Recent advanced strategies for bimetallenes toward electrocatalytic energy conversion reactions

Designing low-dimensional nanomaterials is vital to address the energy and environmental crisis by means of electrocatalytic conversion reactions. Bimetallenes, as an emerging class of 2D materials, present promise for electrocatalytic conversion reactions. By leveraging atomically thin layers, bime...

Full description

Saved in:
Bibliographic Details
Published inChemical communications (Cambridge, England) Vol. 6; no. 23; pp. 3129 - 3137
Main Authors Sanati, Soheila, Wang, Qiyou, Abazari, Reza, Liu, Min
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 14.03.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Designing low-dimensional nanomaterials is vital to address the energy and environmental crisis by means of electrocatalytic conversion reactions. Bimetallenes, as an emerging class of 2D materials, present promise for electrocatalytic conversion reactions. By leveraging atomically thin layers, bimetallenes present unsaturated surface coordination, high specific surface area and high conductivity, which are all indispensable features for heterogeneous electrochemical reactions. However, the intrinsic activity and stability of bimetallenes needs to be improved further for bimetallene electrocatalysts, due to the higher demands of practical applications. Recently, many strategies have been developed to optimize the chemical or electronic structure to accommodate transfer of reactants, adsorption or desorption of intermediates, and dissociation of products. Considering that most such work focuses on adjusting the structure, this review offers in-depth insight into recent representative strategies for optimizing bimetallene electrocatalysts, mainly including alloying, strain effects, ligand effects, defects and heteroatom doping. Moreover, by summarizing the performance of bimetallenes optimized using various strategies, we provide a means to understand structure-property relationships. In addition, future prospects and challenges are discussed for further development of bimetallene electrocatalysts. Designing low-dimensional nanomaterials is vital to address the energy and environmental crisis by means of electrocatalytic conversion reactions.
AbstractList Designing low-dimensional nanomaterials is vital to address the energy and environmental crisis by means of electrocatalytic conversion reactions. Bimetallenes, as an emerging class of 2D materials, present promise for electrocatalytic conversion reactions. By leveraging atomically thin layers, bimetallenes present unsaturated surface coordination, high specific surface area and high conductivity, which are all indispensable features for heterogeneous electrochemical reactions. However, the intrinsic activity and stability of bimetallenes needs to be improved further for bimetallene electrocatalysts, due to the higher demands of practical applications. Recently, many strategies have been developed to optimize the chemical or electronic structure to accommodate transfer of reactants, adsorption or desorption of intermediates, and dissociation of products. Considering that most such work focuses on adjusting the structure, this review offers in-depth insight into recent representative strategies for optimizing bimetallene electrocatalysts, mainly including alloying, strain effects, ligand effects, defects and heteroatom doping. Moreover, by summarizing the performance of bimetallenes optimized using various strategies, we provide a means to understand structure-property relationships. In addition, future prospects and challenges are discussed for further development of bimetallene electrocatalysts.
Designing low-dimensional nanomaterials is vital to address the energy and environmental crisis by means of electrocatalytic conversion reactions. Bimetallenes, as an emerging class of 2D materials, present promise for electrocatalytic conversion reactions. By leveraging atomically thin layers, bimetallenes present unsaturated surface coordination, high specific surface area and high conductivity, which are all indispensable features for heterogeneous electrochemical reactions. However, the intrinsic activity and stability of bimetallenes needs to be improved further for bimetallene electrocatalysts, due to the higher demands of practical applications. Recently, many strategies have been developed to optimize the chemical or electronic structure to accommodate transfer of reactants, adsorption or desorption of intermediates, and dissociation of products. Considering that most such work focuses on adjusting the structure, this review offers in-depth insight into recent representative strategies for optimizing bimetallene electrocatalysts, mainly including alloying, strain effects, ligand effects, defects and heteroatom doping. Moreover, by summarizing the performance of bimetallenes optimized using various strategies, we provide a means to understand structure-property relationships. In addition, future prospects and challenges are discussed for further development of bimetallene electrocatalysts. Designing low-dimensional nanomaterials is vital to address the energy and environmental crisis by means of electrocatalytic conversion reactions.
Designing low-dimensional nanomaterials is vital to address the energy and environmental crisis by means of electrocatalytic conversion reactions. Bimetallenes, as an emerging class of 2D materials, present promise for electrocatalytic conversion reactions. By leveraging atomically thin layers, bimetallenes present unsaturated surface coordination, high specific surface area and high conductivity, which are all indispensable features for heterogeneous electrochemical reactions. However, the intrinsic activity and stability of bimetallenes needs to be improved further for bimetallene electrocatalysts, due to the higher demands of practical applications. Recently, many strategies have been developed to optimize the chemical or electronic structure to accommodate transfer of reactants, adsorption or desorption of intermediates, and dissociation of products. Considering that most such work focuses on adjusting the structure, this review offers in-depth insight into recent representative strategies for optimizing bimetallene electrocatalysts, mainly including alloying, strain effects, ligand effects, defects and heteroatom doping. Moreover, by summarizing the performance of bimetallenes optimized using various strategies, we provide a means to understand structure-property relationships. In addition, future prospects and challenges are discussed for further development of bimetallene electrocatalysts.Designing low-dimensional nanomaterials is vital to address the energy and environmental crisis by means of electrocatalytic conversion reactions. Bimetallenes, as an emerging class of 2D materials, present promise for electrocatalytic conversion reactions. By leveraging atomically thin layers, bimetallenes present unsaturated surface coordination, high specific surface area and high conductivity, which are all indispensable features for heterogeneous electrochemical reactions. However, the intrinsic activity and stability of bimetallenes needs to be improved further for bimetallene electrocatalysts, due to the higher demands of practical applications. Recently, many strategies have been developed to optimize the chemical or electronic structure to accommodate transfer of reactants, adsorption or desorption of intermediates, and dissociation of products. Considering that most such work focuses on adjusting the structure, this review offers in-depth insight into recent representative strategies for optimizing bimetallene electrocatalysts, mainly including alloying, strain effects, ligand effects, defects and heteroatom doping. Moreover, by summarizing the performance of bimetallenes optimized using various strategies, we provide a means to understand structure-property relationships. In addition, future prospects and challenges are discussed for further development of bimetallene electrocatalysts.
Author Sanati, Soheila
Wang, Qiyou
Abazari, Reza
Liu, Min
AuthorAffiliation Department of Chemistry
Central South University
Hunan Joint International Research Center for Carbon Dioxide Resource Utilization
School of Physics
University of Maragheh
Faculty of Science
State Key Laboratory of Powder Metallurgy
AuthorAffiliation_xml – sequence: 0
  name: Department of Chemistry
– sequence: 0
  name: Central South University
– sequence: 0
  name: School of Physics
– sequence: 0
  name: University of Maragheh
– sequence: 0
  name: Hunan Joint International Research Center for Carbon Dioxide Resource Utilization
– sequence: 0
  name: Faculty of Science
– sequence: 0
  name: State Key Laboratory of Powder Metallurgy
Author_xml – sequence: 1
  givenname: Soheila
  surname: Sanati
  fullname: Sanati, Soheila
– sequence: 2
  givenname: Qiyou
  surname: Wang
  fullname: Wang, Qiyou
– sequence: 3
  givenname: Reza
  surname: Abazari
  fullname: Abazari, Reza
– sequence: 4
  givenname: Min
  surname: Liu
  fullname: Liu, Min
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38404151$$D View this record in MEDLINE/PubMed
BookMark eNptkc1LJDEQxYMofq0X70rDXmSh3aTz1X2UWXVXBgRR8NakKzXSQ0-iSWZk_nszzuiCWJcqUr96hPcOyLbzDgk5ZvScUd78thyAKqr5dIvsM65EKUX9uL2aZVNqLuQeOYhxSnMxWe-SPV4LKphk-6S9Q0CXCmMXxgHaIqZgEj71GIuJD0XXzzCZYUCXH5J_NcEWOCCk4MHkxTL1UORleFoW4N0CQ-y9KwIaSHmIP8jOxAwRjzb9kDxcXd6P_pbj2-t_o4txCZzrVHKtlBRacmqgAaWVlkxVptJGCWmZ0RPdSaksbQyDBoXFpqs0k6rmurOV5IfkbK37HPzLHGNqZ30EHAbj0M9jWzW8opWsG5HRn1_QqZ8Hl3-XKam0EJKuBE831LyboW2fQz8zYdl-WJeBX2sAgo8x4OQTYbRd5dL-4aPRey43GaZfYOiTWTmU7e6H709O1ichwqf0_6j5G-Q1mKs
CitedBy_id crossref_primary_10_1016_j_ijhydene_2025_02_028
crossref_primary_10_1016_j_molliq_2025_126988
crossref_primary_10_1016_j_ccr_2024_216231
crossref_primary_10_1016_j_ijhydene_2025_02_025
crossref_primary_10_1016_j_ijhydene_2025_02_168
crossref_primary_10_1016_j_ccr_2024_216256
crossref_primary_10_1016_j_est_2025_115535
crossref_primary_10_1021_acs_inorgchem_4c05162
crossref_primary_10_1016_j_heliyon_2024_e32989
crossref_primary_10_1016_j_est_2024_113161
crossref_primary_10_1016_j_apsadv_2025_100708
crossref_primary_10_1016_j_ijhydene_2024_04_131
crossref_primary_10_1016_j_matchemphys_2024_129284
crossref_primary_10_1016_j_ccr_2025_216609
crossref_primary_10_1016_j_jiec_2024_05_011
crossref_primary_10_1016_j_diamond_2025_112157
crossref_primary_10_1021_acs_inorgchem_4c00053
crossref_primary_10_1021_acsanm_4c06084
crossref_primary_10_1016_j_molstruc_2024_141021
crossref_primary_10_1039_D5CC00389J
crossref_primary_10_1016_j_ccr_2024_216343
crossref_primary_10_1016_j_cej_2024_156276
crossref_primary_10_1016_j_cej_2025_159926
crossref_primary_10_1021_acs_inorgchem_4c04683
crossref_primary_10_1021_acs_inorgchem_4c05056
crossref_primary_10_1016_j_ijhydene_2025_03_100
crossref_primary_10_1016_j_ijhydene_2024_06_014
crossref_primary_10_1016_j_jiec_2025_01_014
crossref_primary_10_1039_D4TA00736K
Cites_doi 10.1039/D0CS00415D
10.1021/jacs.2c13437
10.1002/adma.201805617
10.1039/C9EE01647C
10.1039/D3CC02624H
10.1016/j.cej.2022.134711
10.1021/acs.inorgchem.3c00174
10.1021/jacs.9b10061
10.1021/acs.inorgchem.3c03052
10.1021/acsami.3c10789
10.1002/anie.202217026
10.1021/acs.inorgchem.2c00542
10.1039/D2NR04063H
10.1002/smll.202306353
10.1021/acs.inorgchem.2c03327
10.1021/acsnano.2c05691
10.1039/D2CC06337A
10.1016/j.nanoen.2017.11.033
10.1021/acsami.3c04506
10.1016/S1872-2067(23)64532-2
10.1002/advs.202002341
10.1002/anie.202300873
10.1002/smll.202300673
10.1002/adfm.202101255
10.1021/acsenergylett.2c01734
10.1039/D1EE03614A
10.1002/adfm.202209134
10.1002/ange.202302220
10.1002/anie.202218016
10.4103/2045-9912.285560
10.1016/j.ccr.2023.215538
10.1039/D1TB01284C
10.1021/jacs.0c00218
10.1002/ange.202216082
10.1002/cey2.459
10.1002/anie.202010093
10.1126/science.aaf9050
10.1039/C8TA01912F
10.1021/acsnano.8b06671
10.1021/acs.chemmater.1c02609
10.1021/acs.inorgchem.1c00501
10.1038/s41586-019-1603-7
10.1039/D0TA03099F
10.1002/adma.202211099
10.1021/acs.inorgchem.2c01534
10.1002/adfm.201905697
10.1016/j.jcis.2021.09.078
10.1016/j.ccr.2022.214664
10.1021/jacs.3c03432
10.1021/acsenergylett.1c00614
10.1039/D0TA11054J
10.1039/D2CC03144B
10.1002/adfm.202000534
10.1039/D0CC01146K
10.1002/smll.201801090
10.1016/j.cej.2022.137995
10.1002/cctc.202000443
10.1002/anie.202207845
10.1002/adma.201906972
10.1002/adma.202208860
10.1038/s41467-019-12859-2
10.1016/j.apmt.2022.101400
10.1002/adfm.202102321
10.1021/jacs.1c10199
10.1007/s12274-023-6314-6
10.1039/D3TA01059G
10.1021/acsnano.9b05615
10.1038/nmat4738
10.1039/C5EE02179K
10.1021/jacs.7b12615
10.1002/ange.202106631
10.1021/acs.accounts.7b00313
10.1039/D1NJ06107K
10.1038/s41467-022-29797-1
10.1021/jacs.3c02874
10.1039/D2CC04263K
10.1039/D2TA06077A
10.1021/acsami.0c22106
10.1039/D2TA00590E
10.1007/s12274-017-1509-3
10.1039/D0TA04223D
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2024
Copyright_xml – notice: Copyright Royal Society of Chemistry 2024
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/d3cc06073j
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed

Materials Research Database
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1364-548X
EndPage 3137
ExternalDocumentID 38404151
10_1039_D3CC06073J
d3cc06073j
Genre Journal Article
Review
GroupedDBID ---
-DZ
-JG
-~X
0-7
0R~
29B
4.4
53G
5GY
6J9
705
70~
7~J
AAEMU
AAHBH
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACBEA
ACGFO
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFVBQ
AGEGJ
AGKEF
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CS3
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
IH2
J3I
M4U
N9A
O9-
P2P
R7B
R7C
R7D
RAOCF
RCNCU
RPMJG
RRA
RRC
RSCEA
SJN
SKA
SKF
SKH
SLH
TN5
TWZ
UPT
VH6
VQA
WH7
X7L
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
R56
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c337t-3766547530ac9c67675162a27a645d1a7f7b556d09a1c9e4de9b27156837bd253
ISSN 1359-7345
1364-548X
IngestDate Thu Jul 10 22:24:28 EDT 2025
Mon Jun 30 04:41:31 EDT 2025
Thu Apr 03 07:03:36 EDT 2025
Thu Apr 24 23:03:12 EDT 2025
Tue Jul 01 04:23:15 EDT 2025
Tue Dec 17 20:58:48 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c337t-3766547530ac9c67675162a27a645d1a7f7b556d09a1c9e4de9b27156837bd253
Notes Reza Abazari is a senior professor of Chemistry at University of Maragheh, Iran. He obtained his MSc in Inorganic Chemistry from K. N. Toosi University of Technology (Iran) in 2012 and his PhD degree from Tarbiat Modares University in 2019. His research interests include the design and synthesis of nanostructured materials based on crystalline porous frameworks for electrochemical energy storage and photocatalytic applications.
Soheila Sanati obtained her PhD degree in Inorganic Chemistry at Azarbaijan Shahid Madani University (Iran) in February 2019. She is currently a postdoctoral fellow at Tarbiat Modares University (Iran). Her research interests mainly focus on the design, synthesis, and applications of advanced materials for energy storage and conversion.
2
Min Liu received his PhD (2010) from the Chinese Academy of Sciences. In 2010-2015, he joined University of Tokyo as a research fellow with Prof. Kazuhito Hashimoto and Prof. Kazunari Domen, separately. In 2015-2017, he joined University of Toronto as a postdoctoral fellow with Prof. Edward Sargent. In 2017, he joined Central South University as a professor. His research focuses on electrocatalytic energy conversion, photo/electrocatalytic CO
reduction and the resource utilization of perfluorocarbon.
Qiyou Wang received his MS in 2020 from Hunan University. Presently, he is a PhD student under the guidance of Prof. Liu at Central South University. His research interests are mainly design of flow cell electrolysis and study of in situ Raman spectroscopy, FTIR spectroscopy, and XAFS spectra during electrochemical conversion reactions.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-9007-4817
0009-0001-2947-6737
PMID 38404151
PQID 2956744505
PQPubID 2047502
PageCount 9
ParticipantIDs proquest_miscellaneous_2932025894
crossref_primary_10_1039_D3CC06073J
pubmed_primary_38404151
rsc_primary_d3cc06073j
proquest_journals_2956744505
crossref_citationtrail_10_1039_D3CC06073J
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-14
PublicationDateYYYYMMDD 2024-03-14
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-14
  day: 14
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Chemical communications (Cambridge, England)
PublicationTitleAlternate Chem Commun (Camb)
PublicationYear 2024
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Do (D3CC06073J/cit20/1) 2023; 35
Fan (D3CC06073J/cit32/1) 2019; 13
Mao (D3CC06073J/cit62/1) 2022; 10
Prasannachandran (D3CC06073J/cit19/1) 2018; 12
Bai (D3CC06073J/cit72/1) 2021; 9
Stamenkovic (D3CC06073J/cit67/1) 2017; 16
Abazari (D3CC06073J/cit33/1) 2023; 62
Wang (D3CC06073J/cit38/1) 2023; 35
Wang (D3CC06073J/cit4/1) 2023; 54
Kibsgaard (D3CC06073J/cit54/1) 2015; 8
Li (D3CC06073J/cit30/1) 2023
Luo (D3CC06073J/cit22/1) 2019; 574
Siming (D3CC06073J/cit70/1) 2019; 29
Kalhorizadeh (D3CC06073J/cit16/1) 2022; 46
Wang (D3CC06073J/cit44/1) 2022; 450
Wang (D3CC06073J/cit80/1) 2020; 30
Pan (D3CC06073J/cit11/1) 2022; 61
Wang (D3CC06073J/cit21/1) 2022; 58
Abazari (D3CC06073J/cit36/1) 2022; 61
Zheng (D3CC06073J/cit15/1) 2023; 59
Liu (D3CC06073J/cit52/1) 2018; 140
Lucherelli (D3CC06073J/cit14/1) 2023; 59
Pan (D3CC06073J/cit8/1) 2024; 499
Chen (D3CC06073J/cit78/1) 2022; 469
Jin (D3CC06073J/cit17/1) 2022; 16
Yang (D3CC06073J/cit34/1) 2023; 135
He (D3CC06073J/cit53/1) 2020; 32
Luo (D3CC06073J/cit69/1) 2019; 574
Wang (D3CC06073J/cit23/1) 2023; 62
Guo (D3CC06073J/cit64/1) 2021; 9
Guo (D3CC06073J/cit75/1) 2023; 33
Mohd Najib (D3CC06073J/cit60/1) 2020; 8
Mu (D3CC06073J/cit26/1) 2021; 8
Zhong (D3CC06073J/cit46/1) 2022; 10
Kim (D3CC06073J/cit47/1) 2019; 31
Li (D3CC06073J/cit68/1) 2016; 354
Wu (D3CC06073J/cit58/1) 2019; 10
Wang (D3CC06073J/cit37/1) 2023; 19
Abazari (D3CC06073J/cit3/1) 2023
Zhang (D3CC06073J/cit28/1) 2020; 12
Wu (D3CC06073J/cit27/1) 2021; 6
Lin (D3CC06073J/cit45/1) 2021; 31
Jia (D3CC06073J/cit50/1) 2021; 31
Yang (D3CC06073J/cit74/1) 2023; 15
Fan (D3CC06073J/cit24/1) 2022; 142
Shi (D3CC06073J/cit65/1) 2022; 144
Yang (D3CC06073J/cit18/1) 2023; 62
Li (D3CC06073J/cit39/1) 2023; 11
Ji (D3CC06073J/cit59/1) 2021; 33
He (D3CC06073J/cit81/1) 2023; 135
Sanati (D3CC06073J/cit6/1) 2022; 15
Zhang (D3CC06073J/cit66/1) 2022; 7
Liu (D3CC06073J/cit7/1) 2022; 13
Fa (D3CC06073J/cit10/1) 2022; 61
Chen (D3CC06073J/cit43/1) 2017; 42
Yin (D3CC06073J/cit41/1) 2022; 435
Guo (D3CC06073J/cit25/1) 2021; 60
Cai (D3CC06073J/cit31/1) 2023; 62
Zhang (D3CC06073J/cit55/1) 2019; 12
Mao (D3CC06073J/cit76/1) 2022; 26
Wang (D3CC06073J/cit63/1) 2021; 50
Okatenko (D3CC06073J/cit40/1) 2023; 145
Hu (D3CC06073J/cit9/1) 2023; 15
Wang (D3CC06073J/cit61/1) 2022; 58
Goyal (D3CC06073J/cit79/1) 2020; 142
Zhao (D3CC06073J/cit77/1) 2022; 61
Zhang (D3CC06073J/cit57/1) 2021; 133
Zhao (D3CC06073J/cit48/1) 2020; 8
Chen (D3CC06073J/cit71/1) 2020; 10
Li (D3CC06073J/cit73/1) 2022; 607
Sanati (D3CC06073J/cit2/1) 2021; 60
Wang (D3CC06073J/cit5/1) 2023; 62
Sanati (D3CC06073J/cit35/1) 2020; 56
Sun (D3CC06073J/cit42/1) 2021; 13
Li (D3CC06073J/cit29/1) 2017; 10
Xie (D3CC06073J/cit49/1) 2023; 145
Chen (D3CC06073J/cit1/1) 2023; 5
Fan (D3CC06073J/cit82/1) 2018; 6
Li (D3CC06073J/cit12/1) 2022; 14
Wang (D3CC06073J/cit13/1) 2023; 145
Walsh (D3CC06073J/cit51/1) 2017; 50
Lu (D3CC06073J/cit56/1) 2018; 14
References_xml – volume: 50
  start-page: 1354
  year: 2021
  ident: D3CC06073J/cit63/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS00415D
– volume: 145
  start-page: 5370
  year: 2023
  ident: D3CC06073J/cit40/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c13437
– volume: 31
  start-page: 1805617
  year: 2019
  ident: D3CC06073J/cit47/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201805617
– volume: 12
  start-page: 2569
  year: 2019
  ident: D3CC06073J/cit55/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE01647C
– volume: 59
  start-page: 10205
  year: 2023
  ident: D3CC06073J/cit15/1
  publication-title: Chem. Commun.
  doi: 10.1039/D3CC02624H
– volume: 435
  start-page: 134711
  year: 2022
  ident: D3CC06073J/cit41/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.134711
– volume: 62
  start-page: 5622
  year: 2023
  ident: D3CC06073J/cit23/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.3c00174
– volume: 142
  start-page: 4154
  year: 2020
  ident: D3CC06073J/cit79/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b10061
– volume: 62
  start-page: 18680
  year: 2023
  ident: D3CC06073J/cit33/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.3c03052
– volume: 15
  start-page: 49195
  year: 2023
  ident: D3CC06073J/cit74/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.3c10789
– volume: 62
  start-page: e202217026
  year: 2023
  ident: D3CC06073J/cit5/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202217026
– volume: 61
  start-page: 9514
  year: 2022
  ident: D3CC06073J/cit36/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.2c00542
– volume: 14
  start-page: 16033
  year: 2022
  ident: D3CC06073J/cit12/1
  publication-title: Nanoscale
  doi: 10.1039/D2NR04063H
– year: 2023
  ident: D3CC06073J/cit3/1
  publication-title: Small
  doi: 10.1002/smll.202306353
– volume: 61
  start-page: 20913
  year: 2022
  ident: D3CC06073J/cit11/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.2c03327
– volume: 16
  start-page: 16452
  year: 2022
  ident: D3CC06073J/cit17/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c05691
– volume: 59
  start-page: 6453
  year: 2023
  ident: D3CC06073J/cit14/1
  publication-title: Chem. Commun.
  doi: 10.1039/D2CC06337A
– volume: 42
  start-page: 353
  year: 2017
  ident: D3CC06073J/cit43/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.11.033
– volume: 15
  start-page: 37300
  year: 2023
  ident: D3CC06073J/cit9/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.3c04506
– volume: 54
  start-page: 229
  year: 2023
  ident: D3CC06073J/cit4/1
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(23)64532-2
– volume: 8
  start-page: 2002341
  year: 2021
  ident: D3CC06073J/cit26/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202002341
– volume: 62
  start-page: e202300873
  year: 2023
  ident: D3CC06073J/cit31/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202300873
– volume: 19
  start-page: 2300673
  year: 2023
  ident: D3CC06073J/cit37/1
  publication-title: Small
  doi: 10.1002/smll.202300673
– volume: 31
  start-page: 2101255
  year: 2021
  ident: D3CC06073J/cit50/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202101255
– volume: 7
  start-page: 3329
  year: 2022
  ident: D3CC06073J/cit66/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.2c01734
– volume: 15
  start-page: 3119
  year: 2022
  ident: D3CC06073J/cit6/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE03614A
– volume: 33
  start-page: 2209134
  year: 2023
  ident: D3CC06073J/cit75/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202209134
– volume: 135
  start-page: e202302220
  year: 2023
  ident: D3CC06073J/cit34/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.202302220
– volume: 62
  start-page: e202218016
  year: 2023
  ident: D3CC06073J/cit18/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202218016
– volume: 10
  start-page: 75
  year: 2020
  ident: D3CC06073J/cit71/1
  publication-title: Med. Gas Res.
  doi: 10.4103/2045-9912.285560
– volume: 499
  start-page: 215538
  year: 2024
  ident: D3CC06073J/cit8/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2023.215538
– volume: 9
  start-page: 6441
  year: 2021
  ident: D3CC06073J/cit72/1
  publication-title: J. Mater. Chem. B
  doi: 10.1039/D1TB01284C
– volume: 142
  start-page: 3645
  year: 2022
  ident: D3CC06073J/cit24/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c00218
– volume: 135
  start-page: e202216082
  year: 2023
  ident: D3CC06073J/cit81/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.202216082
– volume: 5
  start-page: e459
  year: 2023
  ident: D3CC06073J/cit1/1
  publication-title: Carbon Energy
  doi: 10.1002/cey2.459
– volume: 60
  start-page: 11048
  year: 2021
  ident: D3CC06073J/cit2/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202010093
– volume: 354
  start-page: 1414
  year: 2016
  ident: D3CC06073J/cit68/1
  publication-title: Science
  doi: 10.1126/science.aaf9050
– volume: 6
  start-page: 8531
  year: 2018
  ident: D3CC06073J/cit82/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA01912F
– volume: 12
  start-page: 11511
  year: 2018
  ident: D3CC06073J/cit19/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b06671
– volume: 33
  start-page: 9165
  year: 2021
  ident: D3CC06073J/cit59/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.1c02609
– volume: 60
  start-page: 4380
  year: 2021
  ident: D3CC06073J/cit25/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.1c00501
– volume: 574
  start-page: 81
  year: 2019
  ident: D3CC06073J/cit69/1
  publication-title: Nature
  doi: 10.1038/s41586-019-1603-7
– volume: 8
  start-page: 12457
  year: 2020
  ident: D3CC06073J/cit48/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA03099F
– volume: 35
  start-page: 2211099
  year: 2023
  ident: D3CC06073J/cit38/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202211099
– volume: 61
  start-page: 10211
  year: 2022
  ident: D3CC06073J/cit77/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.2c01534
– volume: 29
  start-page: 1905697
  year: 2019
  ident: D3CC06073J/cit70/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201905697
– volume: 607
  start-page: 1625
  year: 2022
  ident: D3CC06073J/cit73/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.09.078
– volume: 469
  start-page: 214664
  year: 2022
  ident: D3CC06073J/cit78/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2022.214664
– volume: 145
  start-page: 13957
  year: 2023
  ident: D3CC06073J/cit49/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c03432
– volume: 6
  start-page: 1912
  year: 2021
  ident: D3CC06073J/cit27/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.1c00614
– volume: 9
  start-page: 6196
  year: 2021
  ident: D3CC06073J/cit64/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA11054J
– volume: 58
  start-page: 9226
  year: 2022
  ident: D3CC06073J/cit61/1
  publication-title: Chem. Commun.
  doi: 10.1039/D2CC03144B
– volume: 30
  start-page: 2000534
  year: 2020
  ident: D3CC06073J/cit80/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202000534
– volume: 56
  start-page: 6652
  year: 2020
  ident: D3CC06073J/cit35/1
  publication-title: Chem. Commun.
  doi: 10.1039/D0CC01146K
– volume: 14
  start-page: 1801090
  year: 2018
  ident: D3CC06073J/cit56/1
  publication-title: Small
  doi: 10.1002/smll.201801090
– volume: 450
  start-page: 137995
  year: 2022
  ident: D3CC06073J/cit44/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.137995
– volume: 12
  start-page: 4138
  year: 2020
  ident: D3CC06073J/cit28/1
  publication-title: ChemCatChem
  doi: 10.1002/cctc.202000443
– volume: 61
  start-page: e202207845
  year: 2022
  ident: D3CC06073J/cit10/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202207845
– volume: 574
  start-page: 81
  year: 2019
  ident: D3CC06073J/cit22/1
  publication-title: Nature
  doi: 10.1038/s41586-019-1603-7
– volume: 32
  start-page: 1906972
  year: 2020
  ident: D3CC06073J/cit53/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201906972
– volume: 35
  start-page: 2208860
  year: 2023
  ident: D3CC06073J/cit20/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202208860
– volume: 10
  start-page: 4855
  year: 2019
  ident: D3CC06073J/cit58/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12859-2
– volume: 26
  start-page: 101400
  year: 2022
  ident: D3CC06073J/cit76/1
  publication-title: Appl. Mater. Today
  doi: 10.1016/j.apmt.2022.101400
– volume: 31
  start-page: 2102321
  year: 2021
  ident: D3CC06073J/cit45/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202102321
– volume: 144
  start-page: 2556
  year: 2022
  ident: D3CC06073J/cit65/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c10199
– year: 2023
  ident: D3CC06073J/cit30/1
  publication-title: Nano Res.
  doi: 10.1007/s12274-023-6314-6
– volume: 11
  start-page: 9383
  year: 2023
  ident: D3CC06073J/cit39/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D3TA01059G
– volume: 13
  start-page: 12987
  year: 2019
  ident: D3CC06073J/cit32/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b05615
– volume: 16
  start-page: 57
  year: 2017
  ident: D3CC06073J/cit67/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4738
– volume: 8
  start-page: 3022
  year: 2015
  ident: D3CC06073J/cit54/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE02179K
– volume: 140
  start-page: 2731
  year: 2018
  ident: D3CC06073J/cit52/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b12615
– volume: 133
  start-page: 18969
  year: 2021
  ident: D3CC06073J/cit57/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.202106631
– volume: 50
  start-page: 2925
  year: 2017
  ident: D3CC06073J/cit51/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.7b00313
– volume: 46
  start-page: 9440
  year: 2022
  ident: D3CC06073J/cit16/1
  publication-title: New J. Chem.
  doi: 10.1039/D1NJ06107K
– volume: 13
  start-page: 2075
  year: 2022
  ident: D3CC06073J/cit7/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29797-1
– volume: 145
  start-page: 12745
  year: 2023
  ident: D3CC06073J/cit13/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c02874
– volume: 58
  start-page: 13115
  year: 2022
  ident: D3CC06073J/cit21/1
  publication-title: Chem. Commun.
  doi: 10.1039/D2CC04263K
– volume: 10
  start-page: 20343
  year: 2022
  ident: D3CC06073J/cit46/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA06077A
– volume: 13
  start-page: 13149
  year: 2021
  ident: D3CC06073J/cit42/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c22106
– volume: 10
  start-page: 8364
  year: 2022
  ident: D3CC06073J/cit62/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA00590E
– volume: 10
  start-page: 2988
  year: 2017
  ident: D3CC06073J/cit29/1
  publication-title: Nano Res.
  doi: 10.1007/s12274-017-1509-3
– volume: 8
  start-page: 19788
  year: 2020
  ident: D3CC06073J/cit60/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA04223D
SSID ssj0000158
Score 2.6364906
SecondaryResourceType review_article
Snippet Designing low-dimensional nanomaterials is vital to address the energy and environmental crisis by means of electrocatalytic conversion reactions....
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3129
SubjectTerms Bimetals
Chemical reactions
Electrocatalysts
Electronic structure
Energy conversion
Nanomaterials
Optimization
Thin films
Two dimensional materials
Title Recent advanced strategies for bimetallenes toward electrocatalytic energy conversion reactions
URI https://www.ncbi.nlm.nih.gov/pubmed/38404151
https://www.proquest.com/docview/2956744505
https://www.proquest.com/docview/2932025894
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaglaAXxKsQKMgILqhKSfzK-lgtRaUqSMBW2lvkOI5Y1GarNnvo_nrGdhwHWiTgEq0cZxN5voxnJjPfIPQGjLZGMk1TYYRJWZ418EpVTeqoQ5RsCu54Zj99Focn7GjO5zGq5KpLumpPr2-sK_kfqcIYyNVWyf6DZIc_hQH4DfKFI0gYjn8lY7D5XIp4-I5_2QXiB5-FuTgzneuV4ngcbH7sbt_2xkVtrixZq_HFfy773IXOdsGM1DGMF1gMArGAHleUuJDtUPbl9KpvCjIKMHxTNuDooqzL72ZxGveBPlT9ZXG1XMXPUGqtfPX7V7Me5h4vVj7Jvx2HKQizeVq-PHTPeNVKBUvBP5qPda_vJdBjjNCRJqW5f9BrKj6jliG1plpnAvTTj_EkEM_5mRM2BccVbJM8bnND8mE4dRttEvAtQDlu7h_MPh6PWMf4JDDZUvku3moL3QkX_2rGXPNNwFK5CB1knKUyu4_u9S4G3vd4eYBumfYhujsNnf0eodLjBgfc4IgbDLjBY9xgjxv8O26wxw2OuMEDbh6jkw8Hs-lh2jfaSDWlRWc3GduDmtNMaakdhV8uiCKFEozXuSqaouJc1JlUuZaG1UZWpADPf0KLqiacbqONdtmapwjLKmuajBPFRAUrJZTRWSVEAVcZlptJgt6GdSt1z0Jvm6Gcli4bgsryPZ1O3XIfJej1MPfcc6_cOGsnLH_Zv5uXJQG3v2AMzPsEvRpOwzLbz2GqNcuVnUMBqHwiWYKeeLENtwliTtA2yHEYjlB49sdLnqOtiP8dtNFdrMwLMFy76mUPtJ-cKppV
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+advanced+strategies+for+bimetallenes+toward+electrocatalytic+energy+conversion+reactions&rft.jtitle=Chemical+communications+%28Cambridge%2C+England%29&rft.au=Sanati%2C+Soheila&rft.au=Wang%2C+Qiyou&rft.au=Abazari%2C+Reza&rft.au=Liu%2C+Min&rft.date=2024-03-14&rft.eissn=1364-548X&rft.volume=60&rft.issue=23&rft.spage=3129&rft_id=info:doi/10.1039%2Fd3cc06073j&rft_id=info%3Apmid%2F38404151&rft.externalDocID=38404151
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-7345&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-7345&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-7345&client=summon