Recent advanced strategies for bimetallenes toward electrocatalytic energy conversion reactions
Designing low-dimensional nanomaterials is vital to address the energy and environmental crisis by means of electrocatalytic conversion reactions. Bimetallenes, as an emerging class of 2D materials, present promise for electrocatalytic conversion reactions. By leveraging atomically thin layers, bime...
Saved in:
Published in | Chemical communications (Cambridge, England) Vol. 6; no. 23; pp. 3129 - 3137 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
14.03.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Designing low-dimensional nanomaterials is vital to address the energy and environmental crisis by means of electrocatalytic conversion reactions. Bimetallenes, as an emerging class of 2D materials, present promise for electrocatalytic conversion reactions. By leveraging atomically thin layers, bimetallenes present unsaturated surface coordination, high specific surface area and high conductivity, which are all indispensable features for heterogeneous electrochemical reactions. However, the intrinsic activity and stability of bimetallenes needs to be improved further for bimetallene electrocatalysts, due to the higher demands of practical applications. Recently, many strategies have been developed to optimize the chemical or electronic structure to accommodate transfer of reactants, adsorption or desorption of intermediates, and dissociation of products. Considering that most such work focuses on adjusting the structure, this review offers in-depth insight into recent representative strategies for optimizing bimetallene electrocatalysts, mainly including alloying, strain effects, ligand effects, defects and heteroatom doping. Moreover, by summarizing the performance of bimetallenes optimized using various strategies, we provide a means to understand structure-property relationships. In addition, future prospects and challenges are discussed for further development of bimetallene electrocatalysts.
Designing low-dimensional nanomaterials is vital to address the energy and environmental crisis by means of electrocatalytic conversion reactions. |
---|---|
AbstractList | Designing low-dimensional nanomaterials is vital to address the energy and environmental crisis by means of electrocatalytic conversion reactions. Bimetallenes, as an emerging class of 2D materials, present promise for electrocatalytic conversion reactions. By leveraging atomically thin layers, bimetallenes present unsaturated surface coordination, high specific surface area and high conductivity, which are all indispensable features for heterogeneous electrochemical reactions. However, the intrinsic activity and stability of bimetallenes needs to be improved further for bimetallene electrocatalysts, due to the higher demands of practical applications. Recently, many strategies have been developed to optimize the chemical or electronic structure to accommodate transfer of reactants, adsorption or desorption of intermediates, and dissociation of products. Considering that most such work focuses on adjusting the structure, this review offers in-depth insight into recent representative strategies for optimizing bimetallene electrocatalysts, mainly including alloying, strain effects, ligand effects, defects and heteroatom doping. Moreover, by summarizing the performance of bimetallenes optimized using various strategies, we provide a means to understand structure-property relationships. In addition, future prospects and challenges are discussed for further development of bimetallene electrocatalysts. Designing low-dimensional nanomaterials is vital to address the energy and environmental crisis by means of electrocatalytic conversion reactions. Bimetallenes, as an emerging class of 2D materials, present promise for electrocatalytic conversion reactions. By leveraging atomically thin layers, bimetallenes present unsaturated surface coordination, high specific surface area and high conductivity, which are all indispensable features for heterogeneous electrochemical reactions. However, the intrinsic activity and stability of bimetallenes needs to be improved further for bimetallene electrocatalysts, due to the higher demands of practical applications. Recently, many strategies have been developed to optimize the chemical or electronic structure to accommodate transfer of reactants, adsorption or desorption of intermediates, and dissociation of products. Considering that most such work focuses on adjusting the structure, this review offers in-depth insight into recent representative strategies for optimizing bimetallene electrocatalysts, mainly including alloying, strain effects, ligand effects, defects and heteroatom doping. Moreover, by summarizing the performance of bimetallenes optimized using various strategies, we provide a means to understand structure-property relationships. In addition, future prospects and challenges are discussed for further development of bimetallene electrocatalysts. Designing low-dimensional nanomaterials is vital to address the energy and environmental crisis by means of electrocatalytic conversion reactions. Designing low-dimensional nanomaterials is vital to address the energy and environmental crisis by means of electrocatalytic conversion reactions. Bimetallenes, as an emerging class of 2D materials, present promise for electrocatalytic conversion reactions. By leveraging atomically thin layers, bimetallenes present unsaturated surface coordination, high specific surface area and high conductivity, which are all indispensable features for heterogeneous electrochemical reactions. However, the intrinsic activity and stability of bimetallenes needs to be improved further for bimetallene electrocatalysts, due to the higher demands of practical applications. Recently, many strategies have been developed to optimize the chemical or electronic structure to accommodate transfer of reactants, adsorption or desorption of intermediates, and dissociation of products. Considering that most such work focuses on adjusting the structure, this review offers in-depth insight into recent representative strategies for optimizing bimetallene electrocatalysts, mainly including alloying, strain effects, ligand effects, defects and heteroatom doping. Moreover, by summarizing the performance of bimetallenes optimized using various strategies, we provide a means to understand structure-property relationships. In addition, future prospects and challenges are discussed for further development of bimetallene electrocatalysts.Designing low-dimensional nanomaterials is vital to address the energy and environmental crisis by means of electrocatalytic conversion reactions. Bimetallenes, as an emerging class of 2D materials, present promise for electrocatalytic conversion reactions. By leveraging atomically thin layers, bimetallenes present unsaturated surface coordination, high specific surface area and high conductivity, which are all indispensable features for heterogeneous electrochemical reactions. However, the intrinsic activity and stability of bimetallenes needs to be improved further for bimetallene electrocatalysts, due to the higher demands of practical applications. Recently, many strategies have been developed to optimize the chemical or electronic structure to accommodate transfer of reactants, adsorption or desorption of intermediates, and dissociation of products. Considering that most such work focuses on adjusting the structure, this review offers in-depth insight into recent representative strategies for optimizing bimetallene electrocatalysts, mainly including alloying, strain effects, ligand effects, defects and heteroatom doping. Moreover, by summarizing the performance of bimetallenes optimized using various strategies, we provide a means to understand structure-property relationships. In addition, future prospects and challenges are discussed for further development of bimetallene electrocatalysts. |
Author | Sanati, Soheila Wang, Qiyou Abazari, Reza Liu, Min |
AuthorAffiliation | Department of Chemistry Central South University Hunan Joint International Research Center for Carbon Dioxide Resource Utilization School of Physics University of Maragheh Faculty of Science State Key Laboratory of Powder Metallurgy |
AuthorAffiliation_xml | – sequence: 0 name: Department of Chemistry – sequence: 0 name: Central South University – sequence: 0 name: School of Physics – sequence: 0 name: University of Maragheh – sequence: 0 name: Hunan Joint International Research Center for Carbon Dioxide Resource Utilization – sequence: 0 name: Faculty of Science – sequence: 0 name: State Key Laboratory of Powder Metallurgy |
Author_xml | – sequence: 1 givenname: Soheila surname: Sanati fullname: Sanati, Soheila – sequence: 2 givenname: Qiyou surname: Wang fullname: Wang, Qiyou – sequence: 3 givenname: Reza surname: Abazari fullname: Abazari, Reza – sequence: 4 givenname: Min surname: Liu fullname: Liu, Min |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38404151$$D View this record in MEDLINE/PubMed |
BookMark | eNptkc1LJDEQxYMofq0X70rDXmSh3aTz1X2UWXVXBgRR8NakKzXSQ0-iSWZk_nszzuiCWJcqUr96hPcOyLbzDgk5ZvScUd78thyAKqr5dIvsM65EKUX9uL2aZVNqLuQeOYhxSnMxWe-SPV4LKphk-6S9Q0CXCmMXxgHaIqZgEj71GIuJD0XXzzCZYUCXH5J_NcEWOCCk4MHkxTL1UORleFoW4N0CQ-y9KwIaSHmIP8jOxAwRjzb9kDxcXd6P_pbj2-t_o4txCZzrVHKtlBRacmqgAaWVlkxVptJGCWmZ0RPdSaksbQyDBoXFpqs0k6rmurOV5IfkbK37HPzLHGNqZ30EHAbj0M9jWzW8opWsG5HRn1_QqZ8Hl3-XKam0EJKuBE831LyboW2fQz8zYdl-WJeBX2sAgo8x4OQTYbRd5dL-4aPRey43GaZfYOiTWTmU7e6H709O1ichwqf0_6j5G-Q1mKs |
CitedBy_id | crossref_primary_10_1016_j_ijhydene_2025_02_028 crossref_primary_10_1016_j_molliq_2025_126988 crossref_primary_10_1016_j_ccr_2024_216231 crossref_primary_10_1016_j_ijhydene_2025_02_025 crossref_primary_10_1016_j_ijhydene_2025_02_168 crossref_primary_10_1016_j_ccr_2024_216256 crossref_primary_10_1016_j_est_2025_115535 crossref_primary_10_1021_acs_inorgchem_4c05162 crossref_primary_10_1016_j_heliyon_2024_e32989 crossref_primary_10_1016_j_est_2024_113161 crossref_primary_10_1016_j_apsadv_2025_100708 crossref_primary_10_1016_j_ijhydene_2024_04_131 crossref_primary_10_1016_j_matchemphys_2024_129284 crossref_primary_10_1016_j_ccr_2025_216609 crossref_primary_10_1016_j_jiec_2024_05_011 crossref_primary_10_1016_j_diamond_2025_112157 crossref_primary_10_1021_acs_inorgchem_4c00053 crossref_primary_10_1021_acsanm_4c06084 crossref_primary_10_1016_j_molstruc_2024_141021 crossref_primary_10_1039_D5CC00389J crossref_primary_10_1016_j_ccr_2024_216343 crossref_primary_10_1016_j_cej_2024_156276 crossref_primary_10_1016_j_cej_2025_159926 crossref_primary_10_1021_acs_inorgchem_4c04683 crossref_primary_10_1021_acs_inorgchem_4c05056 crossref_primary_10_1016_j_ijhydene_2025_03_100 crossref_primary_10_1016_j_ijhydene_2024_06_014 crossref_primary_10_1016_j_jiec_2025_01_014 crossref_primary_10_1039_D4TA00736K |
Cites_doi | 10.1039/D0CS00415D 10.1021/jacs.2c13437 10.1002/adma.201805617 10.1039/C9EE01647C 10.1039/D3CC02624H 10.1016/j.cej.2022.134711 10.1021/acs.inorgchem.3c00174 10.1021/jacs.9b10061 10.1021/acs.inorgchem.3c03052 10.1021/acsami.3c10789 10.1002/anie.202217026 10.1021/acs.inorgchem.2c00542 10.1039/D2NR04063H 10.1002/smll.202306353 10.1021/acs.inorgchem.2c03327 10.1021/acsnano.2c05691 10.1039/D2CC06337A 10.1016/j.nanoen.2017.11.033 10.1021/acsami.3c04506 10.1016/S1872-2067(23)64532-2 10.1002/advs.202002341 10.1002/anie.202300873 10.1002/smll.202300673 10.1002/adfm.202101255 10.1021/acsenergylett.2c01734 10.1039/D1EE03614A 10.1002/adfm.202209134 10.1002/ange.202302220 10.1002/anie.202218016 10.4103/2045-9912.285560 10.1016/j.ccr.2023.215538 10.1039/D1TB01284C 10.1021/jacs.0c00218 10.1002/ange.202216082 10.1002/cey2.459 10.1002/anie.202010093 10.1126/science.aaf9050 10.1039/C8TA01912F 10.1021/acsnano.8b06671 10.1021/acs.chemmater.1c02609 10.1021/acs.inorgchem.1c00501 10.1038/s41586-019-1603-7 10.1039/D0TA03099F 10.1002/adma.202211099 10.1021/acs.inorgchem.2c01534 10.1002/adfm.201905697 10.1016/j.jcis.2021.09.078 10.1016/j.ccr.2022.214664 10.1021/jacs.3c03432 10.1021/acsenergylett.1c00614 10.1039/D0TA11054J 10.1039/D2CC03144B 10.1002/adfm.202000534 10.1039/D0CC01146K 10.1002/smll.201801090 10.1016/j.cej.2022.137995 10.1002/cctc.202000443 10.1002/anie.202207845 10.1002/adma.201906972 10.1002/adma.202208860 10.1038/s41467-019-12859-2 10.1016/j.apmt.2022.101400 10.1002/adfm.202102321 10.1021/jacs.1c10199 10.1007/s12274-023-6314-6 10.1039/D3TA01059G 10.1021/acsnano.9b05615 10.1038/nmat4738 10.1039/C5EE02179K 10.1021/jacs.7b12615 10.1002/ange.202106631 10.1021/acs.accounts.7b00313 10.1039/D1NJ06107K 10.1038/s41467-022-29797-1 10.1021/jacs.3c02874 10.1039/D2CC04263K 10.1039/D2TA06077A 10.1021/acsami.0c22106 10.1039/D2TA00590E 10.1007/s12274-017-1509-3 10.1039/D0TA04223D |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2024 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2024 |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1039/d3cc06073j |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1364-548X |
EndPage | 3137 |
ExternalDocumentID | 38404151 10_1039_D3CC06073J d3cc06073j |
Genre | Journal Article Review |
GroupedDBID | --- -DZ -JG -~X 0-7 0R~ 29B 4.4 53G 5GY 6J9 705 70~ 7~J AAEMU AAHBH AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACBEA ACGFO ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFVBQ AGEGJ AGKEF AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CS3 DU5 EBS ECGLT EE0 EF- F5P GGIMP GNO H13 HZ~ H~N IDZ IH2 J3I M4U N9A O9- P2P R7B R7C R7D RAOCF RCNCU RPMJG RRA RRC RSCEA SJN SKA SKF SKH SLH TN5 TWZ UPT VH6 VQA WH7 X7L AAYXX AFRZK AKMSF ALUYA CITATION R56 NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c337t-3766547530ac9c67675162a27a645d1a7f7b556d09a1c9e4de9b27156837bd253 |
ISSN | 1359-7345 1364-548X |
IngestDate | Thu Jul 10 22:24:28 EDT 2025 Mon Jun 30 04:41:31 EDT 2025 Thu Apr 03 07:03:36 EDT 2025 Thu Apr 24 23:03:12 EDT 2025 Tue Jul 01 04:23:15 EDT 2025 Tue Dec 17 20:58:48 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c337t-3766547530ac9c67675162a27a645d1a7f7b556d09a1c9e4de9b27156837bd253 |
Notes | Reza Abazari is a senior professor of Chemistry at University of Maragheh, Iran. He obtained his MSc in Inorganic Chemistry from K. N. Toosi University of Technology (Iran) in 2012 and his PhD degree from Tarbiat Modares University in 2019. His research interests include the design and synthesis of nanostructured materials based on crystalline porous frameworks for electrochemical energy storage and photocatalytic applications. Soheila Sanati obtained her PhD degree in Inorganic Chemistry at Azarbaijan Shahid Madani University (Iran) in February 2019. She is currently a postdoctoral fellow at Tarbiat Modares University (Iran). Her research interests mainly focus on the design, synthesis, and applications of advanced materials for energy storage and conversion. 2 Min Liu received his PhD (2010) from the Chinese Academy of Sciences. In 2010-2015, he joined University of Tokyo as a research fellow with Prof. Kazuhito Hashimoto and Prof. Kazunari Domen, separately. In 2015-2017, he joined University of Toronto as a postdoctoral fellow with Prof. Edward Sargent. In 2017, he joined Central South University as a professor. His research focuses on electrocatalytic energy conversion, photo/electrocatalytic CO reduction and the resource utilization of perfluorocarbon. Qiyou Wang received his MS in 2020 from Hunan University. Presently, he is a PhD student under the guidance of Prof. Liu at Central South University. His research interests are mainly design of flow cell electrolysis and study of in situ Raman spectroscopy, FTIR spectroscopy, and XAFS spectra during electrochemical conversion reactions. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-9007-4817 0009-0001-2947-6737 |
PMID | 38404151 |
PQID | 2956744505 |
PQPubID | 2047502 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2932025894 crossref_primary_10_1039_D3CC06073J pubmed_primary_38404151 rsc_primary_d3cc06073j proquest_journals_2956744505 crossref_citationtrail_10_1039_D3CC06073J |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-14 |
PublicationDateYYYYMMDD | 2024-03-14 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Chemical communications (Cambridge, England) |
PublicationTitleAlternate | Chem Commun (Camb) |
PublicationYear | 2024 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Do (D3CC06073J/cit20/1) 2023; 35 Fan (D3CC06073J/cit32/1) 2019; 13 Mao (D3CC06073J/cit62/1) 2022; 10 Prasannachandran (D3CC06073J/cit19/1) 2018; 12 Bai (D3CC06073J/cit72/1) 2021; 9 Stamenkovic (D3CC06073J/cit67/1) 2017; 16 Abazari (D3CC06073J/cit33/1) 2023; 62 Wang (D3CC06073J/cit38/1) 2023; 35 Wang (D3CC06073J/cit4/1) 2023; 54 Kibsgaard (D3CC06073J/cit54/1) 2015; 8 Li (D3CC06073J/cit30/1) 2023 Luo (D3CC06073J/cit22/1) 2019; 574 Siming (D3CC06073J/cit70/1) 2019; 29 Kalhorizadeh (D3CC06073J/cit16/1) 2022; 46 Wang (D3CC06073J/cit44/1) 2022; 450 Wang (D3CC06073J/cit80/1) 2020; 30 Pan (D3CC06073J/cit11/1) 2022; 61 Wang (D3CC06073J/cit21/1) 2022; 58 Abazari (D3CC06073J/cit36/1) 2022; 61 Zheng (D3CC06073J/cit15/1) 2023; 59 Liu (D3CC06073J/cit52/1) 2018; 140 Lucherelli (D3CC06073J/cit14/1) 2023; 59 Pan (D3CC06073J/cit8/1) 2024; 499 Chen (D3CC06073J/cit78/1) 2022; 469 Jin (D3CC06073J/cit17/1) 2022; 16 Yang (D3CC06073J/cit34/1) 2023; 135 He (D3CC06073J/cit53/1) 2020; 32 Luo (D3CC06073J/cit69/1) 2019; 574 Wang (D3CC06073J/cit23/1) 2023; 62 Guo (D3CC06073J/cit64/1) 2021; 9 Guo (D3CC06073J/cit75/1) 2023; 33 Mohd Najib (D3CC06073J/cit60/1) 2020; 8 Mu (D3CC06073J/cit26/1) 2021; 8 Zhong (D3CC06073J/cit46/1) 2022; 10 Kim (D3CC06073J/cit47/1) 2019; 31 Li (D3CC06073J/cit68/1) 2016; 354 Wu (D3CC06073J/cit58/1) 2019; 10 Wang (D3CC06073J/cit37/1) 2023; 19 Abazari (D3CC06073J/cit3/1) 2023 Zhang (D3CC06073J/cit28/1) 2020; 12 Wu (D3CC06073J/cit27/1) 2021; 6 Lin (D3CC06073J/cit45/1) 2021; 31 Jia (D3CC06073J/cit50/1) 2021; 31 Yang (D3CC06073J/cit74/1) 2023; 15 Fan (D3CC06073J/cit24/1) 2022; 142 Shi (D3CC06073J/cit65/1) 2022; 144 Yang (D3CC06073J/cit18/1) 2023; 62 Li (D3CC06073J/cit39/1) 2023; 11 Ji (D3CC06073J/cit59/1) 2021; 33 He (D3CC06073J/cit81/1) 2023; 135 Sanati (D3CC06073J/cit6/1) 2022; 15 Zhang (D3CC06073J/cit66/1) 2022; 7 Liu (D3CC06073J/cit7/1) 2022; 13 Fa (D3CC06073J/cit10/1) 2022; 61 Chen (D3CC06073J/cit43/1) 2017; 42 Yin (D3CC06073J/cit41/1) 2022; 435 Guo (D3CC06073J/cit25/1) 2021; 60 Cai (D3CC06073J/cit31/1) 2023; 62 Zhang (D3CC06073J/cit55/1) 2019; 12 Mao (D3CC06073J/cit76/1) 2022; 26 Wang (D3CC06073J/cit63/1) 2021; 50 Okatenko (D3CC06073J/cit40/1) 2023; 145 Hu (D3CC06073J/cit9/1) 2023; 15 Wang (D3CC06073J/cit61/1) 2022; 58 Goyal (D3CC06073J/cit79/1) 2020; 142 Zhao (D3CC06073J/cit77/1) 2022; 61 Zhang (D3CC06073J/cit57/1) 2021; 133 Zhao (D3CC06073J/cit48/1) 2020; 8 Chen (D3CC06073J/cit71/1) 2020; 10 Li (D3CC06073J/cit73/1) 2022; 607 Sanati (D3CC06073J/cit2/1) 2021; 60 Wang (D3CC06073J/cit5/1) 2023; 62 Sanati (D3CC06073J/cit35/1) 2020; 56 Sun (D3CC06073J/cit42/1) 2021; 13 Li (D3CC06073J/cit29/1) 2017; 10 Xie (D3CC06073J/cit49/1) 2023; 145 Chen (D3CC06073J/cit1/1) 2023; 5 Fan (D3CC06073J/cit82/1) 2018; 6 Li (D3CC06073J/cit12/1) 2022; 14 Wang (D3CC06073J/cit13/1) 2023; 145 Walsh (D3CC06073J/cit51/1) 2017; 50 Lu (D3CC06073J/cit56/1) 2018; 14 |
References_xml | – volume: 50 start-page: 1354 year: 2021 ident: D3CC06073J/cit63/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00415D – volume: 145 start-page: 5370 year: 2023 ident: D3CC06073J/cit40/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c13437 – volume: 31 start-page: 1805617 year: 2019 ident: D3CC06073J/cit47/1 publication-title: Adv. Mater. doi: 10.1002/adma.201805617 – volume: 12 start-page: 2569 year: 2019 ident: D3CC06073J/cit55/1 publication-title: Energy Environ. Sci. doi: 10.1039/C9EE01647C – volume: 59 start-page: 10205 year: 2023 ident: D3CC06073J/cit15/1 publication-title: Chem. Commun. doi: 10.1039/D3CC02624H – volume: 435 start-page: 134711 year: 2022 ident: D3CC06073J/cit41/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.134711 – volume: 62 start-page: 5622 year: 2023 ident: D3CC06073J/cit23/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.3c00174 – volume: 142 start-page: 4154 year: 2020 ident: D3CC06073J/cit79/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b10061 – volume: 62 start-page: 18680 year: 2023 ident: D3CC06073J/cit33/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.3c03052 – volume: 15 start-page: 49195 year: 2023 ident: D3CC06073J/cit74/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.3c10789 – volume: 62 start-page: e202217026 year: 2023 ident: D3CC06073J/cit5/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202217026 – volume: 61 start-page: 9514 year: 2022 ident: D3CC06073J/cit36/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.2c00542 – volume: 14 start-page: 16033 year: 2022 ident: D3CC06073J/cit12/1 publication-title: Nanoscale doi: 10.1039/D2NR04063H – year: 2023 ident: D3CC06073J/cit3/1 publication-title: Small doi: 10.1002/smll.202306353 – volume: 61 start-page: 20913 year: 2022 ident: D3CC06073J/cit11/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.2c03327 – volume: 16 start-page: 16452 year: 2022 ident: D3CC06073J/cit17/1 publication-title: ACS Nano doi: 10.1021/acsnano.2c05691 – volume: 59 start-page: 6453 year: 2023 ident: D3CC06073J/cit14/1 publication-title: Chem. Commun. doi: 10.1039/D2CC06337A – volume: 42 start-page: 353 year: 2017 ident: D3CC06073J/cit43/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.11.033 – volume: 15 start-page: 37300 year: 2023 ident: D3CC06073J/cit9/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.3c04506 – volume: 54 start-page: 229 year: 2023 ident: D3CC06073J/cit4/1 publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(23)64532-2 – volume: 8 start-page: 2002341 year: 2021 ident: D3CC06073J/cit26/1 publication-title: Adv. Sci. doi: 10.1002/advs.202002341 – volume: 62 start-page: e202300873 year: 2023 ident: D3CC06073J/cit31/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202300873 – volume: 19 start-page: 2300673 year: 2023 ident: D3CC06073J/cit37/1 publication-title: Small doi: 10.1002/smll.202300673 – volume: 31 start-page: 2101255 year: 2021 ident: D3CC06073J/cit50/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202101255 – volume: 7 start-page: 3329 year: 2022 ident: D3CC06073J/cit66/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.2c01734 – volume: 15 start-page: 3119 year: 2022 ident: D3CC06073J/cit6/1 publication-title: Energy Environ. Sci. doi: 10.1039/D1EE03614A – volume: 33 start-page: 2209134 year: 2023 ident: D3CC06073J/cit75/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202209134 – volume: 135 start-page: e202302220 year: 2023 ident: D3CC06073J/cit34/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.202302220 – volume: 62 start-page: e202218016 year: 2023 ident: D3CC06073J/cit18/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202218016 – volume: 10 start-page: 75 year: 2020 ident: D3CC06073J/cit71/1 publication-title: Med. Gas Res. doi: 10.4103/2045-9912.285560 – volume: 499 start-page: 215538 year: 2024 ident: D3CC06073J/cit8/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2023.215538 – volume: 9 start-page: 6441 year: 2021 ident: D3CC06073J/cit72/1 publication-title: J. Mater. Chem. B doi: 10.1039/D1TB01284C – volume: 142 start-page: 3645 year: 2022 ident: D3CC06073J/cit24/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c00218 – volume: 135 start-page: e202216082 year: 2023 ident: D3CC06073J/cit81/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.202216082 – volume: 5 start-page: e459 year: 2023 ident: D3CC06073J/cit1/1 publication-title: Carbon Energy doi: 10.1002/cey2.459 – volume: 60 start-page: 11048 year: 2021 ident: D3CC06073J/cit2/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202010093 – volume: 354 start-page: 1414 year: 2016 ident: D3CC06073J/cit68/1 publication-title: Science doi: 10.1126/science.aaf9050 – volume: 6 start-page: 8531 year: 2018 ident: D3CC06073J/cit82/1 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA01912F – volume: 12 start-page: 11511 year: 2018 ident: D3CC06073J/cit19/1 publication-title: ACS Nano doi: 10.1021/acsnano.8b06671 – volume: 33 start-page: 9165 year: 2021 ident: D3CC06073J/cit59/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.1c02609 – volume: 60 start-page: 4380 year: 2021 ident: D3CC06073J/cit25/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.1c00501 – volume: 574 start-page: 81 year: 2019 ident: D3CC06073J/cit69/1 publication-title: Nature doi: 10.1038/s41586-019-1603-7 – volume: 8 start-page: 12457 year: 2020 ident: D3CC06073J/cit48/1 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA03099F – volume: 35 start-page: 2211099 year: 2023 ident: D3CC06073J/cit38/1 publication-title: Adv. Mater. doi: 10.1002/adma.202211099 – volume: 61 start-page: 10211 year: 2022 ident: D3CC06073J/cit77/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.2c01534 – volume: 29 start-page: 1905697 year: 2019 ident: D3CC06073J/cit70/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201905697 – volume: 607 start-page: 1625 year: 2022 ident: D3CC06073J/cit73/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.09.078 – volume: 469 start-page: 214664 year: 2022 ident: D3CC06073J/cit78/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2022.214664 – volume: 145 start-page: 13957 year: 2023 ident: D3CC06073J/cit49/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c03432 – volume: 6 start-page: 1912 year: 2021 ident: D3CC06073J/cit27/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.1c00614 – volume: 9 start-page: 6196 year: 2021 ident: D3CC06073J/cit64/1 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA11054J – volume: 58 start-page: 9226 year: 2022 ident: D3CC06073J/cit61/1 publication-title: Chem. Commun. doi: 10.1039/D2CC03144B – volume: 30 start-page: 2000534 year: 2020 ident: D3CC06073J/cit80/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202000534 – volume: 56 start-page: 6652 year: 2020 ident: D3CC06073J/cit35/1 publication-title: Chem. Commun. doi: 10.1039/D0CC01146K – volume: 14 start-page: 1801090 year: 2018 ident: D3CC06073J/cit56/1 publication-title: Small doi: 10.1002/smll.201801090 – volume: 450 start-page: 137995 year: 2022 ident: D3CC06073J/cit44/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.137995 – volume: 12 start-page: 4138 year: 2020 ident: D3CC06073J/cit28/1 publication-title: ChemCatChem doi: 10.1002/cctc.202000443 – volume: 61 start-page: e202207845 year: 2022 ident: D3CC06073J/cit10/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202207845 – volume: 574 start-page: 81 year: 2019 ident: D3CC06073J/cit22/1 publication-title: Nature doi: 10.1038/s41586-019-1603-7 – volume: 32 start-page: 1906972 year: 2020 ident: D3CC06073J/cit53/1 publication-title: Adv. Mater. doi: 10.1002/adma.201906972 – volume: 35 start-page: 2208860 year: 2023 ident: D3CC06073J/cit20/1 publication-title: Adv. Mater. doi: 10.1002/adma.202208860 – volume: 10 start-page: 4855 year: 2019 ident: D3CC06073J/cit58/1 publication-title: Nat. Commun. doi: 10.1038/s41467-019-12859-2 – volume: 26 start-page: 101400 year: 2022 ident: D3CC06073J/cit76/1 publication-title: Appl. Mater. Today doi: 10.1016/j.apmt.2022.101400 – volume: 31 start-page: 2102321 year: 2021 ident: D3CC06073J/cit45/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202102321 – volume: 144 start-page: 2556 year: 2022 ident: D3CC06073J/cit65/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c10199 – year: 2023 ident: D3CC06073J/cit30/1 publication-title: Nano Res. doi: 10.1007/s12274-023-6314-6 – volume: 11 start-page: 9383 year: 2023 ident: D3CC06073J/cit39/1 publication-title: J. Mater. Chem. A doi: 10.1039/D3TA01059G – volume: 13 start-page: 12987 year: 2019 ident: D3CC06073J/cit32/1 publication-title: ACS Nano doi: 10.1021/acsnano.9b05615 – volume: 16 start-page: 57 year: 2017 ident: D3CC06073J/cit67/1 publication-title: Nat. Mater. doi: 10.1038/nmat4738 – volume: 8 start-page: 3022 year: 2015 ident: D3CC06073J/cit54/1 publication-title: Energy Environ. Sci. doi: 10.1039/C5EE02179K – volume: 140 start-page: 2731 year: 2018 ident: D3CC06073J/cit52/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b12615 – volume: 133 start-page: 18969 year: 2021 ident: D3CC06073J/cit57/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.202106631 – volume: 50 start-page: 2925 year: 2017 ident: D3CC06073J/cit51/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.7b00313 – volume: 46 start-page: 9440 year: 2022 ident: D3CC06073J/cit16/1 publication-title: New J. Chem. doi: 10.1039/D1NJ06107K – volume: 13 start-page: 2075 year: 2022 ident: D3CC06073J/cit7/1 publication-title: Nat. Commun. doi: 10.1038/s41467-022-29797-1 – volume: 145 start-page: 12745 year: 2023 ident: D3CC06073J/cit13/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c02874 – volume: 58 start-page: 13115 year: 2022 ident: D3CC06073J/cit21/1 publication-title: Chem. Commun. doi: 10.1039/D2CC04263K – volume: 10 start-page: 20343 year: 2022 ident: D3CC06073J/cit46/1 publication-title: J. Mater. Chem. A doi: 10.1039/D2TA06077A – volume: 13 start-page: 13149 year: 2021 ident: D3CC06073J/cit42/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c22106 – volume: 10 start-page: 8364 year: 2022 ident: D3CC06073J/cit62/1 publication-title: J. Mater. Chem. A doi: 10.1039/D2TA00590E – volume: 10 start-page: 2988 year: 2017 ident: D3CC06073J/cit29/1 publication-title: Nano Res. doi: 10.1007/s12274-017-1509-3 – volume: 8 start-page: 19788 year: 2020 ident: D3CC06073J/cit60/1 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA04223D |
SSID | ssj0000158 |
Score | 2.6364906 |
SecondaryResourceType | review_article |
Snippet | Designing low-dimensional nanomaterials is vital to address the energy and environmental crisis by means of electrocatalytic conversion reactions.... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3129 |
SubjectTerms | Bimetals Chemical reactions Electrocatalysts Electronic structure Energy conversion Nanomaterials Optimization Thin films Two dimensional materials |
Title | Recent advanced strategies for bimetallenes toward electrocatalytic energy conversion reactions |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38404151 https://www.proquest.com/docview/2956744505 https://www.proquest.com/docview/2932025894 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaglaAXxKsQKMgILqhKSfzK-lgtRaUqSMBW2lvkOI5Y1GarNnvo_nrGdhwHWiTgEq0cZxN5voxnJjPfIPQGjLZGMk1TYYRJWZ418EpVTeqoQ5RsCu54Zj99Focn7GjO5zGq5KpLumpPr2-sK_kfqcIYyNVWyf6DZIc_hQH4DfKFI0gYjn8lY7D5XIp4-I5_2QXiB5-FuTgzneuV4ngcbH7sbt_2xkVtrixZq_HFfy773IXOdsGM1DGMF1gMArGAHleUuJDtUPbl9KpvCjIKMHxTNuDooqzL72ZxGveBPlT9ZXG1XMXPUGqtfPX7V7Me5h4vVj7Jvx2HKQizeVq-PHTPeNVKBUvBP5qPda_vJdBjjNCRJqW5f9BrKj6jliG1plpnAvTTj_EkEM_5mRM2BccVbJM8bnND8mE4dRttEvAtQDlu7h_MPh6PWMf4JDDZUvku3moL3QkX_2rGXPNNwFK5CB1knKUyu4_u9S4G3vd4eYBumfYhujsNnf0eodLjBgfc4IgbDLjBY9xgjxv8O26wxw2OuMEDbh6jkw8Hs-lh2jfaSDWlRWc3GduDmtNMaakdhV8uiCKFEozXuSqaouJc1JlUuZaG1UZWpADPf0KLqiacbqONdtmapwjLKmuajBPFRAUrJZTRWSVEAVcZlptJgt6GdSt1z0Jvm6Gcli4bgsryPZ1O3XIfJej1MPfcc6_cOGsnLH_Zv5uXJQG3v2AMzPsEvRpOwzLbz2GqNcuVnUMBqHwiWYKeeLENtwliTtA2yHEYjlB49sdLnqOtiP8dtNFdrMwLMFy76mUPtJ-cKppV |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+advanced+strategies+for+bimetallenes+toward+electrocatalytic+energy+conversion+reactions&rft.jtitle=Chemical+communications+%28Cambridge%2C+England%29&rft.au=Sanati%2C+Soheila&rft.au=Wang%2C+Qiyou&rft.au=Abazari%2C+Reza&rft.au=Liu%2C+Min&rft.date=2024-03-14&rft.eissn=1364-548X&rft.volume=60&rft.issue=23&rft.spage=3129&rft_id=info:doi/10.1039%2Fd3cc06073j&rft_id=info%3Apmid%2F38404151&rft.externalDocID=38404151 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-7345&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-7345&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-7345&client=summon |