Insights into the pH effect on hydrogen electrocatalysis
Hydrogen electrocatalytic reactions, including the hydrogen evolution reaction (HER) and the hydrogen oxidation reaction (HOR), play a crucial role in a wide range of energy conversion and storage technologies. However, the HER and HOR display anomalous non-Nernstian pH dependent kinetics, showing t...
Saved in:
Published in | Chemical Society reviews Vol. 53; no. 2; pp. 1253 - 1311 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
14.10.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0306-0012 1460-4744 1460-4744 |
DOI | 10.1039/d4cs00370e |
Cover
Loading…
Abstract | Hydrogen electrocatalytic reactions, including the hydrogen evolution reaction (HER) and the hydrogen oxidation reaction (HOR), play a crucial role in a wide range of energy conversion and storage technologies. However, the HER and HOR display anomalous non-Nernstian pH dependent kinetics, showing two to three orders of magnitude sluggish kinetics in alkaline media compared to that in acidic media. Fundamental understanding of the origins of the intrinsic pH effect has attracted substantial interest from the electrocatalysis community. More critically, a fundamental molecular level understanding of this effect is still debatable, but is essential for developing active, stable, and affordable fuel cells and water electrolysis technologies. Against this backdrop, in this review, we provide a comprehensive overview of the intrinsic pH effect on hydrogen electrocatalysis, covering the experimental observations, underlying principles, and strategies for catalyst design. We discuss the strengths and shortcomings of various activity descriptors, including hydrogen binding energy (HBE) theory, bifunctional theory, potential of zero free charge (pzfc) theory, 2B theory and other theories, across different electrolytes and catalyst surfaces, and outline their interrelations where possible. Additionally, we highlight the design principles and research progress in improving the alkaline HER/HOR kinetics by catalyst design and electrolyte optimization employing the aforementioned theories. Finally, the remaining controversies about the pH effects on HER/HOR kinetics as well as the challenges and possible research directions in this field are also put forward. This review aims to provide researchers with a comprehensive understanding of the intrinsic pH effect and inspire the development of more cost-effective and durable alkaline water electrolyzers (AWEs) and anion exchange membrane fuel cells (AMFCs) for a sustainable energy future.
This review systematically provides various insights into the pH effect on hydrogen electrocatalysis, and thus providing a reference for future development of hydrogen electrocatalysis based on these insights. |
---|---|
AbstractList | Hydrogen electrocatalytic reactions, including the hydrogen evolution reaction (HER) and the hydrogen oxidation reaction (HOR), play a crucial role in a wide range of energy conversion and storage technologies. However, the HER and HOR display anomalous non-Nernstian pH dependent kinetics, showing two to three orders of magnitude sluggish kinetics in alkaline media compared to that in acidic media. Fundamental understanding of the origins of the intrinsic pH effect has attracted substantial interest from the electrocatalysis community. More critically, a fundamental molecular level understanding of this effect is still debatable, but is essential for developing active, stable, and affordable fuel cells and water electrolysis technologies. Against this backdrop, in this review, we provide a comprehensive overview of the intrinsic pH effect on hydrogen electrocatalysis, covering the experimental observations, underlying principles, and strategies for catalyst design. We discuss the strengths and shortcomings of various activity descriptors, including hydrogen binding energy (HBE) theory, bifunctional theory, potential of zero free charge (pzfc) theory, 2B theory and other theories, across different electrolytes and catalyst surfaces, and outline their interrelations where possible. Additionally, we highlight the design principles and research progress in improving the alkaline HER/HOR kinetics by catalyst design and electrolyte optimization employing the aforementioned theories. Finally, the remaining controversies about the pH effects on HER/HOR kinetics as well as the challenges and possible research directions in this field are also put forward. This review aims to provide researchers with a comprehensive understanding of the intrinsic pH effect and inspire the development of more cost-effective and durable alkaline water electrolyzers (AWEs) and anion exchange membrane fuel cells (AMFCs) for a sustainable energy future. Hydrogen electrocatalytic reactions, including the hydrogen evolution reaction (HER) and the hydrogen oxidation reaction (HOR), play a crucial role in a wide range of energy conversion and storage technologies. However, the HER and HOR display anomalous non-Nernstian pH dependent kinetics, showing two to three orders of magnitude sluggish kinetics in alkaline media compared to that in acidic media. Fundamental understanding of the origins of the intrinsic pH effect has attracted substantial interest from the electrocatalysis community. More critically, a fundamental molecular level understanding of this effect is still debatable, but is essential for developing active, stable, and affordable fuel cells and water electrolysis technologies. Against this backdrop, in this review, we provide a comprehensive overview of the intrinsic pH effect on hydrogen electrocatalysis, covering the experimental observations, underlying principles, and strategies for catalyst design. We discuss the strengths and shortcomings of various activity descriptors, including hydrogen binding energy (HBE) theory, bifunctional theory, potential of zero free charge (pzfc) theory, 2B theory and other theories, across different electrolytes and catalyst surfaces, and outline their interrelations where possible. Additionally, we highlight the design principles and research progress in improving the alkaline HER/HOR kinetics by catalyst design and electrolyte optimization employing the aforementioned theories. Finally, the remaining controversies about the pH effects on HER/HOR kinetics as well as the challenges and possible research directions in this field are also put forward. This review aims to provide researchers with a comprehensive understanding of the intrinsic pH effect and inspire the development of more cost-effective and durable alkaline water electrolyzers (AWEs) and anion exchange membrane fuel cells (AMFCs) for a sustainable energy future. This review systematically provides various insights into the pH effect on hydrogen electrocatalysis, and thus providing a reference for future development of hydrogen electrocatalysis based on these insights. Hydrogen electrocatalytic reactions, including the hydrogen evolution reaction (HER) and the hydrogen oxidation reaction (HOR), play a crucial role in a wide range of energy conversion and storage technologies. However, the HER and HOR display anomalous non-Nernstian pH dependent kinetics, showing two to three orders of magnitude sluggish kinetics in alkaline media compared to that in acidic media. Fundamental understanding of the origins of the intrinsic pH effect has attracted substantial interest from the electrocatalysis community. More critically, a fundamental molecular level understanding of this effect is still debatable, but is essential for developing active, stable, and affordable fuel cells and water electrolysis technologies. Against this backdrop, in this review, we provide a comprehensive overview of the intrinsic pH effect on hydrogen electrocatalysis, covering the experimental observations, underlying principles, and strategies for catalyst design. We discuss the strengths and shortcomings of various activity descriptors, including hydrogen binding energy (HBE) theory, bifunctional theory, potential of zero free charge (pzfc) theory, 2B theory and other theories, across different electrolytes and catalyst surfaces, and outline their interrelations where possible. Additionally, we highlight the design principles and research progress in improving the alkaline HER/HOR kinetics by catalyst design and electrolyte optimization employing the aforementioned theories. Finally, the remaining controversies about the pH effects on HER/HOR kinetics as well as the challenges and possible research directions in this field are also put forward. This review aims to provide researchers with a comprehensive understanding of the intrinsic pH effect and inspire the development of more cost-effective and durable alkaline water electrolyzers (AWEs) and anion exchange membrane fuel cells (AMFCs) for a sustainable energy future.Hydrogen electrocatalytic reactions, including the hydrogen evolution reaction (HER) and the hydrogen oxidation reaction (HOR), play a crucial role in a wide range of energy conversion and storage technologies. However, the HER and HOR display anomalous non-Nernstian pH dependent kinetics, showing two to three orders of magnitude sluggish kinetics in alkaline media compared to that in acidic media. Fundamental understanding of the origins of the intrinsic pH effect has attracted substantial interest from the electrocatalysis community. More critically, a fundamental molecular level understanding of this effect is still debatable, but is essential for developing active, stable, and affordable fuel cells and water electrolysis technologies. Against this backdrop, in this review, we provide a comprehensive overview of the intrinsic pH effect on hydrogen electrocatalysis, covering the experimental observations, underlying principles, and strategies for catalyst design. We discuss the strengths and shortcomings of various activity descriptors, including hydrogen binding energy (HBE) theory, bifunctional theory, potential of zero free charge (pzfc) theory, 2B theory and other theories, across different electrolytes and catalyst surfaces, and outline their interrelations where possible. Additionally, we highlight the design principles and research progress in improving the alkaline HER/HOR kinetics by catalyst design and electrolyte optimization employing the aforementioned theories. Finally, the remaining controversies about the pH effects on HER/HOR kinetics as well as the challenges and possible research directions in this field are also put forward. This review aims to provide researchers with a comprehensive understanding of the intrinsic pH effect and inspire the development of more cost-effective and durable alkaline water electrolyzers (AWEs) and anion exchange membrane fuel cells (AMFCs) for a sustainable energy future. |
Author | Niu, Zhiqiang Qu, Yongquan Pan, Hongge Na, Guoquan Wang, Xingqiang Wang, Dingsheng Cui, Wen-Gang Li, Zhenglong Yang, Yaxiong Gao, Fan |
AuthorAffiliation | Department of Chemistry Nankai University Tsinghua University School of Materials Science and Engineering Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Northwestern Polytechnical University Xi'an Technological University School of Chemistry and Chemical Engineering Zhejiang University Institute of Science and Technology for New Energy |
AuthorAffiliation_xml | – sequence: 0 name: School of Materials Science and Engineering – sequence: 0 name: Department of Chemistry – sequence: 0 name: School of Chemistry and Chemical Engineering – sequence: 0 name: Nankai University – sequence: 0 name: Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) – sequence: 0 name: Institute of Science and Technology for New Energy – sequence: 0 name: Xi'an Technological University – sequence: 0 name: Zhejiang University – sequence: 0 name: Northwestern Polytechnical University – sequence: 0 name: Tsinghua University |
Author_xml | – sequence: 1 givenname: Wen-Gang surname: Cui fullname: Cui, Wen-Gang – sequence: 2 givenname: Fan surname: Gao fullname: Gao, Fan – sequence: 3 givenname: Guoquan surname: Na fullname: Na, Guoquan – sequence: 4 givenname: Xingqiang surname: Wang fullname: Wang, Xingqiang – sequence: 5 givenname: Zhenglong surname: Li fullname: Li, Zhenglong – sequence: 6 givenname: Yaxiong surname: Yang fullname: Yang, Yaxiong – sequence: 7 givenname: Zhiqiang surname: Niu fullname: Niu, Zhiqiang – sequence: 8 givenname: Yongquan surname: Qu fullname: Qu, Yongquan – sequence: 9 givenname: Dingsheng surname: Wang fullname: Wang, Dingsheng – sequence: 10 givenname: Hongge surname: Pan fullname: Pan, Hongge |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39239864$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0U1LAzEQBuAgirbqxbuy4EWE1SSzSXaPUj9B8KCelzQ7sSvbpCbpof_eaP0A8ZQQnhlm3ozJpvMOCTlg9IxRaM67ykRKQVHcICNWSVpWqqo2yYgClSWljO-QcYyv-caU5NtkBxoOTS2rEanvXOxfZikWvUu-SDMsFrcFWosmFd4Vs1UX_Au6Aof8ErzRSQ-r2Mc9smX1EHH_69wlz9dXT5Pb8v7h5m5ycV8aAJVKkNLWzErOhZEfQwIVgtVWTEGgrEytlKmtBMUNdqBFMxXIG6CdVAKtlrBLTtZ9F8G_LTGmdt5Hg8OgHfplbIHl_UCKhmZ6_Ie--mVwebqsmORUKi6yOvpSy-kcu3YR-rkOq_Y7kwzoGpjgYwxoW9MnnXrvUtD90DLafsTeXlaTx8_Yr3LJ6Z-S767_4sM1DtH8uN8_hHePY4jX |
CitedBy_id | crossref_primary_10_1021_acs_nanolett_5c00001 crossref_primary_10_1021_jacs_4c17605 crossref_primary_10_3390_catal15030278 crossref_primary_10_1016_j_jcis_2025_03_004 crossref_primary_10_3390_catal15010015 crossref_primary_10_1021_acsami_4c21484 crossref_primary_10_3390_catal15020117 crossref_primary_10_1021_acscatal_4c07308 crossref_primary_10_1021_acs_chemrev_4c00133 crossref_primary_10_1016_j_seppur_2025_132569 crossref_primary_10_1039_D4DT03232B |
Cites_doi | 10.1021/acs.jpcc.9b04731 10.1039/D1QM00183C 10.1002/celc.201800690 10.1002/adma.201807771 10.1021/acs.energyfuels.3c02671 10.1016/j.apcatb.2022.121279 10.1039/D1EE03482K 10.1134/S1023193517030107 10.1021/acscatal.1c02145 10.1021/jacsau.2c00662 10.1038/s41467-022-33868-8 10.1021/jacsau.3c00004 10.1016/j.jmst.2022.12.054 10.1002/aenm.202201713 10.1021/jacs.3c12011 10.1002/celc.201500341 10.1038/s41467-022-29710-w 10.1016/j.mtchem.2023.101666 10.1016/j.joule.2023.06.008 10.1016/j.nanoen.2022.107882 10.1016/j.apcatb.2023.123275 10.1016/j.mattod.2019.12.003 10.1039/D3TA04947G 10.1038/s41929-024-01180-x 10.1016/j.coelec.2022.101044 10.1039/D2EE02216H 10.1039/C7CP03081A 10.1021/acs.energyfuels.3c02358 10.1002/anie.202013047 10.1039/D3EE01929B 10.1021/jacs.0c05162 10.1021/jacs.3c12419 10.1039/D3EE02760K 10.1016/j.joule.2023.03.005 10.1038/s41467-020-15231-x 10.1016/j.coelec.2018.11.017 10.1038/s41929-022-00846-8 10.1021/acs.chemmater.9b04377 10.1039/D0CS01239D 10.1002/adma.202301369 10.1038/nchem.330 10.1016/S0167-5729(01)00022-X 10.1126/science.1087251 10.1039/D2TA09891A 10.1021/acsenergylett.1c00833 10.1038/natrevmats.2017.59 10.1002/aenm.202201478 10.1039/D3EE02382F 10.1021/jacs.8b04006 10.1021/acscatal.6b02849 10.1016/j.cej.2023.141783 10.1021/acs.chemmater.9b01334 10.1002/adma.202210727 10.1038/s41467-023-37935-6 10.1016/j.matt.2021.10.021 10.1016/S0022-0728(02)00683-6 10.1039/D1CS00838B 10.1039/D2EE00417H 10.1016/j.joule.2018.12.015 10.1038/nenergy.2017.70 10.1038/s41586-021-03504-4 10.1073/pnas.2116016119 10.1038/s41467-022-33625-x 10.1021/jacs.4c00948 10.1021/acsaem.9b01366 10.1039/D3EE01541F 10.1021/acs.chemrev.3c00382 10.1038/s41929-023-01007-1 10.1002/adma.201706279 10.1016/j.jmst.2022.12.042 10.1016/j.apcatb.2022.121389 10.1002/smll.202208076 10.1016/j.nanoen.2020.104877 10.1038/s41563-020-0667-y 10.1039/D2CS00681B 10.1038/s41467-019-09503-4 10.1039/D3CS00669G 10.1038/s41467-023-41097-w 10.1016/S1872-2067(23)64459-6 10.1002/adma.202211854 10.1002/smll.202207569 10.1149/1.3483106 10.1038/nmat4481 10.1002/advs.202303110 10.1149/2.0271815jes 10.1002/anie.201909697 10.1016/S1872-2067(22)64103-2 10.1016/j.jechem.2022.06.031 10.1016/j.cej.2021.132862 10.1039/D0EE03609A 10.1038/s41560-018-0296-8 10.1126/science.abe1951 10.1039/D4CS00412D 10.1007/s12274-022-4265-y 10.1021/acscatal.8b00689 10.1038/s41467-023-36100-3 10.1021/acs.jpcc.0c09289 10.1021/acscatal.7b02787 10.1016/j.jcat.2018.09.030 10.1039/D0CP01108H 10.1021/acs.jpcc.9b03639 10.1021/acs.jpcc.1c10362 10.1016/j.joule.2024.06.004 10.1038/s41929-023-01017-z 10.1016/j.coelec.2023.101268 10.1002/adma.202006292 10.1039/D3QM00557G 10.1016/j.jcat.2018.09.031 10.1002/adma.201806769 10.1038/s41467-019-12773-7 10.1002/aenm.202100640 10.1021/acscatal.0c02762 10.1038/ncomms6848 10.1016/j.apcatb.2020.119584 10.1002/adma.202204624 10.1002/adma.202108133 10.1016/j.ensm.2021.11.030 10.1021/acsenergylett.7b01130 10.1002/adma.202110680 10.1016/j.jallcom.2021.160271 10.1021/acsnano.3c05810 10.1038/s41586-023-06374-0 10.1016/j.apcatb.2021.120530 10.1126/science.1249061 10.1002/anie.202114310 10.1021/acscatal.8b04814 10.1016/j.elecom.2017.05.012 10.1038/s41560-020-0576-y 10.3390/nano12111806 10.1016/S0022-0728(72)80485-6 10.1002/adfm.202303384 10.1126/science.abj2421 10.1016/j.nanoen.2018.09.046 10.1002/aenm.202400052 10.1038/376238a0 10.1016/j.apcatb.2024.124047 10.1039/D0TA10712C 10.1007/s12678-019-00546-1 10.1002/sstr.202200281 10.1002/adma.202402391 10.1021/acsenergylett.3c02100 10.1021/acsnano.9b04250 10.1021/acsami.8b15003 10.1016/j.nanoen.2017.12.008 10.1002/aenm.201700513 10.1038/s41586-023-06339-3 10.1002/anie.201612183 10.1039/C4EE02564D 10.1002/anie.201708484 10.1016/j.jechem.2023.08.049 10.1021/acs.jpcb.8b02438 10.1039/D1CS00648G 10.1021/jp970930d 10.1002/anie.201801834 10.1039/D3QM00600J 10.1021/jacs.3c13676 10.1002/adma.201602912 10.1016/j.matt.2024.01.013 10.1016/j.jelechem.2003.07.033 10.1016/j.joule.2021.05.005 10.1126/sciadv.abb1219 10.1002/adfm.201908708 10.1038/s41563-023-01584-3 10.1016/j.commatsci.2015.04.026 10.1021/jp710386g 10.1002/adma.202307035 10.1021/acscatal.2c03780 10.1021/acs.chemmater.6b03972 10.1021/acscatal.1c04268 10.1002/aenm.202301222 10.1016/j.jechem.2017.09.028 10.1002/aenm.202201823 10.1126/science.1211934 10.1021/acs.langmuir.4c00298 10.1149/1.1836995 10.1021/acscatal.7b04091 10.1002/adma.202208337 10.1038/s41929-022-00851-x 10.1021/jacs.7b00765 10.1039/C4EE00440J 10.1002/anie.202015571 10.1039/D3CC04195F 10.1021/jacs.8b13228 10.1039/c3ee00045a 10.1016/j.apcatb.2018.12.035 10.1002/aenm.202001561 10.1038/s41563-019-0356-x 10.3390/catal8100450 10.1021/jacs.9b12005 10.1021/acs.chemrev.1c00854 10.1021/jacs.3c13367 10.1016/j.nanoen.2023.108557 10.1039/D2CS01068B 10.1021/jacs.9b05148 10.1016/j.cej.2023.143374 10.1039/D3EE03383J 10.1038/s41929-024-01126-3 10.1002/anie.202102803 10.1038/nmat2883 10.1038/s41467-018-06917-4 10.1021/acscatal.0c00101 10.1016/j.cej.2021.131227 10.1021/acsenergylett.9b02374 10.1002/aenm.202002453 10.1002/anie.202316550 10.1038/nchem.1574 10.1016/j.elecom.2015.06.005 10.1021/jacs.2c01830 10.1016/j.joule.2017.07.011 10.1021/acscatal.3c01610 10.1002/aenm.201602122 10.1038/nmat4738 10.1038/s41929-020-00540-7 10.1002/anie.202007567 10.1021/acs.chemrev.1c00331 10.1002/smll.202304132 10.1021/jacs.3c01164 10.1039/D0EE01754J 10.1021/ja016063e 10.1002/inf2.12357 10.1038/368444a0 10.1021/jacs.3c08598 10.1021/jacs.1c05112 10.1002/smll.202002212 10.1002/adma.202301533 10.1039/D2MH01171A 10.1038/s41467-019-08789-8 10.1002/aenm.202301492 10.1002/aenm.202200067 10.1016/j.elecom.2005.10.036 10.1021/acsmaterialslett.1c00266 10.1002/adma.201601406 10.1038/nature10173 10.1021/jacs.3c11861 10.1002/adma.202302285 10.1002/adma.202311018 10.1039/D3EE04503J 10.1038/s41586-021-04068-z 10.1007/s12274-021-3794-0 10.1021/acs.jpcc.1c05921 10.1021/acs.chemrev.1c00234 10.26434/chemrxiv.7137026 10.1016/j.jcis.2024.03.002 10.1039/D1TA02067F 10.1039/D0CS00575D 10.1002/sstr.202200404 10.1038/s41467-023-37148-x 10.1016/j.apcatb.2021.120418 10.1007/s12274-023-6037-8 10.1021/acs.chemmater.0c01396 10.1021/acsenergylett.2c02500 10.1038/nmat1752 10.1016/j.ccr.2022.214980 10.1021/acs.jpcc.3c03217 10.1002/elan.201600270 10.1021/acs.jctc.9b01248 10.1016/j.jpowsour.2024.234856 10.1002/adfm.202106715 10.1021/acs.chemrev.1c00176 10.1021/jacs.3c11263 10.1149/1.1856988 10.1021/jacs.3c12934 10.1016/j.cej.2023.144375 10.1016/j.jechem.2023.04.026 10.1002/adma.202405970 10.1016/j.coelec.2022.101003 10.1002/smll.202309226 10.1039/C9EE01743G 10.1021/acs.chemrev.2c00097 10.1021/jacs.9b09229 10.1002/aenm.201902494 10.1002/anie.202300873 10.1021/acs.jpcc.0c01715 10.1021/acsenergylett.3c02021 10.1039/D3EE03396A 10.1016/j.nanoen.2017.07.053 10.1038/nmat1223 10.1038/s41570-021-00293-2 10.1021/jacs.2c00825 10.1038/s41586-021-03793-9 10.1038/s41929-021-00668-0 10.1016/S1381-1169(96)00348-2 10.1016/j.jpowsour.2015.11.026 10.1002/admi.201701666 10.1021/acsenergylett.8b00514 10.1021/acscatal.7b02814 10.1038/379055a0 10.1103/PhysRevLett.99.126101 10.1016/S1872-2067(15)60911-1 10.1039/C9SC03831K 10.1016/j.enchem.2021.100053 10.1021/acs.jpcc.5b10979 10.1039/D3EE01856C 10.1021/jacs.9b13694 10.1016/j.mattod.2021.02.004 10.1039/D0EE03639K 10.1021/acsnano.2c00641 10.1021/acs.accounts.0c00795 10.1021/j100878a501 10.1038/280824a0 10.1016/j.jechem.2023.08.039 10.1002/anie.201914752 10.1039/D4EE01855A 10.1002/aenm.201801258 10.1021/acsmaterialslett.2c00699 10.1021/jacs.8b04770 10.1016/j.nanoen.2019.103963 10.1038/s41560-023-01302-y 10.1021/acsaem.0c01127 10.1002/aenm.202300837 10.1038/s41929-023-00942-3 10.1021/acscatal.0c03801 10.1002/aenm.202401443 10.1016/j.elecom.2019.01.006 10.1134/S1023193506110012 10.1021/ja1048237 10.1038/s41598-021-81635-4 10.1002/cssc.202300218 10.1002/advs.202302358 10.1126/sciadv.1501602 10.1021/acsenergylett.2c02897 10.1002/aenm.202303451 10.1038/nchem.771 10.1007/s12274-023-5700-4 10.1002/smll.202302866 10.1039/C8CS00846A 10.1039/D0CS01079K 10.1002/anie.201709455 10.1038/s41560-020-00710-8 10.1021/acscatal.9b00268 10.1016/j.chempr.2019.02.013 10.1021/acs.chemrev.9b00157 10.1038/s41467-021-22996-2 10.1016/j.cattod.2015.08.016 10.1016/j.jechem.2021.07.015 10.1039/D3TA03473A 10.1002/adma.202202084 10.1038/s44160-024-00545-1 10.1021/jacs.0c01104 10.1002/anie.201204842 10.1039/D0DT00050G 10.1038/s41467-022-33984-5 10.1007/s12678-012-0100-7 10.1021/acs.chemrev.6b00045 10.1002/adfm.202107479 10.1038/nmat3313 10.1038/nnano.2016.304 10.1002/cjoc.202100425 10.1016/j.electacta.2015.01.069 10.1016/S1872-2067(21)64088-3 10.1038/s41467-017-01872-y 10.1016/j.scib.2020.09.014 10.1002/adma.202304496 10.1002/anie.202319618 10.1039/c0cp00104j 10.1039/D2SC06298D 10.1021/acs.accounts.6b00635 10.1021/acscatal.0c01635 10.1039/b208322a 10.1021/jp205287b 10.1021/acsenergylett.2c01993 10.1021/acs.chemrev.3c00332 10.1002/adma.202404658 10.1039/D2CS00038E 10.1021/acs.jpclett.2c02907 10.1016/j.elecom.2008.08.019 10.1038/s41467-023-42221-6 10.1038/s41929-020-0482-5 10.1021/acs.chemrev.5b00664 10.1039/c2cp40717e 10.1016/j.chempr.2021.03.006 10.1021/acs.jpcc.1c07465 10.1002/anie.202314382 10.1002/aenm.201902449 10.1021/ja405598a 10.1016/j.joule.2022.01.007 10.1038/nature03383 10.1016/j.coelec.2022.101037 10.1038/s41467-024-49015-4 10.1039/C6CP01652A 10.1038/s41467-022-31971-4 10.1021/acs.jpclett.8b03066 10.1038/s43586-022-00164-0 10.1021/jacs.6b11291 10.1002/aenm.201700666 10.1038/s41467-019-11847-w 10.1002/adma.201605502 10.1021/ja403578s 10.1038/nenergy.2017.31 10.1021/acs.inorgchem.6b01702 10.1039/D2EE03185J 10.1149/2.0881802jes 10.1039/C9EE01202H 10.1016/j.cej.2023.144344 10.1002/adma.201907879 10.1038/s41929-022-00858-4 10.1021/acscatal.1c02673 10.1002/adma.202305437 10.1039/C8QM00070K 10.1016/j.electacta.2020.136620 10.1002/anie.202207197 10.1039/D3QI00994G |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2024 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2024 |
DBID | AAYXX CITATION NPM 7SP 7SR 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1039/d4cs00370e |
DatabaseName | CrossRef PubMed Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX Electronics & Communications Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1460-4744 |
EndPage | 1311 |
ExternalDocumentID | 39239864 10_1039_D4CS00370E d4cs00370e |
Genre | Journal Article Review |
GroupedDBID | --- -DZ -JG -~X 0-7 0R~ 29B 4.4 53G 5GY 6J9 705 70~ 7~J 85S AAEMU AAHBH AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFVBQ AGEGJ AGKEF AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K COF CS3 DU5 EBS ECGLT EE0 EF- F5P GGIMP GNO H13 HZ~ H~N IDZ J3I M4U N9A O9- OK1 P2P R7B R7D RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SKH SLH TN5 TWZ UPT VH6 WH7 ~02 AAYXX AFRZK AKMSF ALUYA CITATION R56 NPM 7SP 7SR 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c337t-366f81f6225c60037305518f5b35e64c877c8f6372ced3a59b5e2930d675efa63 |
ISSN | 0306-0012 1460-4744 |
IngestDate | Thu Jul 10 21:28:57 EDT 2025 Mon Jun 30 15:13:49 EDT 2025 Mon Jul 21 06:00:43 EDT 2025 Tue Jul 01 04:28:22 EDT 2025 Thu Apr 24 23:05:33 EDT 2025 Tue Dec 17 20:57:42 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c337t-366f81f6225c60037305518f5b35e64c877c8f6372ced3a59b5e2930d675efa63 |
Notes | Zhiqiang Niu is a Professor at the College of Chemistry, Nankai University. He received his PhD degree from the Institute of Physics, Chinese Academy of Sciences in 2010 under the supervision of Prof. Sishen Xie. After his postdoctoral research in the School of Materials Science and Engineering, Nanyang Technological University (Singapore, co-supervisor: Prof. Xiaodong Chen), he started his independent research career under the Hundred Young Academic Leaders Program of Nankai University in 2014. He was awarded the National Youth Thousand Talents of China (2015). His research interests include nanocarbon materials and advanced energy storage devices. Yongquan Qu is currently a professor at the School of Chemistry and Chemical Engineering, Northwestern Polytechnical University. He received his BS in Materials Science and Engineering from Nanjing University in 2001, MS in Chemistry from the Dalian Institute of Chemical Physics in 2004, and PhD in Chemistry from the University of California, Davis, in 2009. He worked as a postdoctoral research fellow in the University of California, Los Angeles, from 2009 to 2011. His research interests focus on heterogeneous catalysis in the areas of organic synthesis, clean energy production and environmental remediation. Hongge Pan is a professor and director of the Institute of Science and Technology for New Energy, Xi'an Technological University. He received his PhD in materials science and engineering from Zhejiang University in 1996 under a joint program between Zhejiang University and the Institute of Physics, Chinese Academy of Science. Later that year he joined Zhejiang University and became a professor in 1999. He is a recipient of the Changjiang Distinguished Professorship by the Ministry of Education (2014) and the National Outstanding Doctoral Dissertation Award (2000). His research is focused on energy materials for solid-state hydrogen storage, lithium ion batteries, electrocatalysis, and photocatalysis. Now he serves as a co-editor-in-chief of Journal of Alloys and Compounds. Dingsheng Wang received his BS degree from the Department of Chemistry and Physics at the University of Science and Technology of China in 2004 and PhD degree from the Department of Chemistry at Tsinghua University in 2009 under the supervision of Prof. Yadong Li. He conducted his postdoctoral research in Prof. Shoushan Fan's group at the Department of Physics, Tsinghua University. He joined the faculty of the Department of Chemistry, Tsinghua University, in 2012. His research interests are focused on the synthesis and applications of nanomaterials, clusters, and atomically dispersed materials. Wen-Gang Cui is currently an associate professor at the Institute of Science and Technology for New Energy, Xi'an Technological University. He received his PhD in Chemistry from Nankai University in 2021. His research interests focus on heterogeneous catalysis for energy storage and conversion applications. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-9560-7283 0000-0002-7582-3744 0000-0003-0074-7633 0000-0001-5796-0369 |
PMID | 39239864 |
PQID | 3116206725 |
PQPubID | 2047503 |
PageCount | 59 |
ParticipantIDs | proquest_journals_3116206725 rsc_primary_d4cs00370e proquest_miscellaneous_3101236590 pubmed_primary_39239864 crossref_citationtrail_10_1039_D4CS00370E crossref_primary_10_1039_D4CS00370E |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-14 |
PublicationDateYYYYMMDD | 2024-10-14 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Chemical Society reviews |
PublicationTitleAlternate | Chem Soc Rev |
PublicationYear | 2024 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Zheng (D4CS00370E/cit143/1) 2018; 165 Intikhab (D4CS00370E/cit194/1) 2019; 64 Deng (D4CS00370E/cit349/1) 2022; 34 Cheng (D4CS00370E/cit310/1) 2017; 26 Janik (D4CS00370E/cit150/1) 2018; 367 Zhao (D4CS00370E/cit224/1) 2018; 140 Bin (D4CS00370E/cit235/1) 2023; 50 Gan (D4CS00370E/cit370/1) 2024; 17 Ledezma Yanez (D4CS00370E/cit408/1) 2015; 2 Nian (D4CS00370E/cit233/1) 2021; 6 Yu (D4CS00370E/cit155/1) 2018; 8 Cowan (D4CS00370E/cit201/1) 2005; 434 Liu (D4CS00370E/cit56/1) 2024; 40 Qian (D4CS00370E/cit124/1) 2024; 8 Zhao (D4CS00370E/cit345/1) 2020; 66 Chao (D4CS00370E/cit359/1) 2024; 17 Ni (D4CS00370E/cit207/1) 2023; 6 McCrum (D4CS00370E/cit12/1) 2022; 5 Qadeer (D4CS00370E/cit57/1) 2024; 613 He (D4CS00370E/cit95/1) 2023; 7 Hua (D4CS00370E/cit238/1) 2023; 33 Wang (D4CS00370E/cit382/1) 2015; 36 Wang (D4CS00370E/cit36/1) 2019; 10 Govindarajan (D4CS00370E/cit23/1) 2022; 375 Qiu (D4CS00370E/cit88/1) 2021; 42 Wang (D4CS00370E/cit62/1) 2020; 49 An (D4CS00370E/cit128/1) 2021; 14 Qiqi (D4CS00370E/cit346/1) 2021; 426 Yang (D4CS00370E/cit104/1) 2021; 596 Wang (D4CS00370E/cit186/1) 2023; 7 Briega-Martos (D4CS00370E/cit106/1) 2020; 354 Guan (D4CS00370E/cit399/1) 2019; 10 Karlberg (D4CS00370E/cit142/1) 2007; 99 Qin (D4CS00370E/cit291/1) 2021; 12 Fangxu (D4CS00370E/cit10/1) 2023; 123 Santos (D4CS00370E/cit189/1) 2012; 14 Zhu (D4CS00370E/cit368/1) 2024; 3 Zhou (D4CS00370E/cit212/1) 2023; 8 Yeongdae (D4CS00370E/cit261/1) 2021; 303 Li (D4CS00370E/cit90/1) 2021; 3 Baldelli (D4CS00370E/cit409/1) 2001; 123 Quan (D4CS00370E/cit377/1) 2024; 124 Kim (D4CS00370E/cit305/1) 2023; 62 Subbaraman (D4CS00370E/cit69/1) 2012; 11 Su (D4CS00370E/cit85/1) 2023; 145 de Souza (D4CS00370E/cit407/1) 2006; 8 Wu (D4CS00370E/cit52/1) 2022; 122 Zheng (D4CS00370E/cit132/1) 2016; 2 Hu (D4CS00370E/cit379/1) 2023; 19 Ling (D4CS00370E/cit400/1) 2016; 28 Jia (D4CS00370E/cit335/1) 2018; 2 Wang (D4CS00370E/cit366/1) 2022; 15 Wu (D4CS00370E/cit290/1) 2020; 5 Jiang (D4CS00370E/cit123/1) 2024; 146 Zeradjanin (D4CS00370E/cit139/1) 2017; 19 Dubouis (D4CS00370E/cit404/1) 2018; 9 Shen (D4CS00370E/cit118/1) 2022; 12 Staszak Jirkovský (D4CS00370E/cit158/1) 2016; 15 Xu (D4CS00370E/cit331/1) 2022; 74 Tan (D4CS00370E/cit279/1) 2022; 13 Li (D4CS00370E/cit387/1) 2023; 8 Gao (D4CS00370E/cit121/1) 2023; 17 Gera (D4CS00370E/cit384/1) 2021; 143 Wei (D4CS00370E/cit319/1) 2023; 16 Chen (D4CS00370E/cit288/1) 2014; 343 Qiaowei (D4CS00370E/cit339/1) 2022; 456 Chen (D4CS00370E/cit114/1) 2018; 30 Zhang (D4CS00370E/cit262/1) 2021; 297 Chen (D4CS00370E/cit149/1) 2017; 56 Peng (D4CS00370E/cit135/1) 2019; 245 Qi (D4CS00370E/cit342/1) 2023; 35 Miu (D4CS00370E/cit278/1) 2022; 144 Lasia (D4CS00370E/cit154/1) 2004; 562 Wang (D4CS00370E/cit306/1) 2021; 60 Shen (D4CS00370E/cit176/1) 2024; 146 Davydova (D4CS00370E/cit67/1) 2018; 8 Genorio (D4CS00370E/cit159/1) 2010; 9 Oshchepkov (D4CS00370E/cit22/1) 2020; 10 Ledezma-Yanez (D4CS00370E/cit71/1) 2017; 2 Tang (D4CS00370E/cit396/1) 2024; 3 Wei (D4CS00370E/cit401/1) 2020; 142 Jorge (D4CS00370E/cit274/1) 2019; 10 Jia (D4CS00370E/cit19/1) 2018; 12 Rehl (D4CS00370E/cit230/1) 2022; 144 Zhang (D4CS00370E/cit303/1) 2022; 4 Li (D4CS00370E/cit165/1) 2024; 20 Han (D4CS00370E/cit281/1) 2023; 16 Cheng (D4CS00370E/cit144/1) 2018; 140 Björneholm (D4CS00370E/cit383/1) 2016; 116 Ramaswamy (D4CS00370E/cit98/1) 2017; 41 Tian (D4CS00370E/cit248/1) 2023; 19 Ma (D4CS00370E/cit244/1) 2023; 10 Han (D4CS00370E/cit292/1) 2023; 36 Guo (D4CS00370E/cit326/1) 2023; 35 Yaozhou (D4CS00370E/cit251/1) 2023; 13 Jia (D4CS00370E/cit354/1) 2016; 28 Le (D4CS00370E/cit29/1) 2020; 6 Li (D4CS00370E/cit318/1) 2019; 9 Sheng (D4CS00370E/cit75/1) 2013; 6 Strmcnik (D4CS00370E/cit232/1) 2010; 2 Subbaraman (D4CS00370E/cit145/1) 2011; 334 Craig (D4CS00370E/cit21/1) 2022; 35 Yan (D4CS00370E/cit325/1) 2023; 145 Wang (D4CS00370E/cit167/1) 2021; 60 Goyal (D4CS00370E/cit220/1) 2021; 60 Jin (D4CS00370E/cit171/1) 2018; 53 Mahmood (D4CS00370E/cit170/1) 2017; 12 Monteiro (D4CS00370E/cit14/1) 2021; 11 Greeley (D4CS00370E/cit390/1) 2004; 3 Li (D4CS00370E/cit84/1) 2022; 13 Peng (D4CS00370E/cit282/1) 2023; 3 Osawa (D4CS00370E/cit188/1) 2008; 112 Ojha (D4CS00370E/cit208/1) 2021; 11 Wang (D4CS00370E/cit91/1) 2024; n/a Li (D4CS00370E/cit172/1) 2018; 8 Guan (D4CS00370E/cit367/1) 2024; 63 Wang (D4CS00370E/cit394/1) 2024 Zhao (D4CS00370E/cit253/1) 2023; 19 Lin (D4CS00370E/cit126/1) 2024; 146 McCrum (D4CS00370E/cit38/1) 2020; 5 Luyu (D4CS00370E/cit307/1) 2023; 59 He (D4CS00370E/cit378/1) 2020; 59 Chen (D4CS00370E/cit398/1) 2018; 57 Tang (D4CS00370E/cit314/1) 2023; 33 Mu (D4CS00370E/cit285/1) 2023; 4 Hua (D4CS00370E/cit265/1) 2017; 7 Lamoureux (D4CS00370E/cit24/1) 2019; 9 Luo (D4CS00370E/cit323/1) 2017; 2 Zhu (D4CS00370E/cit369/1) 2022; 15 Shang (D4CS00370E/cit209/1) 2022; 15 Gileadi (D4CS00370E/cit49/1) 1966; 70 Miao (D4CS00370E/cit97/1) 2024; 53 Chen (D4CS00370E/cit109/1) 2024; 17 Zhao (D4CS00370E/cit206/1) 2022; 61 Ito (D4CS00370E/cit385/1) 2018; 8 Sun (D4CS00370E/cit33/1) 2023; 8 Schmidt (D4CS00370E/cit131/1) 2003; 5 Mao (D4CS00370E/cit245/1) 2023; 11 Dinh (D4CS00370E/cit258/1) 2018; 4 Shi (D4CS00370E/cit210/1) 2022; 13 Zhang (D4CS00370E/cit153/1) 2017; 29 Luo (D4CS00370E/cit7/1) 2022; 34 Mao (D4CS00370E/cit320/1) 2023; 10 Shin (D4CS00370E/cit34/1) 2018; 122 Feng (D4CS00370E/cit58/1) 2019; 123 Luo (D4CS00370E/cit93/1) 2023; 14 Intikhab (D4CS00370E/cit179/1) 2017; 7 Pan (D4CS00370E/cit110/1) 2023; 341 Zeng (D4CS00370E/cit47/1) 2022; 12 Asefa (D4CS00370E/cit334/1) 2017; 7 Wang (D4CS00370E/cit343/1) 2023; 19 Chen (D4CS00370E/cit299/1) 2024; 17 Kim (D4CS00370E/cit381/1) 2019; 141 Fu (D4CS00370E/cit178/1) 2023; 14 Ding (D4CS00370E/cit70/1) 2021; 50 Xie (D4CS00370E/cit217/1) 2020; 19 Li (D4CS00370E/cit376/1) 2024 Su (D4CS00370E/cit263/1) 2022; 66 Xie (D4CS00370E/cit297/1) 2023; 83 Zhang (D4CS00370E/cit89/1) 2022; 15 Luzar (D4CS00370E/cit101/1) 1996; 379 Wei (D4CS00370E/cit26/1) 2017; 81 Ojha (D4CS00370E/cit54/1) 2022; 119 Sheng (D4CS00370E/cit133/1) 2015; 6 Wu (D4CS00370E/cit296/1) 2023; 36 Yang (D4CS00370E/cit373/1) 2024; 63 Wan (D4CS00370E/cit11/1) 2023; 22 Shih (D4CS00370E/cit234/1) 2021; 11 Tan (D4CS00370E/cit324/1) 2023; 153 Wang (D4CS00370E/cit137/1) 2019; 10 Yang (D4CS00370E/cit311/1) 2021; 125 Auer (D4CS00370E/cit200/1) 2021; 11 Shviro (D4CS00370E/cit289/1) 2018; 5 Pan (D4CS00370E/cit254/1) 2024; 341 Yang (D4CS00370E/cit386/1) 2023; 8 Schwarz (D4CS00370E/cit134/1) 2016; 18 Zhang (D4CS00370E/cit211/1) 2023; 35 Minghui (D4CS00370E/cit246/1) 2023; 10 Xu (D4CS00370E/cit298/1) 2023; 16 Chen (D4CS00370E/cit410/1) 2010; 132 Schmidt (D4CS00370E/cit141/1) 2002; 524–525 Capdevila-Cortada (D4CS00370E/cit283/1) 2023; 6 Zhang (D4CS00370E/cit125/1) 2022; 43 Kim (D4CS00370E/cit183/1) 2021; 7 Huizhen (D4CS00370E/cit240/1) 2023; 87 Hao (D4CS00370E/cit237/1) 2023; 13 Li (D4CS00370E/cit32/1) 2022; 5 Fu (D4CS00370E/cit115/1) 2023; 35 Wang (D4CS00370E/cit295/1) 2023; 36 Hu (D4CS00370E/cit269/1) 2019; 12 Bodhankar (D4CS00370E/cit336/1) 2021; 9 Yang (D4CS00370E/cit6/1) 2023; 478 Yao (D4CS00370E/cit284/1) 2022; 16 Juarez (D4CS00370E/cit100/1) 2019; 10 Zeng (D4CS00370E/cit130/1) 2017; 2 Xu (D4CS00370E/cit65/1) 2023; 4 Mukerjee (D4CS00370E/cit313/1) 1996; 143 Yang (D4CS00370E/cit83/1) 2019; 58 Farinazzo Bergamo Dias Martins (D4CS00370E/cit161/1) 2019; 100 Zhang (D4CS00370E/cit358/1) 2024; 7 Baek (D4CS00370E/cit417/1) 2021; 5 Sarma (D4CS00370E/cit116/1) 2019; 13 Yang (D4CS00370E/cit15/1) 2022; 51 Cai (D4CS00370E/cit174/1) 2023; 62 Wenming (D4CS00370E/cit332/1) 2023; 11 Hongjing (D4CS00370E/cit341/1) 2023; 10 An (D4CS00370E/cit280/1) 2023; 16 Wang (D4CS00370E/cit215/1) 2022; 5 Strmcnik (D4CS00370E/cit80/1) 2009; 1 Kumeda (D4CS00370E/cit403/1) 2018; 9 Gupta (D4CS00370E/cit363/1) 2020; 49 Rossmeisl (D4CS00370E/cit82/1) 2016; 262 Stiopkin (D4CS00370E/cit102/1) 2011; 474 Huang (D4CS00370E/cit226/1) 2019; 123 Xu (D4CS00370E/cit103/1) 2023; 621 Trasatti (D4CS00370E/cit4/1) 1972; 39 Yang (D4CS00370E/cit37/1) 2020; 11 Marković (D4CS00370E/cit197/1) 2002; 45 Shen (D4CS00370E/cit31/1) 2020; 59 Chen (D4CS00370E/cit380/1) 2023; 467 Martínez Hincapié (D4CS00370E/cit196/1) 2017; 53 Ding (D4CS00370E/cit46/1) 2024; 15 Chen (D4CS00370E/cit309/1) 2021; 877 Lin (D4CS00370E/cit55/1) 2021; 122 Fan (D4CS00370E/cit45/1) 2024; 14 Zhao (D4CS00370E/cit352/1) 2022; 15 Wang (D4CS00370E/cit64/1) 2023; 37 Sheng (D4CS00370E/cit99/1) 2010; 157 Shah (D4CS00370E/cit227/1) 2024; 146 Ringe (D4CS00370E/cit77/1) 2023; 39 Strmcnik (D4CS00370E/cit156/1) 2008; 10 Wang (D4CS00370E/cit216/1) 2022; 45 Wang (D4CS00370E/cit317/1) 2022; 12 Marin (D4CS00370E/cit18/1) 2023; 7 Kelly (D4CS00370E/cit50/1) 2022; 126 Kong (D4CS00370E/cit362/1) 2024; 664 Luo (D4CS00370E/cit160/1) 2023; 35 Wei (D4CS00370E/cit361/1) 2023; 460 Liu (D4CS00370E/cit72/1) 2019; 141 Kepp (D4CS00370E/cit391/1) 2016; 55 Auer (D4CS00370E/cit199/1) 2021; 125 Xiong (D4CS00370E/cit120/1) 2022; 104 Yao (D4CS00370E/cit260/1) 2019; 9 McHugh (D4CS00370E/cit117/1) 2020; 10 Deng (D4CS00370E/cit375/1) 2024; 53 Domínguez-Saldaña (D4CS00370E/cit374/1) 2024 Liu (D4CS00370E/cit73/1) 2018 McCrum (D4CS00370E/cit148/1) 2016; 120 Miao (D4CS00370E/cit321/1) 2022; 34 Seunggun (D4CS00370E/cit270/1) 2021; 298 Wang (D4CS00370E/cit162/1) 2014; 2015 Huang (D4CS00370E/cit87/1) 2021; 14 Chung (D4CS00370E/cit41/1) 2020; 5 Cong (D4CS00370E/cit286/1) 2018; 44 Huimin (D4CS00370E/cit239/1) 2023; 470 Ovalle (D4CS00370E/cit79/1) 2021; 125 Shah (D4CS00370E/cit59/1) 2023; 127 Hu (D4CS00370E/cit395/1) 2024; 17 Qiang (D4CS00370E/cit247/1) 2023; 14 Zhang (D4CS00370E/cit252/1) 2023; 13 Zhang (D4CS00370E/cit44/1) 2018; 3 Tang (D4CS00370E/cit113/1) 2022; 32 Guo (D4CS00370E/cit94/1) 2023; 87 Dereka (D4CS00370E/cit202/1) 2021; 371 Wang (D4CS00370E/cit316/1) 2019; 5 Wang (D4CS00370E/cit259/1) 2019; 12 Intikhab (D4CS00370E/cit218/1) 2020; 10 Deng (D4CS00370E/cit257/1) 2023; 16 Chen (D4CS00370E/cit348/1) 2022; 35 Hammer (D4CS00370E/cit397/1) 1995; 376 Long (D4CS00370E/cit267/1) 2018; 3 Meng (D4CS00370E/cit175/1) 2024; 17 Giles (D4CS00370E/cit78/1) 2018; 367 Anastasopoulos (D4CS00370E/cit357/1) 2011; 115 Stamenkovic (D4CS00370E/cit2/1) 2017; 16 Ze (D4CS00370E/cit360/1) 2024; 146 Kim (D4CS00370E/cit405/1) 2019; 31 Lin (D4CS00370E/cit330/1) 2022; 34 Bellissent-Funel (D4CS00370E/cit105/1) 2016; 116 Li (D4CS00370E/cit411/1) 2022; 12 Ruban (D4CS00370E/cit |
References_xml | – issn: 2018 doi: Liu Li Jiao Doan Liu Zhao Huang Abraham Mukerjee Jia – volume: 123 start-page: 23931 year: 2019 ident: D4CS00370E/cit58/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b04731 – volume: 5 start-page: 4042 year: 2021 ident: D4CS00370E/cit417/1 publication-title: Mater. Chem. Front. doi: 10.1039/D1QM00183C – volume: 5 start-page: 2326 year: 2018 ident: D4CS00370E/cit221/1 publication-title: ChemElectroChem doi: 10.1002/celc.201800690 – volume: 31 start-page: 1807771 year: 2019 ident: D4CS00370E/cit127/1 publication-title: Adv. Mater. doi: 10.1002/adma.201807771 – volume: 37 start-page: 17765 year: 2023 ident: D4CS00370E/cit122/1 publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.3c02671 – volume: 309 start-page: 121279 year: 2022 ident: D4CS00370E/cit350/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2022.121279 – volume: 15 start-page: 1234 year: 2022 ident: D4CS00370E/cit352/1 publication-title: Energy Environ. Sci. doi: 10.1039/D1EE03482K – volume: 53 start-page: 227 year: 2017 ident: D4CS00370E/cit196/1 publication-title: Russ. J. Electrochem. doi: 10.1134/S1023193517030107 – volume: 11 start-page: 10892 year: 2021 ident: D4CS00370E/cit234/1 publication-title: ACS Catal. doi: 10.1021/acscatal.1c02145 – volume: 3 start-page: 1052 year: 2023 ident: D4CS00370E/cit231/1 publication-title: JACS Au doi: 10.1021/jacsau.2c00662 – volume: 13 start-page: 6666 year: 2022 ident: D4CS00370E/cit210/1 publication-title: Nat. Commun. doi: 10.1038/s41467-022-33868-8 – volume: 3 start-page: 2640 year: 2023 ident: D4CS00370E/cit282/1 publication-title: JACS Au doi: 10.1021/jacsau.3c00004 – volume: 153 start-page: 139 year: 2023 ident: D4CS00370E/cit324/1 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2022.12.054 – volume: 12 start-page: 2201713 year: 2022 ident: D4CS00370E/cit47/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202201713 – volume: 146 start-page: 8928 year: 2024 ident: D4CS00370E/cit39/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c12011 – volume: 2 start-page: 1612 year: 2015 ident: D4CS00370E/cit408/1 publication-title: ChemElectroChem doi: 10.1002/celc.201500341 – volume: 13 start-page: 2024 year: 2022 ident: D4CS00370E/cit279/1 publication-title: Nat. Commun. doi: 10.1038/s41467-022-29710-w – volume: 33 start-page: 101666 year: 2023 ident: D4CS00370E/cit314/1 publication-title: Mater. Today Chem. doi: 10.1016/j.mtchem.2023.101666 – volume: 7 start-page: 1652 year: 2023 ident: D4CS00370E/cit186/1 publication-title: Joule doi: 10.1016/j.joule.2023.06.008 – volume: 104 start-page: 107882 year: 2022 ident: D4CS00370E/cit120/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107882 – volume: 341 start-page: 123275 year: 2023 ident: D4CS00370E/cit110/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2023.123275 – volume: 36 start-page: 125 year: 2020 ident: D4CS00370E/cit86/1 publication-title: Mater. Today doi: 10.1016/j.mattod.2019.12.003 – volume: 11 start-page: 23653 year: 2023 ident: D4CS00370E/cit332/1 publication-title: J. Mater. Chem. A doi: 10.1039/D3TA04947G – volume: 7 start-page: 818 year: 2024 ident: D4CS00370E/cit112/1 publication-title: Nat. Catal. doi: 10.1038/s41929-024-01180-x – volume: 35 start-page: 101044 year: 2022 ident: D4CS00370E/cit21/1 publication-title: Curr. Opin. Electrochem. doi: 10.1016/j.coelec.2022.101044 – volume: 15 start-page: 4511 year: 2022 ident: D4CS00370E/cit89/1 publication-title: Energy Environ. Sci. doi: 10.1039/D2EE02216H – volume: 19 start-page: 17019 year: 2017 ident: D4CS00370E/cit139/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP03081A – volume: 37 start-page: 17667 year: 2023 ident: D4CS00370E/cit64/1 publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.3c02358 – volume: 60 start-page: 5771 year: 2021 ident: D4CS00370E/cit306/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202013047 – volume: 16 start-page: 4009 year: 2023 ident: D4CS00370E/cit319/1 publication-title: Energy Environ. Sci. doi: 10.1039/D3EE01929B – volume: 142 start-page: 11698 year: 2020 ident: D4CS00370E/cit53/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c05162 – volume: 146 start-page: 5355 year: 2024 ident: D4CS00370E/cit300/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c12419 – volume: 17 start-page: 1397 year: 2024 ident: D4CS00370E/cit359/1 publication-title: Energy Environ. Sci. doi: 10.1039/D3EE02760K – volume: 7 start-page: 765 year: 2023 ident: D4CS00370E/cit18/1 publication-title: Joule doi: 10.1016/j.joule.2023.03.005 – volume: 11 start-page: 1378 year: 2020 ident: D4CS00370E/cit37/1 publication-title: Nat. Commun. doi: 10.1038/s41467-020-15231-x – volume: 12 start-page: 209 year: 2018 ident: D4CS00370E/cit19/1 publication-title: Curr. Opin. Electrochem. doi: 10.1016/j.coelec.2018.11.017 – volume: 5 start-page: 900 year: 2022 ident: D4CS00370E/cit32/1 publication-title: Nat. Catal. doi: 10.1038/s41929-022-00846-8 – volume: 32 start-page: 1224 year: 2020 ident: D4CS00370E/cit392/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b04377 – volume: 50 start-page: 1495 year: 2021 ident: D4CS00370E/cit70/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS01239D – volume: 35 start-page: 2301369 year: 2023 ident: D4CS00370E/cit242/1 publication-title: Adv. Mater. doi: 10.1002/adma.202301369 – volume: 1 start-page: 466 year: 2009 ident: D4CS00370E/cit80/1 publication-title: Nat. Chem. doi: 10.1038/nchem.330 – volume: 45 start-page: 117 year: 2002 ident: D4CS00370E/cit197/1 publication-title: Surf. Sci. Rep. doi: 10.1016/S0167-5729(01)00022-X – volume: 301 start-page: 1698 year: 2003 ident: D4CS00370E/cit205/1 publication-title: Science doi: 10.1126/science.1087251 – volume: 11 start-page: 7662 year: 2023 ident: D4CS00370E/cit413/1 publication-title: J. Mater. Chem. A doi: 10.1039/D2TA09891A – volume: 6 start-page: 2174 year: 2021 ident: D4CS00370E/cit233/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.1c00833 – volume: 2 start-page: 17059 year: 2017 ident: D4CS00370E/cit323/1 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2017.59 – volume: 12 start-page: 2201478 year: 2022 ident: D4CS00370E/cit317/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202201478 – volume: 16 start-page: 6120 year: 2023 ident: D4CS00370E/cit298/1 publication-title: Energy Environ. Sci. doi: 10.1039/D3EE02382F – volume: 140 start-page: 7787 year: 2018 ident: D4CS00370E/cit144/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b04006 – volume: 7 start-page: 98 year: 2017 ident: D4CS00370E/cit152/1 publication-title: ACS Catal. doi: 10.1021/acscatal.6b02849 – volume: 460 start-page: 141783 year: 2023 ident: D4CS00370E/cit361/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.141783 – volume: 31 start-page: 5190 year: 2019 ident: D4CS00370E/cit405/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b01334 – volume: 35 start-page: 2210727 year: 2023 ident: D4CS00370E/cit211/1 publication-title: Adv. Mater. doi: 10.1002/adma.202210727 – volume: 14 start-page: 2384 year: 2023 ident: D4CS00370E/cit129/1 publication-title: Nat. Commun. doi: 10.1038/s41467-023-37935-6 – volume: 5 start-page: 162 year: 2022 ident: D4CS00370E/cit215/1 publication-title: Matter doi: 10.1016/j.matt.2021.10.021 – volume: 524–525 start-page: 252 year: 2002 ident: D4CS00370E/cit141/1 publication-title: J. Electronal. Chem. doi: 10.1016/S0022-0728(02)00683-6 – volume: 51 start-page: 1454 year: 2022 ident: D4CS00370E/cit203/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D1CS00838B – volume: 15 start-page: 2653 year: 2022 ident: D4CS00370E/cit209/1 publication-title: Energy Environ. Sci. doi: 10.1039/D2EE00417H – volume: 3 start-page: 834 year: 2019 ident: D4CS00370E/cit315/1 publication-title: Joule doi: 10.1016/j.joule.2018.12.015 – volume: 2 start-page: 17070 year: 2017 ident: D4CS00370E/cit130/1 publication-title: Nat. Energy doi: 10.1038/nenergy.2017.70 – volume: 594 start-page: 62 year: 2021 ident: D4CS00370E/cit364/1 publication-title: Nature doi: 10.1038/s41586-021-03504-4 – volume: 119 start-page: e2116016119 year: 2022 ident: D4CS00370E/cit54/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2116016119 – volume: 13 start-page: 5894 year: 2022 ident: D4CS00370E/cit138/1 publication-title: Nat. Commun. doi: 10.1038/s41467-022-33625-x – volume: 146 start-page: 12538 year: 2024 ident: D4CS00370E/cit360/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.4c00948 – volume: 2 start-page: 7886 year: 2019 ident: D4CS00370E/cit302/1 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.9b01366 – volume: 16 start-page: 4584 year: 2023 ident: D4CS00370E/cit293/1 publication-title: Energy Environ. Sci. doi: 10.1039/D3EE01541F – volume: 123 start-page: 12507 year: 2023 ident: D4CS00370E/cit10/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.3c00382 – volume: 6 start-page: 773 year: 2023 ident: D4CS00370E/cit207/1 publication-title: Nat. Catal. doi: 10.1038/s41929-023-01007-1 – volume: 30 start-page: 1706279 year: 2018 ident: D4CS00370E/cit114/1 publication-title: Adv. Mater. doi: 10.1002/adma.201706279 – volume: 60 start-page: 5771 year: 2021 ident: D4CS00370E/cit329/1 publication-title: Energy Environ. Sci. – volume: 154 start-page: 1 year: 2023 ident: D4CS00370E/cit333/1 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2022.12.042 – volume: 312 start-page: 121389 year: 2022 ident: D4CS00370E/cit273/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2022.121389 – volume: 19 start-page: 2208076 year: 2023 ident: D4CS00370E/cit253/1 publication-title: Small doi: 10.1002/smll.202208076 – volume: 74 start-page: 104877 year: 2020 ident: D4CS00370E/cit164/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104877 – volume: 19 start-page: 1006 year: 2020 ident: D4CS00370E/cit217/1 publication-title: Nat. Mater. doi: 10.1038/s41563-020-0667-y – volume: 52 start-page: 5652 year: 2023 ident: D4CS00370E/cit3/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D2CS00681B – volume: 10 start-page: 1506 year: 2019 ident: D4CS00370E/cit137/1 publication-title: Nat. Commun. doi: 10.1038/s41467-019-09503-4 – volume: 53 start-page: 2022 year: 2024 ident: D4CS00370E/cit76/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D3CS00669G – volume: 14 start-page: 5363 year: 2023 ident: D4CS00370E/cit255/1 publication-title: Nat. Commun. doi: 10.1038/s41467-023-41097-w – volume: 50 start-page: 306 year: 2023 ident: D4CS00370E/cit235/1 publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(23)64459-6 – volume: 35 start-page: 2211854 year: 2023 ident: D4CS00370E/cit160/1 publication-title: Adv. Mater. doi: 10.1002/adma.202211854 – volume: 19 start-page: 2207569 year: 2023 ident: D4CS00370E/cit248/1 publication-title: Small doi: 10.1002/smll.202207569 – volume: 157 start-page: B1529 year: 2010 ident: D4CS00370E/cit99/1 publication-title: J. Electrochem. Soc. doi: 10.1149/1.3483106 – volume: 15 start-page: 197 year: 2016 ident: D4CS00370E/cit158/1 publication-title: Nat. Mater. doi: 10.1038/nmat4481 – volume: 10 start-page: 2303110 year: 2023 ident: D4CS00370E/cit244/1 publication-title: Adv. Sci. doi: 10.1002/advs.202303110 – volume: 165 start-page: J3209 year: 2018 ident: D4CS00370E/cit180/1 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0271815jes – volume: 58 start-page: 17718 year: 2019 ident: D4CS00370E/cit83/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201909697 – volume: 43 start-page: 2987 year: 2022 ident: D4CS00370E/cit125/1 publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(22)64103-2 – volume: 74 start-page: 45 year: 2022 ident: D4CS00370E/cit331/1 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2022.06.031 – volume: 430 start-page: 132862 year: 2022 ident: D4CS00370E/cit60/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.132862 – volume: 14 start-page: 2620 year: 2021 ident: D4CS00370E/cit128/1 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE03609A – volume: 4 start-page: 107 year: 2018 ident: D4CS00370E/cit258/1 publication-title: Nat. Energy doi: 10.1038/s41560-018-0296-8 – volume: 371 start-page: 160 year: 2021 ident: D4CS00370E/cit202/1 publication-title: Science doi: 10.1126/science.abe1951 – volume: 53 start-page: 8137 year: 2024 ident: D4CS00370E/cit375/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D4CS00412D – volume: 15 start-page: 5792 year: 2022 ident: D4CS00370E/cit369/1 publication-title: Nano Res. doi: 10.1007/s12274-022-4265-y – volume: 8 start-page: 6665 year: 2018 ident: D4CS00370E/cit67/1 publication-title: ACS Catal. doi: 10.1021/acscatal.8b00689 – volume: 35 start-page: 221057 year: 2023 ident: D4CS00370E/cit342/1 publication-title: Adv. Mater. – volume: 14 start-page: 547 year: 2023 ident: D4CS00370E/cit236/1 publication-title: Nat. Commun. doi: 10.1038/s41467-023-36100-3 – volume: 125 start-page: 5020 year: 2021 ident: D4CS00370E/cit199/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.0c09289 – volume: 7 start-page: 8314 year: 2017 ident: D4CS00370E/cit179/1 publication-title: ACS Catal. doi: 10.1021/acscatal.7b02787 – volume: 367 start-page: 328 year: 2018 ident: D4CS00370E/cit78/1 publication-title: J. Catal. doi: 10.1016/j.jcat.2018.09.030 – volume: 22 start-page: 8768 year: 2020 ident: D4CS00370E/cit190/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D0CP01108H – volume: 123 start-page: 17325 year: 2019 ident: D4CS00370E/cit226/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b03639 – volume: 126 start-page: 5521 year: 2022 ident: D4CS00370E/cit50/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.1c10362 – volume: 8 start-page: 2342 year: 2024 ident: D4CS00370E/cit124/1 publication-title: Joule doi: 10.1016/j.joule.2024.06.004 – volume: 6 start-page: 916 year: 2023 ident: D4CS00370E/cit229/1 publication-title: Nat. Catal. doi: 10.1038/s41929-023-01017-z – volume: 39 start-page: 101268 year: 2023 ident: D4CS00370E/cit77/1 publication-title: Curr. Opin. Electrochem. doi: 10.1016/j.coelec.2023.101268 – volume: 33 start-page: 2006292 year: 2021 ident: D4CS00370E/cit43/1 publication-title: Adv. Mater. doi: 10.1002/adma.202006292 – volume: 7 start-page: 5661 year: 2023 ident: D4CS00370E/cit95/1 publication-title: Mater. Chem. Front. doi: 10.1039/D3QM00557G – volume: 367 start-page: 332 year: 2018 ident: D4CS00370E/cit150/1 publication-title: J. Catal. doi: 10.1016/j.jcat.2018.09.031 – volume: 31 start-page: 1806769 year: 2019 ident: D4CS00370E/cit268/1 publication-title: Adv. Mater. doi: 10.1002/adma.201806769 – volume: 10 start-page: 4876 year: 2019 ident: D4CS00370E/cit36/1 publication-title: Nat. Commun. doi: 10.1038/s41467-019-12773-7 – volume: 12 start-page: 2100640 year: 2021 ident: D4CS00370E/cit277/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202100640 – volume: 2015 start-page: 177 issue: 8 year: 2014 ident: D4CS00370E/cit162/1 publication-title: Energy Environ. Sci. – volume: 10 start-page: 11099 year: 2020 ident: D4CS00370E/cit222/1 publication-title: ACS Catal. doi: 10.1021/acscatal.0c02762 – volume: 6 start-page: 5848 year: 2015 ident: D4CS00370E/cit133/1 publication-title: Nat. Commun. doi: 10.1038/ncomms6848 – volume: 282 start-page: 119584 year: 2021 ident: D4CS00370E/cit111/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2020.119584 – volume: 34 start-page: 2204624 year: 2022 ident: D4CS00370E/cit271/1 publication-title: Adv. Mater. doi: 10.1002/adma.202204624 – volume: 34 start-page: 2108133 year: 2022 ident: D4CS00370E/cit7/1 publication-title: Adv. Mater. doi: 10.1002/adma.202108133 – volume: 3 start-page: 74 year: 2024 ident: D4CS00370E/cit368/1 publication-title: Interdiscip. Mater. – volume: 45 start-page: 24 year: 2022 ident: D4CS00370E/cit216/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2021.11.030 – volume: 3 start-page: 290 year: 2018 ident: D4CS00370E/cit267/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b01130 – volume: 34 start-page: 2110680 year: 2022 ident: D4CS00370E/cit349/1 publication-title: Adv. Mater. doi: 10.1002/adma.202110680 – volume: 877 start-page: 160271 year: 2021 ident: D4CS00370E/cit309/1 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2021.160271 – volume: 17 start-page: 20804 year: 2023 ident: D4CS00370E/cit121/1 publication-title: ACS Nano doi: 10.1021/acsnano.3c05810 – volume: 621 start-page: 506 year: 2023 ident: D4CS00370E/cit103/1 publication-title: Nature doi: 10.1038/s41586-023-06374-0 – volume: 298 start-page: 120530 year: 2021 ident: D4CS00370E/cit270/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2021.120530 – volume: 343 start-page: 1339 year: 2014 ident: D4CS00370E/cit288/1 publication-title: Science doi: 10.1126/science.1249061 – volume: 61 start-page: e202114310 year: 2022 ident: D4CS00370E/cit214/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202114310 – volume: 9 start-page: 5084 year: 2019 ident: D4CS00370E/cit318/1 publication-title: ACS Catal. doi: 10.1021/acscatal.8b04814 – volume: 81 start-page: 1 year: 2017 ident: D4CS00370E/cit26/1 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2017.05.012 – volume: 10 start-page: 2303110 year: 2023 ident: D4CS00370E/cit246/1 publication-title: Adv. Energy Mater. – volume: 5 start-page: 222 year: 2020 ident: D4CS00370E/cit41/1 publication-title: Nat. Energy doi: 10.1038/s41560-020-0576-y – volume: 12 start-page: 1806 year: 2022 ident: D4CS00370E/cit340/1 publication-title: Nanomaterials doi: 10.3390/nano12111806 – volume: 39 start-page: 163 year: 1972 ident: D4CS00370E/cit4/1 publication-title: J. Electroanal. Chem. doi: 10.1016/S0022-0728(72)80485-6 – volume: 33 start-page: 2306340 year: 2023 ident: D4CS00370E/cit238/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202303384 – volume: 375 start-page: 379 year: 2022 ident: D4CS00370E/cit23/1 publication-title: Science doi: 10.1126/science.abj2421 – volume: 53 start-page: 690 year: 2018 ident: D4CS00370E/cit171/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.09.046 – volume: 14 start-page: 2400052 year: 2024 ident: D4CS00370E/cit45/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202400052 – volume: 376 start-page: 238 year: 1995 ident: D4CS00370E/cit397/1 publication-title: Nature doi: 10.1038/376238a0 – volume: 352 start-page: 124047 year: 2024 ident: D4CS00370E/cit108/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2024.124047 – volume: 9 start-page: 3180 year: 2021 ident: D4CS00370E/cit336/1 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA10712C – volume: 10 start-page: 584 year: 2019 ident: D4CS00370E/cit100/1 publication-title: Electrocatalysis doi: 10.1007/s12678-019-00546-1 – volume: 4 start-page: 2200281 year: 2023 ident: D4CS00370E/cit285/1 publication-title: Small Struct. doi: 10.1002/sstr.202200281 – start-page: 2402391 year: 2024 ident: D4CS00370E/cit394/1 publication-title: Adv. Mater. doi: 10.1002/adma.202402391 – volume: 8 start-page: 5175 year: 2023 ident: D4CS00370E/cit386/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.3c02100 – volume: 13 start-page: 10448 year: 2019 ident: D4CS00370E/cit116/1 publication-title: ACS Nano doi: 10.1021/acsnano.9b04250 – volume: 11 start-page: 613 year: 2019 ident: D4CS00370E/cit191/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b15003 – volume: 44 start-page: 288 year: 2018 ident: D4CS00370E/cit286/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.12.008 – volume: 7 start-page: 1700513 year: 2017 ident: D4CS00370E/cit266/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700513 – volume: 621 start-page: 300 year: 2023 ident: D4CS00370E/cit228/1 publication-title: Nature doi: 10.1038/s41586-023-06339-3 – volume: 56 start-page: 4211 year: 2017 ident: D4CS00370E/cit181/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201612183 – volume: 8 start-page: 177 year: 2015 ident: D4CS00370E/cit74/1 publication-title: Energy Environ. Sci. doi: 10.1039/C4EE02564D – volume: 56 start-page: 15594 year: 2017 ident: D4CS00370E/cit166/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201708484 – volume: 87 start-page: 518 year: 2023 ident: D4CS00370E/cit94/1 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2023.08.049 – volume: 122 start-page: 6781 year: 2018 ident: D4CS00370E/cit34/1 publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.8b02438 – volume: 51 start-page: 3794 year: 2022 ident: D4CS00370E/cit412/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D1CS00648G – volume: 101 start-page: 5405 year: 1997 ident: D4CS00370E/cit157/1 publication-title: J. Phys. Chem. B doi: 10.1021/jp970930d – volume: 57 start-page: 5076 year: 2018 ident: D4CS00370E/cit398/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201801834 – volume: 7 start-page: 6366 year: 2023 ident: D4CS00370E/cit96/1 publication-title: Mater. Chem. Front. doi: 10.1039/D3QM00600J – volume: 146 start-page: 4883 year: 2024 ident: D4CS00370E/cit126/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c13676 – volume: 28 start-page: 9532 year: 2016 ident: D4CS00370E/cit354/1 publication-title: Adv. Mater. doi: 10.1002/adma.201602912 – volume: 7 start-page: 1245 year: 2024 ident: D4CS00370E/cit301/1 publication-title: Matter doi: 10.1016/j.matt.2024.01.013 – volume: 562 start-page: 23 year: 2004 ident: D4CS00370E/cit154/1 publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2003.07.033 – volume: 5 start-page: 1704 year: 2021 ident: D4CS00370E/cit40/1 publication-title: Joule doi: 10.1016/j.joule.2021.05.005 – volume: 6 start-page: eabb1219 year: 2020 ident: D4CS00370E/cit29/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.abb1219 – volume: 30 start-page: 1908708 year: 2020 ident: D4CS00370E/cit337/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201908708 – volume: 22 start-page: 1022 year: 2023 ident: D4CS00370E/cit11/1 publication-title: Nat. Mater. doi: 10.1038/s41563-023-01584-3 – volume: 105 start-page: 71 year: 2015 ident: D4CS00370E/cit322/1 publication-title: Comb. Mater. Sci. doi: 10.1016/j.commatsci.2015.04.026 – volume: 112 start-page: 4248 year: 2008 ident: D4CS00370E/cit188/1 publication-title: J. Phys. Chem. C doi: 10.1021/jp710386g – volume: 36 start-page: 2307035 year: 2023 ident: D4CS00370E/cit256/1 publication-title: Adv. Mater. doi: 10.1002/adma.202307035 – volume: 12 start-page: 13930 year: 2022 ident: D4CS00370E/cit411/1 publication-title: ACS Catal. doi: 10.1021/acscatal.2c03780 – volume: 28 start-page: 9026 year: 2016 ident: D4CS00370E/cit400/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b03972 – volume: 11 start-page: 14328 year: 2021 ident: D4CS00370E/cit14/1 publication-title: ACS Catal. doi: 10.1021/acscatal.1c04268 – volume: 13 start-page: 2301222 year: 2023 ident: D4CS00370E/cit177/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202301222 – volume: 26 start-page: 1245 year: 2017 ident: D4CS00370E/cit310/1 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2017.09.028 – volume: 12 start-page: 2201823 year: 2022 ident: D4CS00370E/cit118/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202201823 – volume: 334 start-page: 1256 year: 2011 ident: D4CS00370E/cit145/1 publication-title: Science doi: 10.1126/science.1211934 – volume: 40 start-page: 7632 year: 2024 ident: D4CS00370E/cit56/1 publication-title: Langmuir doi: 10.1021/acs.langmuir.4c00298 – volume: 143 start-page: 2285 year: 1996 ident: D4CS00370E/cit313/1 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1836995 – volume: 62 start-page: e20231006 year: 2023 ident: D4CS00370E/cit305/1 publication-title: Angew. Chem., Int. Ed. – volume: 8 start-page: 3579 year: 2018 ident: D4CS00370E/cit385/1 publication-title: ACS Catal. doi: 10.1021/acscatal.7b04091 – volume: 35 start-page: 2208337 year: 2022 ident: D4CS00370E/cit348/1 publication-title: Adv. Mater. doi: 10.1002/adma.202208337 – volume: 5 start-page: 923 year: 2022 ident: D4CS00370E/cit13/1 publication-title: Nat. Catal. doi: 10.1038/s41929-022-00851-x – volume: 139 start-page: 5156 year: 2017 ident: D4CS00370E/cit147/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b00765 – volume: 7 start-page: 2255 year: 2014 ident: D4CS00370E/cit81/1 publication-title: Energy Environ. Sci. doi: 10.1039/C4EE00440J – volume: 60 start-page: 5708 year: 2021 ident: D4CS00370E/cit167/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202015571 – volume: 59 start-page: 13978 year: 2023 ident: D4CS00370E/cit307/1 publication-title: Chem. Commun. doi: 10.1039/D3CC04195F – volume: 141 start-page: 3232 year: 2019 ident: D4CS00370E/cit72/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b13228 – volume: 6 start-page: 1509 year: 2013 ident: D4CS00370E/cit75/1 publication-title: Energy Environ. Sci. doi: 10.1039/c3ee00045a – volume: 245 start-page: 122 year: 2019 ident: D4CS00370E/cit135/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2018.12.035 – volume: 10 start-page: 2001561 year: 2020 ident: D4CS00370E/cit276/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202001561 – volume: 18 start-page: 697 year: 2019 ident: D4CS00370E/cit182/1 publication-title: Nat. Mater. doi: 10.1038/s41563-019-0356-x – volume: 8 start-page: 450 year: 2018 ident: D4CS00370E/cit155/1 publication-title: Catalysts doi: 10.3390/catal8100450 – volume: 142 start-page: 7765 year: 2020 ident: D4CS00370E/cit401/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b12005 – volume: 122 start-page: 11830 year: 2022 ident: D4CS00370E/cit92/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00854 – volume: 146 start-page: 9012 year: 2024 ident: D4CS00370E/cit123/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c13367 – volume: 113 start-page: 108557 year: 2023 ident: D4CS00370E/cit353/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2023.108557 – volume: 53 start-page: 2771 year: 2024 ident: D4CS00370E/cit97/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D2CS01068B – volume: 141 start-page: 15524 year: 2019 ident: D4CS00370E/cit192/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b05148 – volume: 467 start-page: 143374 year: 2023 ident: D4CS00370E/cit380/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.143374 – volume: 17 start-page: 704 year: 2024 ident: D4CS00370E/cit388/1 publication-title: Energy Environ. Sci. doi: 10.1039/D3EE03383J – volume: 7 start-page: 441 year: 2024 ident: D4CS00370E/cit358/1 publication-title: Nat. Catal. doi: 10.1038/s41929-024-01126-3 – volume: 60 start-page: 13452 year: 2021 ident: D4CS00370E/cit220/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202102803 – volume: 9 start-page: 998 year: 2010 ident: D4CS00370E/cit159/1 publication-title: Nat. Mater. doi: 10.1038/nmat2883 – volume: 9 start-page: 4378 year: 2018 ident: D4CS00370E/cit403/1 publication-title: Nat. Commun. doi: 10.1038/s41467-018-06917-4 – volume: 10 start-page: 7043 year: 2020 ident: D4CS00370E/cit22/1 publication-title: ACS Catal. doi: 10.1021/acscatal.0c00101 – volume: 426 start-page: 131227 year: 2021 ident: D4CS00370E/cit346/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.131227 – volume: 5 start-page: 192 year: 2020 ident: D4CS00370E/cit290/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b02374 – volume: 10 start-page: 2002453 year: 2020 ident: D4CS00370E/cit117/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202002453 – volume: 63 start-page: e202316550 year: 2024 ident: D4CS00370E/cit367/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202316550 – volume: 5 start-page: 300 year: 2013 ident: D4CS00370E/cit27/1 publication-title: Nat. Chem. doi: 10.1038/nchem.1574 – volume: 58 start-page: 62 year: 2015 ident: D4CS00370E/cit193/1 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2015.06.005 – volume: 144 start-page: 16338 year: 2022 ident: D4CS00370E/cit230/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c01830 – volume: 1 start-page: 383 year: 2017 ident: D4CS00370E/cit168/1 publication-title: Joule doi: 10.1016/j.joule.2017.07.011 – volume: 13 start-page: 7597 year: 2023 ident: D4CS00370E/cit251/1 publication-title: ACS Catal. doi: 10.1021/acscatal.3c01610 – volume: 7 start-page: 1602122 year: 2017 ident: D4CS00370E/cit264/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201602122 – volume: 16 start-page: 57 year: 2017 ident: D4CS00370E/cit2/1 publication-title: Nat. Mater. doi: 10.1038/nmat4738 – volume: 3 start-page: 967 year: 2020 ident: D4CS00370E/cit8/1 publication-title: Nat. Catal. doi: 10.1038/s41929-020-00540-7 – volume: 59 start-page: 22397 year: 2020 ident: D4CS00370E/cit31/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202007567 – volume: 122 start-page: 6117 year: 2022 ident: D4CS00370E/cit5/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00331 – volume: 19 start-page: 2304132 year: 2023 ident: D4CS00370E/cit379/1 publication-title: Small doi: 10.1002/smll.202304132 – volume: 145 start-page: 12051 year: 2023 ident: D4CS00370E/cit85/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c01164 – volume: 13 start-page: 3064 year: 2020 ident: D4CS00370E/cit223/1 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE01754J – volume: 123 start-page: 7697 year: 2001 ident: D4CS00370E/cit409/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja016063e – volume: 4 start-page: e12357 year: 2022 ident: D4CS00370E/cit42/1 publication-title: InfoMat doi: 10.1002/inf2.12357 – volume: 368 start-page: 444 year: 1994 ident: D4CS00370E/cit187/1 publication-title: Nature doi: 10.1038/368444a0 – volume: 145 start-page: 24218 year: 2023 ident: D4CS00370E/cit325/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c08598 – volume: 143 start-page: 15103 year: 2021 ident: D4CS00370E/cit384/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c05112 – volume: 16 start-page: 2002212 year: 2020 ident: D4CS00370E/cit275/1 publication-title: Small doi: 10.1002/smll.202002212 – volume: 35 start-page: 2301533 year: 2023 ident: D4CS00370E/cit115/1 publication-title: Adv. Mater. doi: 10.1002/adma.202301533 – volume: 17 start-page: 704 year: 2024 ident: D4CS00370E/cit175/1 publication-title: Energy Environ. Sci. doi: 10.1039/D3EE03383J – volume: 10 start-page: 340 year: 2023 ident: D4CS00370E/cit320/1 publication-title: Mater. Horiz. doi: 10.1039/D2MH01171A – volume: 10 start-page: 850 year: 2019 ident: D4CS00370E/cit406/1 publication-title: Nat. Commun. doi: 10.1038/s41467-019-08789-8 – volume: 13 start-page: 2301492 year: 2023 ident: D4CS00370E/cit252/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202301492 – volume: 12 start-page: 2200067 year: 2022 ident: D4CS00370E/cit272/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202200067 – volume: 8 start-page: 211 year: 2006 ident: D4CS00370E/cit407/1 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2005.10.036 – volume: 3 start-page: 1197 year: 2021 ident: D4CS00370E/cit338/1 publication-title: ACS Mater. Lett. doi: 10.1021/acsmaterialslett.1c00266 – volume: 28 start-page: 6845 year: 2016 ident: D4CS00370E/cit355/1 publication-title: Adv. Mater. doi: 10.1002/adma.201601406 – volume: 474 start-page: 192 year: 2011 ident: D4CS00370E/cit102/1 publication-title: Nature doi: 10.1038/nature10173 – volume: 146 start-page: 5324 year: 2024 ident: D4CS00370E/cit176/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c11861 – volume: 35 start-page: 2302285 year: 2023 ident: D4CS00370E/cit326/1 publication-title: Adv. Mater. doi: 10.1002/adma.202302285 – volume: 36 start-page: 2311018 year: 2023 ident: D4CS00370E/cit296/1 publication-title: Adv. Mater. doi: 10.1002/adma.202311018 – volume: 17 start-page: 3099 year: 2024 ident: D4CS00370E/cit395/1 publication-title: Energy Environ. Sci. doi: 10.1039/D3EE04503J – volume: 600 start-page: 81 year: 2021 ident: D4CS00370E/cit184/1 publication-title: Nature doi: 10.1038/s41586-021-04068-z – volume: 15 start-page: 1730 year: 2022 ident: D4CS00370E/cit366/1 publication-title: Nano Res. doi: 10.1007/s12274-021-3794-0 – volume: 125 start-page: 18567 year: 2021 ident: D4CS00370E/cit79/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.1c05921 – volume: 121 start-page: 13174 year: 2021 ident: D4CS00370E/cit287/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00234 – year: 2018 ident: D4CS00370E/cit73/1 doi: 10.26434/chemrxiv.7137026 – volume: 664 start-page: 178 year: 2024 ident: D4CS00370E/cit362/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2024.03.002 – volume: 9 start-page: 15415 year: 2021 ident: D4CS00370E/cit163/1 publication-title: J. Mater. Chem. A doi: 10.1039/D1TA02067F – volume: 49 start-page: 9154 year: 2020 ident: D4CS00370E/cit62/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00575D – volume: 4 start-page: 2200404 year: 2023 ident: D4CS00370E/cit65/1 publication-title: Small Struct. doi: 10.1002/sstr.202200404 – volume: 14 start-page: 6462 year: 2023 ident: D4CS00370E/cit247/1 publication-title: Nat. Commun. doi: 10.1038/s41467-023-37148-x – volume: 297 start-page: 120418 year: 2021 ident: D4CS00370E/cit262/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2021.120418 – volume: 17 start-page: 3261 year: 2024 ident: D4CS00370E/cit372/1 publication-title: Nano Res. doi: 10.1007/s12274-023-6037-8 – volume: 32 start-page: 5256 year: 2020 ident: D4CS00370E/cit48/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.0c01396 – volume: 8 start-page: 657 year: 2023 ident: D4CS00370E/cit415/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.2c02500 – volume: 5 start-page: 909 year: 2006 ident: D4CS00370E/cit389/1 publication-title: Nat. Mater. doi: 10.1038/nmat1752 – volume: 478 start-page: 214980 year: 2023 ident: D4CS00370E/cit6/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2022.214980 – volume: 127 start-page: 12841 year: 2023 ident: D4CS00370E/cit59/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.3c03217 – volume: 28 start-page: 2256 year: 2016 ident: D4CS00370E/cit119/1 publication-title: Electroanalysis doi: 10.1002/elan.201600270 – volume: 16 start-page: 2846 year: 2020 ident: D4CS00370E/cit204/1 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.9b01248 – volume: 613 start-page: 234856 year: 2024 ident: D4CS00370E/cit57/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2024.234856 – volume: 31 start-page: 2106715 year: 2021 ident: D4CS00370E/cit304/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202106715 – volume: 23 start-page: 2310591 year: 2023 ident: D4CS00370E/cit294/1 publication-title: Adv. Mater. – volume: 122 start-page: 5209 year: 2021 ident: D4CS00370E/cit55/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00176 – volume: 145 start-page: 16548 year: 2023 ident: D4CS00370E/cit249/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c11263 – volume: 152 start-page: J23 year: 2005 ident: D4CS00370E/cit140/1 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1856988 – volume: 146 start-page: 9623 year: 2024 ident: D4CS00370E/cit227/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c12934 – volume: 470 start-page: 144375 year: 2023 ident: D4CS00370E/cit239/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.144375 – volume: 83 start-page: 150 year: 2023 ident: D4CS00370E/cit297/1 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2023.04.026 – start-page: 2405970 year: 2024 ident: D4CS00370E/cit393/1 publication-title: Adv. Mater. doi: 10.1002/adma.202405970 – volume: 34 start-page: 101003 year: 2022 ident: D4CS00370E/cit20/1 publication-title: Curr. Opin. Electrochem. doi: 10.1016/j.coelec.2022.101003 – volume: 20 start-page: 2309226 year: 2024 ident: D4CS00370E/cit165/1 publication-title: Small doi: 10.1002/smll.202309226 – volume: 12 start-page: 3522 year: 2019 ident: D4CS00370E/cit259/1 publication-title: Energy Environ. Sci. doi: 10.1039/C9EE01743G – volume: 122 start-page: 10821 year: 2022 ident: D4CS00370E/cit52/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.2c00097 – volume: 141 start-page: 18256 year: 2019 ident: D4CS00370E/cit381/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b09229 – volume: 10 start-page: 1902494 year: 2019 ident: D4CS00370E/cit274/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201902494 – volume: 62 start-page: e202300873 year: 2023 ident: D4CS00370E/cit174/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202300873 – volume: 124 start-page: 12442 year: 2020 ident: D4CS00370E/cit219/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.0c01715 – volume: 8 start-page: 5161 year: 2023 ident: D4CS00370E/cit387/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.3c02021 – volume: 17 start-page: 1885 year: 2024 ident: D4CS00370E/cit299/1 publication-title: Energy Environ. Sci. doi: 10.1039/D3EE03396A – volume: 41 start-page: 765 year: 2017 ident: D4CS00370E/cit98/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.07.053 – volume: 3 start-page: 810 year: 2004 ident: D4CS00370E/cit390/1 publication-title: Nat. Mater. doi: 10.1038/nmat1223 – volume: 5 start-page: 466 year: 2021 ident: D4CS00370E/cit30/1 publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-021-00293-2 – volume: 35 start-page: 2211854 year: 2023 ident: D4CS00370E/cit243/1 publication-title: Adv. Mater. doi: 10.1002/adma.202211854 – volume: 144 start-page: 6420 year: 2022 ident: D4CS00370E/cit278/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c00825 – volume: 596 start-page: 531 year: 2021 ident: D4CS00370E/cit104/1 publication-title: Nature doi: 10.1038/s41586-021-03793-9 – volume: 4 start-page: 753 year: 2021 ident: D4CS00370E/cit213/1 publication-title: Nat. Catal. doi: 10.1038/s41929-021-00668-0 – volume: 115 start-page: 421 year: 1997 ident: D4CS00370E/cit402/1 publication-title: J. Mol. Catal. A: Chem. doi: 10.1016/S1381-1169(96)00348-2 – volume: 304 start-page: 332 year: 2016 ident: D4CS00370E/cit169/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.11.026 – volume: 5 start-page: 1701666 year: 2018 ident: D4CS00370E/cit289/1 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201701666 – volume: 3 start-page: 1360 year: 2018 ident: D4CS00370E/cit44/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00514 – volume: 8 start-page: 466 year: 2018 ident: D4CS00370E/cit35/1 publication-title: ACS Catal. doi: 10.1021/acscatal.7b02814 – volume: 40 start-page: 22069 year: 2023 ident: D4CS00370E/cit312/1 publication-title: J. Am. Chem. Soc. – volume: 379 start-page: 55 year: 1996 ident: D4CS00370E/cit101/1 publication-title: Nature doi: 10.1038/379055a0 – volume: 99 start-page: 126101 year: 2007 ident: D4CS00370E/cit142/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.126101 – volume: 36 start-page: 1476 year: 2015 ident: D4CS00370E/cit382/1 publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(15)60911-1 – volume: 10 start-page: 9165 year: 2019 ident: D4CS00370E/cit68/1 publication-title: Chem. Sci. doi: 10.1039/C9SC03831K – volume: 3 start-page: 100053 year: 2021 ident: D4CS00370E/cit90/1 publication-title: EnergyChem doi: 10.1016/j.enchem.2021.100053 – volume: 120 start-page: 457 year: 2016 ident: D4CS00370E/cit148/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b10979 – volume: 16 start-page: 5220 year: 2023 ident: D4CS00370E/cit257/1 publication-title: Energy Environ. Sci. doi: 10.1039/D3EE01856C – volume: 142 start-page: 4985 year: 2020 ident: D4CS00370E/cit28/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b13694 – volume: 48 start-page: 115 year: 2021 ident: D4CS00370E/cit347/1 publication-title: Mater. Today doi: 10.1016/j.mattod.2021.02.004 – volume: 34 start-page: 220086 year: 2022 ident: D4CS00370E/cit321/1 publication-title: Adv. Mater. – volume: 14 start-page: 883 year: 2021 ident: D4CS00370E/cit87/1 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE03639K – volume: 16 start-page: 5153 year: 2022 ident: D4CS00370E/cit284/1 publication-title: ACS Nano doi: 10.1021/acsnano.2c00641 – volume: 54 start-page: 1034 year: 2021 ident: D4CS00370E/cit416/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.0c00795 – volume: 70 start-page: 2044 year: 1966 ident: D4CS00370E/cit49/1 publication-title: J. Phys. Chem. C doi: 10.1021/j100878a501 – volume: 280 start-page: 824 year: 1979 ident: D4CS00370E/cit365/1 publication-title: Nature doi: 10.1038/280824a0 – volume: 341 start-page: 123275 year: 2024 ident: D4CS00370E/cit254/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2023.123275 – volume: 87 start-page: 286 year: 2023 ident: D4CS00370E/cit240/1 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2023.08.039 – volume: 59 start-page: 3544 year: 2020 ident: D4CS00370E/cit378/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201914752 – volume: 17 start-page: 5091 year: 2024 ident: D4CS00370E/cit109/1 publication-title: Energy Environ. Sci. doi: 10.1039/D4EE01855A – volume: 8 start-page: 1801258 year: 2018 ident: D4CS00370E/cit172/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801258 – volume: 4 start-page: 2097 year: 2022 ident: D4CS00370E/cit303/1 publication-title: ACS Mater. Lett. doi: 10.1021/acsmaterialslett.2c00699 – volume: 140 start-page: 9046 year: 2018 ident: D4CS00370E/cit224/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b04770 – volume: 64 start-page: 103963 year: 2019 ident: D4CS00370E/cit194/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.103963 – volume: 8 start-page: 859 year: 2023 ident: D4CS00370E/cit33/1 publication-title: Nat. Energy doi: 10.1038/s41560-023-01302-y – volume: 3 start-page: 9635 year: 2020 ident: D4CS00370E/cit17/1 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.0c01127 – volume: 13 start-page: 2300837 year: 2023 ident: D4CS00370E/cit237/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202300837 – volume: 6 start-page: 217 year: 2023 ident: D4CS00370E/cit283/1 publication-title: Nat. Catal. doi: 10.1038/s41929-023-00942-3 – volume: 10 start-page: 14747 year: 2020 ident: D4CS00370E/cit66/1 publication-title: ACS Catal. doi: 10.1021/acscatal.0c03801 – start-page: 2401443 year: 2024 ident: D4CS00370E/cit374/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202401443 – volume: 100 start-page: 30 year: 2019 ident: D4CS00370E/cit161/1 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2019.01.006 – volume: 42 start-page: 1145 year: 2006 ident: D4CS00370E/cit195/1 publication-title: Russ. J. Electrochem. doi: 10.1134/S1023193506110012 – volume: 132 start-page: 11336 year: 2010 ident: D4CS00370E/cit410/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1048237 – volume: 11 start-page: 2456 year: 2021 ident: D4CS00370E/cit208/1 publication-title: Sci. Rep. doi: 10.1038/s41598-021-81635-4 – volume: 16 start-page: e202300218 year: 2023 ident: D4CS00370E/cit280/1 publication-title: ChemSusChem doi: 10.1002/cssc.202300218 – volume: 10 start-page: 2302358 year: 2023 ident: D4CS00370E/cit241/1 publication-title: Adv. Sci. doi: 10.1002/advs.202302358 – volume: 2 start-page: e1501602 year: 2016 ident: D4CS00370E/cit132/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.1501602 – volume: 8 start-page: 1502 year: 2023 ident: D4CS00370E/cit63/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.2c02897 – volume: n/a start-page: 2303451 year: 2024 ident: D4CS00370E/cit91/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202303451 – volume: 2 start-page: 880 year: 2010 ident: D4CS00370E/cit232/1 publication-title: Nat. Chem. doi: 10.1038/nchem.771 – volume: 17 start-page: 18 year: 2024 ident: D4CS00370E/cit370/1 publication-title: Nano Res. doi: 10.1007/s12274-023-5700-4 – volume: 19 start-page: 2302866 year: 2023 ident: D4CS00370E/cit343/1 publication-title: Small doi: 10.1002/smll.202302866 – volume: 48 start-page: 3265 year: 2019 ident: D4CS00370E/cit327/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00846A – volume: 51 start-page: 4583 year: 2022 ident: D4CS00370E/cit1/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS01079K – volume: 56 start-page: 15025 year: 2017 ident: D4CS00370E/cit149/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201709455 – volume: 5 start-page: 891 year: 2020 ident: D4CS00370E/cit38/1 publication-title: Nat. Energy doi: 10.1038/s41560-020-00710-8 – volume: 9 start-page: 6194 year: 2019 ident: D4CS00370E/cit24/1 publication-title: ACS Catal. doi: 10.1021/acscatal.9b00268 – volume: 5 start-page: 494 year: 2019 ident: D4CS00370E/cit316/1 publication-title: Chem doi: 10.1016/j.chempr.2019.02.013 – volume: 119 start-page: 11945 year: 2019 ident: D4CS00370E/cit61/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00157 – volume: 12 start-page: 2686 year: 2021 ident: D4CS00370E/cit291/1 publication-title: Nat. Commun. doi: 10.1038/s41467-021-22996-2 – volume: 262 start-page: 36 year: 2016 ident: D4CS00370E/cit82/1 publication-title: Catal. Today doi: 10.1016/j.cattod.2015.08.016 – volume: 66 start-page: 107 year: 2022 ident: D4CS00370E/cit263/1 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2021.07.015 – volume: 11 start-page: 21420 year: 2023 ident: D4CS00370E/cit245/1 publication-title: J. Mater. Chem. A doi: 10.1039/D3TA03473A – volume: 34 start-page: 2202084 year: 2022 ident: D4CS00370E/cit330/1 publication-title: Adv. Mater. doi: 10.1002/adma.202202084 – volume: 3 start-page: 878 year: 2024 ident: D4CS00370E/cit396/1 publication-title: Nat. Synth. doi: 10.1038/s44160-024-00545-1 – volume: 142 start-page: 8748 year: 2020 ident: D4CS00370E/cit136/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c01104 – volume: 51 start-page: 12495 year: 2012 ident: D4CS00370E/cit146/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201204842 – volume: 49 start-page: 3398 year: 2020 ident: D4CS00370E/cit363/1 publication-title: Dalton Trans. doi: 10.1039/D0DT00050G – volume: 13 start-page: 6260 year: 2022 ident: D4CS00370E/cit185/1 publication-title: Nat. Commun. doi: 10.1038/s41467-022-33984-5 – volume: 3 start-page: 221 year: 2012 ident: D4CS00370E/cit225/1 publication-title: Electrocatalysis doi: 10.1007/s12678-012-0100-7 – volume: 116 start-page: 7698 year: 2016 ident: D4CS00370E/cit383/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00045 – volume: 32 start-page: 2107479 year: 2022 ident: D4CS00370E/cit113/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202107479 – volume: 11 start-page: 550 year: 2012 ident: D4CS00370E/cit69/1 publication-title: Nat. Mater. doi: 10.1038/nmat3313 – volume: 12 start-page: 441 year: 2017 ident: D4CS00370E/cit170/1 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.304 – volume: 39 start-page: 3455 year: 2021 ident: D4CS00370E/cit308/1 publication-title: Chin. J. Chem. doi: 10.1002/cjoc.202100425 – volume: 162 start-page: 138 year: 2015 ident: D4CS00370E/cit51/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.01.069 – volume: 42 start-page: 2094 year: 2021 ident: D4CS00370E/cit88/1 publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(21)64088-3 – volume: 8 start-page: 1509 year: 2017 ident: D4CS00370E/cit344/1 publication-title: Nat. Commun. doi: 10.1038/s41467-017-01872-y – volume: 66 start-page: 85 year: 2020 ident: D4CS00370E/cit345/1 publication-title: Sci. Bull. doi: 10.1016/j.scib.2020.09.014 – volume: 36 start-page: 2304496 year: 2023 ident: D4CS00370E/cit292/1 publication-title: Adv. Mater. doi: 10.1002/adma.202304496 – volume: 63 start-page: e202319618 year: 2024 ident: D4CS00370E/cit371/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202319618 – volume: 12 start-page: 15217 year: 2010 ident: D4CS00370E/cit198/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c0cp00104j – volume: 14 start-page: 3400 year: 2023 ident: D4CS00370E/cit93/1 publication-title: Chem. Sci. doi: 10.1039/D2SC06298D – volume: 50 start-page: 915 year: 2017 ident: D4CS00370E/cit356/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00635 – volume: 10 start-page: 6798 year: 2020 ident: D4CS00370E/cit218/1 publication-title: ACS Catal. doi: 10.1021/acscatal.0c01635 – volume: 5 start-page: 400 year: 2003 ident: D4CS00370E/cit131/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b208322a – volume: 115 start-page: 19226 year: 2011 ident: D4CS00370E/cit357/1 publication-title: J. Phys. Chem. C doi: 10.1021/jp205287b – volume: 8 start-page: 40 year: 2023 ident: D4CS00370E/cit212/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.2c01993 – volume: 124 start-page: 3694 year: 2024 ident: D4CS00370E/cit377/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.3c00332 – start-page: 2404658 year: 2024 ident: D4CS00370E/cit376/1 publication-title: Adv. Mater. doi: 10.1002/adma.202404658 – volume: 51 start-page: 9620 year: 2022 ident: D4CS00370E/cit15/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D2CS00038E – volume: 456 start-page: 141056 year: 2022 ident: D4CS00370E/cit339/1 publication-title: Chem. Eng. J. – volume: 13 start-page: 10550 year: 2022 ident: D4CS00370E/cit84/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.2c02907 – volume: 10 start-page: 1602 year: 2008 ident: D4CS00370E/cit156/1 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2008.08.019 – volume: 14 start-page: 6462 year: 2023 ident: D4CS00370E/cit178/1 publication-title: Nat. Commun. doi: 10.1038/s41467-023-42221-6 – volume: 3 start-page: 656 year: 2020 ident: D4CS00370E/cit414/1 publication-title: Nat. Catal. doi: 10.1038/s41929-020-0482-5 – volume: 116 start-page: 7673 year: 2016 ident: D4CS00370E/cit105/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00664 – volume: 14 start-page: 11224 year: 2012 ident: D4CS00370E/cit189/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c2cp40717e – volume: 7 start-page: 1602 year: 2021 ident: D4CS00370E/cit183/1 publication-title: Chem doi: 10.1016/j.chempr.2021.03.006 – volume: 303 start-page: 120873 year: 2021 ident: D4CS00370E/cit261/1 publication-title: Appl. Catal., B – volume: 125 start-page: 27185 year: 2021 ident: D4CS00370E/cit311/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.1c07465 – volume: 63 start-page: e202314382 year: 2024 ident: D4CS00370E/cit373/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202314382 – volume: 9 start-page: 1902449 year: 2019 ident: D4CS00370E/cit260/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201902449 – volume: 135 start-page: 13473 year: 2013 ident: D4CS00370E/cit173/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja405598a – volume: 6 start-page: 476 year: 2022 ident: D4CS00370E/cit9/1 publication-title: Joule doi: 10.1016/j.joule.2022.01.007 – volume: 434 start-page: 199 year: 2005 ident: D4CS00370E/cit201/1 publication-title: Nature doi: 10.1038/nature03383 – volume: 7 start-page: 1602122 year: 2017 ident: D4CS00370E/cit334/1 publication-title: Chem. – Eur. J. – volume: 35 start-page: 101037 year: 2022 ident: D4CS00370E/cit107/1 publication-title: Curr. Opin. Electrochem. doi: 10.1016/j.coelec.2022.101037 – volume: 15 start-page: 5336 year: 2024 ident: D4CS00370E/cit46/1 publication-title: Nat. Commun. doi: 10.1038/s41467-024-49015-4 – volume: 18 start-page: 16216 year: 2016 ident: D4CS00370E/cit134/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP01652A – volume: 13 start-page: 4200 year: 2022 ident: D4CS00370E/cit351/1 publication-title: Nat. Commun. doi: 10.1038/s41467-022-31971-4 – volume: 9 start-page: 6683 year: 2018 ident: D4CS00370E/cit404/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.8b03066 – volume: 2 start-page: 84 year: 2022 ident: D4CS00370E/cit16/1 publication-title: Nat. Rev. Methods Primers doi: 10.1038/s43586-022-00164-0 – volume: 138 start-page: 16174 year: 2016 ident: D4CS00370E/cit151/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b11291 – volume: 7 start-page: 1700666 year: 2017 ident: D4CS00370E/cit265/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700666 – volume: 10 start-page: 3755 year: 2019 ident: D4CS00370E/cit399/1 publication-title: Nat. Commun. doi: 10.1038/s41467-019-11847-w – volume: 29 start-page: 1605502 year: 2017 ident: D4CS00370E/cit153/1 publication-title: Adv. Mater. doi: 10.1002/adma.201605502 – volume: 135 start-page: 9991 year: 2013 ident: D4CS00370E/cit25/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja403578s – volume: 2 start-page: 17031 year: 2017 ident: D4CS00370E/cit71/1 publication-title: Nat. Energy doi: 10.1038/nenergy.2017.31 – volume: 55 start-page: 9461 year: 2016 ident: D4CS00370E/cit391/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.6b01702 – volume: 16 start-page: 619 year: 2023 ident: D4CS00370E/cit281/1 publication-title: Energy Environ. Sci. doi: 10.1039/D2EE03185J – volume: 165 start-page: H27 year: 2018 ident: D4CS00370E/cit143/1 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0881802jes – volume: 12 start-page: 2620 year: 2019 ident: D4CS00370E/cit269/1 publication-title: Energy Environ. Sci. doi: 10.1039/C9EE01202H – volume: 470 start-page: 144344 year: 2023 ident: D4CS00370E/cit250/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.144344 – volume: 32 start-page: 1907879 year: 2020 ident: D4CS00370E/cit328/1 publication-title: Adv. Mater. doi: 10.1002/adma.201907879 – volume: 5 start-page: 846 year: 2022 ident: D4CS00370E/cit12/1 publication-title: Nat. Catal. doi: 10.1038/s41929-022-00858-4 – volume: 11 start-page: 10324 year: 2021 ident: D4CS00370E/cit200/1 publication-title: ACS Catal. doi: 10.1021/acscatal.1c02673 – volume: 36 start-page: 2305437 year: 2023 ident: D4CS00370E/cit295/1 publication-title: Adv. Mater. doi: 10.1002/adma.202305437 – volume: 2 start-page: 1250 year: 2018 ident: D4CS00370E/cit335/1 publication-title: Mater. Chem. Front. doi: 10.1039/C8QM00070K – volume: 354 start-page: 136620 year: 2020 ident: D4CS00370E/cit106/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2020.136620 – volume: 61 start-page: e202207197 year: 2022 ident: D4CS00370E/cit206/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202207197 – volume: 10 start-page: 5686 year: 2023 ident: D4CS00370E/cit341/1 publication-title: Inorg. Chem. Front. doi: 10.1039/D3QI00994G |
SSID | ssj0011762 |
Score | 2.5788307 |
SecondaryResourceType | review_article |
Snippet | Hydrogen electrocatalytic reactions, including the hydrogen evolution reaction (HER) and the hydrogen oxidation reaction (HOR), play a crucial role in a wide... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1253 |
SubjectTerms | Acidic oxides Anion exchanging Catalysts Design optimization Electrocatalysis Electrolysis Electrolytes Electrolytic cells Energy conversion Fuel cells Hydrogen Hydrogen evolution reactions Kinetics Oxidation Reaction kinetics |
Title | Insights into the pH effect on hydrogen electrocatalysis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39239864 https://www.proquest.com/docview/3116206725 https://www.proquest.com/docview/3101236590 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BeoBLxatgKMgILhwMtvfpYxXSpgj1QqrmZtnrdUFCTprHAX49M96HAwQJuFjR7jq29lvPzO7MfEPIa96CTmhSmnCtRMKKzCSFbnhCa9D2hqtM6j7K90JML9mHOZ_7Gu4uu2RTv9Xf9-aV_A-q0Aa4YpbsPyAb_hQa4DfgC1dAGK5_hfF5t8a9NYZUORNyOXURGugE-PytWS2ukcbf1rrpj2qQgWTXIg2MAT5-0_GTBufEtvf3X5kuOaucmsN4nao_Yz0dFtdFb4aebUHTDI1X7jh6Dhry5ou_350y5AzFs83u9NlVePKQupBnY4UlE2nCpOVv9NLUUv-6VZPviEawpOiOmkWan70iPKXIgNowvUZunNQMiiqEDw6dt8lBDvuDfEQOTiaz84_BgZRJ4RxI9rU9My0t3g13_2yL_LbBAHNj5cvA9ObG7B45dPuE-MSCfp_cMt0Dcmfsy_M9JMqDHyP4MYAfL6exBT9edLEHP_4V_Efk8nQyG08TVwYj0ZTKTUKFaFXWCpC8WuCLI0lbploOn5MRTCsptWoFlbk2Da14UXMDRlzawF7QtJWgR2TULTrzhMSyBQvTUNVg_jKjaa1qU2VNUyjkfZR5RN74CSm144jHUiVfyz5WgRblezb-1E_eJCKvwtilZUbZO-rYz2vpvpx1CdALLBuQ84i8DN0wf-isqjqz2OKYnl2QF2lEHls8wmPApqdYViAiRwBQaB6Affqnjmfk7rC6j8los9qa52BVbuoXbgX9ANNVc1c |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insights+into+the+pH+effect+on+hydrogen+electrocatalysis&rft.jtitle=Chemical+Society+reviews&rft.au=Cui%2C+Wen-Gang&rft.au=Gao%2C+Fan&rft.au=Na%2C+Guoquan&rft.au=Wang%2C+Xingqiang&rft.date=2024-10-14&rft.issn=0306-0012&rft.eissn=1460-4744&rft.volume=53&rft.issue=2&rft.spage=1253&rft.epage=1311&rft_id=info:doi/10.1039%2Fd4cs00370e&rft.externalDocID=d4cs00370e |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-0012&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-0012&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-0012&client=summon |