Improvement of Performance in Freezing of Gait detection in Parkinson’s Disease using Transformer networks and a single waist-worn triaxial accelerometer

Freezing of gait (FOG) is one of the most incapacitating symptoms in Parkinson’s disease, affecting more than 50% of patients in advanced stages of the disease. The presence of FOG may lead to falls and a loss of independence with a consequent reduction in the quality of life. Wearable technology an...

Full description

Saved in:
Bibliographic Details
Published inEngineering applications of artificial intelligence Vol. 116; p. 105482
Main Authors Sigcha, Luis, Borzì, Luigi, Pavón, Ignacio, Costa, Nélson, Costa, Susana, Arezes, Pedro, López, Juan Manuel, De Arcas, Guillermo
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Freezing of gait (FOG) is one of the most incapacitating symptoms in Parkinson’s disease, affecting more than 50% of patients in advanced stages of the disease. The presence of FOG may lead to falls and a loss of independence with a consequent reduction in the quality of life. Wearable technology and artificial intelligence have been used for automatic FOG detection to optimize monitoring. However, differences between laboratory and daily-life conditions present challenges for the implementation of reliable detection systems. Consequently, improvement of FOG detection methods remains important to provide accurate monitoring mechanisms intended for free-living and real-time use. This paper presents advances in automatic FOG detection using a single body-worn triaxial accelerometer and a novel classification algorithm based on Transformers and convolutional networks. This study was performed with data from 21 patients who manifested FOG episodes while performing activities of daily living in a home setting. Results indicate that the proposed FOG-Transformer can bring a significant improvement in FOG detection over the reproduction of related approaches based on machine and deep learning (i.e., from 0.916 to 0.957 in the AUC metric compared with the baseline, with a corresponding sensitivity, specificity, and precision of 0.842, 0.939 and 0.617, respectively) using a leave-one-subject-out cross-validation (LOSO CV). These results present opportunities for the implementation of accurate monitoring systems for use in ambulatory or home settings.
AbstractList Freezing of gait (FOG) is one of the most incapacitating symptoms in Parkinson’s disease, affecting more than 50% of patients in advanced stages of the disease. The presence of FOG may lead to falls and a loss of independence with a consequent reduction in the quality of life. Wearable technology and artificial intelligence have been used for automatic FOG detection to optimize monitoring. However, differences between laboratory and daily-life conditions present challenges for the implementation of reliable detection systems. Consequently, improvement of FOG detection methods remains important to provide accurate monitoring mechanisms intended for free-living and real-time use. This paper presents advances in automatic FOG detection using a single body-worn triaxial accelerometer and a novel classification algorithm based on Transformers and convolutional networks. This study was performed with data from 21 patients who manifested FOG episodes while performing activities of daily living in a home setting. Results indicate that the proposed FOG-Transformer can bring a significant improvement in FOG detection over the reproduction of related approaches based on machine and deep learning (i.e., from 0.916 to 0.957 in the AUC metric compared with the baseline, with a corresponding sensitivity, specificity, and precision of 0.842, 0.939 and 0.617, respectively) using a leave-one-subject-out cross-validation (LOSO CV). These results present opportunities for the implementation of accurate monitoring systems for use in ambulatory or home settings.
ArticleNumber 105482
Author Arezes, Pedro
López, Juan Manuel
Costa, Nélson
Borzì, Luigi
Pavón, Ignacio
Costa, Susana
Sigcha, Luis
De Arcas, Guillermo
Author_xml – sequence: 1
  givenname: Luis
  orcidid: 0000-0002-9968-5024
  surname: Sigcha
  fullname: Sigcha, Luis
  email: luisfrancisco.sigcha@upm.es
  organization: Instrumentation and Applied Acoustics Research Group (I2A2), ETSI Industriales, Universidad Politécnica de Madrid, Campus Sur UPM, Ctra. Valencia, Km 7, 28031 Madrid, Spain
– sequence: 2
  givenname: Luigi
  orcidid: 0000-0003-0875-6913
  surname: Borzì
  fullname: Borzì, Luigi
  email: luigi.borzi@polito.it
  organization: Department of Control and Computer Engineering, Politecnico di Torino, 10129 Turin, Italy
– sequence: 3
  givenname: Ignacio
  orcidid: 0000-0003-0970-0452
  surname: Pavón
  fullname: Pavón, Ignacio
  email: ignacio.pavon@upm.es
  organization: Instrumentation and Applied Acoustics Research Group (I2A2), ETSI Industriales, Universidad Politécnica de Madrid, Campus Sur UPM, Ctra. Valencia, Km 7, 28031 Madrid, Spain
– sequence: 4
  givenname: Nélson
  orcidid: 0000-0002-9348-8038
  surname: Costa
  fullname: Costa, Nélson
  email: ncosta@dps.uminho.pt
  organization: ALGORITMI Research Center, School of Engineering, University of Minho, 4800-058 Guimarães, Portugal
– sequence: 5
  givenname: Susana
  orcidid: 0000-0001-7440-8787
  surname: Costa
  fullname: Costa, Susana
  email: susana.costa@dps.uminho.pt
  organization: ALGORITMI Research Center, School of Engineering, University of Minho, 4800-058 Guimarães, Portugal
– sequence: 6
  givenname: Pedro
  surname: Arezes
  fullname: Arezes, Pedro
  email: parezes@dps.uminho.pt
  organization: ALGORITMI Research Center, School of Engineering, University of Minho, 4800-058 Guimarães, Portugal
– sequence: 7
  givenname: Juan Manuel
  surname: López
  fullname: López, Juan Manuel
  email: juanmanuel.lopez@upm.es
  organization: Instrumentation and Applied Acoustics Research Group (I2A2), ETSI Industriales, Universidad Politécnica de Madrid, Campus Sur UPM, Ctra. Valencia, Km 7, 28031 Madrid, Spain
– sequence: 8
  givenname: Guillermo
  surname: De Arcas
  fullname: De Arcas, Guillermo
  email: g.dearcas@upm.es
  organization: Instrumentation and Applied Acoustics Research Group (I2A2), ETSI Industriales, Universidad Politécnica de Madrid, Campus Sur UPM, Ctra. Valencia, Km 7, 28031 Madrid, Spain
BookMark eNqFkM9O3DAQh60KpC5_XqHyC2Rx7CSOpR5aUaBISHCAszXrTJCXxF6NXSiceA3E2_VJSLTlwoXTSPPT9xvNt8d2QgzI2LdSLEtRNkfrJYZb2GzAL6WQclrWVSu_sEXZalU0ujE7bCFMLYvS6OYr20tpLYRQbdUs2Ov5uKF4jyOGzGPPr5D6SCMEh9wHfkqITz7cztEZ-Mw7zOiyj2FOr4DufEgx_Ht-SfyXTwgJ-Z80A9cEIc1VSDxgfoh0lziEjgOf8wH5A_iUiykIPJOHvx4GDs7hgBTH6QwdsN0ehoSH_-c-uzk9uT7-XVxcnp0f_7wonFI6F0o7NEJWXaVEpytZgpEadS1lX_UgVsq4DrQxtQHR1E6ZFmXb1au6QmxArtQ--77tdRRTIuyt8xnmJzOBH2wp7Czaru27aDuLtlvRE958wDfkR6DHz8EfWxCn5-49kk3O42S-8zRJtl30n1W8AfSao20
CitedBy_id crossref_primary_10_1007_s13311_023_01433_w
crossref_primary_10_1016_j_eswa_2024_124522
crossref_primary_10_3390_s23094426
crossref_primary_10_2196_60521
crossref_primary_10_1016_j_mlwa_2024_100553
crossref_primary_10_1038_s41598_024_75445_7
crossref_primary_10_1016_j_bspc_2023_105765
crossref_primary_10_1038_s41467_024_49027_0
crossref_primary_10_3390_electronics11233879
crossref_primary_10_1177_1877718X241302766
crossref_primary_10_3390_electronics11213614
crossref_primary_10_3390_app142210189
crossref_primary_10_1063_5_0194094
crossref_primary_10_1111_exsy_13790
crossref_primary_10_1080_14737175_2023_2229954
crossref_primary_10_1007_s13042_023_02050_x
crossref_primary_10_2196_71560
crossref_primary_10_1016_j_artmed_2022_102459
crossref_primary_10_1109_ACCESS_2024_3496497
crossref_primary_10_1109_TBME_2024_3402677
crossref_primary_10_1145_3648469
crossref_primary_10_3390_s24248211
Cites_doi 10.1146/annurev-bioeng-062117-121036
10.1109/ACCESS.2021.3104975
10.1186/1743-0003-10-19
10.1016/j.bspc.2020.102059
10.1155/2008/456298
10.1136/practneurol-2013-000743
10.3390/s21134412
10.1002/mds.21659
10.1109/ACCESS.2021.3070646
10.3390/s19061277
10.1109/COMPSAC48688.2020.0-186
10.3390/s20164474
10.1007/s00415-017-8424-0
10.1186/s12984-020-00774-3
10.23919/DATE.2019.8715093
10.1016/j.ecolmodel.2008.05.015
10.3390/s131014079
10.3390/s21020614
10.1109/TITB.2009.2036165
10.1109/JBHI.2019.2952618
10.3389/fnins.2017.00555
10.1016/j.jneumeth.2007.08.023
10.1148/radiology.143.1.7063747
10.1002/mds.27709
10.1016/j.gaitpost.2009.07.108
10.1016/j.eswa.2020.113197
10.3390/electronics9111919
10.18502/jmr.v16i2.9297
10.3390/s20071895
10.3390/s19183898
10.1371/journal.pone.0171764
10.1016/j.patrec.2016.01.001
10.1002/mds.21745
10.1212/WNL.17.5.427
10.1186/s12984-021-00958-5
10.1023/A:1010933404324
10.1016/j.parkreldis.2017.10.013
10.3389/fneur.2018.00216
10.3109/09638289809166074
10.1021/acs.jcim.1c00160
10.1016/j.gaitpost.2021.10.021
10.1038/s41746-019-0217-7
10.1002/mds.22144
10.1016/S1474-4422(11)70143-0
10.3389/frobt.2021.537384
10.3389/fnagi.2021.633752
10.1002/mds.21934
10.2174/0929867328999210111211420
10.1109/ACCESS.2020.3010715
10.1016/S1474-4422(15)00041-1
10.1109/TNSRE.2020.2969649
10.1186/s40537-021-00444-8
10.1016/j.knosys.2017.10.017
10.1046/j.1468-1331.2003.00611.x
10.1007/s007020170096
10.3389/fneur.2022.831063
10.1007/s00702-014-1279-y
10.3390/electronics8020119
10.3233/JPD-202471
10.1016/j.parkreldis.2015.09.051
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engappai.2022.105482
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1873-6769
ExternalDocumentID 10_1016_j_engappai_2022_105482
S0952197622004729
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
WUQ
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c337t-37ce9024d430d7421a927e7522f4fa0b39cda79959a065c398e28d5b54ee6a2b3
IEDL.DBID .~1
ISSN 0952-1976
IngestDate Tue Jul 01 01:04:05 EDT 2025
Thu Apr 24 23:13:18 EDT 2025
Fri Feb 23 02:40:12 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Freezing of gait
Deep learning
Machine learning
Transformers
Convolutional neural networks
Sequence analysis
Parkinson’s disease
Wearable sensors
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-37ce9024d430d7421a927e7522f4fa0b39cda79959a065c398e28d5b54ee6a2b3
ORCID 0000-0002-9968-5024
0000-0001-7440-8787
0000-0002-9348-8038
0000-0003-0970-0452
0000-0003-0875-6913
OpenAccessLink http://hdl.handle.net/1822/81050
ParticipantIDs crossref_citationtrail_10_1016_j_engappai_2022_105482
crossref_primary_10_1016_j_engappai_2022_105482
elsevier_sciencedirect_doi_10_1016_j_engappai_2022_105482
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2022
2022-11-00
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: November 2022
PublicationDecade 2020
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Lin, Wang, Liu, Qiu (b37) 2021
Rovini, Maremmani, Cavallo (b67) 2017; 11
Irrera, Cabestany, Suppa (b28) 2018; 9
Rahman, Griffin, Quinn, Jahanshahi (b62) 2008; 19
Sigcha, Costa, Pavón, Costa, Arezes, López, De Arcas (b72) 2020; 20
Cupertino, Dos Reis, Los Angeles, Costa, Shokur, Bouri, de Lima-Pardini, Coelho (b13) 2022; 91
Nonnekes, Snijders, Nutt, Deuschl, Giladi, Bloem (b53) 2015; 14
Noor, Nazir, Wahab, Ling (b54) 2021; 9
Raza, Tran, Koehl, Li, Zeng, Benzaidi (b63) 2021
Glorot, Bengio (b23) 2010; vol. 9
Giladi, Treves, Simon, Shabtai, Orlov, Kandinov, Paleacu, Korczyn (b22) 2001; 108
Nutt, Bloem, Giladi, Hallett, Horak, Nieuwboer (b55) 2011; 10
Okuma, Yanagisawa (b58) 2008; 23
Borzì, Olmo, Artusi, Fabbri, Rizzone, Romagnolo, Zibetti, Lopiano (b8) 2020; 62
Bikias, Iakovakis, Hadjidimitriou, Charisis, Hadjileontiadis (b5) 2021; 8
Shavit, Klein (b71) 2021; 9
Li, He (b34) 2018; 30
Pardoel, Nantel, Kofman, Lemaire (b60) 2022; 13
Nieuwboer, Rochester, Herman, Vandenberghe, Emil, Thomaes, Giladi (b52) 2009; 30
Rodríguez-Martín, Samà, Pérez-López, Català, Moreno Arostegui (b66) 2017; 12
Bächlin, Plotnik, Roggen, Maidan, JM, Giladi, Tröster (b4) 2010; 14
Camps, Sama, Martin, Rodriguez-Martin, Perez-Lopez, Arostegui, Cabestany, Catala, Alcaine, Mestre (b11) 2018; 139
Weiss, Herman, Giladi, Hausdorff (b78) 2015; 122
Okuma, de Lima, Fukae, Bloem, Snijders (b57) 2018; 46
Mazilu, Blanke, Roggen, Tröster, Gazit, Hausdorff (b41) 2013
Hanley, McNeil (b24) 1982; 143
Monje, Foffani, Obeso, Sánchez-Ferro (b45) 2019; 21
.
Li, Yao, Wang, Wang, Yang, Sun (b36) 2020; 9
Pardoel, Kofman, Nantel, Lemaire (b59) 2019; 19
Ajani, Imoize, Atayero (b1) 2021; 21
Zach, Janssen, Snijders, Delval, Ferraye, Auff, Weerdesteyn, Bloem, Nonnekes (b79) 2015; 21
Farashi, Khazaei, Rezaei (b18) 2022
keras.io (b30) 2021
Moore, MacDougall, W.G. (b46) 2008; 167
Naghavi, Wade (b50) 2021
Schaafsma, Balash, Gurevich, Bartels, Hausdorff, Giladi (b69) 2003; 10
Mancini, Bloem, Horak, Lewis, Nieuwboer, Nonnekes (b39) 2019; 34
Zhang, Yan, Yao, Ahmed, Tan, Gu (b80) 2020; 28
Mancini, Shah, Stuart, Curtze, Horak, Safarpour, Nutt (b40) 2021; 18
Jothilakshmi, Gudivada (b29) 2016
Breiman (b10) 2001; 45
Demrozi, F., Bragoi, V., Tramarin, F., Pravadelli, G., 2019. An indoor localization system to detect areas causing the freezing of gait in Parkinsonians. In: 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE). pp. 952–955.
Kingma, Ba (b32) 2014
Moore, Yungher, Morris, Dilda, MacDougall, Shine, Naismith, Lewis (b48) 2013; 10
Li, Jamieson, DeSalvo, Rostamizadeh, Talwalkar (b35) 2017
Giladi, Tal, Azulay, Rascol, Brooks, Melamed, Oertel, Poewe, Stocchi, Tolosa (b21) 2009; 24
Freeman, Moisen (b19) 2008; 217
Hoehn, Yahr (b27) 1967; 17
Pepa, Capecci, Andrenelli, Ciabattoni, Spalazzi, Ceravolo (b61) 2020; 147
Rodríguez-Martín, Pérez-López, Samà, Cabestany, Català (b65) 2013; 13
Silva de Lima, Evers, Hahn, Bataille, Hamilton, Little, Okuma, Bloem, Faber (b73) 2017; 264
Snijders, Nijkrake, Bakker, Munneke, Wind, Bloem (b74) 2008; 23
Mohammadian Rad, Van Laarhoven, Furlanello, Marchiori (b44) 2018; 18
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b77) 2017
Okuma (b56) 2014; 14
Borzı, Mazzetta, Zampogna, Suppa, Olmo, Irrera (b7) 2021; 21
Heijmans, Habets, Herff (b26) 2019; 5
Commission, Directorate-General for Communications Networks, Technology (b12) 2019
Bächlin, Hausdorff, Roggen, Giladi, Plotnik, Tröster (b3) 2009
Moore, Peretz, Giladi (b47) 2007; 22
Landolfi, Ricciardi, Donisi, Cesarelli, Troisi, Vitale, Barone, Amboni (b33) 2021; 28
Mahadevan, Demanuele, Zhang, Volfson, Ho, Erb, Patel (b38) 2020; 3
Del Din, Kirk, Yarnall, Rochester, Hausdorff (b14) 2021; 11
Mei, Desrosiers, Frasnelli (b43) 2021; 13
Shalin, Pardoel, Lemaire, Nantel, Kofman (b70) 2021; 18
Suppa, Kita, Leodori, Zampogna, Nicolini, Lorenzi, Rao, Irrera (b75) 2017; 8
Hassani, Walton, Shah, Abuduweili, Li, Shi (b25) 2021
Reches, Dagan, Herman, Gazit, Gouskova, Giladi, Manor, Hausdorff (b64) 2020; 20
Alzubaidi, Zhang, Humaidi, Al-Dujaili, Duan, Al-Shamma, Santamaría, Fadhel, Al-Amidie, Farhan (b2) 2021; 8
Gholamiangonabadi, Kiselov, Grolinger (b20) 2020; 8
Esposito, Landrum, Schneider, Stiefl, Riniker (b17) 2021; 61
Sweeney, Quinlan, Browne, Richardson, Meskell, ÓLaighin (b76) 2019; 19
Naghavi, Miller, Wade (b49) 2019; 9
Khan, Hammerla, Mellor, Plötz (b31) 2016; 73
Mazilu, Hardegger, Zhu, Roggen, Tröster, Plotnik, Hausdorff (b42) 2012
Nieuwboer, De Weerdt, Dom, Lesaffre (b51) 1998; 20
Borzì, Fornara, Amato, Olmo, Artusi, Lopiano (b6) 2020; 9
Demrozi, Bacchin, Tamburin, Cristani, Pravadelli (b15) 2020; 24
San-Segundo, Navarro-Hellín, Torres-Sánchez, Hodgins, De la Torre (b68) 2019; 8
Borzı, L., Olmo, G., Artusi, C., Lopiano, L., 2020. Detection of Freezing of Gait in People with Parkinson’s Disease using Smartphones. pp. 625–635.
Weiss (10.1016/j.engappai.2022.105482_b78) 2015; 122
Borzı (10.1016/j.engappai.2022.105482_b7) 2021; 21
Landolfi (10.1016/j.engappai.2022.105482_b33) 2021; 28
Mazilu (10.1016/j.engappai.2022.105482_b42) 2012
Nieuwboer (10.1016/j.engappai.2022.105482_b51) 1998; 20
Nieuwboer (10.1016/j.engappai.2022.105482_b52) 2009; 30
Suppa (10.1016/j.engappai.2022.105482_b75) 2017; 8
Heijmans (10.1016/j.engappai.2022.105482_b26) 2019; 5
Li (10.1016/j.engappai.2022.105482_b35) 2017
Zhang (10.1016/j.engappai.2022.105482_b80) 2020; 28
Bächlin (10.1016/j.engappai.2022.105482_b3) 2009
Mancini (10.1016/j.engappai.2022.105482_b40) 2021; 18
Raza (10.1016/j.engappai.2022.105482_b63) 2021
Cupertino (10.1016/j.engappai.2022.105482_b13) 2022; 91
Okuma (10.1016/j.engappai.2022.105482_b56) 2014; 14
Esposito (10.1016/j.engappai.2022.105482_b17) 2021; 61
Moore (10.1016/j.engappai.2022.105482_b46) 2008; 167
10.1016/j.engappai.2022.105482_b16
Li (10.1016/j.engappai.2022.105482_b36) 2020; 9
Demrozi (10.1016/j.engappai.2022.105482_b15) 2020; 24
Bikias (10.1016/j.engappai.2022.105482_b5) 2021; 8
Li (10.1016/j.engappai.2022.105482_b34) 2018; 30
Vaswani (10.1016/j.engappai.2022.105482_b77) 2017
10.1016/j.engappai.2022.105482_b9
Lin (10.1016/j.engappai.2022.105482_b37) 2021
Schaafsma (10.1016/j.engappai.2022.105482_b69) 2003; 10
Glorot (10.1016/j.engappai.2022.105482_b23) 2010; vol. 9
Okuma (10.1016/j.engappai.2022.105482_b57) 2018; 46
Silva de Lima (10.1016/j.engappai.2022.105482_b73) 2017; 264
Pardoel (10.1016/j.engappai.2022.105482_b59) 2019; 19
Sweeney (10.1016/j.engappai.2022.105482_b76) 2019; 19
Rahman (10.1016/j.engappai.2022.105482_b62) 2008; 19
Sigcha (10.1016/j.engappai.2022.105482_b72) 2020; 20
Khan (10.1016/j.engappai.2022.105482_b31) 2016; 73
Borzì (10.1016/j.engappai.2022.105482_b6) 2020; 9
Reches (10.1016/j.engappai.2022.105482_b64) 2020; 20
Irrera (10.1016/j.engappai.2022.105482_b28) 2018; 9
Mohammadian Rad (10.1016/j.engappai.2022.105482_b44) 2018; 18
Freeman (10.1016/j.engappai.2022.105482_b19) 2008; 217
Mancini (10.1016/j.engappai.2022.105482_b39) 2019; 34
Kingma (10.1016/j.engappai.2022.105482_b32) 2014
Okuma (10.1016/j.engappai.2022.105482_b58) 2008; 23
Monje (10.1016/j.engappai.2022.105482_b45) 2019; 21
Naghavi (10.1016/j.engappai.2022.105482_b50) 2021
Rovini (10.1016/j.engappai.2022.105482_b67) 2017; 11
Alzubaidi (10.1016/j.engappai.2022.105482_b2) 2021; 8
Hanley (10.1016/j.engappai.2022.105482_b24) 1982; 143
Del Din (10.1016/j.engappai.2022.105482_b14) 2021; 11
Moore (10.1016/j.engappai.2022.105482_b48) 2013; 10
Nonnekes (10.1016/j.engappai.2022.105482_b53) 2015; 14
Bächlin (10.1016/j.engappai.2022.105482_b4) 2010; 14
Pardoel (10.1016/j.engappai.2022.105482_b60) 2022; 13
Gholamiangonabadi (10.1016/j.engappai.2022.105482_b20) 2020; 8
Giladi (10.1016/j.engappai.2022.105482_b22) 2001; 108
Naghavi (10.1016/j.engappai.2022.105482_b49) 2019; 9
Shalin (10.1016/j.engappai.2022.105482_b70) 2021; 18
San-Segundo (10.1016/j.engappai.2022.105482_b68) 2019; 8
Rodríguez-Martín (10.1016/j.engappai.2022.105482_b65) 2013; 13
Farashi (10.1016/j.engappai.2022.105482_b18) 2022
Mahadevan (10.1016/j.engappai.2022.105482_b38) 2020; 3
Commission (10.1016/j.engappai.2022.105482_b12) 2019
Noor (10.1016/j.engappai.2022.105482_b54) 2021; 9
Hoehn (10.1016/j.engappai.2022.105482_b27) 1967; 17
Shavit (10.1016/j.engappai.2022.105482_b71) 2021; 9
Camps (10.1016/j.engappai.2022.105482_b11) 2018; 139
Nutt (10.1016/j.engappai.2022.105482_b55) 2011; 10
Mazilu (10.1016/j.engappai.2022.105482_b41) 2013
Mei (10.1016/j.engappai.2022.105482_b43) 2021; 13
Rodríguez-Martín (10.1016/j.engappai.2022.105482_b66) 2017; 12
Jothilakshmi (10.1016/j.engappai.2022.105482_b29) 2016
Giladi (10.1016/j.engappai.2022.105482_b21) 2009; 24
keras.io (10.1016/j.engappai.2022.105482_b30) 2021
Hassani (10.1016/j.engappai.2022.105482_b25) 2021
Ajani (10.1016/j.engappai.2022.105482_b1) 2021; 21
Moore (10.1016/j.engappai.2022.105482_b47) 2007; 22
Breiman (10.1016/j.engappai.2022.105482_b10) 2001; 45
Snijders (10.1016/j.engappai.2022.105482_b74) 2008; 23
Pepa (10.1016/j.engappai.2022.105482_b61) 2020; 147
Zach (10.1016/j.engappai.2022.105482_b79) 2015; 21
Borzì (10.1016/j.engappai.2022.105482_b8) 2020; 62
References_xml – volume: 8
  year: 2021
  ident: b5
  article-title: DeepFoG: An IMU-based detection of freezing of gait episodes in Parkinson’s disease patients via deep learning
  publication-title: Front. Robot. AI
– volume: 20
  start-page: 4474
  year: 2020
  ident: b64
  article-title: Using wearable sensors and machine learning to automatically detect freezing of gait during a FOG-provoking test
  publication-title: Sensors
– volume: 18
  start-page: 1
  year: 2021
  ident: b40
  article-title: Measuring freezing of gait during daily-life: an open-source, wearable sensors approach
  publication-title: J. Neuroeng. Rehabil.
– start-page: 124
  year: 2013
  end-page: 127
  ident: b41
  article-title: Engineers meet clinicians: Augmenting Parkinson’s disease patients to gather information for gait rehabilitation
  publication-title: Proceedings of the 4th Augmented Human International Conference
– volume: 23
  start-page: S468
  year: 2008
  end-page: 474
  ident: b74
  article-title: Clinimetrics of freezing of gait
  publication-title: Mov. Disorders
– year: 2021
  ident: b50
  article-title: Towards real-time prediction of freezing of gait in patients with Parkinsons disease: A novel deep one-class classifier
  publication-title: IEEE J. Biomed. Health Inf.
– volume: 143
  start-page: 29
  year: 1982
  end-page: 36
  ident: b24
  article-title: The meaning and use of the area under a receiver operating characteristic (ROC) curve
  publication-title: Radiology
– volume: 13
  year: 2021
  ident: b43
  article-title: Machine learning for the diagnosis of Parkinson’s disease: A review of literature
  publication-title: Front. Aging Neurosci.
– year: 2022
  ident: b18
  article-title: State of the art technologies in Parkinson’s disease management: A review article
  publication-title: J. Modern Rehabil.
– volume: 14
  start-page: 222
  year: 2014
  end-page: 230
  ident: b56
  article-title: Practical approach to freezing of gait in Parkinson’s disease
  publication-title: Pract. Neurol.
– volume: 20
  start-page: 1895
  year: 2020
  ident: b72
  article-title: Deep learning approaches for detecting freezing of gait in Parkinson’s disease patients through on-body acceleration sensors
  publication-title: Sensors
– volume: 217
  start-page: 48
  year: 2008
  end-page: 58
  ident: b19
  article-title: A comparison of the performance of threshold criteria for binary classification in terms of predicted prevalence and kappa
  publication-title: Ecol. Model.
– volume: 61
  start-page: 2623
  year: 2021
  end-page: 2640
  ident: b17
  article-title: GHOST: adjusting the decision threshold to handle imbalanced data in machine learning
  publication-title: J. Chem. Inf. Model.
– year: 2014
  ident: b32
  article-title: Adam: A method for stochastic optimization
– volume: 18
  year: 2018
  ident: b44
  article-title: Novelty detection using deep normative modeling for IMU-based abnormal movement monitoring in Parkinson’s disease and autism spectrum disorders
  publication-title: Sensors
– volume: 13
  year: 2022
  ident: b60
  article-title: Prediction of freezing of gait in Parkinson’s disease using unilateral and bilateral plantar-pressure data
  publication-title: Front. Neurol.
– year: 2019
  ident: b12
  article-title: Ethics Guidelines for Trustworthy AI
– year: 2021
  ident: b25
  article-title: Escaping the big data paradigm with compact transformers
– volume: 22
  start-page: 2192
  year: 2007
  end-page: 2195
  ident: b47
  article-title: Freezing of gait affects quality of life of peoples with Parkinson’s disease beyond its relationships with mobility and gait
  publication-title: Mov. Disorders
– volume: 122
  start-page: 403
  year: 2015
  end-page: 410
  ident: b78
  article-title: New evidence for gait abnormalities among Parkinson’s disease patients who suffer from freezing of gait: insights using a body-fixed sensor worn for 3 days
  publication-title: J. Neural Transm. (Vienna)
– volume: 11
  start-page: S35
  year: 2021
  end-page: S47
  ident: b14
  article-title: Body-worn sensors for remote monitoring of Parkinson’s disease motor symptoms: Vision, state of the art, and challenges ahead
  publication-title: J. Parkinsons Dis.
– volume: 3
  start-page: 1
  year: 2020
  end-page: 12
  ident: b38
  article-title: Development of digital biomarkers for resting tremor and bradykinesia using a wrist-worn wearable device
  publication-title: NPJ Digital Med.
– volume: 11
  start-page: 555
  year: 2017
  ident: b67
  article-title: How wearable sensors can support Parkinson’s disease diagnosis and treatment: A systematic review
  publication-title: Front. Neurosci.
– volume: 10
  start-page: 19
  year: 2013
  ident: b48
  article-title: Autonomous identification of freezing of gait in Parkinson’s disease from lower-body segmental accelerometry
  publication-title: J. Neuroeng. Rehabil.
– volume: 14
  start-page: 768
  year: 2015
  end-page: 778
  ident: b53
  article-title: Freezing of gait: a practical approach to management
  publication-title: Lancet Neurol.
– volume: 8
  start-page: 133982
  year: 2020
  end-page: 133994
  ident: b20
  article-title: Deep neural networks for human activity recognition with wearable sensors: Leave-one-subject-out cross-validation for model selection
  publication-title: IEEE Access
– year: 2021
  ident: b63
  article-title: Lightweight transformer in federated setting for human activity recognition
– volume: 10
  start-page: 391
  year: 2003
  end-page: 398
  ident: b69
  article-title: Characterization of freezing of gait subtypes and the response of each to levodopa in Parkinson’s disease
  publication-title: Eur. J. Neurol.
– volume: 28
  start-page: 591
  year: 2020
  end-page: 600
  ident: b80
  article-title: Prediction of freezing of gait in patients with Parkinson’s disease by identifying impaired gait patterns
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: vol. 9
  start-page: 249
  year: 2010
  end-page: 256
  ident: b23
  article-title: Understanding the difficulty of training deep feedforward neural networks
  publication-title: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics
– volume: 62
  year: 2020
  ident: b8
  article-title: A new index to assess turning quality and postural stability in patients with Parkinson’s disease
  publication-title: Biomed. Signal Process. Control
– volume: 264
  start-page: 1642
  year: 2017
  end-page: 1654
  ident: b73
  article-title: Freezing of gait and fall detection in Parkinson’s disease using wearable sensors: a systematic review
  publication-title: J. Neurol.
– year: 2009
  ident: b3
  article-title: Online detection of freezing of gait in Parkinson’s disease patients: A performance characterization
  publication-title: Proceedings of the Fourth International Conference on Body Area Networks
– volume: 19
  start-page: 127
  year: 2008
  end-page: 136
  ident: b62
  article-title: The factors that induce or overcome freezing of gait in Parkinson’s disease
  publication-title: Behav, Neurol,
– year: 2016
  ident: b29
  article-title: Handbook of Statistics, Vol. 35
– start-page: 123
  year: 2012
  end-page: 130
  ident: b42
  article-title: Online Detection of Freezing of Gait with Smartphones and Machine Learning Techniques
– volume: 30
  start-page: 459
  year: 2009
  end-page: 463
  ident: b52
  article-title: Reliability of the new freezing of gait questionnaire: agreement between patients with Parkinson’s disease and their carers
  publication-title: Gait Posture
– volume: 10
  start-page: 734
  year: 2011
  end-page: 744
  ident: b55
  article-title: Freezing of gait: moving forward on a mysterious clinical phenomenon
  publication-title: Lancet Neurol.
– reference: Borzı, L., Olmo, G., Artusi, C., Lopiano, L., 2020. Detection of Freezing of Gait in People with Parkinson’s Disease using Smartphones. pp. 625–635.
– year: 2021
  ident: b30
  article-title: Keras documentation: Timeseries classification with a transformer model
– volume: 24
  start-page: 2444
  year: 2020
  end-page: 2451
  ident: b15
  article-title: Toward a wearable system for predicting freezing of gait in people affected by Parkinson’s disease
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: b10
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 167
  start-page: 340
  year: 2008
  end-page: 348
  ident: b46
  article-title: Ambulatory monitoring of freezing of gait in Parkinson’s disease
  publication-title: J. Neurosci. Methods
– volume: 9
  year: 2021
  ident: b54
  article-title: Detection of freezing of gait using unsupervised convolutional denoising autoencoder
  publication-title: IEEE Access
– volume: 147
  year: 2020
  ident: b61
  article-title: A fuzzy logic system for the home assessment of freezing of gait in subjects with Parkinsons disease
  publication-title: Expert Syst. Appl.
– year: 2017
  ident: b77
  article-title: Attention is all you need
  publication-title: Advances in Neural Information Processing Systems, Vol. 30
– volume: 9
  start-page: 1919
  year: 2020
  ident: b36
  article-title: Improved deep learning technique to detect freezing of gait in Parkinson’s disease based on wearable sensors
  publication-title: Electronics
– volume: 30
  start-page: 207
  year: 2018
  end-page: 212
  ident: b34
  article-title: Assessing the accuracy of diagnostic tests
  publication-title: Shanghai Arch. Psychiatry
– volume: 23
  start-page: 426
  year: 2008
  end-page: 430
  ident: b58
  article-title: The clinical spectrum of freezing of gait in Parkinson’s disease
  publication-title: Mov. Disorders
– volume: 19
  year: 2019
  ident: b76
  article-title: A technological review of wearable cueing devices addressing freezing of gait in Parkinson’s disease
  publication-title: Sensors (Basel)
– volume: 28
  start-page: 6548
  year: 2021
  end-page: 6568
  ident: b33
  article-title: Machine learning approaches in Parkinson’s disease
  publication-title: Curr. Med. Chem.
– volume: 9
  start-page: 1
  year: 2020
  end-page: 14
  ident: b6
  article-title: Smartphone-based evaluation of postural stability in Parkinson’s disease patients during quiet stance
  publication-title: Electronics (Switzerland)
– volume: 17
  start-page: 427
  year: 1967
  end-page: 442
  ident: b27
  article-title: Parkinsonism: onset, progression and mortality
  publication-title: Neurology
– volume: 24
  start-page: 655
  year: 2009
  end-page: 661
  ident: b21
  article-title: Validation of the freezing of gait questionnaire in patients with Parkinson’s disease
  publication-title: Mov. Disorders
– volume: 13
  start-page: 14079
  year: 2013
  end-page: 14104
  ident: b65
  article-title: A wearable inertial measurement unit for long-term monitoring in the dependency care area
  publication-title: Sensors (Basel)
– volume: 21
  start-page: 1362
  year: 2015
  end-page: 1366
  ident: b79
  article-title: Identifying freezing of gait in Parkinson’s disease during freezing provoking tasks using waist-mounted accelerometry
  publication-title: Parkinsonism Relat. Disorders
– start-page: 6765
  year: 2017
  end-page: 6816
  ident: b35
  article-title: Hyperband: A novel bandit-based approach to hyperparameter optimization 18
– volume: 19
  start-page: 5141
  year: 2019
  ident: b59
  article-title: Wearable-sensor-based detection and prediction of freezing of gait in Parkinson’s disease: A review
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 9
  start-page: 3898
  year: 2019
  ident: b49
  article-title: Towards real-time prediction of freezing of gait in patients with Parkinson’s disease: Addressing the class imbalance problem
  publication-title: Sensors
– volume: 18
  start-page: 167
  year: 2021
  ident: b70
  article-title: Prediction and detection of freezing of gait in Parkinson’s disease from plantar pressure data using long short-term memory neural-networks
  publication-title: J. NeuroEng. Rehabil.
– volume: 9
  start-page: 53540
  year: 2021
  end-page: 53547
  ident: b71
  article-title: Boosting inertial-based human activity recognition with transformers
  publication-title: IEEE Access
– volume: 9
  start-page: 216
  year: 2018
  ident: b28
  article-title: Editorial: New advanced wireless technologies for objective monitoring of motor symptoms in Parkinson’s disease
  publication-title: Front. Neurol.
– volume: 139
  start-page: 119
  year: 2018
  end-page: 131
  ident: b11
  article-title: Deep learning for freezing of gait detection in Parkinson’s disease patients in their homes using a waist-worn inertial measurement unit
  publication-title: Knowl. Based Syst.
– volume: 108
  start-page: 53
  year: 2001
  end-page: 61
  ident: b22
  article-title: Freezing of gait in patients with advanced Parkinson’s disease
  publication-title: J. Neural Transm. (Vienna)
– reference: Demrozi, F., Bragoi, V., Tramarin, F., Pravadelli, G., 2019. An indoor localization system to detect areas causing the freezing of gait in Parkinsonians. In: 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE). pp. 952–955.
– volume: 5
  year: 2019
  ident: b26
  article-title: Monitoring Parkinson’s disease symptoms during daily life: a feasibility study
  publication-title: NPJ Parkinsons Dis.
– volume: 8
  year: 2017
  ident: b75
  article-title: L-DOPA and freezing of gait in Parkinson’s disease: Objective assessment through a wearable wireless system
  publication-title: Front. Neurol.
– volume: 14
  start-page: 436
  year: 2010
  end-page: 446
  ident: b4
  article-title: Wearable assistant for Parkinson’s disease patients with the freezing of gait symptom
  publication-title: IEEE Trans. Inf. Technol. Biomed.
– volume: 21
  year: 2021
  ident: b7
  article-title: Prediction of freezing of gait in Parkinson’s disease using wearables and machine learning
  publication-title: Sensors (Basel)
– reference: .
– volume: 34
  start-page: 783
  year: 2019
  end-page: 790
  ident: b39
  article-title: Clinical and methodological challenges for assessing freezing of gait: Future perspectives
  publication-title: Mov. Disorders
– volume: 8
  start-page: 53
  year: 2021
  ident: b2
  article-title: Review of deep learning: concepts, CNN architectures, challenges, applications, future directions
  publication-title: J. Big Data
– volume: 91
  start-page: 149
  year: 2022
  end-page: 154
  ident: b13
  article-title: Biomechanical aspects that precede freezing episode during gait in individuals with Parkinson’s disease: A systematic review
  publication-title: Gait Posture
– volume: 21
  year: 2021
  ident: b1
  article-title: An overview of machine learning within embedded and mobile devices–optimizations and applications
  publication-title: Sensors
– volume: 73
  start-page: 33
  year: 2016
  end-page: 40
  ident: b31
  article-title: Optimising sampling rates for accelerometer-based human activity recognition
  publication-title: Pattern Recognit. Lett.
– volume: 12
  year: 2017
  ident: b66
  article-title: Home detection of freezing of gait using support vector machines through a single waist-worn triaxial accelerometer
  publication-title: PLoS One
– volume: 20
  start-page: 142
  year: 1998
  end-page: 150
  ident: b51
  article-title: A frequency and correlation analysis of motor deficits in Parkinson patients
  publication-title: Disabil. Rehabil.
– volume: 46
  start-page: 30
  year: 2018
  end-page: 35
  ident: b57
  article-title: A prospective study of falls in relation to freezing of gait and response fluctuations in Parkinson’s disease
  publication-title: Parkinsonism Relat. Disorders
– year: 2021
  ident: b37
  article-title: A survey of transformers
– volume: 21
  start-page: 111
  year: 2019
  end-page: 143
  ident: b45
  article-title: New sensor and wearable technologies to aid in the diagnosis and treatment monitoring of Parkinson’s disease
  publication-title: Annu. Rev. Biomed. Eng.
– volume: 8
  year: 2019
  ident: b68
  article-title: Increasing robustness in the detection of freezing of gait in Parkinson’s disease
  publication-title: Electronics
– volume: 21
  start-page: 111
  year: 2019
  ident: 10.1016/j.engappai.2022.105482_b45
  article-title: New sensor and wearable technologies to aid in the diagnosis and treatment monitoring of Parkinson’s disease
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev-bioeng-062117-121036
– volume: 9
  year: 2021
  ident: 10.1016/j.engappai.2022.105482_b54
  article-title: Detection of freezing of gait using unsupervised convolutional denoising autoencoder
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3104975
– volume: 8
  issue: AUG
  year: 2017
  ident: 10.1016/j.engappai.2022.105482_b75
  article-title: L-DOPA and freezing of gait in Parkinson’s disease: Objective assessment through a wearable wireless system
  publication-title: Front. Neurol.
– volume: 10
  start-page: 19
  year: 2013
  ident: 10.1016/j.engappai.2022.105482_b48
  article-title: Autonomous identification of freezing of gait in Parkinson’s disease from lower-body segmental accelerometry
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-10-19
– volume: 19
  start-page: 5141
  year: 2019
  ident: 10.1016/j.engappai.2022.105482_b59
  article-title: Wearable-sensor-based detection and prediction of freezing of gait in Parkinson’s disease: A review
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 62
  year: 2020
  ident: 10.1016/j.engappai.2022.105482_b8
  article-title: A new index to assess turning quality and postural stability in patients with Parkinson’s disease
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2020.102059
– volume: 19
  start-page: 127
  issue: 3
  year: 2008
  ident: 10.1016/j.engappai.2022.105482_b62
  article-title: The factors that induce or overcome freezing of gait in Parkinson’s disease
  publication-title: Behav, Neurol,
  doi: 10.1155/2008/456298
– volume: 14
  start-page: 222
  issue: 4
  year: 2014
  ident: 10.1016/j.engappai.2022.105482_b56
  article-title: Practical approach to freezing of gait in Parkinson’s disease
  publication-title: Pract. Neurol.
  doi: 10.1136/practneurol-2013-000743
– volume: 21
  issue: 13
  year: 2021
  ident: 10.1016/j.engappai.2022.105482_b1
  article-title: An overview of machine learning within embedded and mobile devices–optimizations and applications
  publication-title: Sensors
  doi: 10.3390/s21134412
– volume: 22
  start-page: 2192
  issue: 15
  year: 2007
  ident: 10.1016/j.engappai.2022.105482_b47
  article-title: Freezing of gait affects quality of life of peoples with Parkinson’s disease beyond its relationships with mobility and gait
  publication-title: Mov. Disorders
  doi: 10.1002/mds.21659
– volume: 9
  start-page: 53540
  year: 2021
  ident: 10.1016/j.engappai.2022.105482_b71
  article-title: Boosting inertial-based human activity recognition with transformers
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3070646
– volume: 19
  issue: 6
  year: 2019
  ident: 10.1016/j.engappai.2022.105482_b76
  article-title: A technological review of wearable cueing devices addressing freezing of gait in Parkinson’s disease
  publication-title: Sensors (Basel)
  doi: 10.3390/s19061277
– ident: 10.1016/j.engappai.2022.105482_b9
  doi: 10.1109/COMPSAC48688.2020.0-186
– volume: 20
  start-page: 4474
  issue: 16
  year: 2020
  ident: 10.1016/j.engappai.2022.105482_b64
  article-title: Using wearable sensors and machine learning to automatically detect freezing of gait during a FOG-provoking test
  publication-title: Sensors
  doi: 10.3390/s20164474
– volume: 264
  start-page: 1642
  issue: 8
  year: 2017
  ident: 10.1016/j.engappai.2022.105482_b73
  article-title: Freezing of gait and fall detection in Parkinson’s disease using wearable sensors: a systematic review
  publication-title: J. Neurol.
  doi: 10.1007/s00415-017-8424-0
– volume: 18
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.engappai.2022.105482_b40
  article-title: Measuring freezing of gait during daily-life: an open-source, wearable sensors approach
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/s12984-020-00774-3
– start-page: 123
  year: 2012
  ident: 10.1016/j.engappai.2022.105482_b42
– ident: 10.1016/j.engappai.2022.105482_b16
  doi: 10.23919/DATE.2019.8715093
– volume: 217
  start-page: 48
  issue: 1–2
  year: 2008
  ident: 10.1016/j.engappai.2022.105482_b19
  article-title: A comparison of the performance of threshold criteria for binary classification in terms of predicted prevalence and kappa
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2008.05.015
– year: 2021
  ident: 10.1016/j.engappai.2022.105482_b37
– volume: 13
  start-page: 14079
  issue: 10
  year: 2013
  ident: 10.1016/j.engappai.2022.105482_b65
  article-title: A wearable inertial measurement unit for long-term monitoring in the dependency care area
  publication-title: Sensors (Basel)
  doi: 10.3390/s131014079
– volume: 21
  issue: 2
  year: 2021
  ident: 10.1016/j.engappai.2022.105482_b7
  article-title: Prediction of freezing of gait in Parkinson’s disease using wearables and machine learning
  publication-title: Sensors (Basel)
  doi: 10.3390/s21020614
– volume: 14
  start-page: 436
  year: 2010
  ident: 10.1016/j.engappai.2022.105482_b4
  article-title: Wearable assistant for Parkinson’s disease patients with the freezing of gait symptom
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2009.2036165
– volume: 24
  start-page: 2444
  issue: 9
  year: 2020
  ident: 10.1016/j.engappai.2022.105482_b15
  article-title: Toward a wearable system for predicting freezing of gait in people affected by Parkinson’s disease
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2019.2952618
– volume: 11
  start-page: 555
  year: 2017
  ident: 10.1016/j.engappai.2022.105482_b67
  article-title: How wearable sensors can support Parkinson’s disease diagnosis and treatment: A systematic review
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2017.00555
– volume: 167
  start-page: 340
  issue: 2
  year: 2008
  ident: 10.1016/j.engappai.2022.105482_b46
  article-title: Ambulatory monitoring of freezing of gait in Parkinson’s disease
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2007.08.023
– volume: 143
  start-page: 29
  issue: 1
  year: 1982
  ident: 10.1016/j.engappai.2022.105482_b24
  article-title: The meaning and use of the area under a receiver operating characteristic (ROC) curve
  publication-title: Radiology
  doi: 10.1148/radiology.143.1.7063747
– volume: 34
  start-page: 783
  issue: 6
  year: 2019
  ident: 10.1016/j.engappai.2022.105482_b39
  article-title: Clinical and methodological challenges for assessing freezing of gait: Future perspectives
  publication-title: Mov. Disorders
  doi: 10.1002/mds.27709
– volume: 30
  start-page: 459
  issue: 4
  year: 2009
  ident: 10.1016/j.engappai.2022.105482_b52
  article-title: Reliability of the new freezing of gait questionnaire: agreement between patients with Parkinson’s disease and their carers
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2009.07.108
– volume: 147
  year: 2020
  ident: 10.1016/j.engappai.2022.105482_b61
  article-title: A fuzzy logic system for the home assessment of freezing of gait in subjects with Parkinsons disease
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113197
– volume: 9
  start-page: 1919
  issue: 11
  year: 2020
  ident: 10.1016/j.engappai.2022.105482_b36
  article-title: Improved deep learning technique to detect freezing of gait in Parkinson’s disease based on wearable sensors
  publication-title: Electronics
  doi: 10.3390/electronics9111919
– year: 2022
  ident: 10.1016/j.engappai.2022.105482_b18
  article-title: State of the art technologies in Parkinson’s disease management: A review article
  publication-title: J. Modern Rehabil.
  doi: 10.18502/jmr.v16i2.9297
– volume: vol. 9
  start-page: 249
  year: 2010
  ident: 10.1016/j.engappai.2022.105482_b23
  article-title: Understanding the difficulty of training deep feedforward neural networks
– volume: 20
  start-page: 1895
  year: 2020
  ident: 10.1016/j.engappai.2022.105482_b72
  article-title: Deep learning approaches for detecting freezing of gait in Parkinson’s disease patients through on-body acceleration sensors
  publication-title: Sensors
  doi: 10.3390/s20071895
– volume: 18
  issue: 10
  year: 2018
  ident: 10.1016/j.engappai.2022.105482_b44
  article-title: Novelty detection using deep normative modeling for IMU-based abnormal movement monitoring in Parkinson’s disease and autism spectrum disorders
  publication-title: Sensors
– volume: 9
  start-page: 3898
  issue: 19
  year: 2019
  ident: 10.1016/j.engappai.2022.105482_b49
  article-title: Towards real-time prediction of freezing of gait in patients with Parkinson’s disease: Addressing the class imbalance problem
  publication-title: Sensors
  doi: 10.3390/s19183898
– volume: 12
  issue: 2
  year: 2017
  ident: 10.1016/j.engappai.2022.105482_b66
  article-title: Home detection of freezing of gait using support vector machines through a single waist-worn triaxial accelerometer
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0171764
– volume: 73
  start-page: 33
  issue: C
  year: 2016
  ident: 10.1016/j.engappai.2022.105482_b31
  article-title: Optimising sampling rates for accelerometer-based human activity recognition
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2016.01.001
– volume: 24
  start-page: 655
  issue: 5
  year: 2009
  ident: 10.1016/j.engappai.2022.105482_b21
  article-title: Validation of the freezing of gait questionnaire in patients with Parkinson’s disease
  publication-title: Mov. Disorders
  doi: 10.1002/mds.21745
– volume: 17
  start-page: 427
  issue: 5
  year: 1967
  ident: 10.1016/j.engappai.2022.105482_b27
  article-title: Parkinsonism: onset, progression and mortality
  publication-title: Neurology
  doi: 10.1212/WNL.17.5.427
– start-page: 124
  year: 2013
  ident: 10.1016/j.engappai.2022.105482_b41
  article-title: Engineers meet clinicians: Augmenting Parkinson’s disease patients to gather information for gait rehabilitation
– year: 2021
  ident: 10.1016/j.engappai.2022.105482_b50
  article-title: Towards real-time prediction of freezing of gait in patients with Parkinsons disease: A novel deep one-class classifier
  publication-title: IEEE J. Biomed. Health Inf.
– volume: 18
  start-page: 167
  year: 2021
  ident: 10.1016/j.engappai.2022.105482_b70
  article-title: Prediction and detection of freezing of gait in Parkinson’s disease from plantar pressure data using long short-term memory neural-networks
  publication-title: J. NeuroEng. Rehabil.
  doi: 10.1186/s12984-021-00958-5
– year: 2021
  ident: 10.1016/j.engappai.2022.105482_b30
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.engappai.2022.105482_b10
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 46
  start-page: 30
  year: 2018
  ident: 10.1016/j.engappai.2022.105482_b57
  article-title: A prospective study of falls in relation to freezing of gait and response fluctuations in Parkinson’s disease
  publication-title: Parkinsonism Relat. Disorders
  doi: 10.1016/j.parkreldis.2017.10.013
– year: 2019
  ident: 10.1016/j.engappai.2022.105482_b12
– volume: 9
  start-page: 216
  year: 2018
  ident: 10.1016/j.engappai.2022.105482_b28
  article-title: Editorial: New advanced wireless technologies for objective monitoring of motor symptoms in Parkinson’s disease
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2018.00216
– volume: 20
  start-page: 142
  issue: 4
  year: 1998
  ident: 10.1016/j.engappai.2022.105482_b51
  article-title: A frequency and correlation analysis of motor deficits in Parkinson patients
  publication-title: Disabil. Rehabil.
  doi: 10.3109/09638289809166074
– volume: 61
  start-page: 2623
  issue: 6
  year: 2021
  ident: 10.1016/j.engappai.2022.105482_b17
  article-title: GHOST: adjusting the decision threshold to handle imbalanced data in machine learning
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.1c00160
– volume: 91
  start-page: 149
  year: 2022
  ident: 10.1016/j.engappai.2022.105482_b13
  article-title: Biomechanical aspects that precede freezing episode during gait in individuals with Parkinson’s disease: A systematic review
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2021.10.021
– volume: 3
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.engappai.2022.105482_b38
  article-title: Development of digital biomarkers for resting tremor and bradykinesia using a wrist-worn wearable device
  publication-title: NPJ Digital Med.
  doi: 10.1038/s41746-019-0217-7
– volume: 23
  start-page: S468
  issue: Suppl 2
  year: 2008
  ident: 10.1016/j.engappai.2022.105482_b74
  article-title: Clinimetrics of freezing of gait
  publication-title: Mov. Disorders
  doi: 10.1002/mds.22144
– year: 2017
  ident: 10.1016/j.engappai.2022.105482_b77
  article-title: Attention is all you need
– year: 2009
  ident: 10.1016/j.engappai.2022.105482_b3
  article-title: Online detection of freezing of gait in Parkinson’s disease patients: A performance characterization
– volume: 10
  start-page: 734
  issue: 8
  year: 2011
  ident: 10.1016/j.engappai.2022.105482_b55
  article-title: Freezing of gait: moving forward on a mysterious clinical phenomenon
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(11)70143-0
– volume: 8
  year: 2021
  ident: 10.1016/j.engappai.2022.105482_b5
  article-title: DeepFoG: An IMU-based detection of freezing of gait episodes in Parkinson’s disease patients via deep learning
  publication-title: Front. Robot. AI
  doi: 10.3389/frobt.2021.537384
– volume: 30
  start-page: 207
  issue: 3
  year: 2018
  ident: 10.1016/j.engappai.2022.105482_b34
  article-title: Assessing the accuracy of diagnostic tests
  publication-title: Shanghai Arch. Psychiatry
– volume: 13
  year: 2021
  ident: 10.1016/j.engappai.2022.105482_b43
  article-title: Machine learning for the diagnosis of Parkinson’s disease: A review of literature
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2021.633752
– volume: 23
  start-page: 426
  year: 2008
  ident: 10.1016/j.engappai.2022.105482_b58
  article-title: The clinical spectrum of freezing of gait in Parkinson’s disease
  publication-title: Mov. Disorders
  doi: 10.1002/mds.21934
– volume: 28
  start-page: 6548
  issue: 32
  year: 2021
  ident: 10.1016/j.engappai.2022.105482_b33
  article-title: Machine learning approaches in Parkinson’s disease
  publication-title: Curr. Med. Chem.
  doi: 10.2174/0929867328999210111211420
– volume: 8
  start-page: 133982
  year: 2020
  ident: 10.1016/j.engappai.2022.105482_b20
  article-title: Deep neural networks for human activity recognition with wearable sensors: Leave-one-subject-out cross-validation for model selection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3010715
– volume: 14
  start-page: 768
  issue: 7
  year: 2015
  ident: 10.1016/j.engappai.2022.105482_b53
  article-title: Freezing of gait: a practical approach to management
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(15)00041-1
– year: 2021
  ident: 10.1016/j.engappai.2022.105482_b63
– volume: 28
  start-page: 591
  issue: 3
  year: 2020
  ident: 10.1016/j.engappai.2022.105482_b80
  article-title: Prediction of freezing of gait in patients with Parkinson’s disease by identifying impaired gait patterns
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2020.2969649
– volume: 5
  issue: 21
  year: 2019
  ident: 10.1016/j.engappai.2022.105482_b26
  article-title: Monitoring Parkinson’s disease symptoms during daily life: a feasibility study
  publication-title: NPJ Parkinsons Dis.
– year: 2016
  ident: 10.1016/j.engappai.2022.105482_b29
– volume: 8
  start-page: 53
  issue: 1
  year: 2021
  ident: 10.1016/j.engappai.2022.105482_b2
  article-title: Review of deep learning: concepts, CNN architectures, challenges, applications, future directions
  publication-title: J. Big Data
  doi: 10.1186/s40537-021-00444-8
– volume: 139
  start-page: 119
  year: 2018
  ident: 10.1016/j.engappai.2022.105482_b11
  article-title: Deep learning for freezing of gait detection in Parkinson’s disease patients in their homes using a waist-worn inertial measurement unit
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2017.10.017
– volume: 10
  start-page: 391
  issue: 4
  year: 2003
  ident: 10.1016/j.engappai.2022.105482_b69
  article-title: Characterization of freezing of gait subtypes and the response of each to levodopa in Parkinson’s disease
  publication-title: Eur. J. Neurol.
  doi: 10.1046/j.1468-1331.2003.00611.x
– volume: 108
  start-page: 53
  issue: 1
  year: 2001
  ident: 10.1016/j.engappai.2022.105482_b22
  article-title: Freezing of gait in patients with advanced Parkinson’s disease
  publication-title: J. Neural Transm. (Vienna)
  doi: 10.1007/s007020170096
– start-page: 6765
  year: 2017
  ident: 10.1016/j.engappai.2022.105482_b35
– volume: 9
  start-page: 1
  issue: 6
  year: 2020
  ident: 10.1016/j.engappai.2022.105482_b6
  article-title: Smartphone-based evaluation of postural stability in Parkinson’s disease patients during quiet stance
  publication-title: Electronics (Switzerland)
– year: 2021
  ident: 10.1016/j.engappai.2022.105482_b25
– volume: 13
  year: 2022
  ident: 10.1016/j.engappai.2022.105482_b60
  article-title: Prediction of freezing of gait in Parkinson’s disease using unilateral and bilateral plantar-pressure data
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2022.831063
– volume: 122
  start-page: 403
  issue: 3
  year: 2015
  ident: 10.1016/j.engappai.2022.105482_b78
  article-title: New evidence for gait abnormalities among Parkinson’s disease patients who suffer from freezing of gait: insights using a body-fixed sensor worn for 3 days
  publication-title: J. Neural Transm. (Vienna)
  doi: 10.1007/s00702-014-1279-y
– year: 2014
  ident: 10.1016/j.engappai.2022.105482_b32
– volume: 8
  issue: 2
  year: 2019
  ident: 10.1016/j.engappai.2022.105482_b68
  article-title: Increasing robustness in the detection of freezing of gait in Parkinson’s disease
  publication-title: Electronics
  doi: 10.3390/electronics8020119
– volume: 11
  start-page: S35
  issue: s1
  year: 2021
  ident: 10.1016/j.engappai.2022.105482_b14
  article-title: Body-worn sensors for remote monitoring of Parkinson’s disease motor symptoms: Vision, state of the art, and challenges ahead
  publication-title: J. Parkinsons Dis.
  doi: 10.3233/JPD-202471
– volume: 21
  start-page: 1362
  issue: 11
  year: 2015
  ident: 10.1016/j.engappai.2022.105482_b79
  article-title: Identifying freezing of gait in Parkinson’s disease during freezing provoking tasks using waist-mounted accelerometry
  publication-title: Parkinsonism Relat. Disorders
  doi: 10.1016/j.parkreldis.2015.09.051
SSID ssj0003846
Score 2.4731321
Snippet Freezing of gait (FOG) is one of the most incapacitating symptoms in Parkinson’s disease, affecting more than 50% of patients in advanced stages of the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105482
SubjectTerms Convolutional neural networks
Deep learning
Freezing of gait
Machine learning
Parkinson’s disease
Sequence analysis
Transformers
Wearable sensors
Title Improvement of Performance in Freezing of Gait detection in Parkinson’s Disease using Transformer networks and a single waist-worn triaxial accelerometer
URI https://dx.doi.org/10.1016/j.engappai.2022.105482
Volume 116
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYQXLi0QKlKW9Aceg27GztOckSU7cIKhPgR3KKJ46CskFmxQaAeEK9R8XY8SWfiBKiExKGnKB6PYnnGns_O_AjxQw1KJDRUBBiZPFC5VkFiYxnYsh9akngsG-fx_QM9OlV759H5nNjuYmHYrbLd-_2e3uzWbUuvnc3etKp6xwQOaLnRYg6blIccxKdUzFq-ef_i5iETH6xDnQPu_SpKeLJp3QVOp1jROTEMueStSsK3DdQrozNcEh9atAhbfkDLYs66FfGxRY7QrssZNXXFGbq2T-LRXxc0t39wVcLhS4QAVA6G19b-JrPFpF9Y1VDYuvHKckzlWOgmLOzp4c8MfvqfOMA-8hdw0kFd-przTuQzQFcAAtMvLdwi6U5ABAdcFOSOVBzQGDJwnBuBRrkqToc7J9ujoK3EEBgp45p2IWNTsuaFkv2CDtMDTMPYxoTdSlViP5epKZBTy6VIkMbINLFhUkR5pKzVGObys5h3V85-ESD7iFqXidHGKF0YTMmKDhKd61KXgyheE1E3_Zlp05RztYzLrPNHm2Sd2DIWW-bFtiZ6z3xTn6jjXY60k272j8plZE3e4f36H7zfxCK_-YDG72K-vr6x64Rs6nyjUd0NsbC1Ox4d8HN8dDb-C6kd_p0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB7R5dBe-kNbAW3pHLimuxs7TnJE0GUpsKrUReIWTRwHBSGzYlNR9dTXqPp2fRLGsQNUQuLQqyejWJ7xzGd7fgC25bgmRkNVRIkuI1kqGWUmFZGpR7FhiaeiCx4_nqnpifxympyuwG6fC-PCKoPt9za9s9ZhZBhWc7homuE3Bge83Xgzx13Jw_wJrLrqVMkAVncODqezW4MsMp-vw99HjuFeovD5J2PPaLGgho-Kcey63sosfthH3fM7k5fwPABG3PFzegUrxq7BiwAeMWzNJQ_1_Rn6sdfwx98YdBeAeFnj17skAWwsTq6M-cmey5H2qWmxMm0XmGUd1aVDd5lhf3_9XuKef8dBFyZ_hvMe7fLfrI8jXyLZCgkd_cLgNbH6REyw6PqC_GAtR9KafZwrj8CzfAMnk8_z3WkUmjFEWoi0ZUOkTc4OvZJiVPF5ekx5nJqU4VstaxqVItcVuepyOTGq0SLPTJxVSZlIYxTFpXgLA3tpzTqgGBEpVWdaaS1VpSlnRzrOVKlqVY-TdAOSfvkLHSqVu4YZF0UfknZe9GIrnNgKL7YNGN7yLXytjkc58l66xT9aV7BDeYR38z94P8LT6fz4qDg6mB2-g2eO4vMb38OgvfpuPjDQacutoMg3WBX_qw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improvement+of+Performance+in+Freezing+of+Gait+detection+in+Parkinson%E2%80%99s+Disease+using+Transformer+networks+and+a+single+waist-worn+triaxial+accelerometer&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Sigcha%2C+Luis&rft.au=Borz%C3%AC%2C+Luigi&rft.au=Pav%C3%B3n%2C+Ignacio&rft.au=Costa%2C+N%C3%A9lson&rft.date=2022-11-01&rft.issn=0952-1976&rft.volume=116&rft.spage=105482&rft_id=info:doi/10.1016%2Fj.engappai.2022.105482&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2022_105482
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon