Improvement of Performance in Freezing of Gait detection in Parkinson’s Disease using Transformer networks and a single waist-worn triaxial accelerometer
Freezing of gait (FOG) is one of the most incapacitating symptoms in Parkinson’s disease, affecting more than 50% of patients in advanced stages of the disease. The presence of FOG may lead to falls and a loss of independence with a consequent reduction in the quality of life. Wearable technology an...
Saved in:
Published in | Engineering applications of artificial intelligence Vol. 116; p. 105482 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Freezing of gait (FOG) is one of the most incapacitating symptoms in Parkinson’s disease, affecting more than 50% of patients in advanced stages of the disease. The presence of FOG may lead to falls and a loss of independence with a consequent reduction in the quality of life. Wearable technology and artificial intelligence have been used for automatic FOG detection to optimize monitoring. However, differences between laboratory and daily-life conditions present challenges for the implementation of reliable detection systems. Consequently, improvement of FOG detection methods remains important to provide accurate monitoring mechanisms intended for free-living and real-time use. This paper presents advances in automatic FOG detection using a single body-worn triaxial accelerometer and a novel classification algorithm based on Transformers and convolutional networks. This study was performed with data from 21 patients who manifested FOG episodes while performing activities of daily living in a home setting. Results indicate that the proposed FOG-Transformer can bring a significant improvement in FOG detection over the reproduction of related approaches based on machine and deep learning (i.e., from 0.916 to 0.957 in the AUC metric compared with the baseline, with a corresponding sensitivity, specificity, and precision of 0.842, 0.939 and 0.617, respectively) using a leave-one-subject-out cross-validation (LOSO CV). These results present opportunities for the implementation of accurate monitoring systems for use in ambulatory or home settings. |
---|---|
AbstractList | Freezing of gait (FOG) is one of the most incapacitating symptoms in Parkinson’s disease, affecting more than 50% of patients in advanced stages of the disease. The presence of FOG may lead to falls and a loss of independence with a consequent reduction in the quality of life. Wearable technology and artificial intelligence have been used for automatic FOG detection to optimize monitoring. However, differences between laboratory and daily-life conditions present challenges for the implementation of reliable detection systems. Consequently, improvement of FOG detection methods remains important to provide accurate monitoring mechanisms intended for free-living and real-time use. This paper presents advances in automatic FOG detection using a single body-worn triaxial accelerometer and a novel classification algorithm based on Transformers and convolutional networks. This study was performed with data from 21 patients who manifested FOG episodes while performing activities of daily living in a home setting. Results indicate that the proposed FOG-Transformer can bring a significant improvement in FOG detection over the reproduction of related approaches based on machine and deep learning (i.e., from 0.916 to 0.957 in the AUC metric compared with the baseline, with a corresponding sensitivity, specificity, and precision of 0.842, 0.939 and 0.617, respectively) using a leave-one-subject-out cross-validation (LOSO CV). These results present opportunities for the implementation of accurate monitoring systems for use in ambulatory or home settings. |
ArticleNumber | 105482 |
Author | Arezes, Pedro López, Juan Manuel Costa, Nélson Borzì, Luigi Pavón, Ignacio Costa, Susana Sigcha, Luis De Arcas, Guillermo |
Author_xml | – sequence: 1 givenname: Luis orcidid: 0000-0002-9968-5024 surname: Sigcha fullname: Sigcha, Luis email: luisfrancisco.sigcha@upm.es organization: Instrumentation and Applied Acoustics Research Group (I2A2), ETSI Industriales, Universidad Politécnica de Madrid, Campus Sur UPM, Ctra. Valencia, Km 7, 28031 Madrid, Spain – sequence: 2 givenname: Luigi orcidid: 0000-0003-0875-6913 surname: Borzì fullname: Borzì, Luigi email: luigi.borzi@polito.it organization: Department of Control and Computer Engineering, Politecnico di Torino, 10129 Turin, Italy – sequence: 3 givenname: Ignacio orcidid: 0000-0003-0970-0452 surname: Pavón fullname: Pavón, Ignacio email: ignacio.pavon@upm.es organization: Instrumentation and Applied Acoustics Research Group (I2A2), ETSI Industriales, Universidad Politécnica de Madrid, Campus Sur UPM, Ctra. Valencia, Km 7, 28031 Madrid, Spain – sequence: 4 givenname: Nélson orcidid: 0000-0002-9348-8038 surname: Costa fullname: Costa, Nélson email: ncosta@dps.uminho.pt organization: ALGORITMI Research Center, School of Engineering, University of Minho, 4800-058 Guimarães, Portugal – sequence: 5 givenname: Susana orcidid: 0000-0001-7440-8787 surname: Costa fullname: Costa, Susana email: susana.costa@dps.uminho.pt organization: ALGORITMI Research Center, School of Engineering, University of Minho, 4800-058 Guimarães, Portugal – sequence: 6 givenname: Pedro surname: Arezes fullname: Arezes, Pedro email: parezes@dps.uminho.pt organization: ALGORITMI Research Center, School of Engineering, University of Minho, 4800-058 Guimarães, Portugal – sequence: 7 givenname: Juan Manuel surname: López fullname: López, Juan Manuel email: juanmanuel.lopez@upm.es organization: Instrumentation and Applied Acoustics Research Group (I2A2), ETSI Industriales, Universidad Politécnica de Madrid, Campus Sur UPM, Ctra. Valencia, Km 7, 28031 Madrid, Spain – sequence: 8 givenname: Guillermo surname: De Arcas fullname: De Arcas, Guillermo email: g.dearcas@upm.es organization: Instrumentation and Applied Acoustics Research Group (I2A2), ETSI Industriales, Universidad Politécnica de Madrid, Campus Sur UPM, Ctra. Valencia, Km 7, 28031 Madrid, Spain |
BookMark | eNqFkM9O3DAQh60KpC5_XqHyC2Rx7CSOpR5aUaBISHCAszXrTJCXxF6NXSiceA3E2_VJSLTlwoXTSPPT9xvNt8d2QgzI2LdSLEtRNkfrJYZb2GzAL6WQclrWVSu_sEXZalU0ujE7bCFMLYvS6OYr20tpLYRQbdUs2Ov5uKF4jyOGzGPPr5D6SCMEh9wHfkqITz7cztEZ-Mw7zOiyj2FOr4DufEgx_Ht-SfyXTwgJ-Z80A9cEIc1VSDxgfoh0lziEjgOf8wH5A_iUiykIPJOHvx4GDs7hgBTH6QwdsN0ehoSH_-c-uzk9uT7-XVxcnp0f_7wonFI6F0o7NEJWXaVEpytZgpEadS1lX_UgVsq4DrQxtQHR1E6ZFmXb1au6QmxArtQ--77tdRRTIuyt8xnmJzOBH2wp7Czaru27aDuLtlvRE958wDfkR6DHz8EfWxCn5-49kk3O42S-8zRJtl30n1W8AfSao20 |
CitedBy_id | crossref_primary_10_1007_s13311_023_01433_w crossref_primary_10_1016_j_eswa_2024_124522 crossref_primary_10_3390_s23094426 crossref_primary_10_2196_60521 crossref_primary_10_1016_j_mlwa_2024_100553 crossref_primary_10_1038_s41598_024_75445_7 crossref_primary_10_1016_j_bspc_2023_105765 crossref_primary_10_1038_s41467_024_49027_0 crossref_primary_10_3390_electronics11233879 crossref_primary_10_1177_1877718X241302766 crossref_primary_10_3390_electronics11213614 crossref_primary_10_3390_app142210189 crossref_primary_10_1063_5_0194094 crossref_primary_10_1111_exsy_13790 crossref_primary_10_1080_14737175_2023_2229954 crossref_primary_10_1007_s13042_023_02050_x crossref_primary_10_2196_71560 crossref_primary_10_1016_j_artmed_2022_102459 crossref_primary_10_1109_ACCESS_2024_3496497 crossref_primary_10_1109_TBME_2024_3402677 crossref_primary_10_1145_3648469 crossref_primary_10_3390_s24248211 |
Cites_doi | 10.1146/annurev-bioeng-062117-121036 10.1109/ACCESS.2021.3104975 10.1186/1743-0003-10-19 10.1016/j.bspc.2020.102059 10.1155/2008/456298 10.1136/practneurol-2013-000743 10.3390/s21134412 10.1002/mds.21659 10.1109/ACCESS.2021.3070646 10.3390/s19061277 10.1109/COMPSAC48688.2020.0-186 10.3390/s20164474 10.1007/s00415-017-8424-0 10.1186/s12984-020-00774-3 10.23919/DATE.2019.8715093 10.1016/j.ecolmodel.2008.05.015 10.3390/s131014079 10.3390/s21020614 10.1109/TITB.2009.2036165 10.1109/JBHI.2019.2952618 10.3389/fnins.2017.00555 10.1016/j.jneumeth.2007.08.023 10.1148/radiology.143.1.7063747 10.1002/mds.27709 10.1016/j.gaitpost.2009.07.108 10.1016/j.eswa.2020.113197 10.3390/electronics9111919 10.18502/jmr.v16i2.9297 10.3390/s20071895 10.3390/s19183898 10.1371/journal.pone.0171764 10.1016/j.patrec.2016.01.001 10.1002/mds.21745 10.1212/WNL.17.5.427 10.1186/s12984-021-00958-5 10.1023/A:1010933404324 10.1016/j.parkreldis.2017.10.013 10.3389/fneur.2018.00216 10.3109/09638289809166074 10.1021/acs.jcim.1c00160 10.1016/j.gaitpost.2021.10.021 10.1038/s41746-019-0217-7 10.1002/mds.22144 10.1016/S1474-4422(11)70143-0 10.3389/frobt.2021.537384 10.3389/fnagi.2021.633752 10.1002/mds.21934 10.2174/0929867328999210111211420 10.1109/ACCESS.2020.3010715 10.1016/S1474-4422(15)00041-1 10.1109/TNSRE.2020.2969649 10.1186/s40537-021-00444-8 10.1016/j.knosys.2017.10.017 10.1046/j.1468-1331.2003.00611.x 10.1007/s007020170096 10.3389/fneur.2022.831063 10.1007/s00702-014-1279-y 10.3390/electronics8020119 10.3233/JPD-202471 10.1016/j.parkreldis.2015.09.051 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.engappai.2022.105482 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISSN | 1873-6769 |
ExternalDocumentID | 10_1016_j_engappai_2022_105482 S0952197622004729 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TN5 UHS WUQ ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c337t-37ce9024d430d7421a927e7522f4fa0b39cda79959a065c398e28d5b54ee6a2b3 |
IEDL.DBID | .~1 |
ISSN | 0952-1976 |
IngestDate | Tue Jul 01 01:04:05 EDT 2025 Thu Apr 24 23:13:18 EDT 2025 Fri Feb 23 02:40:12 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Freezing of gait Deep learning Machine learning Transformers Convolutional neural networks Sequence analysis Parkinson’s disease Wearable sensors |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c337t-37ce9024d430d7421a927e7522f4fa0b39cda79959a065c398e28d5b54ee6a2b3 |
ORCID | 0000-0002-9968-5024 0000-0001-7440-8787 0000-0002-9348-8038 0000-0003-0970-0452 0000-0003-0875-6913 |
OpenAccessLink | http://hdl.handle.net/1822/81050 |
ParticipantIDs | crossref_citationtrail_10_1016_j_engappai_2022_105482 crossref_primary_10_1016_j_engappai_2022_105482 elsevier_sciencedirect_doi_10_1016_j_engappai_2022_105482 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2022 2022-11-00 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: November 2022 |
PublicationDecade | 2020 |
PublicationTitle | Engineering applications of artificial intelligence |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Lin, Wang, Liu, Qiu (b37) 2021 Rovini, Maremmani, Cavallo (b67) 2017; 11 Irrera, Cabestany, Suppa (b28) 2018; 9 Rahman, Griffin, Quinn, Jahanshahi (b62) 2008; 19 Sigcha, Costa, Pavón, Costa, Arezes, López, De Arcas (b72) 2020; 20 Cupertino, Dos Reis, Los Angeles, Costa, Shokur, Bouri, de Lima-Pardini, Coelho (b13) 2022; 91 Nonnekes, Snijders, Nutt, Deuschl, Giladi, Bloem (b53) 2015; 14 Noor, Nazir, Wahab, Ling (b54) 2021; 9 Raza, Tran, Koehl, Li, Zeng, Benzaidi (b63) 2021 Glorot, Bengio (b23) 2010; vol. 9 Giladi, Treves, Simon, Shabtai, Orlov, Kandinov, Paleacu, Korczyn (b22) 2001; 108 Nutt, Bloem, Giladi, Hallett, Horak, Nieuwboer (b55) 2011; 10 Okuma, Yanagisawa (b58) 2008; 23 Borzì, Olmo, Artusi, Fabbri, Rizzone, Romagnolo, Zibetti, Lopiano (b8) 2020; 62 Bikias, Iakovakis, Hadjidimitriou, Charisis, Hadjileontiadis (b5) 2021; 8 Shavit, Klein (b71) 2021; 9 Li, He (b34) 2018; 30 Pardoel, Nantel, Kofman, Lemaire (b60) 2022; 13 Nieuwboer, Rochester, Herman, Vandenberghe, Emil, Thomaes, Giladi (b52) 2009; 30 Rodríguez-Martín, Samà, Pérez-López, Català, Moreno Arostegui (b66) 2017; 12 Bächlin, Plotnik, Roggen, Maidan, JM, Giladi, Tröster (b4) 2010; 14 Camps, Sama, Martin, Rodriguez-Martin, Perez-Lopez, Arostegui, Cabestany, Catala, Alcaine, Mestre (b11) 2018; 139 Weiss, Herman, Giladi, Hausdorff (b78) 2015; 122 Okuma, de Lima, Fukae, Bloem, Snijders (b57) 2018; 46 Mazilu, Blanke, Roggen, Tröster, Gazit, Hausdorff (b41) 2013 Hanley, McNeil (b24) 1982; 143 Monje, Foffani, Obeso, Sánchez-Ferro (b45) 2019; 21 . Li, Yao, Wang, Wang, Yang, Sun (b36) 2020; 9 Pardoel, Kofman, Nantel, Lemaire (b59) 2019; 19 Ajani, Imoize, Atayero (b1) 2021; 21 Zach, Janssen, Snijders, Delval, Ferraye, Auff, Weerdesteyn, Bloem, Nonnekes (b79) 2015; 21 Farashi, Khazaei, Rezaei (b18) 2022 keras.io (b30) 2021 Moore, MacDougall, W.G. (b46) 2008; 167 Naghavi, Wade (b50) 2021 Schaafsma, Balash, Gurevich, Bartels, Hausdorff, Giladi (b69) 2003; 10 Mancini, Bloem, Horak, Lewis, Nieuwboer, Nonnekes (b39) 2019; 34 Zhang, Yan, Yao, Ahmed, Tan, Gu (b80) 2020; 28 Mancini, Shah, Stuart, Curtze, Horak, Safarpour, Nutt (b40) 2021; 18 Jothilakshmi, Gudivada (b29) 2016 Breiman (b10) 2001; 45 Demrozi, F., Bragoi, V., Tramarin, F., Pravadelli, G., 2019. An indoor localization system to detect areas causing the freezing of gait in Parkinsonians. In: 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE). pp. 952–955. Kingma, Ba (b32) 2014 Moore, Yungher, Morris, Dilda, MacDougall, Shine, Naismith, Lewis (b48) 2013; 10 Li, Jamieson, DeSalvo, Rostamizadeh, Talwalkar (b35) 2017 Giladi, Tal, Azulay, Rascol, Brooks, Melamed, Oertel, Poewe, Stocchi, Tolosa (b21) 2009; 24 Freeman, Moisen (b19) 2008; 217 Hoehn, Yahr (b27) 1967; 17 Pepa, Capecci, Andrenelli, Ciabattoni, Spalazzi, Ceravolo (b61) 2020; 147 Rodríguez-Martín, Pérez-López, Samà, Cabestany, Català (b65) 2013; 13 Silva de Lima, Evers, Hahn, Bataille, Hamilton, Little, Okuma, Bloem, Faber (b73) 2017; 264 Snijders, Nijkrake, Bakker, Munneke, Wind, Bloem (b74) 2008; 23 Mohammadian Rad, Van Laarhoven, Furlanello, Marchiori (b44) 2018; 18 Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b77) 2017 Okuma (b56) 2014; 14 Borzı, Mazzetta, Zampogna, Suppa, Olmo, Irrera (b7) 2021; 21 Heijmans, Habets, Herff (b26) 2019; 5 Commission, Directorate-General for Communications Networks, Technology (b12) 2019 Bächlin, Hausdorff, Roggen, Giladi, Plotnik, Tröster (b3) 2009 Moore, Peretz, Giladi (b47) 2007; 22 Landolfi, Ricciardi, Donisi, Cesarelli, Troisi, Vitale, Barone, Amboni (b33) 2021; 28 Mahadevan, Demanuele, Zhang, Volfson, Ho, Erb, Patel (b38) 2020; 3 Del Din, Kirk, Yarnall, Rochester, Hausdorff (b14) 2021; 11 Mei, Desrosiers, Frasnelli (b43) 2021; 13 Shalin, Pardoel, Lemaire, Nantel, Kofman (b70) 2021; 18 Suppa, Kita, Leodori, Zampogna, Nicolini, Lorenzi, Rao, Irrera (b75) 2017; 8 Hassani, Walton, Shah, Abuduweili, Li, Shi (b25) 2021 Reches, Dagan, Herman, Gazit, Gouskova, Giladi, Manor, Hausdorff (b64) 2020; 20 Alzubaidi, Zhang, Humaidi, Al-Dujaili, Duan, Al-Shamma, Santamaría, Fadhel, Al-Amidie, Farhan (b2) 2021; 8 Gholamiangonabadi, Kiselov, Grolinger (b20) 2020; 8 Esposito, Landrum, Schneider, Stiefl, Riniker (b17) 2021; 61 Sweeney, Quinlan, Browne, Richardson, Meskell, ÓLaighin (b76) 2019; 19 Naghavi, Miller, Wade (b49) 2019; 9 Khan, Hammerla, Mellor, Plötz (b31) 2016; 73 Mazilu, Hardegger, Zhu, Roggen, Tröster, Plotnik, Hausdorff (b42) 2012 Nieuwboer, De Weerdt, Dom, Lesaffre (b51) 1998; 20 Borzì, Fornara, Amato, Olmo, Artusi, Lopiano (b6) 2020; 9 Demrozi, Bacchin, Tamburin, Cristani, Pravadelli (b15) 2020; 24 San-Segundo, Navarro-Hellín, Torres-Sánchez, Hodgins, De la Torre (b68) 2019; 8 Borzı, L., Olmo, G., Artusi, C., Lopiano, L., 2020. Detection of Freezing of Gait in People with Parkinson’s Disease using Smartphones. pp. 625–635. Weiss (10.1016/j.engappai.2022.105482_b78) 2015; 122 Borzı (10.1016/j.engappai.2022.105482_b7) 2021; 21 Landolfi (10.1016/j.engappai.2022.105482_b33) 2021; 28 Mazilu (10.1016/j.engappai.2022.105482_b42) 2012 Nieuwboer (10.1016/j.engappai.2022.105482_b51) 1998; 20 Nieuwboer (10.1016/j.engappai.2022.105482_b52) 2009; 30 Suppa (10.1016/j.engappai.2022.105482_b75) 2017; 8 Heijmans (10.1016/j.engappai.2022.105482_b26) 2019; 5 Li (10.1016/j.engappai.2022.105482_b35) 2017 Zhang (10.1016/j.engappai.2022.105482_b80) 2020; 28 Bächlin (10.1016/j.engappai.2022.105482_b3) 2009 Mancini (10.1016/j.engappai.2022.105482_b40) 2021; 18 Raza (10.1016/j.engappai.2022.105482_b63) 2021 Cupertino (10.1016/j.engappai.2022.105482_b13) 2022; 91 Okuma (10.1016/j.engappai.2022.105482_b56) 2014; 14 Esposito (10.1016/j.engappai.2022.105482_b17) 2021; 61 Moore (10.1016/j.engappai.2022.105482_b46) 2008; 167 10.1016/j.engappai.2022.105482_b16 Li (10.1016/j.engappai.2022.105482_b36) 2020; 9 Demrozi (10.1016/j.engappai.2022.105482_b15) 2020; 24 Bikias (10.1016/j.engappai.2022.105482_b5) 2021; 8 Li (10.1016/j.engappai.2022.105482_b34) 2018; 30 Vaswani (10.1016/j.engappai.2022.105482_b77) 2017 10.1016/j.engappai.2022.105482_b9 Lin (10.1016/j.engappai.2022.105482_b37) 2021 Schaafsma (10.1016/j.engappai.2022.105482_b69) 2003; 10 Glorot (10.1016/j.engappai.2022.105482_b23) 2010; vol. 9 Okuma (10.1016/j.engappai.2022.105482_b57) 2018; 46 Silva de Lima (10.1016/j.engappai.2022.105482_b73) 2017; 264 Pardoel (10.1016/j.engappai.2022.105482_b59) 2019; 19 Sweeney (10.1016/j.engappai.2022.105482_b76) 2019; 19 Rahman (10.1016/j.engappai.2022.105482_b62) 2008; 19 Sigcha (10.1016/j.engappai.2022.105482_b72) 2020; 20 Khan (10.1016/j.engappai.2022.105482_b31) 2016; 73 Borzì (10.1016/j.engappai.2022.105482_b6) 2020; 9 Reches (10.1016/j.engappai.2022.105482_b64) 2020; 20 Irrera (10.1016/j.engappai.2022.105482_b28) 2018; 9 Mohammadian Rad (10.1016/j.engappai.2022.105482_b44) 2018; 18 Freeman (10.1016/j.engappai.2022.105482_b19) 2008; 217 Mancini (10.1016/j.engappai.2022.105482_b39) 2019; 34 Kingma (10.1016/j.engappai.2022.105482_b32) 2014 Okuma (10.1016/j.engappai.2022.105482_b58) 2008; 23 Monje (10.1016/j.engappai.2022.105482_b45) 2019; 21 Naghavi (10.1016/j.engappai.2022.105482_b50) 2021 Rovini (10.1016/j.engappai.2022.105482_b67) 2017; 11 Alzubaidi (10.1016/j.engappai.2022.105482_b2) 2021; 8 Hanley (10.1016/j.engappai.2022.105482_b24) 1982; 143 Del Din (10.1016/j.engappai.2022.105482_b14) 2021; 11 Moore (10.1016/j.engappai.2022.105482_b48) 2013; 10 Nonnekes (10.1016/j.engappai.2022.105482_b53) 2015; 14 Bächlin (10.1016/j.engappai.2022.105482_b4) 2010; 14 Pardoel (10.1016/j.engappai.2022.105482_b60) 2022; 13 Gholamiangonabadi (10.1016/j.engappai.2022.105482_b20) 2020; 8 Giladi (10.1016/j.engappai.2022.105482_b22) 2001; 108 Naghavi (10.1016/j.engappai.2022.105482_b49) 2019; 9 Shalin (10.1016/j.engappai.2022.105482_b70) 2021; 18 San-Segundo (10.1016/j.engappai.2022.105482_b68) 2019; 8 Rodríguez-Martín (10.1016/j.engappai.2022.105482_b65) 2013; 13 Farashi (10.1016/j.engappai.2022.105482_b18) 2022 Mahadevan (10.1016/j.engappai.2022.105482_b38) 2020; 3 Commission (10.1016/j.engappai.2022.105482_b12) 2019 Noor (10.1016/j.engappai.2022.105482_b54) 2021; 9 Hoehn (10.1016/j.engappai.2022.105482_b27) 1967; 17 Shavit (10.1016/j.engappai.2022.105482_b71) 2021; 9 Camps (10.1016/j.engappai.2022.105482_b11) 2018; 139 Nutt (10.1016/j.engappai.2022.105482_b55) 2011; 10 Mazilu (10.1016/j.engappai.2022.105482_b41) 2013 Mei (10.1016/j.engappai.2022.105482_b43) 2021; 13 Rodríguez-Martín (10.1016/j.engappai.2022.105482_b66) 2017; 12 Jothilakshmi (10.1016/j.engappai.2022.105482_b29) 2016 Giladi (10.1016/j.engappai.2022.105482_b21) 2009; 24 keras.io (10.1016/j.engappai.2022.105482_b30) 2021 Hassani (10.1016/j.engappai.2022.105482_b25) 2021 Ajani (10.1016/j.engappai.2022.105482_b1) 2021; 21 Moore (10.1016/j.engappai.2022.105482_b47) 2007; 22 Breiman (10.1016/j.engappai.2022.105482_b10) 2001; 45 Snijders (10.1016/j.engappai.2022.105482_b74) 2008; 23 Pepa (10.1016/j.engappai.2022.105482_b61) 2020; 147 Zach (10.1016/j.engappai.2022.105482_b79) 2015; 21 Borzì (10.1016/j.engappai.2022.105482_b8) 2020; 62 |
References_xml | – volume: 8 year: 2021 ident: b5 article-title: DeepFoG: An IMU-based detection of freezing of gait episodes in Parkinson’s disease patients via deep learning publication-title: Front. Robot. AI – volume: 20 start-page: 4474 year: 2020 ident: b64 article-title: Using wearable sensors and machine learning to automatically detect freezing of gait during a FOG-provoking test publication-title: Sensors – volume: 18 start-page: 1 year: 2021 ident: b40 article-title: Measuring freezing of gait during daily-life: an open-source, wearable sensors approach publication-title: J. Neuroeng. Rehabil. – start-page: 124 year: 2013 end-page: 127 ident: b41 article-title: Engineers meet clinicians: Augmenting Parkinson’s disease patients to gather information for gait rehabilitation publication-title: Proceedings of the 4th Augmented Human International Conference – volume: 23 start-page: S468 year: 2008 end-page: 474 ident: b74 article-title: Clinimetrics of freezing of gait publication-title: Mov. Disorders – year: 2021 ident: b50 article-title: Towards real-time prediction of freezing of gait in patients with Parkinsons disease: A novel deep one-class classifier publication-title: IEEE J. Biomed. Health Inf. – volume: 143 start-page: 29 year: 1982 end-page: 36 ident: b24 article-title: The meaning and use of the area under a receiver operating characteristic (ROC) curve publication-title: Radiology – volume: 13 year: 2021 ident: b43 article-title: Machine learning for the diagnosis of Parkinson’s disease: A review of literature publication-title: Front. Aging Neurosci. – year: 2022 ident: b18 article-title: State of the art technologies in Parkinson’s disease management: A review article publication-title: J. Modern Rehabil. – volume: 14 start-page: 222 year: 2014 end-page: 230 ident: b56 article-title: Practical approach to freezing of gait in Parkinson’s disease publication-title: Pract. Neurol. – volume: 20 start-page: 1895 year: 2020 ident: b72 article-title: Deep learning approaches for detecting freezing of gait in Parkinson’s disease patients through on-body acceleration sensors publication-title: Sensors – volume: 217 start-page: 48 year: 2008 end-page: 58 ident: b19 article-title: A comparison of the performance of threshold criteria for binary classification in terms of predicted prevalence and kappa publication-title: Ecol. Model. – volume: 61 start-page: 2623 year: 2021 end-page: 2640 ident: b17 article-title: GHOST: adjusting the decision threshold to handle imbalanced data in machine learning publication-title: J. Chem. Inf. Model. – year: 2014 ident: b32 article-title: Adam: A method for stochastic optimization – volume: 18 year: 2018 ident: b44 article-title: Novelty detection using deep normative modeling for IMU-based abnormal movement monitoring in Parkinson’s disease and autism spectrum disorders publication-title: Sensors – volume: 13 year: 2022 ident: b60 article-title: Prediction of freezing of gait in Parkinson’s disease using unilateral and bilateral plantar-pressure data publication-title: Front. Neurol. – year: 2019 ident: b12 article-title: Ethics Guidelines for Trustworthy AI – year: 2021 ident: b25 article-title: Escaping the big data paradigm with compact transformers – volume: 22 start-page: 2192 year: 2007 end-page: 2195 ident: b47 article-title: Freezing of gait affects quality of life of peoples with Parkinson’s disease beyond its relationships with mobility and gait publication-title: Mov. Disorders – volume: 122 start-page: 403 year: 2015 end-page: 410 ident: b78 article-title: New evidence for gait abnormalities among Parkinson’s disease patients who suffer from freezing of gait: insights using a body-fixed sensor worn for 3 days publication-title: J. Neural Transm. (Vienna) – volume: 11 start-page: S35 year: 2021 end-page: S47 ident: b14 article-title: Body-worn sensors for remote monitoring of Parkinson’s disease motor symptoms: Vision, state of the art, and challenges ahead publication-title: J. Parkinsons Dis. – volume: 3 start-page: 1 year: 2020 end-page: 12 ident: b38 article-title: Development of digital biomarkers for resting tremor and bradykinesia using a wrist-worn wearable device publication-title: NPJ Digital Med. – volume: 11 start-page: 555 year: 2017 ident: b67 article-title: How wearable sensors can support Parkinson’s disease diagnosis and treatment: A systematic review publication-title: Front. Neurosci. – volume: 10 start-page: 19 year: 2013 ident: b48 article-title: Autonomous identification of freezing of gait in Parkinson’s disease from lower-body segmental accelerometry publication-title: J. Neuroeng. Rehabil. – volume: 14 start-page: 768 year: 2015 end-page: 778 ident: b53 article-title: Freezing of gait: a practical approach to management publication-title: Lancet Neurol. – volume: 8 start-page: 133982 year: 2020 end-page: 133994 ident: b20 article-title: Deep neural networks for human activity recognition with wearable sensors: Leave-one-subject-out cross-validation for model selection publication-title: IEEE Access – year: 2021 ident: b63 article-title: Lightweight transformer in federated setting for human activity recognition – volume: 10 start-page: 391 year: 2003 end-page: 398 ident: b69 article-title: Characterization of freezing of gait subtypes and the response of each to levodopa in Parkinson’s disease publication-title: Eur. J. Neurol. – volume: 28 start-page: 591 year: 2020 end-page: 600 ident: b80 article-title: Prediction of freezing of gait in patients with Parkinson’s disease by identifying impaired gait patterns publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: vol. 9 start-page: 249 year: 2010 end-page: 256 ident: b23 article-title: Understanding the difficulty of training deep feedforward neural networks publication-title: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics – volume: 62 year: 2020 ident: b8 article-title: A new index to assess turning quality and postural stability in patients with Parkinson’s disease publication-title: Biomed. Signal Process. Control – volume: 264 start-page: 1642 year: 2017 end-page: 1654 ident: b73 article-title: Freezing of gait and fall detection in Parkinson’s disease using wearable sensors: a systematic review publication-title: J. Neurol. – year: 2009 ident: b3 article-title: Online detection of freezing of gait in Parkinson’s disease patients: A performance characterization publication-title: Proceedings of the Fourth International Conference on Body Area Networks – volume: 19 start-page: 127 year: 2008 end-page: 136 ident: b62 article-title: The factors that induce or overcome freezing of gait in Parkinson’s disease publication-title: Behav, Neurol, – year: 2016 ident: b29 article-title: Handbook of Statistics, Vol. 35 – start-page: 123 year: 2012 end-page: 130 ident: b42 article-title: Online Detection of Freezing of Gait with Smartphones and Machine Learning Techniques – volume: 30 start-page: 459 year: 2009 end-page: 463 ident: b52 article-title: Reliability of the new freezing of gait questionnaire: agreement between patients with Parkinson’s disease and their carers publication-title: Gait Posture – volume: 10 start-page: 734 year: 2011 end-page: 744 ident: b55 article-title: Freezing of gait: moving forward on a mysterious clinical phenomenon publication-title: Lancet Neurol. – reference: Borzı, L., Olmo, G., Artusi, C., Lopiano, L., 2020. Detection of Freezing of Gait in People with Parkinson’s Disease using Smartphones. pp. 625–635. – year: 2021 ident: b30 article-title: Keras documentation: Timeseries classification with a transformer model – volume: 24 start-page: 2444 year: 2020 end-page: 2451 ident: b15 article-title: Toward a wearable system for predicting freezing of gait in people affected by Parkinson’s disease publication-title: IEEE J. Biomed. Health Inform. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: b10 article-title: Random forests publication-title: Mach. Learn. – volume: 167 start-page: 340 year: 2008 end-page: 348 ident: b46 article-title: Ambulatory monitoring of freezing of gait in Parkinson’s disease publication-title: J. Neurosci. Methods – volume: 9 year: 2021 ident: b54 article-title: Detection of freezing of gait using unsupervised convolutional denoising autoencoder publication-title: IEEE Access – volume: 147 year: 2020 ident: b61 article-title: A fuzzy logic system for the home assessment of freezing of gait in subjects with Parkinsons disease publication-title: Expert Syst. Appl. – year: 2017 ident: b77 article-title: Attention is all you need publication-title: Advances in Neural Information Processing Systems, Vol. 30 – volume: 9 start-page: 1919 year: 2020 ident: b36 article-title: Improved deep learning technique to detect freezing of gait in Parkinson’s disease based on wearable sensors publication-title: Electronics – volume: 30 start-page: 207 year: 2018 end-page: 212 ident: b34 article-title: Assessing the accuracy of diagnostic tests publication-title: Shanghai Arch. Psychiatry – volume: 23 start-page: 426 year: 2008 end-page: 430 ident: b58 article-title: The clinical spectrum of freezing of gait in Parkinson’s disease publication-title: Mov. Disorders – volume: 19 year: 2019 ident: b76 article-title: A technological review of wearable cueing devices addressing freezing of gait in Parkinson’s disease publication-title: Sensors (Basel) – volume: 28 start-page: 6548 year: 2021 end-page: 6568 ident: b33 article-title: Machine learning approaches in Parkinson’s disease publication-title: Curr. Med. Chem. – volume: 9 start-page: 1 year: 2020 end-page: 14 ident: b6 article-title: Smartphone-based evaluation of postural stability in Parkinson’s disease patients during quiet stance publication-title: Electronics (Switzerland) – volume: 17 start-page: 427 year: 1967 end-page: 442 ident: b27 article-title: Parkinsonism: onset, progression and mortality publication-title: Neurology – volume: 24 start-page: 655 year: 2009 end-page: 661 ident: b21 article-title: Validation of the freezing of gait questionnaire in patients with Parkinson’s disease publication-title: Mov. Disorders – volume: 13 start-page: 14079 year: 2013 end-page: 14104 ident: b65 article-title: A wearable inertial measurement unit for long-term monitoring in the dependency care area publication-title: Sensors (Basel) – volume: 21 start-page: 1362 year: 2015 end-page: 1366 ident: b79 article-title: Identifying freezing of gait in Parkinson’s disease during freezing provoking tasks using waist-mounted accelerometry publication-title: Parkinsonism Relat. Disorders – start-page: 6765 year: 2017 end-page: 6816 ident: b35 article-title: Hyperband: A novel bandit-based approach to hyperparameter optimization 18 – volume: 19 start-page: 5141 year: 2019 ident: b59 article-title: Wearable-sensor-based detection and prediction of freezing of gait in Parkinson’s disease: A review publication-title: IEEE J. Biomed. Health Inform. – volume: 9 start-page: 3898 year: 2019 ident: b49 article-title: Towards real-time prediction of freezing of gait in patients with Parkinson’s disease: Addressing the class imbalance problem publication-title: Sensors – volume: 18 start-page: 167 year: 2021 ident: b70 article-title: Prediction and detection of freezing of gait in Parkinson’s disease from plantar pressure data using long short-term memory neural-networks publication-title: J. NeuroEng. Rehabil. – volume: 9 start-page: 53540 year: 2021 end-page: 53547 ident: b71 article-title: Boosting inertial-based human activity recognition with transformers publication-title: IEEE Access – volume: 9 start-page: 216 year: 2018 ident: b28 article-title: Editorial: New advanced wireless technologies for objective monitoring of motor symptoms in Parkinson’s disease publication-title: Front. Neurol. – volume: 139 start-page: 119 year: 2018 end-page: 131 ident: b11 article-title: Deep learning for freezing of gait detection in Parkinson’s disease patients in their homes using a waist-worn inertial measurement unit publication-title: Knowl. Based Syst. – volume: 108 start-page: 53 year: 2001 end-page: 61 ident: b22 article-title: Freezing of gait in patients with advanced Parkinson’s disease publication-title: J. Neural Transm. (Vienna) – reference: Demrozi, F., Bragoi, V., Tramarin, F., Pravadelli, G., 2019. An indoor localization system to detect areas causing the freezing of gait in Parkinsonians. In: 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE). pp. 952–955. – volume: 5 year: 2019 ident: b26 article-title: Monitoring Parkinson’s disease symptoms during daily life: a feasibility study publication-title: NPJ Parkinsons Dis. – volume: 8 year: 2017 ident: b75 article-title: L-DOPA and freezing of gait in Parkinson’s disease: Objective assessment through a wearable wireless system publication-title: Front. Neurol. – volume: 14 start-page: 436 year: 2010 end-page: 446 ident: b4 article-title: Wearable assistant for Parkinson’s disease patients with the freezing of gait symptom publication-title: IEEE Trans. Inf. Technol. Biomed. – volume: 21 year: 2021 ident: b7 article-title: Prediction of freezing of gait in Parkinson’s disease using wearables and machine learning publication-title: Sensors (Basel) – reference: . – volume: 34 start-page: 783 year: 2019 end-page: 790 ident: b39 article-title: Clinical and methodological challenges for assessing freezing of gait: Future perspectives publication-title: Mov. Disorders – volume: 8 start-page: 53 year: 2021 ident: b2 article-title: Review of deep learning: concepts, CNN architectures, challenges, applications, future directions publication-title: J. Big Data – volume: 91 start-page: 149 year: 2022 end-page: 154 ident: b13 article-title: Biomechanical aspects that precede freezing episode during gait in individuals with Parkinson’s disease: A systematic review publication-title: Gait Posture – volume: 21 year: 2021 ident: b1 article-title: An overview of machine learning within embedded and mobile devices–optimizations and applications publication-title: Sensors – volume: 73 start-page: 33 year: 2016 end-page: 40 ident: b31 article-title: Optimising sampling rates for accelerometer-based human activity recognition publication-title: Pattern Recognit. Lett. – volume: 12 year: 2017 ident: b66 article-title: Home detection of freezing of gait using support vector machines through a single waist-worn triaxial accelerometer publication-title: PLoS One – volume: 20 start-page: 142 year: 1998 end-page: 150 ident: b51 article-title: A frequency and correlation analysis of motor deficits in Parkinson patients publication-title: Disabil. Rehabil. – volume: 46 start-page: 30 year: 2018 end-page: 35 ident: b57 article-title: A prospective study of falls in relation to freezing of gait and response fluctuations in Parkinson’s disease publication-title: Parkinsonism Relat. Disorders – year: 2021 ident: b37 article-title: A survey of transformers – volume: 21 start-page: 111 year: 2019 end-page: 143 ident: b45 article-title: New sensor and wearable technologies to aid in the diagnosis and treatment monitoring of Parkinson’s disease publication-title: Annu. Rev. Biomed. Eng. – volume: 8 year: 2019 ident: b68 article-title: Increasing robustness in the detection of freezing of gait in Parkinson’s disease publication-title: Electronics – volume: 21 start-page: 111 year: 2019 ident: 10.1016/j.engappai.2022.105482_b45 article-title: New sensor and wearable technologies to aid in the diagnosis and treatment monitoring of Parkinson’s disease publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev-bioeng-062117-121036 – volume: 9 year: 2021 ident: 10.1016/j.engappai.2022.105482_b54 article-title: Detection of freezing of gait using unsupervised convolutional denoising autoencoder publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3104975 – volume: 8 issue: AUG year: 2017 ident: 10.1016/j.engappai.2022.105482_b75 article-title: L-DOPA and freezing of gait in Parkinson’s disease: Objective assessment through a wearable wireless system publication-title: Front. Neurol. – volume: 10 start-page: 19 year: 2013 ident: 10.1016/j.engappai.2022.105482_b48 article-title: Autonomous identification of freezing of gait in Parkinson’s disease from lower-body segmental accelerometry publication-title: J. Neuroeng. Rehabil. doi: 10.1186/1743-0003-10-19 – volume: 19 start-page: 5141 year: 2019 ident: 10.1016/j.engappai.2022.105482_b59 article-title: Wearable-sensor-based detection and prediction of freezing of gait in Parkinson’s disease: A review publication-title: IEEE J. Biomed. Health Inform. – volume: 62 year: 2020 ident: 10.1016/j.engappai.2022.105482_b8 article-title: A new index to assess turning quality and postural stability in patients with Parkinson’s disease publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2020.102059 – volume: 19 start-page: 127 issue: 3 year: 2008 ident: 10.1016/j.engappai.2022.105482_b62 article-title: The factors that induce or overcome freezing of gait in Parkinson’s disease publication-title: Behav, Neurol, doi: 10.1155/2008/456298 – volume: 14 start-page: 222 issue: 4 year: 2014 ident: 10.1016/j.engappai.2022.105482_b56 article-title: Practical approach to freezing of gait in Parkinson’s disease publication-title: Pract. Neurol. doi: 10.1136/practneurol-2013-000743 – volume: 21 issue: 13 year: 2021 ident: 10.1016/j.engappai.2022.105482_b1 article-title: An overview of machine learning within embedded and mobile devices–optimizations and applications publication-title: Sensors doi: 10.3390/s21134412 – volume: 22 start-page: 2192 issue: 15 year: 2007 ident: 10.1016/j.engappai.2022.105482_b47 article-title: Freezing of gait affects quality of life of peoples with Parkinson’s disease beyond its relationships with mobility and gait publication-title: Mov. Disorders doi: 10.1002/mds.21659 – volume: 9 start-page: 53540 year: 2021 ident: 10.1016/j.engappai.2022.105482_b71 article-title: Boosting inertial-based human activity recognition with transformers publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3070646 – volume: 19 issue: 6 year: 2019 ident: 10.1016/j.engappai.2022.105482_b76 article-title: A technological review of wearable cueing devices addressing freezing of gait in Parkinson’s disease publication-title: Sensors (Basel) doi: 10.3390/s19061277 – ident: 10.1016/j.engappai.2022.105482_b9 doi: 10.1109/COMPSAC48688.2020.0-186 – volume: 20 start-page: 4474 issue: 16 year: 2020 ident: 10.1016/j.engappai.2022.105482_b64 article-title: Using wearable sensors and machine learning to automatically detect freezing of gait during a FOG-provoking test publication-title: Sensors doi: 10.3390/s20164474 – volume: 264 start-page: 1642 issue: 8 year: 2017 ident: 10.1016/j.engappai.2022.105482_b73 article-title: Freezing of gait and fall detection in Parkinson’s disease using wearable sensors: a systematic review publication-title: J. Neurol. doi: 10.1007/s00415-017-8424-0 – volume: 18 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.engappai.2022.105482_b40 article-title: Measuring freezing of gait during daily-life: an open-source, wearable sensors approach publication-title: J. Neuroeng. Rehabil. doi: 10.1186/s12984-020-00774-3 – start-page: 123 year: 2012 ident: 10.1016/j.engappai.2022.105482_b42 – ident: 10.1016/j.engappai.2022.105482_b16 doi: 10.23919/DATE.2019.8715093 – volume: 217 start-page: 48 issue: 1–2 year: 2008 ident: 10.1016/j.engappai.2022.105482_b19 article-title: A comparison of the performance of threshold criteria for binary classification in terms of predicted prevalence and kappa publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2008.05.015 – year: 2021 ident: 10.1016/j.engappai.2022.105482_b37 – volume: 13 start-page: 14079 issue: 10 year: 2013 ident: 10.1016/j.engappai.2022.105482_b65 article-title: A wearable inertial measurement unit for long-term monitoring in the dependency care area publication-title: Sensors (Basel) doi: 10.3390/s131014079 – volume: 21 issue: 2 year: 2021 ident: 10.1016/j.engappai.2022.105482_b7 article-title: Prediction of freezing of gait in Parkinson’s disease using wearables and machine learning publication-title: Sensors (Basel) doi: 10.3390/s21020614 – volume: 14 start-page: 436 year: 2010 ident: 10.1016/j.engappai.2022.105482_b4 article-title: Wearable assistant for Parkinson’s disease patients with the freezing of gait symptom publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2009.2036165 – volume: 24 start-page: 2444 issue: 9 year: 2020 ident: 10.1016/j.engappai.2022.105482_b15 article-title: Toward a wearable system for predicting freezing of gait in people affected by Parkinson’s disease publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2019.2952618 – volume: 11 start-page: 555 year: 2017 ident: 10.1016/j.engappai.2022.105482_b67 article-title: How wearable sensors can support Parkinson’s disease diagnosis and treatment: A systematic review publication-title: Front. Neurosci. doi: 10.3389/fnins.2017.00555 – volume: 167 start-page: 340 issue: 2 year: 2008 ident: 10.1016/j.engappai.2022.105482_b46 article-title: Ambulatory monitoring of freezing of gait in Parkinson’s disease publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2007.08.023 – volume: 143 start-page: 29 issue: 1 year: 1982 ident: 10.1016/j.engappai.2022.105482_b24 article-title: The meaning and use of the area under a receiver operating characteristic (ROC) curve publication-title: Radiology doi: 10.1148/radiology.143.1.7063747 – volume: 34 start-page: 783 issue: 6 year: 2019 ident: 10.1016/j.engappai.2022.105482_b39 article-title: Clinical and methodological challenges for assessing freezing of gait: Future perspectives publication-title: Mov. Disorders doi: 10.1002/mds.27709 – volume: 30 start-page: 459 issue: 4 year: 2009 ident: 10.1016/j.engappai.2022.105482_b52 article-title: Reliability of the new freezing of gait questionnaire: agreement between patients with Parkinson’s disease and their carers publication-title: Gait Posture doi: 10.1016/j.gaitpost.2009.07.108 – volume: 147 year: 2020 ident: 10.1016/j.engappai.2022.105482_b61 article-title: A fuzzy logic system for the home assessment of freezing of gait in subjects with Parkinsons disease publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113197 – volume: 9 start-page: 1919 issue: 11 year: 2020 ident: 10.1016/j.engappai.2022.105482_b36 article-title: Improved deep learning technique to detect freezing of gait in Parkinson’s disease based on wearable sensors publication-title: Electronics doi: 10.3390/electronics9111919 – year: 2022 ident: 10.1016/j.engappai.2022.105482_b18 article-title: State of the art technologies in Parkinson’s disease management: A review article publication-title: J. Modern Rehabil. doi: 10.18502/jmr.v16i2.9297 – volume: vol. 9 start-page: 249 year: 2010 ident: 10.1016/j.engappai.2022.105482_b23 article-title: Understanding the difficulty of training deep feedforward neural networks – volume: 20 start-page: 1895 year: 2020 ident: 10.1016/j.engappai.2022.105482_b72 article-title: Deep learning approaches for detecting freezing of gait in Parkinson’s disease patients through on-body acceleration sensors publication-title: Sensors doi: 10.3390/s20071895 – volume: 18 issue: 10 year: 2018 ident: 10.1016/j.engappai.2022.105482_b44 article-title: Novelty detection using deep normative modeling for IMU-based abnormal movement monitoring in Parkinson’s disease and autism spectrum disorders publication-title: Sensors – volume: 9 start-page: 3898 issue: 19 year: 2019 ident: 10.1016/j.engappai.2022.105482_b49 article-title: Towards real-time prediction of freezing of gait in patients with Parkinson’s disease: Addressing the class imbalance problem publication-title: Sensors doi: 10.3390/s19183898 – volume: 12 issue: 2 year: 2017 ident: 10.1016/j.engappai.2022.105482_b66 article-title: Home detection of freezing of gait using support vector machines through a single waist-worn triaxial accelerometer publication-title: PLoS One doi: 10.1371/journal.pone.0171764 – volume: 73 start-page: 33 issue: C year: 2016 ident: 10.1016/j.engappai.2022.105482_b31 article-title: Optimising sampling rates for accelerometer-based human activity recognition publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2016.01.001 – volume: 24 start-page: 655 issue: 5 year: 2009 ident: 10.1016/j.engappai.2022.105482_b21 article-title: Validation of the freezing of gait questionnaire in patients with Parkinson’s disease publication-title: Mov. Disorders doi: 10.1002/mds.21745 – volume: 17 start-page: 427 issue: 5 year: 1967 ident: 10.1016/j.engappai.2022.105482_b27 article-title: Parkinsonism: onset, progression and mortality publication-title: Neurology doi: 10.1212/WNL.17.5.427 – start-page: 124 year: 2013 ident: 10.1016/j.engappai.2022.105482_b41 article-title: Engineers meet clinicians: Augmenting Parkinson’s disease patients to gather information for gait rehabilitation – year: 2021 ident: 10.1016/j.engappai.2022.105482_b50 article-title: Towards real-time prediction of freezing of gait in patients with Parkinsons disease: A novel deep one-class classifier publication-title: IEEE J. Biomed. Health Inf. – volume: 18 start-page: 167 year: 2021 ident: 10.1016/j.engappai.2022.105482_b70 article-title: Prediction and detection of freezing of gait in Parkinson’s disease from plantar pressure data using long short-term memory neural-networks publication-title: J. NeuroEng. Rehabil. doi: 10.1186/s12984-021-00958-5 – year: 2021 ident: 10.1016/j.engappai.2022.105482_b30 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.engappai.2022.105482_b10 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 46 start-page: 30 year: 2018 ident: 10.1016/j.engappai.2022.105482_b57 article-title: A prospective study of falls in relation to freezing of gait and response fluctuations in Parkinson’s disease publication-title: Parkinsonism Relat. Disorders doi: 10.1016/j.parkreldis.2017.10.013 – year: 2019 ident: 10.1016/j.engappai.2022.105482_b12 – volume: 9 start-page: 216 year: 2018 ident: 10.1016/j.engappai.2022.105482_b28 article-title: Editorial: New advanced wireless technologies for objective monitoring of motor symptoms in Parkinson’s disease publication-title: Front. Neurol. doi: 10.3389/fneur.2018.00216 – volume: 20 start-page: 142 issue: 4 year: 1998 ident: 10.1016/j.engappai.2022.105482_b51 article-title: A frequency and correlation analysis of motor deficits in Parkinson patients publication-title: Disabil. Rehabil. doi: 10.3109/09638289809166074 – volume: 61 start-page: 2623 issue: 6 year: 2021 ident: 10.1016/j.engappai.2022.105482_b17 article-title: GHOST: adjusting the decision threshold to handle imbalanced data in machine learning publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.1c00160 – volume: 91 start-page: 149 year: 2022 ident: 10.1016/j.engappai.2022.105482_b13 article-title: Biomechanical aspects that precede freezing episode during gait in individuals with Parkinson’s disease: A systematic review publication-title: Gait Posture doi: 10.1016/j.gaitpost.2021.10.021 – volume: 3 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.engappai.2022.105482_b38 article-title: Development of digital biomarkers for resting tremor and bradykinesia using a wrist-worn wearable device publication-title: NPJ Digital Med. doi: 10.1038/s41746-019-0217-7 – volume: 23 start-page: S468 issue: Suppl 2 year: 2008 ident: 10.1016/j.engappai.2022.105482_b74 article-title: Clinimetrics of freezing of gait publication-title: Mov. Disorders doi: 10.1002/mds.22144 – year: 2017 ident: 10.1016/j.engappai.2022.105482_b77 article-title: Attention is all you need – year: 2009 ident: 10.1016/j.engappai.2022.105482_b3 article-title: Online detection of freezing of gait in Parkinson’s disease patients: A performance characterization – volume: 10 start-page: 734 issue: 8 year: 2011 ident: 10.1016/j.engappai.2022.105482_b55 article-title: Freezing of gait: moving forward on a mysterious clinical phenomenon publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(11)70143-0 – volume: 8 year: 2021 ident: 10.1016/j.engappai.2022.105482_b5 article-title: DeepFoG: An IMU-based detection of freezing of gait episodes in Parkinson’s disease patients via deep learning publication-title: Front. Robot. AI doi: 10.3389/frobt.2021.537384 – volume: 30 start-page: 207 issue: 3 year: 2018 ident: 10.1016/j.engappai.2022.105482_b34 article-title: Assessing the accuracy of diagnostic tests publication-title: Shanghai Arch. Psychiatry – volume: 13 year: 2021 ident: 10.1016/j.engappai.2022.105482_b43 article-title: Machine learning for the diagnosis of Parkinson’s disease: A review of literature publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2021.633752 – volume: 23 start-page: 426 year: 2008 ident: 10.1016/j.engappai.2022.105482_b58 article-title: The clinical spectrum of freezing of gait in Parkinson’s disease publication-title: Mov. Disorders doi: 10.1002/mds.21934 – volume: 28 start-page: 6548 issue: 32 year: 2021 ident: 10.1016/j.engappai.2022.105482_b33 article-title: Machine learning approaches in Parkinson’s disease publication-title: Curr. Med. Chem. doi: 10.2174/0929867328999210111211420 – volume: 8 start-page: 133982 year: 2020 ident: 10.1016/j.engappai.2022.105482_b20 article-title: Deep neural networks for human activity recognition with wearable sensors: Leave-one-subject-out cross-validation for model selection publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3010715 – volume: 14 start-page: 768 issue: 7 year: 2015 ident: 10.1016/j.engappai.2022.105482_b53 article-title: Freezing of gait: a practical approach to management publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(15)00041-1 – year: 2021 ident: 10.1016/j.engappai.2022.105482_b63 – volume: 28 start-page: 591 issue: 3 year: 2020 ident: 10.1016/j.engappai.2022.105482_b80 article-title: Prediction of freezing of gait in patients with Parkinson’s disease by identifying impaired gait patterns publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2020.2969649 – volume: 5 issue: 21 year: 2019 ident: 10.1016/j.engappai.2022.105482_b26 article-title: Monitoring Parkinson’s disease symptoms during daily life: a feasibility study publication-title: NPJ Parkinsons Dis. – year: 2016 ident: 10.1016/j.engappai.2022.105482_b29 – volume: 8 start-page: 53 issue: 1 year: 2021 ident: 10.1016/j.engappai.2022.105482_b2 article-title: Review of deep learning: concepts, CNN architectures, challenges, applications, future directions publication-title: J. Big Data doi: 10.1186/s40537-021-00444-8 – volume: 139 start-page: 119 year: 2018 ident: 10.1016/j.engappai.2022.105482_b11 article-title: Deep learning for freezing of gait detection in Parkinson’s disease patients in their homes using a waist-worn inertial measurement unit publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2017.10.017 – volume: 10 start-page: 391 issue: 4 year: 2003 ident: 10.1016/j.engappai.2022.105482_b69 article-title: Characterization of freezing of gait subtypes and the response of each to levodopa in Parkinson’s disease publication-title: Eur. J. Neurol. doi: 10.1046/j.1468-1331.2003.00611.x – volume: 108 start-page: 53 issue: 1 year: 2001 ident: 10.1016/j.engappai.2022.105482_b22 article-title: Freezing of gait in patients with advanced Parkinson’s disease publication-title: J. Neural Transm. (Vienna) doi: 10.1007/s007020170096 – start-page: 6765 year: 2017 ident: 10.1016/j.engappai.2022.105482_b35 – volume: 9 start-page: 1 issue: 6 year: 2020 ident: 10.1016/j.engappai.2022.105482_b6 article-title: Smartphone-based evaluation of postural stability in Parkinson’s disease patients during quiet stance publication-title: Electronics (Switzerland) – year: 2021 ident: 10.1016/j.engappai.2022.105482_b25 – volume: 13 year: 2022 ident: 10.1016/j.engappai.2022.105482_b60 article-title: Prediction of freezing of gait in Parkinson’s disease using unilateral and bilateral plantar-pressure data publication-title: Front. Neurol. doi: 10.3389/fneur.2022.831063 – volume: 122 start-page: 403 issue: 3 year: 2015 ident: 10.1016/j.engappai.2022.105482_b78 article-title: New evidence for gait abnormalities among Parkinson’s disease patients who suffer from freezing of gait: insights using a body-fixed sensor worn for 3 days publication-title: J. Neural Transm. (Vienna) doi: 10.1007/s00702-014-1279-y – year: 2014 ident: 10.1016/j.engappai.2022.105482_b32 – volume: 8 issue: 2 year: 2019 ident: 10.1016/j.engappai.2022.105482_b68 article-title: Increasing robustness in the detection of freezing of gait in Parkinson’s disease publication-title: Electronics doi: 10.3390/electronics8020119 – volume: 11 start-page: S35 issue: s1 year: 2021 ident: 10.1016/j.engappai.2022.105482_b14 article-title: Body-worn sensors for remote monitoring of Parkinson’s disease motor symptoms: Vision, state of the art, and challenges ahead publication-title: J. Parkinsons Dis. doi: 10.3233/JPD-202471 – volume: 21 start-page: 1362 issue: 11 year: 2015 ident: 10.1016/j.engappai.2022.105482_b79 article-title: Identifying freezing of gait in Parkinson’s disease during freezing provoking tasks using waist-mounted accelerometry publication-title: Parkinsonism Relat. Disorders doi: 10.1016/j.parkreldis.2015.09.051 |
SSID | ssj0003846 |
Score | 2.4731321 |
Snippet | Freezing of gait (FOG) is one of the most incapacitating symptoms in Parkinson’s disease, affecting more than 50% of patients in advanced stages of the... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 105482 |
SubjectTerms | Convolutional neural networks Deep learning Freezing of gait Machine learning Parkinson’s disease Sequence analysis Transformers Wearable sensors |
Title | Improvement of Performance in Freezing of Gait detection in Parkinson’s Disease using Transformer networks and a single waist-worn triaxial accelerometer |
URI | https://dx.doi.org/10.1016/j.engappai.2022.105482 |
Volume | 116 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYQXLi0QKlKW9Aceg27GztOckSU7cIKhPgR3KKJ46CskFmxQaAeEK9R8XY8SWfiBKiExKGnKB6PYnnGns_O_AjxQw1KJDRUBBiZPFC5VkFiYxnYsh9akngsG-fx_QM9OlV759H5nNjuYmHYrbLd-_2e3uzWbUuvnc3etKp6xwQOaLnRYg6blIccxKdUzFq-ef_i5iETH6xDnQPu_SpKeLJp3QVOp1jROTEMueStSsK3DdQrozNcEh9atAhbfkDLYs66FfGxRY7QrssZNXXFGbq2T-LRXxc0t39wVcLhS4QAVA6G19b-JrPFpF9Y1VDYuvHKckzlWOgmLOzp4c8MfvqfOMA-8hdw0kFd-przTuQzQFcAAtMvLdwi6U5ABAdcFOSOVBzQGDJwnBuBRrkqToc7J9ujoK3EEBgp45p2IWNTsuaFkv2CDtMDTMPYxoTdSlViP5epKZBTy6VIkMbINLFhUkR5pKzVGObys5h3V85-ESD7iFqXidHGKF0YTMmKDhKd61KXgyheE1E3_Zlp05RztYzLrPNHm2Sd2DIWW-bFtiZ6z3xTn6jjXY60k272j8plZE3e4f36H7zfxCK_-YDG72K-vr6x64Rs6nyjUd0NsbC1Ox4d8HN8dDb-C6kd_p0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB7R5dBe-kNbAW3pHLimuxs7TnJE0GUpsKrUReIWTRwHBSGzYlNR9dTXqPp2fRLGsQNUQuLQqyejWJ7xzGd7fgC25bgmRkNVRIkuI1kqGWUmFZGpR7FhiaeiCx4_nqnpifxympyuwG6fC-PCKoPt9za9s9ZhZBhWc7homuE3Bge83Xgzx13Jw_wJrLrqVMkAVncODqezW4MsMp-vw99HjuFeovD5J2PPaLGgho-Kcey63sosfthH3fM7k5fwPABG3PFzegUrxq7BiwAeMWzNJQ_1_Rn6sdfwx98YdBeAeFnj17skAWwsTq6M-cmey5H2qWmxMm0XmGUd1aVDd5lhf3_9XuKef8dBFyZ_hvMe7fLfrI8jXyLZCgkd_cLgNbH6REyw6PqC_GAtR9KafZwrj8CzfAMnk8_z3WkUmjFEWoi0ZUOkTc4OvZJiVPF5ekx5nJqU4VstaxqVItcVuepyOTGq0SLPTJxVSZlIYxTFpXgLA3tpzTqgGBEpVWdaaS1VpSlnRzrOVKlqVY-TdAOSfvkLHSqVu4YZF0UfknZe9GIrnNgKL7YNGN7yLXytjkc58l66xT9aV7BDeYR38z94P8LT6fz4qDg6mB2-g2eO4vMb38OgvfpuPjDQacutoMg3WBX_qw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improvement+of+Performance+in+Freezing+of+Gait+detection+in+Parkinson%E2%80%99s+Disease+using+Transformer+networks+and+a+single+waist-worn+triaxial+accelerometer&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Sigcha%2C+Luis&rft.au=Borz%C3%AC%2C+Luigi&rft.au=Pav%C3%B3n%2C+Ignacio&rft.au=Costa%2C+N%C3%A9lson&rft.date=2022-11-01&rft.issn=0952-1976&rft.volume=116&rft.spage=105482&rft_id=info:doi/10.1016%2Fj.engappai.2022.105482&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2022_105482 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon |