Influence of trivalent Al–Cr co-substitution on the structural, morphological and Mössbauer properties of nickel ferrite nanoparticles

Here, we report the influence of nonmagnetic Al3+ and magnetic Cr3+ co-substitution on the structural, morphological, magnetic and Mössbauer properties of nickel ferrite nanoparticles synthesized via sol-gel auto combustion route. Citric acid was used as a fuel and metal nitrate to fuel ratio was ch...

Full description

Saved in:
Bibliographic Details
Published inJournal of alloys and compounds Vol. 821; p. 153501
Main Authors Bharati, V.A., Somvanshi, Sandeep B., Humbe, Ashok V., Murumkar, V.D., Sondur, V.V., Jadhav, K.M.
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 25.04.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Here, we report the influence of nonmagnetic Al3+ and magnetic Cr3+ co-substitution on the structural, morphological, magnetic and Mössbauer properties of nickel ferrite nanoparticles synthesized via sol-gel auto combustion route. Citric acid was used as a fuel and metal nitrate to fuel ratio was chosen to be 1:3. The resultant powder was sintered at 550 °C for 4 h and used for further characterizations. Single phase formation and nanocrystalline nature was confirmed through X-ray diffraction analysis. The crystallite size of all the samples calculated through Debye-Scherrer’s formula found to be in the range of 18–55 nm. The lattice constant calculated from XRD data show decreasing trend. Scanning electron microscopy technique was used to study the surface morphology of typical samples (x = 0.0 and 0.4). The average grain size determined through SEM images found to be 70 nm–35 nm respectively for x = 0.0 and 0.4 samples. The magnetic properties were investigated through magnetization and Mössbauer spectroscopy technique. The saturation magnetization measured from M-H hysteresis plot show decreasing trend with increase in Al–Cr content x. Using Mössbauer spectra the relative area of a sextet (T), Isomer shift (δ), Hyperfine Field (Hf), Quadrupole Splitting (Δ) and Line width (Γ) were calculated. Overall, the co-substitution of Al–Cr has significantly influenced the structural, morphological and magnetic properties of nickel ferrite nanoparticles. •Al3+ and Cr3+ co-substituted nickel ferrite nanoparticles have been successfully prepared by wet chemical route.•XRD studies confirmed the formation of cubic spinel structure.•It’s morphological, magnetic and Mossbauer properties were investigated.•Magnetic properties were influenced significantly by nonmagnetic Al3+ and magnetic Cr3+ ion substitution in nickel ferrite.•Al3+ and Cr3+ co-substituted nickel ferrite nanoparticles are desirable in high frequency electronic devices.
AbstractList Here, we report the influence of nonmagnetic Al3+ and magnetic Cr3+ co-substitution on the structural, morphological, magnetic and Mössbauer properties of nickel ferrite nanoparticles synthesized via sol-gel auto combustion route. Citric acid was used as a fuel and metal nitrate to fuel ratio was chosen to be 1:3. The resultant powder was sintered at 550 °C for 4 h and used for further characterizations. Single phase formation and nanocrystalline nature was confirmed through X-ray diffraction analysis. The crystallite size of all the samples calculated through Debye-Scherrer's formula found to be in the range of 18–55 nm. The lattice constant calculated from XRD data show decreasing trend. Scanning electron microscopy technique was used to study the surface morphology of typical samples (x = 0.0 and 0.4). The average grain size determined through SEM images found to be 70 nm–35 nm respectively for x = 0.0 and 0.4 samples. The magnetic properties were investigated through magnetization and Mössbauer spectroscopy technique. The saturation magnetization measured from M-H hysteresis plot show decreasing trend with increase in Al–Cr content x. Using Mössbauer spectra the relative area of a sextet (T), Isomer shift (δ), Hyperfine Field (Hf), Quadrupole Splitting (Δ) and Line width (Γ) were calculated. Overall, the co-substitution of Al–Cr has significantly influenced the structural, morphological and magnetic properties of nickel ferrite nanoparticles.
Here, we report the influence of nonmagnetic Al3+ and magnetic Cr3+ co-substitution on the structural, morphological, magnetic and Mössbauer properties of nickel ferrite nanoparticles synthesized via sol-gel auto combustion route. Citric acid was used as a fuel and metal nitrate to fuel ratio was chosen to be 1:3. The resultant powder was sintered at 550 °C for 4 h and used for further characterizations. Single phase formation and nanocrystalline nature was confirmed through X-ray diffraction analysis. The crystallite size of all the samples calculated through Debye-Scherrer’s formula found to be in the range of 18–55 nm. The lattice constant calculated from XRD data show decreasing trend. Scanning electron microscopy technique was used to study the surface morphology of typical samples (x = 0.0 and 0.4). The average grain size determined through SEM images found to be 70 nm–35 nm respectively for x = 0.0 and 0.4 samples. The magnetic properties were investigated through magnetization and Mössbauer spectroscopy technique. The saturation magnetization measured from M-H hysteresis plot show decreasing trend with increase in Al–Cr content x. Using Mössbauer spectra the relative area of a sextet (T), Isomer shift (δ), Hyperfine Field (Hf), Quadrupole Splitting (Δ) and Line width (Γ) were calculated. Overall, the co-substitution of Al–Cr has significantly influenced the structural, morphological and magnetic properties of nickel ferrite nanoparticles. •Al3+ and Cr3+ co-substituted nickel ferrite nanoparticles have been successfully prepared by wet chemical route.•XRD studies confirmed the formation of cubic spinel structure.•It’s morphological, magnetic and Mossbauer properties were investigated.•Magnetic properties were influenced significantly by nonmagnetic Al3+ and magnetic Cr3+ ion substitution in nickel ferrite.•Al3+ and Cr3+ co-substituted nickel ferrite nanoparticles are desirable in high frequency electronic devices.
ArticleNumber 153501
Author Murumkar, V.D.
Sondur, V.V.
Humbe, Ashok V.
Jadhav, K.M.
Bharati, V.A.
Somvanshi, Sandeep B.
Author_xml – sequence: 1
  givenname: V.A.
  surname: Bharati
  fullname: Bharati, V.A.
  organization: Department of Physics, G.S.S. College, Belagavi, Karnataka, India
– sequence: 2
  givenname: Sandeep B.
  orcidid: 0000-0003-2267-2724
  surname: Somvanshi
  fullname: Somvanshi, Sandeep B.
  organization: Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, 431004, Maharashtra, India
– sequence: 3
  givenname: Ashok V.
  surname: Humbe
  fullname: Humbe, Ashok V.
  organization: Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, 431004, Maharashtra, India
– sequence: 4
  givenname: V.D.
  surname: Murumkar
  fullname: Murumkar, V.D.
  organization: Department of Physics, Vivekanand College, Aurangabad, 431001, MS, India
– sequence: 5
  givenname: V.V.
  surname: Sondur
  fullname: Sondur, V.V.
  organization: Maratha Mandal’s Engineering College, Belagavi, India
– sequence: 6
  givenname: K.M.
  surname: Jadhav
  fullname: Jadhav, K.M.
  email: drjadhavkm@gmail.com
  organization: Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, 431004, Maharashtra, India
BookMark eNqFkc-KFDEQxoOs4OzqIwgBr_bYSSadBA-yDP5ZWPGi55BJV7tpM0lbSS_szatn38UX8E18EruZPXlZKKhDfd9Xxa_OyVnKCQh5ztota1n3atyOLkafj1veMrNlUsiWPSIbppVodl1nzsimNVw2Wmj9hJyXMrbtohRsQ35epSHOkDzQPNCK4dZFSJVexr8_fu2R-tyU-VBqqHMNOdGl6g3QUnH2dUYXX9Jjxukmx_w1eBepSz39-Od3KQc3A9IJ8wRYA5Q1PwX_DSIdADFUoMmlPLll6iOUp-Tx4GKBZ_f9gnx59_bz_kNz_en91f7yuvFCqNrstNa97qUw3HTQM6aclHwHwhivOOuV3hllFNNw4BJ6CQY8O3DtoBsUAy8uyItT7nLa9xlKtWOeMS0rLReqU1xzYxbV65PKYy4FYbA-VLciqOhCtKy1K3s72nv2dmVvT-wXt_zPPWE4Orx70Pfm5IMFwG0AtMWH9Tl9QPDV9jk8kPAP6iKn-Q
CitedBy_id crossref_primary_10_1016_j_ultsonch_2020_105369
crossref_primary_10_1016_j_jmmm_2022_169772
crossref_primary_10_1016_j_jmrt_2021_06_023
crossref_primary_10_1016_j_nanoso_2024_101312
crossref_primary_10_1016_j_rinp_2022_105584
crossref_primary_10_1016_j_hazadv_2022_100150
crossref_primary_10_1007_s11814_023_1455_6
crossref_primary_10_1039_D1RA09354A
crossref_primary_10_1007_s11051_023_05879_z
crossref_primary_10_1088_1742_6596_1644_1_012042
crossref_primary_10_1016_j_jallcom_2020_157996
crossref_primary_10_1016_j_jallcom_2023_172998
crossref_primary_10_1016_j_physb_2023_415135
crossref_primary_10_1016_j_physo_2023_100139
crossref_primary_10_1016_j_inoche_2023_110719
crossref_primary_10_1016_j_cherd_2021_08_028
crossref_primary_10_1088_2043_6262_aca0ef
crossref_primary_10_1016_j_jics_2024_101194
crossref_primary_10_1016_j_rsurfi_2024_100404
crossref_primary_10_1007_s11082_023_06050_7
crossref_primary_10_1016_j_powtec_2024_119469
crossref_primary_10_4028_p_95jpl8
crossref_primary_10_1016_j_jpcs_2021_110080
crossref_primary_10_1016_j_inoche_2023_110666
crossref_primary_10_1016_j_est_2023_109494
crossref_primary_10_1016_j_inoche_2023_111355
crossref_primary_10_1007_s10948_023_06579_4
crossref_primary_10_1016_j_inoche_2024_112907
crossref_primary_10_1016_j_matchemphys_2025_130690
crossref_primary_10_1007_s00339_023_06561_w
crossref_primary_10_1007_s10971_024_06391_z
crossref_primary_10_1016_j_jelechem_2023_117206
crossref_primary_10_1007_s10854_021_05735_7
crossref_primary_10_1016_j_est_2022_104871
crossref_primary_10_1080_01932691_2023_2263548
crossref_primary_10_1016_j_est_2022_105320
crossref_primary_10_1016_j_mssp_2022_106830
crossref_primary_10_13005_ojc_380326
crossref_primary_10_1016_j_ijleo_2020_164462
crossref_primary_10_1016_j_jmmm_2022_170108
crossref_primary_10_1007_s41779_020_00556_z
crossref_primary_10_1088_1742_6596_1644_1_012020
crossref_primary_10_1007_s11270_024_07619_y
crossref_primary_10_1016_j_inoche_2023_110574
crossref_primary_10_1016_j_jallcom_2020_157013
crossref_primary_10_1016_j_rechem_2023_100929
crossref_primary_10_1016_j_ceramint_2021_11_024
crossref_primary_10_26599_JAC_2024_9220853
crossref_primary_10_1016_j_chemosphere_2022_137301
crossref_primary_10_1038_s41598_021_99236_6
crossref_primary_10_1007_s10948_024_06851_1
crossref_primary_10_1016_j_ceramint_2022_11_060
crossref_primary_10_1016_j_matchemphys_2024_129625
crossref_primary_10_1007_s10854_023_10244_w
crossref_primary_10_1016_j_cplett_2020_137240
crossref_primary_10_1016_j_matchemphys_2023_127303
crossref_primary_10_1016_j_cap_2020_11_009
crossref_primary_10_1016_j_surfin_2023_103377
crossref_primary_10_1088_2043_6262_ac389d
crossref_primary_10_1007_s41779_023_00932_5
crossref_primary_10_1016_j_physb_2021_413280
crossref_primary_10_1016_j_solidstatesciences_2024_107573
crossref_primary_10_1007_s10854_024_12632_2
crossref_primary_10_1016_j_ssi_2020_115425
crossref_primary_10_1007_s10854_020_04782_w
crossref_primary_10_1016_j_mseb_2023_117070
crossref_primary_10_1016_j_nxmate_2023_100020
crossref_primary_10_1016_j_jallcom_2021_159226
crossref_primary_10_1016_j_inoche_2023_110569
crossref_primary_10_1088_1742_6596_1644_1_012036
crossref_primary_10_1016_j_cplett_2020_137993
crossref_primary_10_1016_j_cap_2024_10_010
crossref_primary_10_1038_s41598_022_18306_5
crossref_primary_10_1016_j_vacuum_2021_110628
crossref_primary_10_1007_s10854_020_05197_3
crossref_primary_10_1016_j_jaap_2024_106782
crossref_primary_10_1007_s13538_023_01300_1
crossref_primary_10_1016_j_inoche_2022_110072
crossref_primary_10_1016_j_nanoso_2024_101196
crossref_primary_10_1016_j_jmmm_2024_172746
crossref_primary_10_1007_s10854_022_07989_1
crossref_primary_10_1016_j_jallcom_2023_169097
crossref_primary_10_1007_s10854_022_09332_0
crossref_primary_10_1007_s42729_023_01271_x
crossref_primary_10_1016_j_jmrt_2022_02_052
crossref_primary_10_1080_16583655_2023_2236368
crossref_primary_10_3390_nano13152223
crossref_primary_10_1016_j_ceramint_2022_07_263
crossref_primary_10_1016_j_physb_2025_416947
crossref_primary_10_1007_s10948_024_06892_6
crossref_primary_10_1016_j_ceramint_2024_03_248
crossref_primary_10_1016_j_matchemphys_2023_128055
crossref_primary_10_1007_s00339_023_06740_9
crossref_primary_10_1016_j_jallcom_2023_171868
crossref_primary_10_1016_j_jwpe_2024_105856
crossref_primary_10_1088_1402_4896_acb409
crossref_primary_10_1021_acsomega_0c03332
crossref_primary_10_1016_j_jallcom_2020_155422
crossref_primary_10_1016_j_jallcom_2023_172205
crossref_primary_10_15251_DJNB_2022_172_661
crossref_primary_10_1016_j_mseb_2023_116717
crossref_primary_10_1016_j_matchemphys_2024_129251
crossref_primary_10_1088_1742_6596_1644_1_012017
crossref_primary_10_1007_s10904_023_02755_0
crossref_primary_10_1016_j_molstruc_2023_136319
crossref_primary_10_1002_crat_202400183
crossref_primary_10_1016_j_ceramint_2021_01_267
crossref_primary_10_1007_s11696_023_02670_1
crossref_primary_10_1016_j_materresbull_2023_112598
crossref_primary_10_1007_s10854_024_13567_4
crossref_primary_10_1016_j_inoche_2023_110532
crossref_primary_10_1007_s10854_020_03684_1
crossref_primary_10_1016_j_inoche_2022_110175
crossref_primary_10_1016_j_cherd_2021_08_040
crossref_primary_10_1007_s10653_024_02213_x
crossref_primary_10_1016_j_matchemphys_2022_126091
crossref_primary_10_1016_j_rinp_2023_107306
crossref_primary_10_1007_s10854_024_13333_6
crossref_primary_10_1016_j_jallcom_2020_156884
crossref_primary_10_1016_j_cap_2024_04_005
crossref_primary_10_1016_j_ceramint_2022_08_164
crossref_primary_10_1007_s10854_024_12090_w
crossref_primary_10_1016_j_matchemphys_2023_128832
crossref_primary_10_1016_j_ceramint_2020_03_081
crossref_primary_10_1016_j_mtchem_2024_102311
crossref_primary_10_1016_j_mtla_2023_101695
crossref_primary_10_1016_j_jmmm_2023_170675
crossref_primary_10_1007_s10971_024_06571_x
crossref_primary_10_1016_j_jmmm_2022_169323
crossref_primary_10_1016_j_mssp_2024_108747
crossref_primary_10_1142_S0217979224501753
crossref_primary_10_1039_D0RA04319B
crossref_primary_10_1142_S0217979225500419
crossref_primary_10_1016_j_ceramint_2023_12_343
crossref_primary_10_1007_s10904_023_02820_8
crossref_primary_10_1016_j_ceramint_2022_10_212
crossref_primary_10_1088_2053_1591_ab6c9c
crossref_primary_10_1016_j_molstruc_2024_141063
crossref_primary_10_1016_j_physb_2021_413083
crossref_primary_10_1016_j_physb_2022_414232
crossref_primary_10_1021_acsomega_1c04832
crossref_primary_10_1016_j_mtcomm_2023_106405
crossref_primary_10_1016_j_inoche_2023_111850
crossref_primary_10_1016_j_rinp_2022_105610
crossref_primary_10_1007_s11696_022_02466_9
crossref_primary_10_1016_j_ceramint_2021_03_132
crossref_primary_10_1016_j_matchemphys_2024_130016
crossref_primary_10_1007_s10854_024_14058_2
crossref_primary_10_1063_5_0053985
Cites_doi 10.1063/1.4748959
10.1016/j.cej.2006.11.001
10.1016/j.apsusc.2012.06.034
10.1063/1.5113361
10.1016/S0304-8853(00)00459-5
10.1016/j.jnoncrysol.2019.02.004
10.1088/0953-8984/16/24/017
10.1023/A:1008884400574
10.1007/BF02696932
10.1063/1.3559266
10.1016/j.jmmm.2013.04.021
10.1063/1.5032528
10.1016/j.materresbull.2011.11.011
10.1007/s10854-019-00963-4
10.1109/22.989957
10.1016/j.jmmm.2011.10.017
10.1016/j.jmmm.2004.11.010
10.1016/S0025-5408(01)00620-1
10.1016/j.jallcom.2011.08.096
10.1016/j.physb.2017.07.043
10.1021/acs.jpcc.9b02180
10.1021/jp205572m
10.1016/j.ceramint.2012.08.028
10.1016/j.jmmm.2010.06.035
10.1016/j.scriptamat.2006.09.033
10.1016/j.matlet.2009.12.049
10.1016/S0304-8853(00)00106-2
10.1063/1.5028675
10.1016/j.ccr.2016.01.012
10.3390/ma12101685
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright Elsevier BV Apr 15, 2020
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright Elsevier BV Apr 15, 2020
DBID AAYXX
CITATION
8BQ
8FD
JG9
DOI 10.1016/j.jallcom.2019.153501
DatabaseName CrossRef
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Physics
EISSN 1873-4669
ExternalDocumentID 10_1016_j_jallcom_2019_153501
S0925838819347474
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SPD
SSM
SSZ
T5K
TWZ
XPP
ZMT
~G-
29J
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SEW
SMS
SSH
T9H
WUQ
8BQ
8FD
AFXIZ
EFKBS
JG9
ID FETCH-LOGICAL-c337t-4888d8d539296ed117a5524e399c721d784979718eb25ed5e9ec1b28ae6f71ec3
IEDL.DBID .~1
ISSN 0925-8388
IngestDate Fri Jul 25 04:55:13 EDT 2025
Tue Jul 01 03:58:24 EDT 2025
Thu Apr 24 23:05:19 EDT 2025
Fri Feb 23 02:40:34 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Sol-gel auto combustion
Magnetization
Mossbauer
Al–Cr co-substitution
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-4888d8d539296ed117a5524e399c721d784979718eb25ed5e9ec1b28ae6f71ec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2267-2724
PQID 2376728299
PQPubID 2045454
ParticipantIDs proquest_journals_2376728299
crossref_citationtrail_10_1016_j_jallcom_2019_153501
crossref_primary_10_1016_j_jallcom_2019_153501
elsevier_sciencedirect_doi_10_1016_j_jallcom_2019_153501
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-25
PublicationDateYYYYMMDD 2020-04-25
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-25
  day: 25
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Journal of alloys and compounds
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Patange, Shirsath, Jadhav, Lohar, Mane, Jadhav (bib24) 2010; 64
Kumbhar, Jagadale, Shinde, Lokhande (bib3) 2012; 259
Iqbal, Ahmad, Meydan, Nlebedim (bib36) 2012; 47
Toksha, Shirsath, Mane, Patange, Jadhav, Jadhav (bib35) 2011; 115
Murali, Margarette, Kumar, Sailaja, Mulushoa, Himakar, Babu, Veeraiah (bib22) 2017; 522
Babrekar, Jadhav (bib20) 2017
Zhou, Zhang, Chang, Chen, Zhang, Tian, Zuo, Ren, Song, Yang (bib27) 2019; 12
Li, Yuan, Li, Liu, Leng (bib19) 2010; 322
Sharifi, Shokrollahi, Amiri (bib4) 2012; 324
Makovec, Košak, Žnidaršič, Drofenik (bib5) 2005; 289
Pervaiz, Gul (bib33) 2013; 343
Goldman (bib10) 2006
Adam, Davis, Dionne, Schloemann, Stitzer (bib11) 2002; 50
Jacob, Fitzner, Alcock (bib28) 1977; 8
Birajdar, Shirsath, Kadam, Mane, Mane, Shitre (bib31) 2012; 112
Kharat, Somvanshi, Kounsalye, Deshmukh, Khirade, Jadhav (bib7) 2018
Maensiri, Masingboon, Boonchom, Seraphin (bib15) 2007; 56
Hashim, Kumar, Ali, Koo, Chung, Kumar (bib30) 2012; 511
Chkoundali, Ammar, Jouini, Fiévet, Molinié, Danot, Villain, Greneche (bib16) 2004; 16
Chen, He (bib14) 2001; 36
Mathew, Juang (bib21) 2007; 129
Somvanshi, Khedkar, Kharat, Jadhav (bib18) 2019
Hashim, Kumar, Shirsath, Kotnala, Shah, Kumar (bib26) 2013; 39
Patange, Shirsath, Jangam, Lohar, Jadhav, Jadhav (bib32) 2011; 109
Chae, Lee, Lee, Lee (bib34) 2000; 220
Kharat, More, Somvanshi, Jadhav (bib17) 2019; 30
Cobos, de la Presa, Llorente, Alonso, Garcia-Escorial, Marin, Hernando, Jimenez (bib29) 2019
Khedkar, Somvanshi, Humbe, Jadhav (bib12) 2019; 511
Bhoyar, Somvanshi, Kharat, Pandit, Jadhav (bib13) 2019
Reddy, Yun (bib9) 2016; 315
Sankpal, Kakatkar, Chaudhari, Patil, Sawant, Suryavanshi (bib25) 1998; 9
Valenzuela (bib2) 2012
Kale, Somvanshi, Sarnaik, More, Shukla, Jadhav (bib6) 2018
Somvanshi, Kumar, Kounsalye, Saraf, Jadhav (bib8) 2019
Pardavi-Horvath (bib1) 2000; 215
Somvanshi, Kharat, Khedkar, Jadhav (bib23) 2019
Jacob (10.1016/j.jallcom.2019.153501_bib28) 1977; 8
Sharifi (10.1016/j.jallcom.2019.153501_bib4) 2012; 324
Kharat (10.1016/j.jallcom.2019.153501_bib17) 2019; 30
Babrekar (10.1016/j.jallcom.2019.153501_bib20) 2017
Mathew (10.1016/j.jallcom.2019.153501_bib21) 2007; 129
Chen (10.1016/j.jallcom.2019.153501_bib14) 2001; 36
Kumbhar (10.1016/j.jallcom.2019.153501_bib3) 2012; 259
Chkoundali (10.1016/j.jallcom.2019.153501_bib16) 2004; 16
Iqbal (10.1016/j.jallcom.2019.153501_bib36) 2012; 47
Maensiri (10.1016/j.jallcom.2019.153501_bib15) 2007; 56
Makovec (10.1016/j.jallcom.2019.153501_bib5) 2005; 289
Kale (10.1016/j.jallcom.2019.153501_bib6) 2018
Somvanshi (10.1016/j.jallcom.2019.153501_bib18) 2019
Zhou (10.1016/j.jallcom.2019.153501_bib27) 2019; 12
Toksha (10.1016/j.jallcom.2019.153501_bib35) 2011; 115
Hashim (10.1016/j.jallcom.2019.153501_bib26) 2013; 39
Patange (10.1016/j.jallcom.2019.153501_bib32) 2011; 109
Cobos (10.1016/j.jallcom.2019.153501_bib29) 2019
Hashim (10.1016/j.jallcom.2019.153501_bib30) 2012; 511
Pervaiz (10.1016/j.jallcom.2019.153501_bib33) 2013; 343
Adam (10.1016/j.jallcom.2019.153501_bib11) 2002; 50
Li (10.1016/j.jallcom.2019.153501_bib19) 2010; 322
Sankpal (10.1016/j.jallcom.2019.153501_bib25) 1998; 9
Goldman (10.1016/j.jallcom.2019.153501_bib10) 2006
Kharat (10.1016/j.jallcom.2019.153501_bib7) 2018
Murali (10.1016/j.jallcom.2019.153501_bib22) 2017; 522
Somvanshi (10.1016/j.jallcom.2019.153501_bib23) 2019
Patange (10.1016/j.jallcom.2019.153501_bib24) 2010; 64
Bhoyar (10.1016/j.jallcom.2019.153501_bib13) 2019
Pardavi-Horvath (10.1016/j.jallcom.2019.153501_bib1) 2000; 215
Birajdar (10.1016/j.jallcom.2019.153501_bib31) 2012; 112
Chae (10.1016/j.jallcom.2019.153501_bib34) 2000; 220
Khedkar (10.1016/j.jallcom.2019.153501_bib12) 2019; 511
Valenzuela (10.1016/j.jallcom.2019.153501_bib2) 2012
Reddy (10.1016/j.jallcom.2019.153501_bib9) 2016; 315
Somvanshi (10.1016/j.jallcom.2019.153501_bib8) 2019
References_xml – volume: 36
  start-page: 1369
  year: 2001
  end-page: 1377
  ident: bib14
  article-title: Synthesis of nickel ferrite nanoparticles by sol-gel method
  publication-title: Mater. Res. Bull.
– volume: 324
  start-page: 903
  year: 2012
  end-page: 915
  ident: bib4
  article-title: Ferrite-based magnetic nanofluids used in hyperthermia applications
  publication-title: J. Magn. Magn. Mater.
– volume: 16
  start-page: 4357
  year: 2004
  ident: bib16
  article-title: Nickel ferrite nanoparticles: elaboration in polyol medium via hydrolysis, and magnetic properties
  publication-title: J. Phys. Condens. Matter
– volume: 9
  start-page: 173
  year: 1998
  end-page: 179
  ident: bib25
  article-title: Initial permeability studies on A13+ and Cr3+ substituted Ni–Zn ferrites
  publication-title: J. Mater. Sci. Mater. Electron.
– year: 2018
  ident: bib7
  article-title: Temperature dependent viscosity of cobalt ferrite/ethylene glycol ferrofluids
  publication-title: AIP Conference Proceedings
– volume: 47
  start-page: 344
  year: 2012
  end-page: 351
  ident: bib36
  article-title: Influence of Ni–Cr substitution on the magnetic and electric properties of magnesium ferrite nanomaterials
  publication-title: Mater. Res. Bull.
– start-page: 73
  year: 2017
  end-page: 76
  ident: bib20
  article-title: Synthesis and characterization of spray deposited lithium ferrite thin film
  publication-title: Int. Res. J. Sci. Eng. Special
– year: 2019
  ident: bib8
  article-title: Investigations of structural, magnetic and induction heating properties of surface functionalized zinc ferrite nanoparticles for hyperthermia applications
  publication-title: AIP Conference Proceedings
– volume: 220
  start-page: 59
  year: 2000
  end-page: 64
  ident: bib34
  article-title: Crystallographic and magnetic properties of CoCrxFe2− xO4 ferrite powders
  publication-title: J. Magn. Magn. Mater.
– volume: 511
  start-page: 140
  year: 2019
  end-page: 146
  ident: bib12
  article-title: Surface modified sodium silicate based superhydrophobic silica aerogels prepared via ambient pressure drying process
  publication-title: J. Non-Cryst. Solids
– start-page: 411944
  year: 2019
  ident: bib13
  article-title: Structural, infrared, magnetic and ferroelectric properties of Sr0· 5Ba0· 5Ti1-xFexO3 nanoceramics: modifications via trivalent Fe ion doping
  publication-title: Phys. B Condens. Matter
– volume: 109
  year: 2011
  ident: bib32
  article-title: Rietveld structure refinement, cation distribution and magnetic properties of Al3+ substituted NiFe2O4 nanoparticles
  publication-title: J. Appl. Phys.
– start-page: 2012
  year: 2012
  ident: bib2
  article-title: Novel applications of ferrites
  publication-title: Phys. Res. Int.
– volume: 56
  start-page: 797
  year: 2007
  end-page: 800
  ident: bib15
  article-title: A simple route to synthesize nickel ferrite (NiFe2O4) nanoparticles using egg white
  publication-title: Scr. Mater.
– volume: 315
  start-page: 90
  year: 2016
  end-page: 111
  ident: bib9
  article-title: Spinel ferrite magnetic adsorbents: alternative future materials for water purification?
  publication-title: Coord. Chem. Rev.
– volume: 289
  start-page: 32
  year: 2005
  end-page: 35
  ident: bib5
  article-title: The synthesis of spinel–ferrite nanoparticles using precipitation in microemulsions for ferrofluid applications
  publication-title: J. Magn. Magn. Mater.
– volume: 50
  start-page: 721
  year: 2002
  end-page: 737
  ident: bib11
  article-title: Ferrite devices and materials
  publication-title: IEEE Trans. Microw. Theory Tech.
– year: 2019
  ident: bib18
  article-title: Influential diamagnetic magnesium (Mg2+) ion substitution in nano-spinel zinc ferrite (ZnFe2O4): thermal, structural, spectral, optical and physisorption analysis
  publication-title: Ceram. Int.
– volume: 215
  start-page: 171
  year: 2000
  end-page: 183
  ident: bib1
  article-title: Microwave applications of soft ferrites
  publication-title: J. Magn. Magn. Mater.
– year: 2006
  ident: bib10
  article-title: Modern Ferrite Technology
– volume: 129
  start-page: 51
  year: 2007
  end-page: 65
  ident: bib21
  article-title: An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions
  publication-title: Chem. Eng. J.
– year: 2019
  ident: bib29
  article-title: Magnetic phase diagram of nanostructured zinc ferrite as a function of inversion degree δ
  publication-title: J. Phys. Chem. C
– volume: 64
  start-page: 722
  year: 2010
  end-page: 724
  ident: bib24
  article-title: Rietveld refinement and switching properties of Cr3+ substituted NiFe2O4 ferrites
  publication-title: Mater. Lett.
– volume: 8
  start-page: 451
  year: 1977
  end-page: 460
  ident: bib28
  article-title: Activities in the spinel solid solution, phase equilibria and thermodynamic properties of ternary phases in the system Cu-Fe-0
  publication-title: Metall. Trans. B
– volume: 39
  start-page: 1807
  year: 2013
  end-page: 1819
  ident: bib26
  article-title: Influence of Cr3+ ion on the structural, ac conductivity and magnetic properties of nanocrystalline Ni–Mg ferrite
  publication-title: Ceram. Int.
– volume: 112
  year: 2012
  ident: bib31
  article-title: Permeability and magnetic properties of Al3+ substituted Ni0. 7Zn0. 3Fe2O4 nanoparticles
  publication-title: J. Appl. Phys.
– volume: 12
  start-page: 1685
  year: 2019
  ident: bib27
  article-title: The phase diagram and exotic magnetostrictive behaviors in spinel oxide Co (Fe1− xAlx) 2O4 system
  publication-title: Materials
– volume: 115
  start-page: 20905
  year: 2011
  end-page: 20912
  ident: bib35
  article-title: Autocombustion high-temperature synthesis, structural, and magnetic properties of CoCr x Fe2–x O4 (0≤ x≤ 1.0)
  publication-title: J. Phys. Chem. C
– volume: 259
  start-page: 39
  year: 2012
  end-page: 43
  ident: bib3
  article-title: Chemical synthesis of spinel cobalt ferrite (CoFe2O4) nano-flakes for supercapacitor application
  publication-title: Appl. Surf. Sci.
– volume: 511
  start-page: 107
  year: 2012
  end-page: 114
  ident: bib30
  article-title: Structural, magnetic and electrical properties of Al3+ substituted Ni–Zn ferrite nanoparticles
  publication-title: J. Alloy. Comp.
– volume: 322
  start-page: 3396
  year: 2010
  end-page: 3400
  ident: bib19
  article-title: Cation distribution dependence of magnetic properties of sol–gel prepared MnFe2O4 spinel ferrite nanoparticles
  publication-title: J. Magn. Magn. Mater.
– volume: 343
  start-page: 194
  year: 2013
  end-page: 202
  ident: bib33
  article-title: Low temperature synthesis and enhanced electrical properties by substitution of Al3+ and Cr3+ in Co–Ni nanoferrites
  publication-title: J. Magn. Magn. Mater.
– year: 2019
  ident: bib23
  article-title: Hydrophobic to hydrophilic surface transformation of nano-scale zinc ferrite via oleic acid coating: magnetic hyperthermia study towards biomedical applications
  publication-title: Ceram. Int.
– volume: 522
  start-page: 1
  year: 2017
  end-page: 6
  ident: bib22
  article-title: Effect of Al substitution on the structural and magnetic properties of Co-Zn ferrites
  publication-title: Phys. B Condens. Matter
– year: 2018
  ident: bib6
  article-title: Enhancement in surface area and magnetization of CoFe2O4 nanoparticles for targeted drug delivery application
  publication-title: AIP Conference Proceedings
– volume: 30
  start-page: 6564
  year: 2019
  end-page: 6574
  ident: bib17
  article-title: Exploration of thermoacoustics behavior of water based nickel ferrite nanofluids by ultrasonic velocity method
  publication-title: J. Mater. Sci. Mater. Electron.
– volume: 112
  year: 2012
  ident: 10.1016/j.jallcom.2019.153501_bib31
  article-title: Permeability and magnetic properties of Al3+ substituted Ni0. 7Zn0. 3Fe2O4 nanoparticles
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4748959
– volume: 129
  start-page: 51
  year: 2007
  ident: 10.1016/j.jallcom.2019.153501_bib21
  article-title: An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2006.11.001
– volume: 259
  start-page: 39
  year: 2012
  ident: 10.1016/j.jallcom.2019.153501_bib3
  article-title: Chemical synthesis of spinel cobalt ferrite (CoFe2O4) nano-flakes for supercapacitor application
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2012.06.034
– year: 2019
  ident: 10.1016/j.jallcom.2019.153501_bib8
  article-title: Investigations of structural, magnetic and induction heating properties of surface functionalized zinc ferrite nanoparticles for hyperthermia applications
  doi: 10.1063/1.5113361
– volume: 220
  start-page: 59
  year: 2000
  ident: 10.1016/j.jallcom.2019.153501_bib34
  article-title: Crystallographic and magnetic properties of CoCrxFe2− xO4 ferrite powders
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/S0304-8853(00)00459-5
– volume: 511
  start-page: 140
  year: 2019
  ident: 10.1016/j.jallcom.2019.153501_bib12
  article-title: Surface modified sodium silicate based superhydrophobic silica aerogels prepared via ambient pressure drying process
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2019.02.004
– volume: 16
  start-page: 4357
  year: 2004
  ident: 10.1016/j.jallcom.2019.153501_bib16
  article-title: Nickel ferrite nanoparticles: elaboration in polyol medium via hydrolysis, and magnetic properties
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/16/24/017
– volume: 9
  start-page: 173
  year: 1998
  ident: 10.1016/j.jallcom.2019.153501_bib25
  article-title: Initial permeability studies on A13+ and Cr3+ substituted Ni–Zn ferrites
  publication-title: J. Mater. Sci. Mater. Electron.
  doi: 10.1023/A:1008884400574
– volume: 8
  start-page: 451
  year: 1977
  ident: 10.1016/j.jallcom.2019.153501_bib28
  article-title: Activities in the spinel solid solution, phase equilibria and thermodynamic properties of ternary phases in the system Cu-Fe-0
  publication-title: Metall. Trans. B
  doi: 10.1007/BF02696932
– volume: 109
  year: 2011
  ident: 10.1016/j.jallcom.2019.153501_bib32
  article-title: Rietveld structure refinement, cation distribution and magnetic properties of Al3+ substituted NiFe2O4 nanoparticles
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3559266
– volume: 343
  start-page: 194
  year: 2013
  ident: 10.1016/j.jallcom.2019.153501_bib33
  article-title: Low temperature synthesis and enhanced electrical properties by substitution of Al3+ and Cr3+ in Co–Ni nanoferrites
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2013.04.021
– year: 2019
  ident: 10.1016/j.jallcom.2019.153501_bib23
  article-title: Hydrophobic to hydrophilic surface transformation of nano-scale zinc ferrite via oleic acid coating: magnetic hyperthermia study towards biomedical applications
  publication-title: Ceram. Int.
– start-page: 2012
  year: 2012
  ident: 10.1016/j.jallcom.2019.153501_bib2
  article-title: Novel applications of ferrites
  publication-title: Phys. Res. Int.
– year: 2018
  ident: 10.1016/j.jallcom.2019.153501_bib6
  article-title: Enhancement in surface area and magnetization of CoFe2O4 nanoparticles for targeted drug delivery application
  doi: 10.1063/1.5032528
– volume: 47
  start-page: 344
  year: 2012
  ident: 10.1016/j.jallcom.2019.153501_bib36
  article-title: Influence of Ni–Cr substitution on the magnetic and electric properties of magnesium ferrite nanomaterials
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2011.11.011
– volume: 30
  start-page: 6564
  year: 2019
  ident: 10.1016/j.jallcom.2019.153501_bib17
  article-title: Exploration of thermoacoustics behavior of water based nickel ferrite nanofluids by ultrasonic velocity method
  publication-title: J. Mater. Sci. Mater. Electron.
  doi: 10.1007/s10854-019-00963-4
– volume: 50
  start-page: 721
  year: 2002
  ident: 10.1016/j.jallcom.2019.153501_bib11
  article-title: Ferrite devices and materials
  publication-title: IEEE Trans. Microw. Theory Tech.
  doi: 10.1109/22.989957
– volume: 324
  start-page: 903
  year: 2012
  ident: 10.1016/j.jallcom.2019.153501_bib4
  article-title: Ferrite-based magnetic nanofluids used in hyperthermia applications
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2011.10.017
– volume: 289
  start-page: 32
  year: 2005
  ident: 10.1016/j.jallcom.2019.153501_bib5
  article-title: The synthesis of spinel–ferrite nanoparticles using precipitation in microemulsions for ferrofluid applications
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2004.11.010
– year: 2019
  ident: 10.1016/j.jallcom.2019.153501_bib18
  article-title: Influential diamagnetic magnesium (Mg2+) ion substitution in nano-spinel zinc ferrite (ZnFe2O4): thermal, structural, spectral, optical and physisorption analysis
  publication-title: Ceram. Int.
– volume: 36
  start-page: 1369
  year: 2001
  ident: 10.1016/j.jallcom.2019.153501_bib14
  article-title: Synthesis of nickel ferrite nanoparticles by sol-gel method
  publication-title: Mater. Res. Bull.
  doi: 10.1016/S0025-5408(01)00620-1
– volume: 511
  start-page: 107
  year: 2012
  ident: 10.1016/j.jallcom.2019.153501_bib30
  article-title: Structural, magnetic and electrical properties of Al3+ substituted Ni–Zn ferrite nanoparticles
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2011.08.096
– volume: 522
  start-page: 1
  year: 2017
  ident: 10.1016/j.jallcom.2019.153501_bib22
  article-title: Effect of Al substitution on the structural and magnetic properties of Co-Zn ferrites
  publication-title: Phys. B Condens. Matter
  doi: 10.1016/j.physb.2017.07.043
– year: 2019
  ident: 10.1016/j.jallcom.2019.153501_bib29
  article-title: Magnetic phase diagram of nanostructured zinc ferrite as a function of inversion degree δ
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b02180
– volume: 115
  start-page: 20905
  year: 2011
  ident: 10.1016/j.jallcom.2019.153501_bib35
  article-title: Autocombustion high-temperature synthesis, structural, and magnetic properties of CoCr x Fe2–x O4 (0≤ x≤ 1.0)
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp205572m
– volume: 39
  start-page: 1807
  year: 2013
  ident: 10.1016/j.jallcom.2019.153501_bib26
  article-title: Influence of Cr3+ ion on the structural, ac conductivity and magnetic properties of nanocrystalline Ni–Mg ferrite
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2012.08.028
– volume: 322
  start-page: 3396
  year: 2010
  ident: 10.1016/j.jallcom.2019.153501_bib19
  article-title: Cation distribution dependence of magnetic properties of sol–gel prepared MnFe2O4 spinel ferrite nanoparticles
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2010.06.035
– start-page: 411944
  year: 2019
  ident: 10.1016/j.jallcom.2019.153501_bib13
  article-title: Structural, infrared, magnetic and ferroelectric properties of Sr0· 5Ba0· 5Ti1-xFexO3 nanoceramics: modifications via trivalent Fe ion doping
  publication-title: Phys. B Condens. Matter
– volume: 56
  start-page: 797
  year: 2007
  ident: 10.1016/j.jallcom.2019.153501_bib15
  article-title: A simple route to synthesize nickel ferrite (NiFe2O4) nanoparticles using egg white
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2006.09.033
– volume: 64
  start-page: 722
  year: 2010
  ident: 10.1016/j.jallcom.2019.153501_bib24
  article-title: Rietveld refinement and switching properties of Cr3+ substituted NiFe2O4 ferrites
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2009.12.049
– year: 2006
  ident: 10.1016/j.jallcom.2019.153501_bib10
– start-page: 73
  year: 2017
  ident: 10.1016/j.jallcom.2019.153501_bib20
  article-title: Synthesis and characterization of spray deposited lithium ferrite thin film
  publication-title: Int. Res. J. Sci. Eng. Special
– volume: 215
  start-page: 171
  year: 2000
  ident: 10.1016/j.jallcom.2019.153501_bib1
  article-title: Microwave applications of soft ferrites
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/S0304-8853(00)00106-2
– year: 2018
  ident: 10.1016/j.jallcom.2019.153501_bib7
  article-title: Temperature dependent viscosity of cobalt ferrite/ethylene glycol ferrofluids
  doi: 10.1063/1.5028675
– volume: 315
  start-page: 90
  year: 2016
  ident: 10.1016/j.jallcom.2019.153501_bib9
  article-title: Spinel ferrite magnetic adsorbents: alternative future materials for water purification?
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2016.01.012
– volume: 12
  start-page: 1685
  year: 2019
  ident: 10.1016/j.jallcom.2019.153501_bib27
  article-title: The phase diagram and exotic magnetostrictive behaviors in spinel oxide Co (Fe1− xAlx) 2O4 system
  publication-title: Materials
  doi: 10.3390/ma12101685
SSID ssj0001931
Score 2.625733
Snippet Here, we report the influence of nonmagnetic Al3+ and magnetic Cr3+ co-substitution on the structural, morphological, magnetic and Mössbauer properties of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 153501
SubjectTerms Aluminum
Al–Cr co-substitution
Chromium
Citric acid
Crystallites
Debye-Scherrer method
Fuels
Grain size
Hyperfine structure
Lattice parameters
Magnetic properties
Magnetic saturation
Magnetization
Mathematical analysis
Morphology
Mossbauer
Mossbauer spectroscopy
Nanoparticles
Nickel
Nickel ferrites
Quadrupoles
Sintering (powder metallurgy)
Sol-gel auto combustion
Sol-gel processes
Spectrum analysis
Substitutes
Title Influence of trivalent Al–Cr co-substitution on the structural, morphological and Mössbauer properties of nickel ferrite nanoparticles
URI https://dx.doi.org/10.1016/j.jallcom.2019.153501
https://www.proquest.com/docview/2376728299
Volume 821
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEB5CQmlzCO22pflp0KHHandtS5Z1XJaETUtyaQO5CVuWYBfXu6y319Brz32XvkDeJE-SGVtO0lIIFHyyLWH0jWZG1qdvAD64sShslHnubVxwoX3JtfcpT7RL1bjIoyKm08jnF-nsUny6kldbMO3PwhCtMvj-zqe33jrcGYXRHK3m89GXsY5pzw9DWiIwKSZNUCEUWfnw-oHmgU_bqnn4Mqe3H07xjBbDRV5VRBrBKKiHOPdlqA3zj_j0l6duw8_pS9gLeSObdJ_2CrZcPYDn075c2wB2HykLDuBZy-y0zWv4edaXIWFLzzbrOZoWBho2qW5__JqumV3yBp1HyxhAjBhemBOyTleWNDk-sm9LBKN3kiyvS3Z-87tpivy7W7MV_c1fkywr9V_P0StUzJPe48axOq9xUR64d2_g8vTk63TGQ_0FbpNEbTjO7azMSkkpVOrKKFK5lLFwmNNYXDiWKhNaaQxuuDqXrpROO4vYZrlLvYqcTd7Cdr2s3TtgqZeRolJLpFefKuzAZXGZSq8xvYviYh9EP-rGBnFyqpFRmZ6FtjABLENgmQ6sfRjeN1t16hxPNch6SM0fZmYwgjzV9Kg3ARPmeWOIU6RoM1of_H_Ph_AiplX8WPBYHsE2AuzeY6qzKY5bWz6GncnZ59nFHVw4Abg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Pb9MwFH8aQ2jjgKCAGAzwgSNum8SO4-NUMXWw7sIm7WYlji21ytKq6a7Trpz5LvsC-yZ8Et5LHAYIaRJSTklsRX7_4-ffD-CDG4vCRpnn3sYFF9qXXHuf8kS7VI2LPCpiOo08O0mnZ-LzuTzfgkl_FobaKoPv73x6663DnVFYzdFqPh99HeuY9vwwpCUCk2LxAB4KNF-iMRhe3fV54OOWNg_f5vT63TGe0WK4yKuKukYwDOohGr8M5DD_CFB_ueo2_hw-hSchcWQH3bc9gy1XD2Bn0vO1DeDxb9CCA3jUtnba5jl8O-p5SNjSs816jrqFkYYdVD-uv0_WzC55g96jbRlAITG8MClkHbAsgXJ8ZBdLlEbvJVlel2x2e9M0RX7p1mxFv_PXhMtK89dzdAsV8wT4uHGszmusykPz3Qs4O_x0OpnyQMDAbZKoDUfjzsqslJRDpa6MIpVLGQuHSY3FyrFUmdBKY3TD8ly6UjrtLAo3y13qVeRs8hK262XtXgFLvYwUcS0RYH2qcAKXxWUqvcb8LoqLPRD9qhsb0MmJJKMyfRvawgRhGRKW6YS1B8Nfw1YdPMd9A7JepOYPPTMYQu4but-rgAmG3hhqKlK0G61f___M72Fnejo7NsdHJ1_ewG5MJf1Y8FjuwzYK273FvGdTvGv1-ics9gNG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+trivalent+Al%E2%80%93Cr+co-substitution+on+the+structural%2C+morphological+and+M%C3%B6ssbauer+properties+of+nickel+ferrite+nanoparticles&rft.jtitle=Journal+of+alloys+and+compounds&rft.au=Bharati%2C+V.A.&rft.au=Somvanshi%2C+Sandeep+B.&rft.au=Humbe%2C+Ashok+V.&rft.au=Murumkar%2C+V.D.&rft.date=2020-04-25&rft.pub=Elsevier+B.V&rft.issn=0925-8388&rft.eissn=1873-4669&rft.volume=821&rft_id=info:doi/10.1016%2Fj.jallcom.2019.153501&rft.externalDocID=S0925838819347474
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-8388&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-8388&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-8388&client=summon