constant calculated from XRD data show decreasing trend. Scanning electron microscopy technique was used to study the surface morphology of typical samples (x = 0.0 and 0.4). The average grain size determined through SEM images found to be 70 nm–35 nm respectively for x = 0.0 and 0.4 samples. The magnetic properties were investigated through magnetization and Mössbauer spectroscopy technique. The saturation magnetization measured from M-H hysteresis plot show decreasing trend with increase in Al–Cr content x. Using Mössbauer spectra the relative area of a sextet (T), Isomer shift (δ), Hyperfine Field (Hf), Quadrupole Splitting (Δ) and Line width (Γ) were calculated. Overall, the co-substitution of Al–Cr has significantly influenced the structural, morphological and magnetic properties of nickel ferrite nanoparticles. •Al3+ and Cr3+ co-substituted nickel ferrite nanoparticles have been successfully prepared by wet chemical route.•XRD studies confirmed the formation of cubic spinel structure.•It’s morphological, magnetic and Mossbauer properties were investigated.•Magnetic properties were influenced significantly by nonmagnetic Al3+ and magnetic Cr3+ ion substitution in nickel ferrite.•Al3+ and Cr3+ co-substituted nickel ferrite nanoparticles are desirable in high frequency electronic devices. |
ArticleNumber | 153501 |
Author | Murumkar, V.D. Sondur, V.V. Humbe, Ashok V. Jadhav, K.M. Bharati, V.A. Somvanshi, Sandeep B. |
Author_xml | – sequence: 1 givenname: V.A. surname: Bharati fullname: Bharati, V.A. organization: Department of Physics, G.S.S. College, Belagavi, Karnataka, India – sequence: 2 givenname: Sandeep B. orcidid: 0000-0003-2267-2724 surname: Somvanshi fullname: Somvanshi, Sandeep B. organization: Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, 431004, Maharashtra, India – sequence: 3 givenname: Ashok V. surname: Humbe fullname: Humbe, Ashok V. organization: Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, 431004, Maharashtra, India – sequence: 4 givenname: V.D. surname: Murumkar fullname: Murumkar, V.D. organization: Department of Physics, Vivekanand College, Aurangabad, 431001, MS, India – sequence: 5 givenname: V.V. surname: Sondur fullname: Sondur, V.V. organization: Maratha Mandal’s Engineering College, Belagavi, India – sequence: 6 givenname: K.M. surname: Jadhav fullname: Jadhav, K.M. email: drjadhavkm@gmail.com organization: Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, 431004, Maharashtra, India |
BookMark | eNqFkc-KFDEQxoOs4OzqIwgBr_bYSSadBA-yDP5ZWPGi55BJV7tpM0lbSS_szatn38UX8E18EruZPXlZKKhDfd9Xxa_OyVnKCQh5ztota1n3atyOLkafj1veMrNlUsiWPSIbppVodl1nzsimNVw2Wmj9hJyXMrbtohRsQ35epSHOkDzQPNCK4dZFSJVexr8_fu2R-tyU-VBqqHMNOdGl6g3QUnH2dUYXX9Jjxukmx_w1eBepSz39-Od3KQc3A9IJ8wRYA5Q1PwX_DSIdADFUoMmlPLll6iOUp-Tx4GKBZ_f9gnx59_bz_kNz_en91f7yuvFCqNrstNa97qUw3HTQM6aclHwHwhivOOuV3hllFNNw4BJ6CQY8O3DtoBsUAy8uyItT7nLa9xlKtWOeMS0rLReqU1xzYxbV65PKYy4FYbA-VLciqOhCtKy1K3s72nv2dmVvT-wXt_zPPWE4Orx70Pfm5IMFwG0AtMWH9Tl9QPDV9jk8kPAP6iKn-Q |
CitedBy_id | crossref_primary_10_1016_j_ultsonch_2020_105369 crossref_primary_10_1016_j_jmmm_2022_169772 crossref_primary_10_1016_j_jmrt_2021_06_023 crossref_primary_10_1016_j_nanoso_2024_101312 crossref_primary_10_1016_j_rinp_2022_105584 crossref_primary_10_1016_j_hazadv_2022_100150 crossref_primary_10_1007_s11814_023_1455_6 crossref_primary_10_1039_D1RA09354A crossref_primary_10_1007_s11051_023_05879_z crossref_primary_10_1088_1742_6596_1644_1_012042 crossref_primary_10_1016_j_jallcom_2020_157996 crossref_primary_10_1016_j_jallcom_2023_172998 crossref_primary_10_1016_j_physb_2023_415135 crossref_primary_10_1016_j_physo_2023_100139 crossref_primary_10_1016_j_inoche_2023_110719 crossref_primary_10_1016_j_cherd_2021_08_028 crossref_primary_10_1088_2043_6262_aca0ef crossref_primary_10_1016_j_jics_2024_101194 crossref_primary_10_1016_j_rsurfi_2024_100404 crossref_primary_10_1007_s11082_023_06050_7 crossref_primary_10_1016_j_powtec_2024_119469 crossref_primary_10_4028_p_95jpl8 crossref_primary_10_1016_j_jpcs_2021_110080 crossref_primary_10_1016_j_inoche_2023_110666 crossref_primary_10_1016_j_est_2023_109494 crossref_primary_10_1016_j_inoche_2023_111355 crossref_primary_10_1007_s10948_023_06579_4 crossref_primary_10_1016_j_inoche_2024_112907 crossref_primary_10_1016_j_matchemphys_2025_130690 crossref_primary_10_1007_s00339_023_06561_w crossref_primary_10_1007_s10971_024_06391_z crossref_primary_10_1016_j_jelechem_2023_117206 crossref_primary_10_1007_s10854_021_05735_7 crossref_primary_10_1016_j_est_2022_104871 crossref_primary_10_1080_01932691_2023_2263548 crossref_primary_10_1016_j_est_2022_105320 crossref_primary_10_1016_j_mssp_2022_106830 crossref_primary_10_13005_ojc_380326 crossref_primary_10_1016_j_ijleo_2020_164462 crossref_primary_10_1016_j_jmmm_2022_170108 crossref_primary_10_1007_s41779_020_00556_z crossref_primary_10_1088_1742_6596_1644_1_012020 crossref_primary_10_1007_s11270_024_07619_y crossref_primary_10_1016_j_inoche_2023_110574 crossref_primary_10_1016_j_jallcom_2020_157013 crossref_primary_10_1016_j_rechem_2023_100929 crossref_primary_10_1016_j_ceramint_2021_11_024 crossref_primary_10_26599_JAC_2024_9220853 crossref_primary_10_1016_j_chemosphere_2022_137301 crossref_primary_10_1038_s41598_021_99236_6 crossref_primary_10_1007_s10948_024_06851_1 crossref_primary_10_1016_j_ceramint_2022_11_060 crossref_primary_10_1016_j_matchemphys_2024_129625 crossref_primary_10_1007_s10854_023_10244_w crossref_primary_10_1016_j_cplett_2020_137240 crossref_primary_10_1016_j_matchemphys_2023_127303 crossref_primary_10_1016_j_cap_2020_11_009 crossref_primary_10_1016_j_surfin_2023_103377 crossref_primary_10_1088_2043_6262_ac389d crossref_primary_10_1007_s41779_023_00932_5 crossref_primary_10_1016_j_physb_2021_413280 crossref_primary_10_1016_j_solidstatesciences_2024_107573 crossref_primary_10_1007_s10854_024_12632_2 crossref_primary_10_1016_j_ssi_2020_115425 crossref_primary_10_1007_s10854_020_04782_w crossref_primary_10_1016_j_mseb_2023_117070 crossref_primary_10_1016_j_nxmate_2023_100020 crossref_primary_10_1016_j_jallcom_2021_159226 crossref_primary_10_1016_j_inoche_2023_110569 crossref_primary_10_1088_1742_6596_1644_1_012036 crossref_primary_10_1016_j_cplett_2020_137993 crossref_primary_10_1016_j_cap_2024_10_010 crossref_primary_10_1038_s41598_022_18306_5 crossref_primary_10_1016_j_vacuum_2021_110628 crossref_primary_10_1007_s10854_020_05197_3 crossref_primary_10_1016_j_jaap_2024_106782 crossref_primary_10_1007_s13538_023_01300_1 crossref_primary_10_1016_j_inoche_2022_110072 crossref_primary_10_1016_j_nanoso_2024_101196 crossref_primary_10_1016_j_jmmm_2024_172746 crossref_primary_10_1007_s10854_022_07989_1 crossref_primary_10_1016_j_jallcom_2023_169097 crossref_primary_10_1007_s10854_022_09332_0 crossref_primary_10_1007_s42729_023_01271_x crossref_primary_10_1016_j_jmrt_2022_02_052 crossref_primary_10_1080_16583655_2023_2236368 crossref_primary_10_3390_nano13152223 crossref_primary_10_1016_j_ceramint_2022_07_263 crossref_primary_10_1016_j_physb_2025_416947 crossref_primary_10_1007_s10948_024_06892_6 crossref_primary_10_1016_j_ceramint_2024_03_248 crossref_primary_10_1016_j_matchemphys_2023_128055 crossref_primary_10_1007_s00339_023_06740_9 crossref_primary_10_1016_j_jallcom_2023_171868 crossref_primary_10_1016_j_jwpe_2024_105856 crossref_primary_10_1088_1402_4896_acb409 crossref_primary_10_1021_acsomega_0c03332 crossref_primary_10_1016_j_jallcom_2020_155422 crossref_primary_10_1016_j_jallcom_2023_172205 crossref_primary_10_15251_DJNB_2022_172_661 crossref_primary_10_1016_j_mseb_2023_116717 crossref_primary_10_1016_j_matchemphys_2024_129251 crossref_primary_10_1088_1742_6596_1644_1_012017 crossref_primary_10_1007_s10904_023_02755_0 crossref_primary_10_1016_j_molstruc_2023_136319 crossref_primary_10_1002_crat_202400183 crossref_primary_10_1016_j_ceramint_2021_01_267 crossref_primary_10_1007_s11696_023_02670_1 crossref_primary_10_1016_j_materresbull_2023_112598 crossref_primary_10_1007_s10854_024_13567_4 crossref_primary_10_1016_j_inoche_2023_110532 crossref_primary_10_1007_s10854_020_03684_1 crossref_primary_10_1016_j_inoche_2022_110175 crossref_primary_10_1016_j_cherd_2021_08_040 crossref_primary_10_1007_s10653_024_02213_x crossref_primary_10_1016_j_matchemphys_2022_126091 crossref_primary_10_1016_j_rinp_2023_107306 crossref_primary_10_1007_s10854_024_13333_6 crossref_primary_10_1016_j_jallcom_2020_156884 crossref_primary_10_1016_j_cap_2024_04_005 crossref_primary_10_1016_j_ceramint_2022_08_164 crossref_primary_10_1007_s10854_024_12090_w crossref_primary_10_1016_j_matchemphys_2023_128832 crossref_primary_10_1016_j_ceramint_2020_03_081 crossref_primary_10_1016_j_mtchem_2024_102311 crossref_primary_10_1016_j_mtla_2023_101695 crossref_primary_10_1016_j_jmmm_2023_170675 crossref_primary_10_1007_s10971_024_06571_x crossref_primary_10_1016_j_jmmm_2022_169323 crossref_primary_10_1016_j_mssp_2024_108747 crossref_primary_10_1142_S0217979224501753 crossref_primary_10_1039_D0RA04319B crossref_primary_10_1142_S0217979225500419 crossref_primary_10_1016_j_ceramint_2023_12_343 crossref_primary_10_1007_s10904_023_02820_8 crossref_primary_10_1016_j_ceramint_2022_10_212 crossref_primary_10_1088_2053_1591_ab6c9c crossref_primary_10_1016_j_molstruc_2024_141063 crossref_primary_10_1016_j_physb_2021_413083 crossref_primary_10_1016_j_physb_2022_414232 crossref_primary_10_1021_acsomega_1c04832 crossref_primary_10_1016_j_mtcomm_2023_106405 crossref_primary_10_1016_j_inoche_2023_111850 crossref_primary_10_1016_j_rinp_2022_105610 crossref_primary_10_1007_s11696_022_02466_9 crossref_primary_10_1016_j_ceramint_2021_03_132 crossref_primary_10_1016_j_matchemphys_2024_130016 crossref_primary_10_1007_s10854_024_14058_2 crossref_primary_10_1063_5_0053985 |
Cites_doi | 10.1063/1.4748959 10.1016/j.cej.2006.11.001 10.1016/j.apsusc.2012.06.034 10.1063/1.5113361 10.1016/S0304-8853(00)00459-5 10.1016/j.jnoncrysol.2019.02.004 10.1088/0953-8984/16/24/017 10.1023/A:1008884400574 10.1007/BF02696932 10.1063/1.3559266 10.1016/j.jmmm.2013.04.021 10.1063/1.5032528 10.1016/j.materresbull.2011.11.011 10.1007/s10854-019-00963-4 10.1109/22.989957 10.1016/j.jmmm.2011.10.017 10.1016/j.jmmm.2004.11.010 10.1016/S0025-5408(01)00620-1 10.1016/j.jallcom.2011.08.096 10.1016/j.physb.2017.07.043 10.1021/acs.jpcc.9b02180 10.1021/jp205572m 10.1016/j.ceramint.2012.08.028 10.1016/j.jmmm.2010.06.035 10.1016/j.scriptamat.2006.09.033 10.1016/j.matlet.2009.12.049 10.1016/S0304-8853(00)00106-2 10.1063/1.5028675 10.1016/j.ccr.2016.01.012 10.3390/ma12101685 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright Elsevier BV Apr 15, 2020 |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright Elsevier BV Apr 15, 2020 |
DBID | AAYXX CITATION 8BQ 8FD JG9 |
DOI | 10.1016/j.jallcom.2019.153501 |
DatabaseName | CrossRef METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Physics |
EISSN | 1873-4669 |
ExternalDocumentID | 10_1016_j_jallcom_2019_153501 S0925838819347474 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNCT ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SPD SSM SSZ T5K TWZ XPP ZMT ~G- 29J AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SEW SMS SSH T9H WUQ 8BQ 8FD AFXIZ EFKBS JG9 |
ID | FETCH-LOGICAL-c337t-4888d8d539296ed117a5524e399c721d784979718eb25ed5e9ec1b28ae6f71ec3 |
IEDL.DBID | .~1 |
ISSN | 0925-8388 |
IngestDate | Fri Jul 25 04:55:13 EDT 2025 Tue Jul 01 03:58:24 EDT 2025 Thu Apr 24 23:05:19 EDT 2025 Fri Feb 23 02:40:34 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Sol-gel auto combustion Magnetization Mossbauer Al–Cr co-substitution |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c337t-4888d8d539296ed117a5524e399c721d784979718eb25ed5e9ec1b28ae6f71ec3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2267-2724 |
PQID | 2376728299 |
PQPubID | 2045454 |
ParticipantIDs | proquest_journals_2376728299 crossref_citationtrail_10_1016_j_jallcom_2019_153501 crossref_primary_10_1016_j_jallcom_2019_153501 elsevier_sciencedirect_doi_10_1016_j_jallcom_2019_153501 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-25 |
PublicationDateYYYYMMDD | 2020-04-25 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Journal of alloys and compounds |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Patange, Shirsath, Jadhav, Lohar, Mane, Jadhav (bib24) 2010; 64 Kumbhar, Jagadale, Shinde, Lokhande (bib3) 2012; 259 Iqbal, Ahmad, Meydan, Nlebedim (bib36) 2012; 47 Toksha, Shirsath, Mane, Patange, Jadhav, Jadhav (bib35) 2011; 115 Murali, Margarette, Kumar, Sailaja, Mulushoa, Himakar, Babu, Veeraiah (bib22) 2017; 522 Babrekar, Jadhav (bib20) 2017 Zhou, Zhang, Chang, Chen, Zhang, Tian, Zuo, Ren, Song, Yang (bib27) 2019; 12 Li, Yuan, Li, Liu, Leng (bib19) 2010; 322 Sharifi, Shokrollahi, Amiri (bib4) 2012; 324 Makovec, Košak, Žnidaršič, Drofenik (bib5) 2005; 289 Pervaiz, Gul (bib33) 2013; 343 Goldman (bib10) 2006 Adam, Davis, Dionne, Schloemann, Stitzer (bib11) 2002; 50 Jacob, Fitzner, Alcock (bib28) 1977; 8 Birajdar, Shirsath, Kadam, Mane, Mane, Shitre (bib31) 2012; 112 Kharat, Somvanshi, Kounsalye, Deshmukh, Khirade, Jadhav (bib7) 2018 Maensiri, Masingboon, Boonchom, Seraphin (bib15) 2007; 56 Hashim, Kumar, Ali, Koo, Chung, Kumar (bib30) 2012; 511 Chkoundali, Ammar, Jouini, Fiévet, Molinié, Danot, Villain, Greneche (bib16) 2004; 16 Chen, He (bib14) 2001; 36 Mathew, Juang (bib21) 2007; 129 Somvanshi, Khedkar, Kharat, Jadhav (bib18) 2019 Hashim, Kumar, Shirsath, Kotnala, Shah, Kumar (bib26) 2013; 39 Patange, Shirsath, Jangam, Lohar, Jadhav, Jadhav (bib32) 2011; 109 Chae, Lee, Lee, Lee (bib34) 2000; 220 Kharat, More, Somvanshi, Jadhav (bib17) 2019; 30 Cobos, de la Presa, Llorente, Alonso, Garcia-Escorial, Marin, Hernando, Jimenez (bib29) 2019 Khedkar, Somvanshi, Humbe, Jadhav (bib12) 2019; 511 Bhoyar, Somvanshi, Kharat, Pandit, Jadhav (bib13) 2019 Reddy, Yun (bib9) 2016; 315 Sankpal, Kakatkar, Chaudhari, Patil, Sawant, Suryavanshi (bib25) 1998; 9 Valenzuela (bib2) 2012 Kale, Somvanshi, Sarnaik, More, Shukla, Jadhav (bib6) 2018 Somvanshi, Kumar, Kounsalye, Saraf, Jadhav (bib8) 2019 Pardavi-Horvath (bib1) 2000; 215 Somvanshi, Kharat, Khedkar, Jadhav (bib23) 2019 Jacob (10.1016/j.jallcom.2019.153501_bib28) 1977; 8 Sharifi (10.1016/j.jallcom.2019.153501_bib4) 2012; 324 Kharat (10.1016/j.jallcom.2019.153501_bib17) 2019; 30 Babrekar (10.1016/j.jallcom.2019.153501_bib20) 2017 Mathew (10.1016/j.jallcom.2019.153501_bib21) 2007; 129 Chen (10.1016/j.jallcom.2019.153501_bib14) 2001; 36 Kumbhar (10.1016/j.jallcom.2019.153501_bib3) 2012; 259 Chkoundali (10.1016/j.jallcom.2019.153501_bib16) 2004; 16 Iqbal (10.1016/j.jallcom.2019.153501_bib36) 2012; 47 Maensiri (10.1016/j.jallcom.2019.153501_bib15) 2007; 56 Makovec (10.1016/j.jallcom.2019.153501_bib5) 2005; 289 Kale (10.1016/j.jallcom.2019.153501_bib6) 2018 Somvanshi (10.1016/j.jallcom.2019.153501_bib18) 2019 Zhou (10.1016/j.jallcom.2019.153501_bib27) 2019; 12 Toksha (10.1016/j.jallcom.2019.153501_bib35) 2011; 115 Hashim (10.1016/j.jallcom.2019.153501_bib26) 2013; 39 Patange (10.1016/j.jallcom.2019.153501_bib32) 2011; 109 Cobos (10.1016/j.jallcom.2019.153501_bib29) 2019 Hashim (10.1016/j.jallcom.2019.153501_bib30) 2012; 511 Pervaiz (10.1016/j.jallcom.2019.153501_bib33) 2013; 343 Adam (10.1016/j.jallcom.2019.153501_bib11) 2002; 50 Li (10.1016/j.jallcom.2019.153501_bib19) 2010; 322 Sankpal (10.1016/j.jallcom.2019.153501_bib25) 1998; 9 Goldman (10.1016/j.jallcom.2019.153501_bib10) 2006 Kharat (10.1016/j.jallcom.2019.153501_bib7) 2018 Murali (10.1016/j.jallcom.2019.153501_bib22) 2017; 522 Somvanshi (10.1016/j.jallcom.2019.153501_bib23) 2019 Patange (10.1016/j.jallcom.2019.153501_bib24) 2010; 64 Bhoyar (10.1016/j.jallcom.2019.153501_bib13) 2019 Pardavi-Horvath (10.1016/j.jallcom.2019.153501_bib1) 2000; 215 Birajdar (10.1016/j.jallcom.2019.153501_bib31) 2012; 112 Chae (10.1016/j.jallcom.2019.153501_bib34) 2000; 220 Khedkar (10.1016/j.jallcom.2019.153501_bib12) 2019; 511 Valenzuela (10.1016/j.jallcom.2019.153501_bib2) 2012 Reddy (10.1016/j.jallcom.2019.153501_bib9) 2016; 315 Somvanshi (10.1016/j.jallcom.2019.153501_bib8) 2019 |
References_xml | – volume: 36 start-page: 1369 year: 2001 end-page: 1377 ident: bib14 article-title: Synthesis of nickel ferrite nanoparticles by sol-gel method publication-title: Mater. Res. Bull. – volume: 324 start-page: 903 year: 2012 end-page: 915 ident: bib4 article-title: Ferrite-based magnetic nanofluids used in hyperthermia applications publication-title: J. Magn. Magn. Mater. – volume: 16 start-page: 4357 year: 2004 ident: bib16 article-title: Nickel ferrite nanoparticles: elaboration in polyol medium via hydrolysis, and magnetic properties publication-title: J. Phys. Condens. Matter – volume: 9 start-page: 173 year: 1998 end-page: 179 ident: bib25 article-title: Initial permeability studies on A13+ and Cr3+ substituted Ni–Zn ferrites publication-title: J. Mater. Sci. Mater. Electron. – year: 2018 ident: bib7 article-title: Temperature dependent viscosity of cobalt ferrite/ethylene glycol ferrofluids publication-title: AIP Conference Proceedings – volume: 47 start-page: 344 year: 2012 end-page: 351 ident: bib36 article-title: Influence of Ni–Cr substitution on the magnetic and electric properties of magnesium ferrite nanomaterials publication-title: Mater. Res. Bull. – start-page: 73 year: 2017 end-page: 76 ident: bib20 article-title: Synthesis and characterization of spray deposited lithium ferrite thin film publication-title: Int. Res. J. Sci. Eng. Special – year: 2019 ident: bib8 article-title: Investigations of structural, magnetic and induction heating properties of surface functionalized zinc ferrite nanoparticles for hyperthermia applications publication-title: AIP Conference Proceedings – volume: 220 start-page: 59 year: 2000 end-page: 64 ident: bib34 article-title: Crystallographic and magnetic properties of CoCrxFe2− xO4 ferrite powders publication-title: J. Magn. Magn. Mater. – volume: 511 start-page: 140 year: 2019 end-page: 146 ident: bib12 article-title: Surface modified sodium silicate based superhydrophobic silica aerogels prepared via ambient pressure drying process publication-title: J. Non-Cryst. Solids – start-page: 411944 year: 2019 ident: bib13 article-title: Structural, infrared, magnetic and ferroelectric properties of Sr0· 5Ba0· 5Ti1-xFexO3 nanoceramics: modifications via trivalent Fe ion doping publication-title: Phys. B Condens. Matter – volume: 109 year: 2011 ident: bib32 article-title: Rietveld structure refinement, cation distribution and magnetic properties of Al3+ substituted NiFe2O4 nanoparticles publication-title: J. Appl. Phys. – start-page: 2012 year: 2012 ident: bib2 article-title: Novel applications of ferrites publication-title: Phys. Res. Int. – volume: 56 start-page: 797 year: 2007 end-page: 800 ident: bib15 article-title: A simple route to synthesize nickel ferrite (NiFe2O4) nanoparticles using egg white publication-title: Scr. Mater. – volume: 315 start-page: 90 year: 2016 end-page: 111 ident: bib9 article-title: Spinel ferrite magnetic adsorbents: alternative future materials for water purification? publication-title: Coord. Chem. Rev. – volume: 289 start-page: 32 year: 2005 end-page: 35 ident: bib5 article-title: The synthesis of spinel–ferrite nanoparticles using precipitation in microemulsions for ferrofluid applications publication-title: J. Magn. Magn. Mater. – volume: 50 start-page: 721 year: 2002 end-page: 737 ident: bib11 article-title: Ferrite devices and materials publication-title: IEEE Trans. Microw. Theory Tech. – year: 2019 ident: bib18 article-title: Influential diamagnetic magnesium (Mg2+) ion substitution in nano-spinel zinc ferrite (ZnFe2O4): thermal, structural, spectral, optical and physisorption analysis publication-title: Ceram. Int. – volume: 215 start-page: 171 year: 2000 end-page: 183 ident: bib1 article-title: Microwave applications of soft ferrites publication-title: J. Magn. Magn. Mater. – year: 2006 ident: bib10 article-title: Modern Ferrite Technology – volume: 129 start-page: 51 year: 2007 end-page: 65 ident: bib21 article-title: An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions publication-title: Chem. Eng. J. – year: 2019 ident: bib29 article-title: Magnetic phase diagram of nanostructured zinc ferrite as a function of inversion degree δ publication-title: J. Phys. Chem. C – volume: 64 start-page: 722 year: 2010 end-page: 724 ident: bib24 article-title: Rietveld refinement and switching properties of Cr3+ substituted NiFe2O4 ferrites publication-title: Mater. Lett. – volume: 8 start-page: 451 year: 1977 end-page: 460 ident: bib28 article-title: Activities in the spinel solid solution, phase equilibria and thermodynamic properties of ternary phases in the system Cu-Fe-0 publication-title: Metall. Trans. B – volume: 39 start-page: 1807 year: 2013 end-page: 1819 ident: bib26 article-title: Influence of Cr3+ ion on the structural, ac conductivity and magnetic properties of nanocrystalline Ni–Mg ferrite publication-title: Ceram. Int. – volume: 112 year: 2012 ident: bib31 article-title: Permeability and magnetic properties of Al3+ substituted Ni0. 7Zn0. 3Fe2O4 nanoparticles publication-title: J. Appl. Phys. – volume: 12 start-page: 1685 year: 2019 ident: bib27 article-title: The phase diagram and exotic magnetostrictive behaviors in spinel oxide Co (Fe1− xAlx) 2O4 system publication-title: Materials – volume: 115 start-page: 20905 year: 2011 end-page: 20912 ident: bib35 article-title: Autocombustion high-temperature synthesis, structural, and magnetic properties of CoCr x Fe2–x O4 (0≤ x≤ 1.0) publication-title: J. Phys. Chem. C – volume: 259 start-page: 39 year: 2012 end-page: 43 ident: bib3 article-title: Chemical synthesis of spinel cobalt ferrite (CoFe2O4) nano-flakes for supercapacitor application publication-title: Appl. Surf. Sci. – volume: 511 start-page: 107 year: 2012 end-page: 114 ident: bib30 article-title: Structural, magnetic and electrical properties of Al3+ substituted Ni–Zn ferrite nanoparticles publication-title: J. Alloy. Comp. – volume: 322 start-page: 3396 year: 2010 end-page: 3400 ident: bib19 article-title: Cation distribution dependence of magnetic properties of sol–gel prepared MnFe2O4 spinel ferrite nanoparticles publication-title: J. Magn. Magn. Mater. – volume: 343 start-page: 194 year: 2013 end-page: 202 ident: bib33 article-title: Low temperature synthesis and enhanced electrical properties by substitution of Al3+ and Cr3+ in Co–Ni nanoferrites publication-title: J. Magn. Magn. Mater. – year: 2019 ident: bib23 article-title: Hydrophobic to hydrophilic surface transformation of nano-scale zinc ferrite via oleic acid coating: magnetic hyperthermia study towards biomedical applications publication-title: Ceram. Int. – volume: 522 start-page: 1 year: 2017 end-page: 6 ident: bib22 article-title: Effect of Al substitution on the structural and magnetic properties of Co-Zn ferrites publication-title: Phys. B Condens. Matter – year: 2018 ident: bib6 article-title: Enhancement in surface area and magnetization of CoFe2O4 nanoparticles for targeted drug delivery application publication-title: AIP Conference Proceedings – volume: 30 start-page: 6564 year: 2019 end-page: 6574 ident: bib17 article-title: Exploration of thermoacoustics behavior of water based nickel ferrite nanofluids by ultrasonic velocity method publication-title: J. Mater. Sci. Mater. Electron. – volume: 112 year: 2012 ident: 10.1016/j.jallcom.2019.153501_bib31 article-title: Permeability and magnetic properties of Al3+ substituted Ni0. 7Zn0. 3Fe2O4 nanoparticles publication-title: J. Appl. Phys. doi: 10.1063/1.4748959 – volume: 129 start-page: 51 year: 2007 ident: 10.1016/j.jallcom.2019.153501_bib21 article-title: An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2006.11.001 – volume: 259 start-page: 39 year: 2012 ident: 10.1016/j.jallcom.2019.153501_bib3 article-title: Chemical synthesis of spinel cobalt ferrite (CoFe2O4) nano-flakes for supercapacitor application publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2012.06.034 – year: 2019 ident: 10.1016/j.jallcom.2019.153501_bib8 article-title: Investigations of structural, magnetic and induction heating properties of surface functionalized zinc ferrite nanoparticles for hyperthermia applications doi: 10.1063/1.5113361 – volume: 220 start-page: 59 year: 2000 ident: 10.1016/j.jallcom.2019.153501_bib34 article-title: Crystallographic and magnetic properties of CoCrxFe2− xO4 ferrite powders publication-title: J. Magn. Magn. Mater. doi: 10.1016/S0304-8853(00)00459-5 – volume: 511 start-page: 140 year: 2019 ident: 10.1016/j.jallcom.2019.153501_bib12 article-title: Surface modified sodium silicate based superhydrophobic silica aerogels prepared via ambient pressure drying process publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2019.02.004 – volume: 16 start-page: 4357 year: 2004 ident: 10.1016/j.jallcom.2019.153501_bib16 article-title: Nickel ferrite nanoparticles: elaboration in polyol medium via hydrolysis, and magnetic properties publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/16/24/017 – volume: 9 start-page: 173 year: 1998 ident: 10.1016/j.jallcom.2019.153501_bib25 article-title: Initial permeability studies on A13+ and Cr3+ substituted Ni–Zn ferrites publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1023/A:1008884400574 – volume: 8 start-page: 451 year: 1977 ident: 10.1016/j.jallcom.2019.153501_bib28 article-title: Activities in the spinel solid solution, phase equilibria and thermodynamic properties of ternary phases in the system Cu-Fe-0 publication-title: Metall. Trans. B doi: 10.1007/BF02696932 – volume: 109 year: 2011 ident: 10.1016/j.jallcom.2019.153501_bib32 article-title: Rietveld structure refinement, cation distribution and magnetic properties of Al3+ substituted NiFe2O4 nanoparticles publication-title: J. Appl. Phys. doi: 10.1063/1.3559266 – volume: 343 start-page: 194 year: 2013 ident: 10.1016/j.jallcom.2019.153501_bib33 article-title: Low temperature synthesis and enhanced electrical properties by substitution of Al3+ and Cr3+ in Co–Ni nanoferrites publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2013.04.021 – year: 2019 ident: 10.1016/j.jallcom.2019.153501_bib23 article-title: Hydrophobic to hydrophilic surface transformation of nano-scale zinc ferrite via oleic acid coating: magnetic hyperthermia study towards biomedical applications publication-title: Ceram. Int. – start-page: 2012 year: 2012 ident: 10.1016/j.jallcom.2019.153501_bib2 article-title: Novel applications of ferrites publication-title: Phys. Res. Int. – year: 2018 ident: 10.1016/j.jallcom.2019.153501_bib6 article-title: Enhancement in surface area and magnetization of CoFe2O4 nanoparticles for targeted drug delivery application doi: 10.1063/1.5032528 – volume: 47 start-page: 344 year: 2012 ident: 10.1016/j.jallcom.2019.153501_bib36 article-title: Influence of Ni–Cr substitution on the magnetic and electric properties of magnesium ferrite nanomaterials publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2011.11.011 – volume: 30 start-page: 6564 year: 2019 ident: 10.1016/j.jallcom.2019.153501_bib17 article-title: Exploration of thermoacoustics behavior of water based nickel ferrite nanofluids by ultrasonic velocity method publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-019-00963-4 – volume: 50 start-page: 721 year: 2002 ident: 10.1016/j.jallcom.2019.153501_bib11 article-title: Ferrite devices and materials publication-title: IEEE Trans. Microw. Theory Tech. doi: 10.1109/22.989957 – volume: 324 start-page: 903 year: 2012 ident: 10.1016/j.jallcom.2019.153501_bib4 article-title: Ferrite-based magnetic nanofluids used in hyperthermia applications publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2011.10.017 – volume: 289 start-page: 32 year: 2005 ident: 10.1016/j.jallcom.2019.153501_bib5 article-title: The synthesis of spinel–ferrite nanoparticles using precipitation in microemulsions for ferrofluid applications publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2004.11.010 – year: 2019 ident: 10.1016/j.jallcom.2019.153501_bib18 article-title: Influential diamagnetic magnesium (Mg2+) ion substitution in nano-spinel zinc ferrite (ZnFe2O4): thermal, structural, spectral, optical and physisorption analysis publication-title: Ceram. Int. – volume: 36 start-page: 1369 year: 2001 ident: 10.1016/j.jallcom.2019.153501_bib14 article-title: Synthesis of nickel ferrite nanoparticles by sol-gel method publication-title: Mater. Res. Bull. doi: 10.1016/S0025-5408(01)00620-1 – volume: 511 start-page: 107 year: 2012 ident: 10.1016/j.jallcom.2019.153501_bib30 article-title: Structural, magnetic and electrical properties of Al3+ substituted Ni–Zn ferrite nanoparticles publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2011.08.096 – volume: 522 start-page: 1 year: 2017 ident: 10.1016/j.jallcom.2019.153501_bib22 article-title: Effect of Al substitution on the structural and magnetic properties of Co-Zn ferrites publication-title: Phys. B Condens. Matter doi: 10.1016/j.physb.2017.07.043 – year: 2019 ident: 10.1016/j.jallcom.2019.153501_bib29 article-title: Magnetic phase diagram of nanostructured zinc ferrite as a function of inversion degree δ publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b02180 – volume: 115 start-page: 20905 year: 2011 ident: 10.1016/j.jallcom.2019.153501_bib35 article-title: Autocombustion high-temperature synthesis, structural, and magnetic properties of CoCr x Fe2–x O4 (0≤ x≤ 1.0) publication-title: J. Phys. Chem. C doi: 10.1021/jp205572m – volume: 39 start-page: 1807 year: 2013 ident: 10.1016/j.jallcom.2019.153501_bib26 article-title: Influence of Cr3+ ion on the structural, ac conductivity and magnetic properties of nanocrystalline Ni–Mg ferrite publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2012.08.028 – volume: 322 start-page: 3396 year: 2010 ident: 10.1016/j.jallcom.2019.153501_bib19 article-title: Cation distribution dependence of magnetic properties of sol–gel prepared MnFe2O4 spinel ferrite nanoparticles publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2010.06.035 – start-page: 411944 year: 2019 ident: 10.1016/j.jallcom.2019.153501_bib13 article-title: Structural, infrared, magnetic and ferroelectric properties of Sr0· 5Ba0· 5Ti1-xFexO3 nanoceramics: modifications via trivalent Fe ion doping publication-title: Phys. B Condens. Matter – volume: 56 start-page: 797 year: 2007 ident: 10.1016/j.jallcom.2019.153501_bib15 article-title: A simple route to synthesize nickel ferrite (NiFe2O4) nanoparticles using egg white publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2006.09.033 – volume: 64 start-page: 722 year: 2010 ident: 10.1016/j.jallcom.2019.153501_bib24 article-title: Rietveld refinement and switching properties of Cr3+ substituted NiFe2O4 ferrites publication-title: Mater. Lett. doi: 10.1016/j.matlet.2009.12.049 – year: 2006 ident: 10.1016/j.jallcom.2019.153501_bib10 – start-page: 73 year: 2017 ident: 10.1016/j.jallcom.2019.153501_bib20 article-title: Synthesis and characterization of spray deposited lithium ferrite thin film publication-title: Int. Res. J. Sci. Eng. Special – volume: 215 start-page: 171 year: 2000 ident: 10.1016/j.jallcom.2019.153501_bib1 article-title: Microwave applications of soft ferrites publication-title: J. Magn. Magn. Mater. doi: 10.1016/S0304-8853(00)00106-2 – year: 2018 ident: 10.1016/j.jallcom.2019.153501_bib7 article-title: Temperature dependent viscosity of cobalt ferrite/ethylene glycol ferrofluids doi: 10.1063/1.5028675 – volume: 315 start-page: 90 year: 2016 ident: 10.1016/j.jallcom.2019.153501_bib9 article-title: Spinel ferrite magnetic adsorbents: alternative future materials for water purification? publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2016.01.012 – volume: 12 start-page: 1685 year: 2019 ident: 10.1016/j.jallcom.2019.153501_bib27 article-title: The phase diagram and exotic magnetostrictive behaviors in spinel oxide Co (Fe1− xAlx) 2O4 system publication-title: Materials doi: 10.3390/ma12101685 |
SSID | ssj0001931 |
Score | 2.625733 |
Snippet | Here, we report the influence of nonmagnetic Al3+ and magnetic Cr3+ co-substitution on the structural, morphological, magnetic and Mössbauer properties of... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 153501 |
SubjectTerms | Aluminum Al–Cr co-substitution Chromium Citric acid Crystallites Debye-Scherrer method Fuels Grain size Hyperfine structure Lattice parameters Magnetic properties Magnetic saturation Magnetization Mathematical analysis Morphology Mossbauer Mossbauer spectroscopy Nanoparticles Nickel Nickel ferrites Quadrupoles Sintering (powder metallurgy) Sol-gel auto combustion Sol-gel processes Spectrum analysis Substitutes |
Title | Influence of trivalent Al–Cr co-substitution on the structural, morphological and Mössbauer properties of nickel ferrite nanoparticles |
URI | https://dx.doi.org/10.1016/j.jallcom.2019.153501 https://www.proquest.com/docview/2376728299 |
Volume | 821 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEB5CQmlzCO22pflp0KHHandtS5Z1XJaETUtyaQO5CVuWYBfXu6y319Brz32XvkDeJE-SGVtO0lIIFHyyLWH0jWZG1qdvAD64sShslHnubVxwoX3JtfcpT7RL1bjIoyKm08jnF-nsUny6kldbMO3PwhCtMvj-zqe33jrcGYXRHK3m89GXsY5pzw9DWiIwKSZNUCEUWfnw-oHmgU_bqnn4Mqe3H07xjBbDRV5VRBrBKKiHOPdlqA3zj_j0l6duw8_pS9gLeSObdJ_2CrZcPYDn075c2wB2HykLDuBZy-y0zWv4edaXIWFLzzbrOZoWBho2qW5__JqumV3yBp1HyxhAjBhemBOyTleWNDk-sm9LBKN3kiyvS3Z-87tpivy7W7MV_c1fkywr9V_P0StUzJPe48axOq9xUR64d2_g8vTk63TGQ_0FbpNEbTjO7azMSkkpVOrKKFK5lLFwmNNYXDiWKhNaaQxuuDqXrpROO4vYZrlLvYqcTd7Cdr2s3TtgqZeRolJLpFefKuzAZXGZSq8xvYviYh9EP-rGBnFyqpFRmZ6FtjABLENgmQ6sfRjeN1t16hxPNch6SM0fZmYwgjzV9Kg3ARPmeWOIU6RoM1of_H_Ph_AiplX8WPBYHsE2AuzeY6qzKY5bWz6GncnZ59nFHVw4Abg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Pb9MwFH8aQ2jjgKCAGAzwgSNum8SO4-NUMXWw7sIm7WYlji21ytKq6a7Trpz5LvsC-yZ8Et5LHAYIaRJSTklsRX7_4-ffD-CDG4vCRpnn3sYFF9qXXHuf8kS7VI2LPCpiOo08O0mnZ-LzuTzfgkl_FobaKoPv73x6663DnVFYzdFqPh99HeuY9vwwpCUCk2LxAB4KNF-iMRhe3fV54OOWNg_f5vT63TGe0WK4yKuKukYwDOohGr8M5DD_CFB_ueo2_hw-hSchcWQH3bc9gy1XD2Bn0vO1DeDxb9CCA3jUtnba5jl8O-p5SNjSs816jrqFkYYdVD-uv0_WzC55g96jbRlAITG8MClkHbAsgXJ8ZBdLlEbvJVlel2x2e9M0RX7p1mxFv_PXhMtK89dzdAsV8wT4uHGszmusykPz3Qs4O_x0OpnyQMDAbZKoDUfjzsqslJRDpa6MIpVLGQuHSY3FyrFUmdBKY3TD8ly6UjrtLAo3y13qVeRs8hK262XtXgFLvYwUcS0RYH2qcAKXxWUqvcb8LoqLPRD9qhsb0MmJJKMyfRvawgRhGRKW6YS1B8Nfw1YdPMd9A7JepOYPPTMYQu4but-rgAmG3hhqKlK0G61f___M72Fnejo7NsdHJ1_ewG5MJf1Y8FjuwzYK273FvGdTvGv1-ics9gNG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+trivalent+Al%E2%80%93Cr+co-substitution+on+the+structural%2C+morphological+and+M%C3%B6ssbauer+properties+of+nickel+ferrite+nanoparticles&rft.jtitle=Journal+of+alloys+and+compounds&rft.au=Bharati%2C+V.A.&rft.au=Somvanshi%2C+Sandeep+B.&rft.au=Humbe%2C+Ashok+V.&rft.au=Murumkar%2C+V.D.&rft.date=2020-04-25&rft.pub=Elsevier+B.V&rft.issn=0925-8388&rft.eissn=1873-4669&rft.volume=821&rft_id=info:doi/10.1016%2Fj.jallcom.2019.153501&rft.externalDocID=S0925838819347474 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-8388&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-8388&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-8388&client=summon |