Remarks on numerical simulation of the LEAP-Asia-2019 centrifuge tests

Prototype and physical scale numerical models were created using OpenSees to simulate centrifuge experiments representing a sloping ground condition in accordance with LEAP-Asia-2019 guidelines. The PM4Sand constitutive model calibrated for Ottawa F65 sand was used. Simulated results showed reasonab...

Full description

Saved in:
Bibliographic Details
Published inSoil dynamics and earthquake engineering (1984) Vol. 142; p. 106541
Main Authors Chen, Long, Ghofrani, Alborz, Arduino, Pedro
Format Journal Article
LanguageEnglish
Published Barking Elsevier Ltd 01.03.2021
Elsevier BV
Subjects
Online AccessGet full text
ISSN0267-7261
1879-341X
DOI10.1016/j.soildyn.2020.106541

Cover

Loading…
Abstract Prototype and physical scale numerical models were created using OpenSees to simulate centrifuge experiments representing a sloping ground condition in accordance with LEAP-Asia-2019 guidelines. The PM4Sand constitutive model calibrated for Ottawa F65 sand was used. Simulated results showed reasonable agreement between prototype and physical centrifuge test scale models. Modeling fundamental characteristics of the centrifuge experiment, e.g., direction of shaking relative to the axis of centrifuge, was found to be an important factor in achieving a better match between numerical and experimental results for the simulation of the prototype model. A preliminary study on the use of generalized scaling laws showed that models with higher initial stresses predict larger lateral displacements. Additionally, examination of stress histories recorded in simulations and experiments indicated higher cyclic stress ratios and static shear stresses are required for proper calibration of constitutive model parameters. •Prototype scale and physical scale numerical models are created.•PM4Sand constitutive model is calibrated for Ottawa F65 sand.•Prototype scale model predicts greater lateral displacement in tangential shaking cases due to effect of boundary conditions.•Under similar input motions and relative densities, model with higher initial stresses predicts larger lateral displacements.•High cyclic stress ratio and static shear stress need to be focused during model calibration process.
AbstractList Prototype and physical scale numerical models were created using OpenSees to simulate centrifuge experiments representing a sloping ground condition in accordance with LEAP-Asia-2019 guidelines. The PM4Sand constitutive model calibrated for Ottawa F65 sand was used. Simulated results showed reasonable agreement between prototype and physical centrifuge test scale models. Modeling fundamental characteristics of the centrifuge experiment, e.g., direction of shaking relative to the axis of centrifuge, was found to be an important factor in achieving a better match between numerical and experimental results for the simulation of the prototype model. A preliminary study on the use of generalized scaling laws showed that models with higher initial stresses predict larger lateral displacements. Additionally, examination of stress histories recorded in simulations and experiments indicated higher cyclic stress ratios and static shear stresses are required for proper calibration of constitutive model parameters. •Prototype scale and physical scale numerical models are created.•PM4Sand constitutive model is calibrated for Ottawa F65 sand.•Prototype scale model predicts greater lateral displacement in tangential shaking cases due to effect of boundary conditions.•Under similar input motions and relative densities, model with higher initial stresses predicts larger lateral displacements.•High cyclic stress ratio and static shear stress need to be focused during model calibration process.
Prototype and physical scale numerical models were created using OpenSees to simulate centrifuge experiments representing a sloping ground condition in accordance with LEAP-Asia-2019 guidelines. The PM4Sand constitutive model calibrated for Ottawa F65 sand was used. Simulated results showed reasonable agreement between prototype and physical centrifuge test scale models. Modeling fundamental characteristics of the centrifuge experiment, e.g., direction of shaking relative to the axis of centrifuge, was found to be an important factor in achieving a better match between numerical and experimental results for the simulation of the prototype model. A preliminary study on the use of generalized scaling laws showed that models with higher initial stresses predict larger lateral displacements. Additionally, examination of stress histories recorded in simulations and experiments indicated higher cyclic stress ratios and static shear stresses are required for proper calibration of constitutive model parameters.
ArticleNumber 106541
Author Arduino, Pedro
Chen, Long
Ghofrani, Alborz
Author_xml – sequence: 1
  givenname: Long
  surname: Chen
  fullname: Chen, Long
  email: longchen@uw.edu
  organization: Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, WA, 98195-2700, USA
– sequence: 2
  givenname: Alborz
  surname: Ghofrani
  fullname: Ghofrani, Alborz
  email: aghofrani@golder.com
  organization: Golder Associates, Inc, 18300 NE Union Hill Rd # 200, WA, 98052, USA
– sequence: 3
  givenname: Pedro
  surname: Arduino
  fullname: Arduino, Pedro
  email: parduino@uw.edu
  organization: Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, WA, 98195-2700, USA
BookMark eNqFkE1LwzAYx4NMcE4_glDw3JmXNknxIGNsKgwUUfAW0jbRzC6ZSSrs25vZnbzs9MCf_wvP7xyMrLMKgCsEpwgierOeBme6dmenGOK9RssCnYAx4qzKSYHeR2AMMWU5wxSdgfMQ1hAihjgdg-WL2kj_FTJnM9tvlDeN7LJgNn0no0mi01n8VNlqMXvOZ8HIHENUZY2y0Rvdf6gsqhDDBTjVsgvq8nAn4G25eJ0_5Kun-8f5bJU3hLCYk5a1BaJcEq0ZpERj1uJa8qIqFCt4VZdtiTktNdcFI7LikicLrDThNUM1JBNwPfRuvfvu07JYu97bNCkIQoRDXuEyucrB1XgXgldabL1Jb-4EgmKPTKzFAZnYIxMDspS7_ZdrTPzDEL003dH03ZBWCcCPUV6ExijbqNZ41UTROnOk4RfTZIsp
CitedBy_id crossref_primary_10_1061_JGGEFK_GTENG_10262
crossref_primary_10_1016_j_soildyn_2024_108474
crossref_primary_10_1016_j_soildyn_2023_108330
crossref_primary_10_1680_jphmg_21_00085
crossref_primary_10_1061__ASCE_GT_1943_5606_0002690
crossref_primary_10_1007_s11440_023_01941_1
crossref_primary_10_1016_j_soildyn_2023_107937
crossref_primary_10_1016_j_compgeo_2022_105048
crossref_primary_10_1016_j_soildyn_2024_108877
Cites_doi 10.1061/(ASCE)0733-9399(2004)130:6(622)
10.1680/geot.2005.55.5.355
10.1108/02644400110365842
10.1016/j.compgeo.2015.01.002
10.1193/1.2194970
10.1016/j.sandf.2019.05.005
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Mar 2021
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Mar 2021
DBID AAYXX
CITATION
7ST
7TG
7UA
8FD
C1K
FR3
KL.
KR7
SOI
DOI 10.1016/j.soildyn.2020.106541
DatabaseName CrossRef
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Engineering Research Database
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-341X
ExternalDocumentID 10_1016_j_soildyn_2020_106541
S0267726120311672
GeographicLocations Asia
GeographicLocations_xml – name: Asia
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACNNM
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
IMUCA
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSE
SST
SSZ
T5K
TN5
WUQ
Y6R
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7ST
7TG
7UA
8FD
C1K
EFKBS
FR3
KL.
KR7
SOI
ID FETCH-LOGICAL-c337t-3d7d4168a3ff7063f27d2ba8494e7489b5d52865f8f473a98a8f2709f38b71b03
IEDL.DBID .~1
ISSN 0267-7261
IngestDate Wed Aug 13 09:20:20 EDT 2025
Tue Jul 01 03:37:58 EDT 2025
Thu Apr 24 22:57:10 EDT 2025
Fri Feb 23 02:48:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Finite element analysis
Centrifuge test
Liquefaction
Nonlinear dynamic effective stress analysis
Lateral spreading
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-3d7d4168a3ff7063f27d2ba8494e7489b5d52865f8f473a98a8f2709f38b71b03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3113808925
PQPubID 2045399
ParticipantIDs proquest_journals_3113808925
crossref_primary_10_1016_j_soildyn_2020_106541
crossref_citationtrail_10_1016_j_soildyn_2020_106541
elsevier_sciencedirect_doi_10_1016_j_soildyn_2020_106541
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2021
2021-03-00
20210301
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: March 2021
PublicationDecade 2020
PublicationPlace Barking
PublicationPlace_xml – name: Barking
PublicationTitle Soil dynamics and earthquake engineering (1984)
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References McKenna (bib15) 1997
El Ghoraiby, Park, Manzari (bib11) 2019
McGann, Arduino, Mackenzie-Helnwein (bib17) 2015; 66
Ueda, Sawada, Wada, Tobita, Iai (bib8) 2019
Kramer, Mitchell (bib14) 2006; 22
Chen, Arduino (bib4) 2020
Sloan, Abbo, Sheng (bib20) 2001; 18
Manzari, Ghoraiby, Kutter, Zeghal, Abdoun, Arduino (bib2) 2017
Chen, Ghofrani, Arduino (bib19) 2019
Boulanger, Ziotopoulou (bib3) 2017
Ueda (bib12) 2018
Dafalias, Manzari (bib21) 2004; 130
Iai, Tobita, Nakahara (bib5) 2005; 55
Vasko (bib9) 2015
OpenSees (bib16) 2007
Mason, Gallant, Hutabarat, Montgomery, Reed, Wartman (bib1) 2019
Manzari (bib13) 2018
Idriss, Boulanger (bib24) 2008
Tobita, Iai (bib7) 2011
Zeghal, Goswami, Kutter, Manzari, Abdoun, Arduino (bib25) 2017
Kutter, Carey, Hashimoto, Zeghal, Abdoun, Kokkali (bib6) 2017
Bastidas (bib10) 2016
Ziotopoulou, Montgomery, Bastidas, Morales (bib22) 2018; vol. 293
Manzari, Ghoraiby, Zeghal, Kutter, Arduino, Barrero (bib23) 2019
Ghofrani, Arduino (bib18) 2017; 113
Tobita (10.1016/j.soildyn.2020.106541_bib7) 2011
Iai (10.1016/j.soildyn.2020.106541_bib5) 2005; 55
Bastidas (10.1016/j.soildyn.2020.106541_bib10) 2016
OpenSees (10.1016/j.soildyn.2020.106541_bib16) 2007
Chen (10.1016/j.soildyn.2020.106541_bib4) 2020
Kutter (10.1016/j.soildyn.2020.106541_bib6) 2017
Ghofrani (10.1016/j.soildyn.2020.106541_bib18) 2017; 113
Ueda (10.1016/j.soildyn.2020.106541_bib8) 2019
Manzari (10.1016/j.soildyn.2020.106541_bib23) 2019
Kramer (10.1016/j.soildyn.2020.106541_bib14) 2006; 22
McGann (10.1016/j.soildyn.2020.106541_bib17) 2015; 66
Zeghal (10.1016/j.soildyn.2020.106541_bib25) 2017
Dafalias (10.1016/j.soildyn.2020.106541_bib21) 2004; 130
Mason (10.1016/j.soildyn.2020.106541_bib1) 2019
Chen (10.1016/j.soildyn.2020.106541_bib19) 2019
Boulanger (10.1016/j.soildyn.2020.106541_bib3) 2017
El Ghoraiby (10.1016/j.soildyn.2020.106541_bib11) 2019
Manzari (10.1016/j.soildyn.2020.106541_bib13) 2018
McKenna (10.1016/j.soildyn.2020.106541_bib15) 1997
Idriss (10.1016/j.soildyn.2020.106541_bib24) 2008
Vasko (10.1016/j.soildyn.2020.106541_bib9) 2015
Ueda (10.1016/j.soildyn.2020.106541_bib12) 2018
Sloan (10.1016/j.soildyn.2020.106541_bib20) 2001; 18
Ziotopoulou (10.1016/j.soildyn.2020.106541_bib22) 2018; vol. 293
Manzari (10.1016/j.soildyn.2020.106541_bib2) 2017
References_xml – year: 2017
  ident: bib3
  article-title: PM4Sand(Version 3.1): a sand plasticity model for earthquake engineering applications
– year: 2017
  ident: bib2
  article-title: Liquefaction experiment and analysis projects (LEAP): Summary of observations from the planning phase
  publication-title: Soil Dynam Earthq Eng
– year: 2008
  ident: bib24
  article-title: Soil liquefaction during earthquakes
– year: 2016
  ident: bib10
  article-title: Ottawa F-65 sand characterization
– year: 1997
  ident: bib15
  article-title: Object-oriented finite element programming: frameworks for analysis, algorithms and parallel computing
– start-page: 175
  year: 2019
  end-page: 207
  ident: bib23
  article-title: Leap 2017: comparison of the type B numerical simulations with centrifuge test results
  publication-title: Model tests and numerical simulations of liquefaction and lateral spreading: LEAP-UCD-2017
– year: 2019
  ident: bib1
  article-title: Geotechnical reconnaissance: the 28 september 2018 M7.5 palu-donggala, Indonesia earthquake
– start-page: 405
  year: 2019
  end-page: 420
  ident: bib19
  article-title: Prediction of LEAP-UCD-2017 centrifuge test results using two advanced plasticity sand models
  publication-title: Model tests and numerical simulations of liquefaction and lateral spreading: LEAP-UCD-2017
– year: 2018
  ident: bib12
  article-title: LEAP-Asia-2018: stress-strain response of Ottawa sand in cyclic torsional shear tests
– year: 2015
  ident: bib9
  article-title: An investigation into the behavior of Ottawa sand through monotonic and cyclic shear tests. Phdthesis
– year: 2017
  ident: bib25
  article-title: Stress-strain response of the LEAP-2015 centrifuge tests and numerical predictions
  publication-title: Soil Dynam Earthq Eng
– year: 2020
  ident: bib4
  article-title: Implementation and validation of PM4Sand in OpenSees, in preparation
– volume: 22
  start-page: 413
  year: 2006
  end-page: 438
  ident: bib14
  article-title: Ground motion intensity measures for liquefaction hazard evaluation
  publication-title: Earthq Spectra
– year: 2019
  ident: bib8
  article-title: Applicability of the generalized scaling law to a pile-inclined ground system subject to liquefaction-induced lateral spreading
  publication-title: Soils Found
– start-page: 225
  year: 2011
  end-page: 236
  ident: bib7
  article-title: Application of the generalized scaling law to liquefiable model ground
  publication-title: Annuals of Disas Prev Res Inst
– volume: 55
  start-page: 355
  year: 2005
  end-page: 362
  ident: bib5
  article-title: Generalised scaling relations for dynamic centrifuge tests
  publication-title: Geotechnique
– year: 2018
  ident: bib13
  article-title: LEAP-2018 - stress-strain response of Ottawa F65 sand in cyclic simple shear
– year: 2017
  ident: bib6
  article-title: Leap-gwu-2015 experiment specifications, results, and comparisons
  publication-title: Soil Dynam Earthq Eng
– year: 2019
  ident: bib11
  article-title: Physical and mechanical properties of Ottawa F65 sand
  publication-title: Model tests and numerical simulations of liquefaction and lateral spreading: LEAP-UCD-2017
– volume: 66
  start-page: 126
  year: 2015
  end-page: 141
  ident: bib17
  article-title: A stabilized single-point finite element formulation for three-dimensional dynamic analysis of saturated soils
  publication-title: Comput Geotech
– year: 2007
  ident: bib16
  article-title: Open system for earthquake engineering simulation
– volume: 18
  start-page: 121
  year: 2001
  end-page: 194
  ident: bib20
  article-title: Refined explicit integration of elastoplastic models with automatic error control
  publication-title: Eng Comput
– volume: 130
  start-page: 622
  year: 2004
  end-page: 634
  ident: bib21
  article-title: Simple plasticity sand model accounting for fabric change effects
  publication-title: J Eng Mech
– volume: vol. 293
  start-page: 394
  year: 2018
  end-page: 403
  ident: bib22
  publication-title: Cyclic strength of Ottawa F-65 sand: laboratory testing and constitutive model calibration
– volume: 113
  start-page: 758
  year: 2017
  end-page: 770
  ident: bib18
  article-title: Prediction of LEAP centrifuge test results using a pressure-dependent bounding surface constitutive model
  publication-title: Soil Dynam Earthq Eng
– volume: 130
  start-page: 622
  issue: 6
  year: 2004
  ident: 10.1016/j.soildyn.2020.106541_bib21
  article-title: Simple plasticity sand model accounting for fabric change effects
  publication-title: J Eng Mech
  doi: 10.1061/(ASCE)0733-9399(2004)130:6(622)
– year: 2017
  ident: 10.1016/j.soildyn.2020.106541_bib25
  article-title: Stress-strain response of the LEAP-2015 centrifuge tests and numerical predictions
  publication-title: Soil Dynam Earthq Eng
– year: 2017
  ident: 10.1016/j.soildyn.2020.106541_bib6
  article-title: Leap-gwu-2015 experiment specifications, results, and comparisons
  publication-title: Soil Dynam Earthq Eng
– year: 1997
  ident: 10.1016/j.soildyn.2020.106541_bib15
– year: 2015
  ident: 10.1016/j.soildyn.2020.106541_bib9
– year: 2017
  ident: 10.1016/j.soildyn.2020.106541_bib2
  article-title: Liquefaction experiment and analysis projects (LEAP): Summary of observations from the planning phase
  publication-title: Soil Dynam Earthq Eng
– year: 2016
  ident: 10.1016/j.soildyn.2020.106541_bib10
– start-page: 175
  year: 2019
  ident: 10.1016/j.soildyn.2020.106541_bib23
  article-title: Leap 2017: comparison of the type B numerical simulations with centrifuge test results
– year: 2007
  ident: 10.1016/j.soildyn.2020.106541_bib16
– year: 2019
  ident: 10.1016/j.soildyn.2020.106541_bib1
– year: 2018
  ident: 10.1016/j.soildyn.2020.106541_bib12
– year: 2019
  ident: 10.1016/j.soildyn.2020.106541_bib11
  article-title: Physical and mechanical properties of Ottawa F65 sand
– volume: 55
  start-page: 355
  issue: 5
  year: 2005
  ident: 10.1016/j.soildyn.2020.106541_bib5
  article-title: Generalised scaling relations for dynamic centrifuge tests
  publication-title: Geotechnique
  doi: 10.1680/geot.2005.55.5.355
– volume: 18
  start-page: 121
  issue: 1/2
  year: 2001
  ident: 10.1016/j.soildyn.2020.106541_bib20
  article-title: Refined explicit integration of elastoplastic models with automatic error control
  publication-title: Eng Comput
  doi: 10.1108/02644400110365842
– year: 2020
  ident: 10.1016/j.soildyn.2020.106541_bib4
– volume: 66
  start-page: 126
  year: 2015
  ident: 10.1016/j.soildyn.2020.106541_bib17
  article-title: A stabilized single-point finite element formulation for three-dimensional dynamic analysis of saturated soils
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2015.01.002
– year: 2018
  ident: 10.1016/j.soildyn.2020.106541_bib13
– volume: 22
  start-page: 413
  issue: 2
  year: 2006
  ident: 10.1016/j.soildyn.2020.106541_bib14
  article-title: Ground motion intensity measures for liquefaction hazard evaluation
  publication-title: Earthq Spectra
  doi: 10.1193/1.2194970
– start-page: 225
  issue: 54
  year: 2011
  ident: 10.1016/j.soildyn.2020.106541_bib7
  article-title: Application of the generalized scaling law to liquefiable model ground
  publication-title: Annuals of Disas Prev Res Inst
– volume: 113
  start-page: 758
  issue: August 2016
  year: 2017
  ident: 10.1016/j.soildyn.2020.106541_bib18
  article-title: Prediction of LEAP centrifuge test results using a pressure-dependent bounding surface constitutive model
  publication-title: Soil Dynam Earthq Eng
– start-page: 405
  year: 2019
  ident: 10.1016/j.soildyn.2020.106541_bib19
  article-title: Prediction of LEAP-UCD-2017 centrifuge test results using two advanced plasticity sand models
– year: 2008
  ident: 10.1016/j.soildyn.2020.106541_bib24
– year: 2019
  ident: 10.1016/j.soildyn.2020.106541_bib8
  article-title: Applicability of the generalized scaling law to a pile-inclined ground system subject to liquefaction-induced lateral spreading
  publication-title: Soils Found
  doi: 10.1016/j.sandf.2019.05.005
– volume: vol. 293
  start-page: 394
  year: 2018
  ident: 10.1016/j.soildyn.2020.106541_bib22
– year: 2017
  ident: 10.1016/j.soildyn.2020.106541_bib3
SSID ssj0017186
Score 2.341305
Snippet Prototype and physical scale numerical models were created using OpenSees to simulate centrifuge experiments representing a sloping ground condition in...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 106541
SubjectTerms Centrifuge test
Centrifuges
Constitutive models
Finite element analysis
Initial stresses
Lateral displacement
Lateral spreading
Liquefaction
Mathematical models
Nonlinear dynamic effective stress analysis
Numerical models
Numerical simulations
Prototypes
Scale models
Scaling laws
Shaking
Shear stress
Simulation
Title Remarks on numerical simulation of the LEAP-Asia-2019 centrifuge tests
URI https://dx.doi.org/10.1016/j.soildyn.2020.106541
https://www.proquest.com/docview/3113808925
Volume 142
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWqcoEDYhVLQT5wddvE8ZJjVbUqW4VYJG6WnQWllBQ17YEL344nccoiISSulidKJpM3L8nMG4TOfBOJyA84CZLIJzZDSyJ5ZIjHYs6osPgnoVH4esxHD8HFI3tsoH7dCwNllQ77K0wv0dqtdJw3O69Z1rmD2UkCFLBsXHpcAA6Dep2N6fb7qszDs9jLq-8sgsDuzy6ezgT0cqfxG8ig-rAGM7F_y08_kLpMP8MttOl4I-5Vp7aNGkm-gza-qAnuouFt8qLnzwWe5ThfVn9iprjIXtyELjxLsaV7-GrQuyG9ItM2dr0Ql-WZWbp8SrClnYtiDz0MB_f9EXFjEkhEqVgQGovY0iqpaZoKyzhSX8S-0TIIgwS0ZQyLGfSfpjINBNWh1NJu6YYplUZ4pkv3UTOf5ckBwiySXWm6EY8DePHjIZOaecayLK09mfBDFNTOUZHTEIdRFlNVF4tNlPOpAp-qyqeHqL0ye61ENP4ykLXn1bdoUBbo_zJt1XdKucexUDZAqL2y0GdH_z_yMVr3oaClLEBroeZivkxOLCNZmNMy5E7RWu_8cjT-AKKc3SI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QOKgH4zM-UPfgdYV2nz0SAgEFYhQTb5vdPkwVCqFw8N-7S7f4SIyJ102naafTb752Z74B4NrXIQ99whCJQx-ZDC2QYKFGHo0Yxdzgn7CNwsMR6z2R22f6XAHtshfGllU67C8wfY3WbqXhvNmYp2nj0c5O4lYBy8Slx7jB4ZpVpyJVUGv173qjzWaCgV9W_GrhyBp8NvI0Xq1k7iR6t0qovl2zY7F_S1E_wHqdgbp7YNdRR9gqrm4fVOLsAOx8ERQ8BN2HeKoWbzmcZTBbFZsxE5inUzekC84SaBgfHHRa96iVp8qErxfAdYVmmqxeYmiY5zI_Ak_dzrjdQ25SAgox5kuEIx4ZZiUUThJuSEfi88jXSpCAxFZeRtOI2hbURCSEYxUIJcwhzSDBQnNPN_ExqGazLD4BkIaiKXQzZBGx334soEJRTxuipZQnYnYKSOkcGToZcTvNYiLLerFX6XwqrU9l4dNTcLMxmxc6Gn8ZiNLz8ltASIP1f5nWyycl3RuZSxMj2NxZ4NOz_5_5Cmz1xsOBHPRHd-dg27f1Let6tDqoLher-MIQlKW-dAH4AUcs39M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Remarks+on+numerical+simulation+of+the+LEAP-Asia-2019+centrifuge+tests&rft.jtitle=Soil+dynamics+and+earthquake+engineering+%281984%29&rft.au=Chen%2C+Long&rft.au=Ghofrani%2C+Alborz&rft.au=Arduino%2C+Pedro&rft.date=2021-03-01&rft.pub=Elsevier+BV&rft.issn=0267-7261&rft.eissn=1879-341X&rft.volume=142&rft.spage=1&rft_id=info:doi/10.1016%2Fj.soildyn.2020.106541&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0267-7261&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0267-7261&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0267-7261&client=summon