Remarks on numerical simulation of the LEAP-Asia-2019 centrifuge tests
Prototype and physical scale numerical models were created using OpenSees to simulate centrifuge experiments representing a sloping ground condition in accordance with LEAP-Asia-2019 guidelines. The PM4Sand constitutive model calibrated for Ottawa F65 sand was used. Simulated results showed reasonab...
Saved in:
Published in | Soil dynamics and earthquake engineering (1984) Vol. 142; p. 106541 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Barking
Elsevier Ltd
01.03.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0267-7261 1879-341X |
DOI | 10.1016/j.soildyn.2020.106541 |
Cover
Loading…
Abstract | Prototype and physical scale numerical models were created using OpenSees to simulate centrifuge experiments representing a sloping ground condition in accordance with LEAP-Asia-2019 guidelines. The PM4Sand constitutive model calibrated for Ottawa F65 sand was used. Simulated results showed reasonable agreement between prototype and physical centrifuge test scale models. Modeling fundamental characteristics of the centrifuge experiment, e.g., direction of shaking relative to the axis of centrifuge, was found to be an important factor in achieving a better match between numerical and experimental results for the simulation of the prototype model. A preliminary study on the use of generalized scaling laws showed that models with higher initial stresses predict larger lateral displacements. Additionally, examination of stress histories recorded in simulations and experiments indicated higher cyclic stress ratios and static shear stresses are required for proper calibration of constitutive model parameters.
•Prototype scale and physical scale numerical models are created.•PM4Sand constitutive model is calibrated for Ottawa F65 sand.•Prototype scale model predicts greater lateral displacement in tangential shaking cases due to effect of boundary conditions.•Under similar input motions and relative densities, model with higher initial stresses predicts larger lateral displacements.•High cyclic stress ratio and static shear stress need to be focused during model calibration process. |
---|---|
AbstractList | Prototype and physical scale numerical models were created using OpenSees to simulate centrifuge experiments representing a sloping ground condition in accordance with LEAP-Asia-2019 guidelines. The PM4Sand constitutive model calibrated for Ottawa F65 sand was used. Simulated results showed reasonable agreement between prototype and physical centrifuge test scale models. Modeling fundamental characteristics of the centrifuge experiment, e.g., direction of shaking relative to the axis of centrifuge, was found to be an important factor in achieving a better match between numerical and experimental results for the simulation of the prototype model. A preliminary study on the use of generalized scaling laws showed that models with higher initial stresses predict larger lateral displacements. Additionally, examination of stress histories recorded in simulations and experiments indicated higher cyclic stress ratios and static shear stresses are required for proper calibration of constitutive model parameters.
•Prototype scale and physical scale numerical models are created.•PM4Sand constitutive model is calibrated for Ottawa F65 sand.•Prototype scale model predicts greater lateral displacement in tangential shaking cases due to effect of boundary conditions.•Under similar input motions and relative densities, model with higher initial stresses predicts larger lateral displacements.•High cyclic stress ratio and static shear stress need to be focused during model calibration process. Prototype and physical scale numerical models were created using OpenSees to simulate centrifuge experiments representing a sloping ground condition in accordance with LEAP-Asia-2019 guidelines. The PM4Sand constitutive model calibrated for Ottawa F65 sand was used. Simulated results showed reasonable agreement between prototype and physical centrifuge test scale models. Modeling fundamental characteristics of the centrifuge experiment, e.g., direction of shaking relative to the axis of centrifuge, was found to be an important factor in achieving a better match between numerical and experimental results for the simulation of the prototype model. A preliminary study on the use of generalized scaling laws showed that models with higher initial stresses predict larger lateral displacements. Additionally, examination of stress histories recorded in simulations and experiments indicated higher cyclic stress ratios and static shear stresses are required for proper calibration of constitutive model parameters. |
ArticleNumber | 106541 |
Author | Arduino, Pedro Chen, Long Ghofrani, Alborz |
Author_xml | – sequence: 1 givenname: Long surname: Chen fullname: Chen, Long email: longchen@uw.edu organization: Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, WA, 98195-2700, USA – sequence: 2 givenname: Alborz surname: Ghofrani fullname: Ghofrani, Alborz email: aghofrani@golder.com organization: Golder Associates, Inc, 18300 NE Union Hill Rd # 200, WA, 98052, USA – sequence: 3 givenname: Pedro surname: Arduino fullname: Arduino, Pedro email: parduino@uw.edu organization: Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, WA, 98195-2700, USA |
BookMark | eNqFkE1LwzAYx4NMcE4_glDw3JmXNknxIGNsKgwUUfAW0jbRzC6ZSSrs25vZnbzs9MCf_wvP7xyMrLMKgCsEpwgierOeBme6dmenGOK9RssCnYAx4qzKSYHeR2AMMWU5wxSdgfMQ1hAihjgdg-WL2kj_FTJnM9tvlDeN7LJgNn0no0mi01n8VNlqMXvOZ8HIHENUZY2y0Rvdf6gsqhDDBTjVsgvq8nAn4G25eJ0_5Kun-8f5bJU3hLCYk5a1BaJcEq0ZpERj1uJa8qIqFCt4VZdtiTktNdcFI7LikicLrDThNUM1JBNwPfRuvfvu07JYu97bNCkIQoRDXuEyucrB1XgXgldabL1Jb-4EgmKPTKzFAZnYIxMDspS7_ZdrTPzDEL003dH03ZBWCcCPUV6ExijbqNZ41UTROnOk4RfTZIsp |
CitedBy_id | crossref_primary_10_1061_JGGEFK_GTENG_10262 crossref_primary_10_1016_j_soildyn_2024_108474 crossref_primary_10_1016_j_soildyn_2023_108330 crossref_primary_10_1680_jphmg_21_00085 crossref_primary_10_1061__ASCE_GT_1943_5606_0002690 crossref_primary_10_1007_s11440_023_01941_1 crossref_primary_10_1016_j_soildyn_2023_107937 crossref_primary_10_1016_j_compgeo_2022_105048 crossref_primary_10_1016_j_soildyn_2024_108877 |
Cites_doi | 10.1061/(ASCE)0733-9399(2004)130:6(622) 10.1680/geot.2005.55.5.355 10.1108/02644400110365842 10.1016/j.compgeo.2015.01.002 10.1193/1.2194970 10.1016/j.sandf.2019.05.005 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright Elsevier BV Mar 2021 |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV Mar 2021 |
DBID | AAYXX CITATION 7ST 7TG 7UA 8FD C1K FR3 KL. KR7 SOI |
DOI | 10.1016/j.soildyn.2020.106541 |
DatabaseName | CrossRef Environment Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Meteorological & Geoastrophysical Abstracts Technology Research Database Engineering Research Database Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-341X |
ExternalDocumentID | 10_1016_j_soildyn_2020_106541 S0267726120311672 |
GeographicLocations | Asia |
GeographicLocations_xml | – name: Asia |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACIWK ACLVX ACNNM ACRLP ACSBN ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE IMUCA J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SSE SST SSZ T5K TN5 WUQ Y6R ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7ST 7TG 7UA 8FD C1K EFKBS FR3 KL. KR7 SOI |
ID | FETCH-LOGICAL-c337t-3d7d4168a3ff7063f27d2ba8494e7489b5d52865f8f473a98a8f2709f38b71b03 |
IEDL.DBID | .~1 |
ISSN | 0267-7261 |
IngestDate | Wed Aug 13 09:20:20 EDT 2025 Tue Jul 01 03:37:58 EDT 2025 Thu Apr 24 22:57:10 EDT 2025 Fri Feb 23 02:48:28 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Finite element analysis Centrifuge test Liquefaction Nonlinear dynamic effective stress analysis Lateral spreading |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c337t-3d7d4168a3ff7063f27d2ba8494e7489b5d52865f8f473a98a8f2709f38b71b03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3113808925 |
PQPubID | 2045399 |
ParticipantIDs | proquest_journals_3113808925 crossref_primary_10_1016_j_soildyn_2020_106541 crossref_citationtrail_10_1016_j_soildyn_2020_106541 elsevier_sciencedirect_doi_10_1016_j_soildyn_2020_106541 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2021 2021-03-00 20210301 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: March 2021 |
PublicationDecade | 2020 |
PublicationPlace | Barking |
PublicationPlace_xml | – name: Barking |
PublicationTitle | Soil dynamics and earthquake engineering (1984) |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | McKenna (bib15) 1997 El Ghoraiby, Park, Manzari (bib11) 2019 McGann, Arduino, Mackenzie-Helnwein (bib17) 2015; 66 Ueda, Sawada, Wada, Tobita, Iai (bib8) 2019 Kramer, Mitchell (bib14) 2006; 22 Chen, Arduino (bib4) 2020 Sloan, Abbo, Sheng (bib20) 2001; 18 Manzari, Ghoraiby, Kutter, Zeghal, Abdoun, Arduino (bib2) 2017 Chen, Ghofrani, Arduino (bib19) 2019 Boulanger, Ziotopoulou (bib3) 2017 Ueda (bib12) 2018 Dafalias, Manzari (bib21) 2004; 130 Iai, Tobita, Nakahara (bib5) 2005; 55 Vasko (bib9) 2015 OpenSees (bib16) 2007 Mason, Gallant, Hutabarat, Montgomery, Reed, Wartman (bib1) 2019 Manzari (bib13) 2018 Idriss, Boulanger (bib24) 2008 Tobita, Iai (bib7) 2011 Zeghal, Goswami, Kutter, Manzari, Abdoun, Arduino (bib25) 2017 Kutter, Carey, Hashimoto, Zeghal, Abdoun, Kokkali (bib6) 2017 Bastidas (bib10) 2016 Ziotopoulou, Montgomery, Bastidas, Morales (bib22) 2018; vol. 293 Manzari, Ghoraiby, Zeghal, Kutter, Arduino, Barrero (bib23) 2019 Ghofrani, Arduino (bib18) 2017; 113 Tobita (10.1016/j.soildyn.2020.106541_bib7) 2011 Iai (10.1016/j.soildyn.2020.106541_bib5) 2005; 55 Bastidas (10.1016/j.soildyn.2020.106541_bib10) 2016 OpenSees (10.1016/j.soildyn.2020.106541_bib16) 2007 Chen (10.1016/j.soildyn.2020.106541_bib4) 2020 Kutter (10.1016/j.soildyn.2020.106541_bib6) 2017 Ghofrani (10.1016/j.soildyn.2020.106541_bib18) 2017; 113 Ueda (10.1016/j.soildyn.2020.106541_bib8) 2019 Manzari (10.1016/j.soildyn.2020.106541_bib23) 2019 Kramer (10.1016/j.soildyn.2020.106541_bib14) 2006; 22 McGann (10.1016/j.soildyn.2020.106541_bib17) 2015; 66 Zeghal (10.1016/j.soildyn.2020.106541_bib25) 2017 Dafalias (10.1016/j.soildyn.2020.106541_bib21) 2004; 130 Mason (10.1016/j.soildyn.2020.106541_bib1) 2019 Chen (10.1016/j.soildyn.2020.106541_bib19) 2019 Boulanger (10.1016/j.soildyn.2020.106541_bib3) 2017 El Ghoraiby (10.1016/j.soildyn.2020.106541_bib11) 2019 Manzari (10.1016/j.soildyn.2020.106541_bib13) 2018 McKenna (10.1016/j.soildyn.2020.106541_bib15) 1997 Idriss (10.1016/j.soildyn.2020.106541_bib24) 2008 Vasko (10.1016/j.soildyn.2020.106541_bib9) 2015 Ueda (10.1016/j.soildyn.2020.106541_bib12) 2018 Sloan (10.1016/j.soildyn.2020.106541_bib20) 2001; 18 Ziotopoulou (10.1016/j.soildyn.2020.106541_bib22) 2018; vol. 293 Manzari (10.1016/j.soildyn.2020.106541_bib2) 2017 |
References_xml | – year: 2017 ident: bib3 article-title: PM4Sand(Version 3.1): a sand plasticity model for earthquake engineering applications – year: 2017 ident: bib2 article-title: Liquefaction experiment and analysis projects (LEAP): Summary of observations from the planning phase publication-title: Soil Dynam Earthq Eng – year: 2008 ident: bib24 article-title: Soil liquefaction during earthquakes – year: 2016 ident: bib10 article-title: Ottawa F-65 sand characterization – year: 1997 ident: bib15 article-title: Object-oriented finite element programming: frameworks for analysis, algorithms and parallel computing – start-page: 175 year: 2019 end-page: 207 ident: bib23 article-title: Leap 2017: comparison of the type B numerical simulations with centrifuge test results publication-title: Model tests and numerical simulations of liquefaction and lateral spreading: LEAP-UCD-2017 – year: 2019 ident: bib1 article-title: Geotechnical reconnaissance: the 28 september 2018 M7.5 palu-donggala, Indonesia earthquake – start-page: 405 year: 2019 end-page: 420 ident: bib19 article-title: Prediction of LEAP-UCD-2017 centrifuge test results using two advanced plasticity sand models publication-title: Model tests and numerical simulations of liquefaction and lateral spreading: LEAP-UCD-2017 – year: 2018 ident: bib12 article-title: LEAP-Asia-2018: stress-strain response of Ottawa sand in cyclic torsional shear tests – year: 2015 ident: bib9 article-title: An investigation into the behavior of Ottawa sand through monotonic and cyclic shear tests. Phdthesis – year: 2017 ident: bib25 article-title: Stress-strain response of the LEAP-2015 centrifuge tests and numerical predictions publication-title: Soil Dynam Earthq Eng – year: 2020 ident: bib4 article-title: Implementation and validation of PM4Sand in OpenSees, in preparation – volume: 22 start-page: 413 year: 2006 end-page: 438 ident: bib14 article-title: Ground motion intensity measures for liquefaction hazard evaluation publication-title: Earthq Spectra – year: 2019 ident: bib8 article-title: Applicability of the generalized scaling law to a pile-inclined ground system subject to liquefaction-induced lateral spreading publication-title: Soils Found – start-page: 225 year: 2011 end-page: 236 ident: bib7 article-title: Application of the generalized scaling law to liquefiable model ground publication-title: Annuals of Disas Prev Res Inst – volume: 55 start-page: 355 year: 2005 end-page: 362 ident: bib5 article-title: Generalised scaling relations for dynamic centrifuge tests publication-title: Geotechnique – year: 2018 ident: bib13 article-title: LEAP-2018 - stress-strain response of Ottawa F65 sand in cyclic simple shear – year: 2017 ident: bib6 article-title: Leap-gwu-2015 experiment specifications, results, and comparisons publication-title: Soil Dynam Earthq Eng – year: 2019 ident: bib11 article-title: Physical and mechanical properties of Ottawa F65 sand publication-title: Model tests and numerical simulations of liquefaction and lateral spreading: LEAP-UCD-2017 – volume: 66 start-page: 126 year: 2015 end-page: 141 ident: bib17 article-title: A stabilized single-point finite element formulation for three-dimensional dynamic analysis of saturated soils publication-title: Comput Geotech – year: 2007 ident: bib16 article-title: Open system for earthquake engineering simulation – volume: 18 start-page: 121 year: 2001 end-page: 194 ident: bib20 article-title: Refined explicit integration of elastoplastic models with automatic error control publication-title: Eng Comput – volume: 130 start-page: 622 year: 2004 end-page: 634 ident: bib21 article-title: Simple plasticity sand model accounting for fabric change effects publication-title: J Eng Mech – volume: vol. 293 start-page: 394 year: 2018 end-page: 403 ident: bib22 publication-title: Cyclic strength of Ottawa F-65 sand: laboratory testing and constitutive model calibration – volume: 113 start-page: 758 year: 2017 end-page: 770 ident: bib18 article-title: Prediction of LEAP centrifuge test results using a pressure-dependent bounding surface constitutive model publication-title: Soil Dynam Earthq Eng – volume: 130 start-page: 622 issue: 6 year: 2004 ident: 10.1016/j.soildyn.2020.106541_bib21 article-title: Simple plasticity sand model accounting for fabric change effects publication-title: J Eng Mech doi: 10.1061/(ASCE)0733-9399(2004)130:6(622) – year: 2017 ident: 10.1016/j.soildyn.2020.106541_bib25 article-title: Stress-strain response of the LEAP-2015 centrifuge tests and numerical predictions publication-title: Soil Dynam Earthq Eng – year: 2017 ident: 10.1016/j.soildyn.2020.106541_bib6 article-title: Leap-gwu-2015 experiment specifications, results, and comparisons publication-title: Soil Dynam Earthq Eng – year: 1997 ident: 10.1016/j.soildyn.2020.106541_bib15 – year: 2015 ident: 10.1016/j.soildyn.2020.106541_bib9 – year: 2017 ident: 10.1016/j.soildyn.2020.106541_bib2 article-title: Liquefaction experiment and analysis projects (LEAP): Summary of observations from the planning phase publication-title: Soil Dynam Earthq Eng – year: 2016 ident: 10.1016/j.soildyn.2020.106541_bib10 – start-page: 175 year: 2019 ident: 10.1016/j.soildyn.2020.106541_bib23 article-title: Leap 2017: comparison of the type B numerical simulations with centrifuge test results – year: 2007 ident: 10.1016/j.soildyn.2020.106541_bib16 – year: 2019 ident: 10.1016/j.soildyn.2020.106541_bib1 – year: 2018 ident: 10.1016/j.soildyn.2020.106541_bib12 – year: 2019 ident: 10.1016/j.soildyn.2020.106541_bib11 article-title: Physical and mechanical properties of Ottawa F65 sand – volume: 55 start-page: 355 issue: 5 year: 2005 ident: 10.1016/j.soildyn.2020.106541_bib5 article-title: Generalised scaling relations for dynamic centrifuge tests publication-title: Geotechnique doi: 10.1680/geot.2005.55.5.355 – volume: 18 start-page: 121 issue: 1/2 year: 2001 ident: 10.1016/j.soildyn.2020.106541_bib20 article-title: Refined explicit integration of elastoplastic models with automatic error control publication-title: Eng Comput doi: 10.1108/02644400110365842 – year: 2020 ident: 10.1016/j.soildyn.2020.106541_bib4 – volume: 66 start-page: 126 year: 2015 ident: 10.1016/j.soildyn.2020.106541_bib17 article-title: A stabilized single-point finite element formulation for three-dimensional dynamic analysis of saturated soils publication-title: Comput Geotech doi: 10.1016/j.compgeo.2015.01.002 – year: 2018 ident: 10.1016/j.soildyn.2020.106541_bib13 – volume: 22 start-page: 413 issue: 2 year: 2006 ident: 10.1016/j.soildyn.2020.106541_bib14 article-title: Ground motion intensity measures for liquefaction hazard evaluation publication-title: Earthq Spectra doi: 10.1193/1.2194970 – start-page: 225 issue: 54 year: 2011 ident: 10.1016/j.soildyn.2020.106541_bib7 article-title: Application of the generalized scaling law to liquefiable model ground publication-title: Annuals of Disas Prev Res Inst – volume: 113 start-page: 758 issue: August 2016 year: 2017 ident: 10.1016/j.soildyn.2020.106541_bib18 article-title: Prediction of LEAP centrifuge test results using a pressure-dependent bounding surface constitutive model publication-title: Soil Dynam Earthq Eng – start-page: 405 year: 2019 ident: 10.1016/j.soildyn.2020.106541_bib19 article-title: Prediction of LEAP-UCD-2017 centrifuge test results using two advanced plasticity sand models – year: 2008 ident: 10.1016/j.soildyn.2020.106541_bib24 – year: 2019 ident: 10.1016/j.soildyn.2020.106541_bib8 article-title: Applicability of the generalized scaling law to a pile-inclined ground system subject to liquefaction-induced lateral spreading publication-title: Soils Found doi: 10.1016/j.sandf.2019.05.005 – volume: vol. 293 start-page: 394 year: 2018 ident: 10.1016/j.soildyn.2020.106541_bib22 – year: 2017 ident: 10.1016/j.soildyn.2020.106541_bib3 |
SSID | ssj0017186 |
Score | 2.341305 |
Snippet | Prototype and physical scale numerical models were created using OpenSees to simulate centrifuge experiments representing a sloping ground condition in... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 106541 |
SubjectTerms | Centrifuge test Centrifuges Constitutive models Finite element analysis Initial stresses Lateral displacement Lateral spreading Liquefaction Mathematical models Nonlinear dynamic effective stress analysis Numerical models Numerical simulations Prototypes Scale models Scaling laws Shaking Shear stress Simulation |
Title | Remarks on numerical simulation of the LEAP-Asia-2019 centrifuge tests |
URI | https://dx.doi.org/10.1016/j.soildyn.2020.106541 https://www.proquest.com/docview/3113808925 |
Volume | 142 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWqcoEDYhVLQT5wddvE8ZJjVbUqW4VYJG6WnQWllBQ17YEL344nccoiISSulidKJpM3L8nMG4TOfBOJyA84CZLIJzZDSyJ5ZIjHYs6osPgnoVH4esxHD8HFI3tsoH7dCwNllQ77K0wv0dqtdJw3O69Z1rmD2UkCFLBsXHpcAA6Dep2N6fb7qszDs9jLq-8sgsDuzy6ezgT0cqfxG8ig-rAGM7F_y08_kLpMP8MttOl4I-5Vp7aNGkm-gza-qAnuouFt8qLnzwWe5ThfVn9iprjIXtyELjxLsaV7-GrQuyG9ItM2dr0Ql-WZWbp8SrClnYtiDz0MB_f9EXFjEkhEqVgQGovY0iqpaZoKyzhSX8S-0TIIgwS0ZQyLGfSfpjINBNWh1NJu6YYplUZ4pkv3UTOf5ckBwiySXWm6EY8DePHjIZOaecayLK09mfBDFNTOUZHTEIdRFlNVF4tNlPOpAp-qyqeHqL0ye61ENP4ykLXn1bdoUBbo_zJt1XdKucexUDZAqL2y0GdH_z_yMVr3oaClLEBroeZivkxOLCNZmNMy5E7RWu_8cjT-AKKc3SI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QOKgH4zM-UPfgdYV2nz0SAgEFYhQTb5vdPkwVCqFw8N-7S7f4SIyJ102naafTb752Z74B4NrXIQ99whCJQx-ZDC2QYKFGHo0Yxdzgn7CNwsMR6z2R22f6XAHtshfGllU67C8wfY3WbqXhvNmYp2nj0c5O4lYBy8Slx7jB4ZpVpyJVUGv173qjzWaCgV9W_GrhyBp8NvI0Xq1k7iR6t0qovl2zY7F_S1E_wHqdgbp7YNdRR9gqrm4fVOLsAOx8ERQ8BN2HeKoWbzmcZTBbFZsxE5inUzekC84SaBgfHHRa96iVp8qErxfAdYVmmqxeYmiY5zI_Ak_dzrjdQ25SAgox5kuEIx4ZZiUUThJuSEfi88jXSpCAxFZeRtOI2hbURCSEYxUIJcwhzSDBQnNPN_ExqGazLD4BkIaiKXQzZBGx334soEJRTxuipZQnYnYKSOkcGToZcTvNYiLLerFX6XwqrU9l4dNTcLMxmxc6Gn8ZiNLz8ltASIP1f5nWyycl3RuZSxMj2NxZ4NOz_5_5Cmz1xsOBHPRHd-dg27f1Let6tDqoLher-MIQlKW-dAH4AUcs39M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Remarks+on+numerical+simulation+of+the+LEAP-Asia-2019+centrifuge+tests&rft.jtitle=Soil+dynamics+and+earthquake+engineering+%281984%29&rft.au=Chen%2C+Long&rft.au=Ghofrani%2C+Alborz&rft.au=Arduino%2C+Pedro&rft.date=2021-03-01&rft.pub=Elsevier+BV&rft.issn=0267-7261&rft.eissn=1879-341X&rft.volume=142&rft.spage=1&rft_id=info:doi/10.1016%2Fj.soildyn.2020.106541&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0267-7261&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0267-7261&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0267-7261&client=summon |