Insights into the pH effect on hydrogen electrocatalysis

Hydrogen electrocatalytic reactions, including the hydrogen evolution reaction (HER) and the hydrogen oxidation reaction (HOR), play a crucial role in a wide range of energy conversion and storage technologies. However, the HER and HOR display anomalous non-Nernstian pH dependent kinetics, showing t...

Full description

Saved in:
Bibliographic Details
Published inChemical Society reviews Vol. 53; no. 2; pp. 1253 - 1311
Main Authors Cui, Wen-Gang, Gao, Fan, Na, Guoquan, Wang, Xingqiang, Li, Zhenglong, Yang, Yaxiong, Niu, Zhiqiang, Qu, Yongquan, Wang, Dingsheng, Pan, Hongge
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 14.10.2024
Subjects
Online AccessGet full text
ISSN0306-0012
1460-4744
1460-4744
DOI10.1039/d4cs00370e

Cover

Loading…
Abstract Hydrogen electrocatalytic reactions, including the hydrogen evolution reaction (HER) and the hydrogen oxidation reaction (HOR), play a crucial role in a wide range of energy conversion and storage technologies. However, the HER and HOR display anomalous non-Nernstian pH dependent kinetics, showing two to three orders of magnitude sluggish kinetics in alkaline media compared to that in acidic media. Fundamental understanding of the origins of the intrinsic pH effect has attracted substantial interest from the electrocatalysis community. More critically, a fundamental molecular level understanding of this effect is still debatable, but is essential for developing active, stable, and affordable fuel cells and water electrolysis technologies. Against this backdrop, in this review, we provide a comprehensive overview of the intrinsic pH effect on hydrogen electrocatalysis, covering the experimental observations, underlying principles, and strategies for catalyst design. We discuss the strengths and shortcomings of various activity descriptors, including hydrogen binding energy (HBE) theory, bifunctional theory, potential of zero free charge (pzfc) theory, 2B theory and other theories, across different electrolytes and catalyst surfaces, and outline their interrelations where possible. Additionally, we highlight the design principles and research progress in improving the alkaline HER/HOR kinetics by catalyst design and electrolyte optimization employing the aforementioned theories. Finally, the remaining controversies about the pH effects on HER/HOR kinetics as well as the challenges and possible research directions in this field are also put forward. This review aims to provide researchers with a comprehensive understanding of the intrinsic pH effect and inspire the development of more cost-effective and durable alkaline water electrolyzers (AWEs) and anion exchange membrane fuel cells (AMFCs) for a sustainable energy future. This review systematically provides various insights into the pH effect on hydrogen electrocatalysis, and thus providing a reference for future development of hydrogen electrocatalysis based on these insights.
AbstractList Hydrogen electrocatalytic reactions, including the hydrogen evolution reaction (HER) and the hydrogen oxidation reaction (HOR), play a crucial role in a wide range of energy conversion and storage technologies. However, the HER and HOR display anomalous non-Nernstian pH dependent kinetics, showing two to three orders of magnitude sluggish kinetics in alkaline media compared to that in acidic media. Fundamental understanding of the origins of the intrinsic pH effect has attracted substantial interest from the electrocatalysis community. More critically, a fundamental molecular level understanding of this effect is still debatable, but is essential for developing active, stable, and affordable fuel cells and water electrolysis technologies. Against this backdrop, in this review, we provide a comprehensive overview of the intrinsic pH effect on hydrogen electrocatalysis, covering the experimental observations, underlying principles, and strategies for catalyst design. We discuss the strengths and shortcomings of various activity descriptors, including hydrogen binding energy (HBE) theory, bifunctional theory, potential of zero free charge (pzfc) theory, 2B theory and other theories, across different electrolytes and catalyst surfaces, and outline their interrelations where possible. Additionally, we highlight the design principles and research progress in improving the alkaline HER/HOR kinetics by catalyst design and electrolyte optimization employing the aforementioned theories. Finally, the remaining controversies about the pH effects on HER/HOR kinetics as well as the challenges and possible research directions in this field are also put forward. This review aims to provide researchers with a comprehensive understanding of the intrinsic pH effect and inspire the development of more cost-effective and durable alkaline water electrolyzers (AWEs) and anion exchange membrane fuel cells (AMFCs) for a sustainable energy future.
Hydrogen electrocatalytic reactions, including the hydrogen evolution reaction (HER) and the hydrogen oxidation reaction (HOR), play a crucial role in a wide range of energy conversion and storage technologies. However, the HER and HOR display anomalous non-Nernstian pH dependent kinetics, showing two to three orders of magnitude sluggish kinetics in alkaline media compared to that in acidic media. Fundamental understanding of the origins of the intrinsic pH effect has attracted substantial interest from the electrocatalysis community. More critically, a fundamental molecular level understanding of this effect is still debatable, but is essential for developing active, stable, and affordable fuel cells and water electrolysis technologies. Against this backdrop, in this review, we provide a comprehensive overview of the intrinsic pH effect on hydrogen electrocatalysis, covering the experimental observations, underlying principles, and strategies for catalyst design. We discuss the strengths and shortcomings of various activity descriptors, including hydrogen binding energy (HBE) theory, bifunctional theory, potential of zero free charge (pzfc) theory, 2B theory and other theories, across different electrolytes and catalyst surfaces, and outline their interrelations where possible. Additionally, we highlight the design principles and research progress in improving the alkaline HER/HOR kinetics by catalyst design and electrolyte optimization employing the aforementioned theories. Finally, the remaining controversies about the pH effects on HER/HOR kinetics as well as the challenges and possible research directions in this field are also put forward. This review aims to provide researchers with a comprehensive understanding of the intrinsic pH effect and inspire the development of more cost-effective and durable alkaline water electrolyzers (AWEs) and anion exchange membrane fuel cells (AMFCs) for a sustainable energy future. This review systematically provides various insights into the pH effect on hydrogen electrocatalysis, and thus providing a reference for future development of hydrogen electrocatalysis based on these insights.
Hydrogen electrocatalytic reactions, including the hydrogen evolution reaction (HER) and the hydrogen oxidation reaction (HOR), play a crucial role in a wide range of energy conversion and storage technologies. However, the HER and HOR display anomalous non-Nernstian pH dependent kinetics, showing two to three orders of magnitude sluggish kinetics in alkaline media compared to that in acidic media. Fundamental understanding of the origins of the intrinsic pH effect has attracted substantial interest from the electrocatalysis community. More critically, a fundamental molecular level understanding of this effect is still debatable, but is essential for developing active, stable, and affordable fuel cells and water electrolysis technologies. Against this backdrop, in this review, we provide a comprehensive overview of the intrinsic pH effect on hydrogen electrocatalysis, covering the experimental observations, underlying principles, and strategies for catalyst design. We discuss the strengths and shortcomings of various activity descriptors, including hydrogen binding energy (HBE) theory, bifunctional theory, potential of zero free charge (pzfc) theory, 2B theory and other theories, across different electrolytes and catalyst surfaces, and outline their interrelations where possible. Additionally, we highlight the design principles and research progress in improving the alkaline HER/HOR kinetics by catalyst design and electrolyte optimization employing the aforementioned theories. Finally, the remaining controversies about the pH effects on HER/HOR kinetics as well as the challenges and possible research directions in this field are also put forward. This review aims to provide researchers with a comprehensive understanding of the intrinsic pH effect and inspire the development of more cost-effective and durable alkaline water electrolyzers (AWEs) and anion exchange membrane fuel cells (AMFCs) for a sustainable energy future.Hydrogen electrocatalytic reactions, including the hydrogen evolution reaction (HER) and the hydrogen oxidation reaction (HOR), play a crucial role in a wide range of energy conversion and storage technologies. However, the HER and HOR display anomalous non-Nernstian pH dependent kinetics, showing two to three orders of magnitude sluggish kinetics in alkaline media compared to that in acidic media. Fundamental understanding of the origins of the intrinsic pH effect has attracted substantial interest from the electrocatalysis community. More critically, a fundamental molecular level understanding of this effect is still debatable, but is essential for developing active, stable, and affordable fuel cells and water electrolysis technologies. Against this backdrop, in this review, we provide a comprehensive overview of the intrinsic pH effect on hydrogen electrocatalysis, covering the experimental observations, underlying principles, and strategies for catalyst design. We discuss the strengths and shortcomings of various activity descriptors, including hydrogen binding energy (HBE) theory, bifunctional theory, potential of zero free charge (pzfc) theory, 2B theory and other theories, across different electrolytes and catalyst surfaces, and outline their interrelations where possible. Additionally, we highlight the design principles and research progress in improving the alkaline HER/HOR kinetics by catalyst design and electrolyte optimization employing the aforementioned theories. Finally, the remaining controversies about the pH effects on HER/HOR kinetics as well as the challenges and possible research directions in this field are also put forward. This review aims to provide researchers with a comprehensive understanding of the intrinsic pH effect and inspire the development of more cost-effective and durable alkaline water electrolyzers (AWEs) and anion exchange membrane fuel cells (AMFCs) for a sustainable energy future.
Author Niu, Zhiqiang
Qu, Yongquan
Pan, Hongge
Na, Guoquan
Wang, Xingqiang
Wang, Dingsheng
Cui, Wen-Gang
Li, Zhenglong
Yang, Yaxiong
Gao, Fan
AuthorAffiliation Department of Chemistry
Nankai University
Tsinghua University
School of Materials Science and Engineering
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)
Northwestern Polytechnical University
Xi'an Technological University
School of Chemistry and Chemical Engineering
Zhejiang University
Institute of Science and Technology for New Energy
AuthorAffiliation_xml – sequence: 0
  name: School of Materials Science and Engineering
– sequence: 0
  name: Department of Chemistry
– sequence: 0
  name: School of Chemistry and Chemical Engineering
– sequence: 0
  name: Nankai University
– sequence: 0
  name: Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)
– sequence: 0
  name: Institute of Science and Technology for New Energy
– sequence: 0
  name: Xi'an Technological University
– sequence: 0
  name: Zhejiang University
– sequence: 0
  name: Northwestern Polytechnical University
– sequence: 0
  name: Tsinghua University
Author_xml – sequence: 1
  givenname: Wen-Gang
  surname: Cui
  fullname: Cui, Wen-Gang
– sequence: 2
  givenname: Fan
  surname: Gao
  fullname: Gao, Fan
– sequence: 3
  givenname: Guoquan
  surname: Na
  fullname: Na, Guoquan
– sequence: 4
  givenname: Xingqiang
  surname: Wang
  fullname: Wang, Xingqiang
– sequence: 5
  givenname: Zhenglong
  surname: Li
  fullname: Li, Zhenglong
– sequence: 6
  givenname: Yaxiong
  surname: Yang
  fullname: Yang, Yaxiong
– sequence: 7
  givenname: Zhiqiang
  surname: Niu
  fullname: Niu, Zhiqiang
– sequence: 8
  givenname: Yongquan
  surname: Qu
  fullname: Qu, Yongquan
– sequence: 9
  givenname: Dingsheng
  surname: Wang
  fullname: Wang, Dingsheng
– sequence: 10
  givenname: Hongge
  surname: Pan
  fullname: Pan, Hongge
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39239864$$D View this record in MEDLINE/PubMed
BookMark eNpt0U1LAzEQBuAgirbqxbuy4EWE1SSzSXaPUj9B8KCelzQ7sSvbpCbpof_eaP0A8ZQQnhlm3ozJpvMOCTlg9IxRaM67ykRKQVHcICNWSVpWqqo2yYgClSWljO-QcYyv-caU5NtkBxoOTS2rEanvXOxfZikWvUu-SDMsFrcFWosmFd4Vs1UX_Au6Aof8ErzRSQ-r2Mc9smX1EHH_69wlz9dXT5Pb8v7h5m5ycV8aAJVKkNLWzErOhZEfQwIVgtVWTEGgrEytlKmtBMUNdqBFMxXIG6CdVAKtlrBLTtZ9F8G_LTGmdt5Hg8OgHfplbIHl_UCKhmZ6_Ie--mVwebqsmORUKi6yOvpSy-kcu3YR-rkOq_Y7kwzoGpjgYwxoW9MnnXrvUtD90DLafsTeXlaTx8_Yr3LJ6Z-S767_4sM1DtH8uN8_hHePY4jX
CitedBy_id crossref_primary_10_1021_acs_nanolett_5c00001
crossref_primary_10_1021_jacs_4c17605
crossref_primary_10_3390_catal15030278
crossref_primary_10_1016_j_jcis_2025_03_004
crossref_primary_10_3390_catal15010015
crossref_primary_10_1021_acsami_4c21484
crossref_primary_10_3390_catal15020117
crossref_primary_10_1021_acscatal_4c07308
crossref_primary_10_1021_acs_chemrev_4c00133
crossref_primary_10_1016_j_seppur_2025_132569
crossref_primary_10_1039_D4DT03232B
Cites_doi 10.1021/acs.jpcc.9b04731
10.1039/D1QM00183C
10.1002/celc.201800690
10.1002/adma.201807771
10.1021/acs.energyfuels.3c02671
10.1016/j.apcatb.2022.121279
10.1039/D1EE03482K
10.1134/S1023193517030107
10.1021/acscatal.1c02145
10.1021/jacsau.2c00662
10.1038/s41467-022-33868-8
10.1021/jacsau.3c00004
10.1016/j.jmst.2022.12.054
10.1002/aenm.202201713
10.1021/jacs.3c12011
10.1002/celc.201500341
10.1038/s41467-022-29710-w
10.1016/j.mtchem.2023.101666
10.1016/j.joule.2023.06.008
10.1016/j.nanoen.2022.107882
10.1016/j.apcatb.2023.123275
10.1016/j.mattod.2019.12.003
10.1039/D3TA04947G
10.1038/s41929-024-01180-x
10.1016/j.coelec.2022.101044
10.1039/D2EE02216H
10.1039/C7CP03081A
10.1021/acs.energyfuels.3c02358
10.1002/anie.202013047
10.1039/D3EE01929B
10.1021/jacs.0c05162
10.1021/jacs.3c12419
10.1039/D3EE02760K
10.1016/j.joule.2023.03.005
10.1038/s41467-020-15231-x
10.1016/j.coelec.2018.11.017
10.1038/s41929-022-00846-8
10.1021/acs.chemmater.9b04377
10.1039/D0CS01239D
10.1002/adma.202301369
10.1038/nchem.330
10.1016/S0167-5729(01)00022-X
10.1126/science.1087251
10.1039/D2TA09891A
10.1021/acsenergylett.1c00833
10.1038/natrevmats.2017.59
10.1002/aenm.202201478
10.1039/D3EE02382F
10.1021/jacs.8b04006
10.1021/acscatal.6b02849
10.1016/j.cej.2023.141783
10.1021/acs.chemmater.9b01334
10.1002/adma.202210727
10.1038/s41467-023-37935-6
10.1016/j.matt.2021.10.021
10.1016/S0022-0728(02)00683-6
10.1039/D1CS00838B
10.1039/D2EE00417H
10.1016/j.joule.2018.12.015
10.1038/nenergy.2017.70
10.1038/s41586-021-03504-4
10.1073/pnas.2116016119
10.1038/s41467-022-33625-x
10.1021/jacs.4c00948
10.1021/acsaem.9b01366
10.1039/D3EE01541F
10.1021/acs.chemrev.3c00382
10.1038/s41929-023-01007-1
10.1002/adma.201706279
10.1016/j.jmst.2022.12.042
10.1016/j.apcatb.2022.121389
10.1002/smll.202208076
10.1016/j.nanoen.2020.104877
10.1038/s41563-020-0667-y
10.1039/D2CS00681B
10.1038/s41467-019-09503-4
10.1039/D3CS00669G
10.1038/s41467-023-41097-w
10.1016/S1872-2067(23)64459-6
10.1002/adma.202211854
10.1002/smll.202207569
10.1149/1.3483106
10.1038/nmat4481
10.1002/advs.202303110
10.1149/2.0271815jes
10.1002/anie.201909697
10.1016/S1872-2067(22)64103-2
10.1016/j.jechem.2022.06.031
10.1016/j.cej.2021.132862
10.1039/D0EE03609A
10.1038/s41560-018-0296-8
10.1126/science.abe1951
10.1039/D4CS00412D
10.1007/s12274-022-4265-y
10.1021/acscatal.8b00689
10.1038/s41467-023-36100-3
10.1021/acs.jpcc.0c09289
10.1021/acscatal.7b02787
10.1016/j.jcat.2018.09.030
10.1039/D0CP01108H
10.1021/acs.jpcc.9b03639
10.1021/acs.jpcc.1c10362
10.1016/j.joule.2024.06.004
10.1038/s41929-023-01017-z
10.1016/j.coelec.2023.101268
10.1002/adma.202006292
10.1039/D3QM00557G
10.1016/j.jcat.2018.09.031
10.1002/adma.201806769
10.1038/s41467-019-12773-7
10.1002/aenm.202100640
10.1021/acscatal.0c02762
10.1038/ncomms6848
10.1016/j.apcatb.2020.119584
10.1002/adma.202204624
10.1002/adma.202108133
10.1016/j.ensm.2021.11.030
10.1021/acsenergylett.7b01130
10.1002/adma.202110680
10.1016/j.jallcom.2021.160271
10.1021/acsnano.3c05810
10.1038/s41586-023-06374-0
10.1016/j.apcatb.2021.120530
10.1126/science.1249061
10.1002/anie.202114310
10.1021/acscatal.8b04814
10.1016/j.elecom.2017.05.012
10.1038/s41560-020-0576-y
10.3390/nano12111806
10.1016/S0022-0728(72)80485-6
10.1002/adfm.202303384
10.1126/science.abj2421
10.1016/j.nanoen.2018.09.046
10.1002/aenm.202400052
10.1038/376238a0
10.1016/j.apcatb.2024.124047
10.1039/D0TA10712C
10.1007/s12678-019-00546-1
10.1002/sstr.202200281
10.1002/adma.202402391
10.1021/acsenergylett.3c02100
10.1021/acsnano.9b04250
10.1021/acsami.8b15003
10.1016/j.nanoen.2017.12.008
10.1002/aenm.201700513
10.1038/s41586-023-06339-3
10.1002/anie.201612183
10.1039/C4EE02564D
10.1002/anie.201708484
10.1016/j.jechem.2023.08.049
10.1021/acs.jpcb.8b02438
10.1039/D1CS00648G
10.1021/jp970930d
10.1002/anie.201801834
10.1039/D3QM00600J
10.1021/jacs.3c13676
10.1002/adma.201602912
10.1016/j.matt.2024.01.013
10.1016/j.jelechem.2003.07.033
10.1016/j.joule.2021.05.005
10.1126/sciadv.abb1219
10.1002/adfm.201908708
10.1038/s41563-023-01584-3
10.1016/j.commatsci.2015.04.026
10.1021/jp710386g
10.1002/adma.202307035
10.1021/acscatal.2c03780
10.1021/acs.chemmater.6b03972
10.1021/acscatal.1c04268
10.1002/aenm.202301222
10.1016/j.jechem.2017.09.028
10.1002/aenm.202201823
10.1126/science.1211934
10.1021/acs.langmuir.4c00298
10.1149/1.1836995
10.1021/acscatal.7b04091
10.1002/adma.202208337
10.1038/s41929-022-00851-x
10.1021/jacs.7b00765
10.1039/C4EE00440J
10.1002/anie.202015571
10.1039/D3CC04195F
10.1021/jacs.8b13228
10.1039/c3ee00045a
10.1016/j.apcatb.2018.12.035
10.1002/aenm.202001561
10.1038/s41563-019-0356-x
10.3390/catal8100450
10.1021/jacs.9b12005
10.1021/acs.chemrev.1c00854
10.1021/jacs.3c13367
10.1016/j.nanoen.2023.108557
10.1039/D2CS01068B
10.1021/jacs.9b05148
10.1016/j.cej.2023.143374
10.1039/D3EE03383J
10.1038/s41929-024-01126-3
10.1002/anie.202102803
10.1038/nmat2883
10.1038/s41467-018-06917-4
10.1021/acscatal.0c00101
10.1016/j.cej.2021.131227
10.1021/acsenergylett.9b02374
10.1002/aenm.202002453
10.1002/anie.202316550
10.1038/nchem.1574
10.1016/j.elecom.2015.06.005
10.1021/jacs.2c01830
10.1016/j.joule.2017.07.011
10.1021/acscatal.3c01610
10.1002/aenm.201602122
10.1038/nmat4738
10.1038/s41929-020-00540-7
10.1002/anie.202007567
10.1021/acs.chemrev.1c00331
10.1002/smll.202304132
10.1021/jacs.3c01164
10.1039/D0EE01754J
10.1021/ja016063e
10.1002/inf2.12357
10.1038/368444a0
10.1021/jacs.3c08598
10.1021/jacs.1c05112
10.1002/smll.202002212
10.1002/adma.202301533
10.1039/D2MH01171A
10.1038/s41467-019-08789-8
10.1002/aenm.202301492
10.1002/aenm.202200067
10.1016/j.elecom.2005.10.036
10.1021/acsmaterialslett.1c00266
10.1002/adma.201601406
10.1038/nature10173
10.1021/jacs.3c11861
10.1002/adma.202302285
10.1002/adma.202311018
10.1039/D3EE04503J
10.1038/s41586-021-04068-z
10.1007/s12274-021-3794-0
10.1021/acs.jpcc.1c05921
10.1021/acs.chemrev.1c00234
10.26434/chemrxiv.7137026
10.1016/j.jcis.2024.03.002
10.1039/D1TA02067F
10.1039/D0CS00575D
10.1002/sstr.202200404
10.1038/s41467-023-37148-x
10.1016/j.apcatb.2021.120418
10.1007/s12274-023-6037-8
10.1021/acs.chemmater.0c01396
10.1021/acsenergylett.2c02500
10.1038/nmat1752
10.1016/j.ccr.2022.214980
10.1021/acs.jpcc.3c03217
10.1002/elan.201600270
10.1021/acs.jctc.9b01248
10.1016/j.jpowsour.2024.234856
10.1002/adfm.202106715
10.1021/acs.chemrev.1c00176
10.1021/jacs.3c11263
10.1149/1.1856988
10.1021/jacs.3c12934
10.1016/j.cej.2023.144375
10.1016/j.jechem.2023.04.026
10.1002/adma.202405970
10.1016/j.coelec.2022.101003
10.1002/smll.202309226
10.1039/C9EE01743G
10.1021/acs.chemrev.2c00097
10.1021/jacs.9b09229
10.1002/aenm.201902494
10.1002/anie.202300873
10.1021/acs.jpcc.0c01715
10.1021/acsenergylett.3c02021
10.1039/D3EE03396A
10.1016/j.nanoen.2017.07.053
10.1038/nmat1223
10.1038/s41570-021-00293-2
10.1021/jacs.2c00825
10.1038/s41586-021-03793-9
10.1038/s41929-021-00668-0
10.1016/S1381-1169(96)00348-2
10.1016/j.jpowsour.2015.11.026
10.1002/admi.201701666
10.1021/acsenergylett.8b00514
10.1021/acscatal.7b02814
10.1038/379055a0
10.1103/PhysRevLett.99.126101
10.1016/S1872-2067(15)60911-1
10.1039/C9SC03831K
10.1016/j.enchem.2021.100053
10.1021/acs.jpcc.5b10979
10.1039/D3EE01856C
10.1021/jacs.9b13694
10.1016/j.mattod.2021.02.004
10.1039/D0EE03639K
10.1021/acsnano.2c00641
10.1021/acs.accounts.0c00795
10.1021/j100878a501
10.1038/280824a0
10.1016/j.jechem.2023.08.039
10.1002/anie.201914752
10.1039/D4EE01855A
10.1002/aenm.201801258
10.1021/acsmaterialslett.2c00699
10.1021/jacs.8b04770
10.1016/j.nanoen.2019.103963
10.1038/s41560-023-01302-y
10.1021/acsaem.0c01127
10.1002/aenm.202300837
10.1038/s41929-023-00942-3
10.1021/acscatal.0c03801
10.1002/aenm.202401443
10.1016/j.elecom.2019.01.006
10.1134/S1023193506110012
10.1021/ja1048237
10.1038/s41598-021-81635-4
10.1002/cssc.202300218
10.1002/advs.202302358
10.1126/sciadv.1501602
10.1021/acsenergylett.2c02897
10.1002/aenm.202303451
10.1038/nchem.771
10.1007/s12274-023-5700-4
10.1002/smll.202302866
10.1039/C8CS00846A
10.1039/D0CS01079K
10.1002/anie.201709455
10.1038/s41560-020-00710-8
10.1021/acscatal.9b00268
10.1016/j.chempr.2019.02.013
10.1021/acs.chemrev.9b00157
10.1038/s41467-021-22996-2
10.1016/j.cattod.2015.08.016
10.1016/j.jechem.2021.07.015
10.1039/D3TA03473A
10.1002/adma.202202084
10.1038/s44160-024-00545-1
10.1021/jacs.0c01104
10.1002/anie.201204842
10.1039/D0DT00050G
10.1038/s41467-022-33984-5
10.1007/s12678-012-0100-7
10.1021/acs.chemrev.6b00045
10.1002/adfm.202107479
10.1038/nmat3313
10.1038/nnano.2016.304
10.1002/cjoc.202100425
10.1016/j.electacta.2015.01.069
10.1016/S1872-2067(21)64088-3
10.1038/s41467-017-01872-y
10.1016/j.scib.2020.09.014
10.1002/adma.202304496
10.1002/anie.202319618
10.1039/c0cp00104j
10.1039/D2SC06298D
10.1021/acs.accounts.6b00635
10.1021/acscatal.0c01635
10.1039/b208322a
10.1021/jp205287b
10.1021/acsenergylett.2c01993
10.1021/acs.chemrev.3c00332
10.1002/adma.202404658
10.1039/D2CS00038E
10.1021/acs.jpclett.2c02907
10.1016/j.elecom.2008.08.019
10.1038/s41467-023-42221-6
10.1038/s41929-020-0482-5
10.1021/acs.chemrev.5b00664
10.1039/c2cp40717e
10.1016/j.chempr.2021.03.006
10.1021/acs.jpcc.1c07465
10.1002/anie.202314382
10.1002/aenm.201902449
10.1021/ja405598a
10.1016/j.joule.2022.01.007
10.1038/nature03383
10.1016/j.coelec.2022.101037
10.1038/s41467-024-49015-4
10.1039/C6CP01652A
10.1038/s41467-022-31971-4
10.1021/acs.jpclett.8b03066
10.1038/s43586-022-00164-0
10.1021/jacs.6b11291
10.1002/aenm.201700666
10.1038/s41467-019-11847-w
10.1002/adma.201605502
10.1021/ja403578s
10.1038/nenergy.2017.31
10.1021/acs.inorgchem.6b01702
10.1039/D2EE03185J
10.1149/2.0881802jes
10.1039/C9EE01202H
10.1016/j.cej.2023.144344
10.1002/adma.201907879
10.1038/s41929-022-00858-4
10.1021/acscatal.1c02673
10.1002/adma.202305437
10.1039/C8QM00070K
10.1016/j.electacta.2020.136620
10.1002/anie.202207197
10.1039/D3QI00994G
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2024
Copyright_xml – notice: Copyright Royal Society of Chemistry 2024
DBID AAYXX
CITATION
NPM
7SP
7SR
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/d4cs00370e
DatabaseName CrossRef
PubMed
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
Electronics & Communications Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed

Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1460-4744
EndPage 1311
ExternalDocumentID 39239864
10_1039_D4CS00370E
d4cs00370e
Genre Journal Article
Review
GroupedDBID ---
-DZ
-JG
-~X
0-7
0R~
29B
4.4
53G
5GY
6J9
705
70~
7~J
85S
AAEMU
AAHBH
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFVBQ
AGEGJ
AGKEF
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
COF
CS3
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3I
M4U
N9A
O9-
OK1
P2P
R7B
R7D
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKH
SLH
TN5
TWZ
UPT
VH6
WH7
~02
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
R56
NPM
7SP
7SR
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c337t-366f81f6225c60037305518f5b35e64c877c8f6372ced3a59b5e2930d675efa63
ISSN 0306-0012
1460-4744
IngestDate Thu Jul 10 21:28:57 EDT 2025
Mon Jun 30 15:13:49 EDT 2025
Mon Jul 21 06:00:43 EDT 2025
Tue Jul 01 04:28:22 EDT 2025
Thu Apr 24 23:05:33 EDT 2025
Tue Dec 17 20:57:42 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c337t-366f81f6225c60037305518f5b35e64c877c8f6372ced3a59b5e2930d675efa63
Notes Zhiqiang Niu is a Professor at the College of Chemistry, Nankai University. He received his PhD degree from the Institute of Physics, Chinese Academy of Sciences in 2010 under the supervision of Prof. Sishen Xie. After his postdoctoral research in the School of Materials Science and Engineering, Nanyang Technological University (Singapore, co-supervisor: Prof. Xiaodong Chen), he started his independent research career under the Hundred Young Academic Leaders Program of Nankai University in 2014. He was awarded the National Youth Thousand Talents of China (2015). His research interests include nanocarbon materials and advanced energy storage devices.
Yongquan Qu is currently a professor at the School of Chemistry and Chemical Engineering, Northwestern Polytechnical University. He received his BS in Materials Science and Engineering from Nanjing University in 2001, MS in Chemistry from the Dalian Institute of Chemical Physics in 2004, and PhD in Chemistry from the University of California, Davis, in 2009. He worked as a postdoctoral research fellow in the University of California, Los Angeles, from 2009 to 2011. His research interests focus on heterogeneous catalysis in the areas of organic synthesis, clean energy production and environmental remediation.
Hongge Pan is a professor and director of the Institute of Science and Technology for New Energy, Xi'an Technological University. He received his PhD in materials science and engineering from Zhejiang University in 1996 under a joint program between Zhejiang University and the Institute of Physics, Chinese Academy of Science. Later that year he joined Zhejiang University and became a professor in 1999. He is a recipient of the Changjiang Distinguished Professorship by the Ministry of Education (2014) and the National Outstanding Doctoral Dissertation Award (2000). His research is focused on energy materials for solid-state hydrogen storage, lithium ion batteries, electrocatalysis, and photocatalysis. Now he serves as a co-editor-in-chief of Journal of Alloys and Compounds.
Dingsheng Wang received his BS degree from the Department of Chemistry and Physics at the University of Science and Technology of China in 2004 and PhD degree from the Department of Chemistry at Tsinghua University in 2009 under the supervision of Prof. Yadong Li. He conducted his postdoctoral research in Prof. Shoushan Fan's group at the Department of Physics, Tsinghua University. He joined the faculty of the Department of Chemistry, Tsinghua University, in 2012. His research interests are focused on the synthesis and applications of nanomaterials, clusters, and atomically dispersed materials.
Wen-Gang Cui is currently an associate professor at the Institute of Science and Technology for New Energy, Xi'an Technological University. He received his PhD in Chemistry from Nankai University in 2021. His research interests focus on heterogeneous catalysis for energy storage and conversion applications.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-9560-7283
0000-0002-7582-3744
0000-0003-0074-7633
0000-0001-5796-0369
PMID 39239864
PQID 3116206725
PQPubID 2047503
PageCount 59
ParticipantIDs proquest_journals_3116206725
rsc_primary_d4cs00370e
proquest_miscellaneous_3101236590
pubmed_primary_39239864
crossref_citationtrail_10_1039_D4CS00370E
crossref_primary_10_1039_D4CS00370E
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-14
PublicationDateYYYYMMDD 2024-10-14
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-14
  day: 14
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Chemical Society reviews
PublicationTitleAlternate Chem Soc Rev
PublicationYear 2024
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Zheng (D4CS00370E/cit143/1) 2018; 165
Intikhab (D4CS00370E/cit194/1) 2019; 64
Deng (D4CS00370E/cit349/1) 2022; 34
Cheng (D4CS00370E/cit310/1) 2017; 26
Janik (D4CS00370E/cit150/1) 2018; 367
Zhao (D4CS00370E/cit224/1) 2018; 140
Bin (D4CS00370E/cit235/1) 2023; 50
Gan (D4CS00370E/cit370/1) 2024; 17
Ledezma Yanez (D4CS00370E/cit408/1) 2015; 2
Nian (D4CS00370E/cit233/1) 2021; 6
Yu (D4CS00370E/cit155/1) 2018; 8
Cowan (D4CS00370E/cit201/1) 2005; 434
Liu (D4CS00370E/cit56/1) 2024; 40
Qian (D4CS00370E/cit124/1) 2024; 8
Zhao (D4CS00370E/cit345/1) 2020; 66
Chao (D4CS00370E/cit359/1) 2024; 17
Ni (D4CS00370E/cit207/1) 2023; 6
McCrum (D4CS00370E/cit12/1) 2022; 5
Qadeer (D4CS00370E/cit57/1) 2024; 613
He (D4CS00370E/cit95/1) 2023; 7
Hua (D4CS00370E/cit238/1) 2023; 33
Wang (D4CS00370E/cit382/1) 2015; 36
Wang (D4CS00370E/cit36/1) 2019; 10
Govindarajan (D4CS00370E/cit23/1) 2022; 375
Qiu (D4CS00370E/cit88/1) 2021; 42
Wang (D4CS00370E/cit62/1) 2020; 49
An (D4CS00370E/cit128/1) 2021; 14
Qiqi (D4CS00370E/cit346/1) 2021; 426
Yang (D4CS00370E/cit104/1) 2021; 596
Wang (D4CS00370E/cit186/1) 2023; 7
Briega-Martos (D4CS00370E/cit106/1) 2020; 354
Guan (D4CS00370E/cit399/1) 2019; 10
Karlberg (D4CS00370E/cit142/1) 2007; 99
Qin (D4CS00370E/cit291/1) 2021; 12
Fangxu (D4CS00370E/cit10/1) 2023; 123
Santos (D4CS00370E/cit189/1) 2012; 14
Zhu (D4CS00370E/cit368/1) 2024; 3
Zhou (D4CS00370E/cit212/1) 2023; 8
Yeongdae (D4CS00370E/cit261/1) 2021; 303
Li (D4CS00370E/cit90/1) 2021; 3
Baldelli (D4CS00370E/cit409/1) 2001; 123
Quan (D4CS00370E/cit377/1) 2024; 124
Kim (D4CS00370E/cit305/1) 2023; 62
Subbaraman (D4CS00370E/cit69/1) 2012; 11
Su (D4CS00370E/cit85/1) 2023; 145
de Souza (D4CS00370E/cit407/1) 2006; 8
Wu (D4CS00370E/cit52/1) 2022; 122
Zheng (D4CS00370E/cit132/1) 2016; 2
Hu (D4CS00370E/cit379/1) 2023; 19
Ling (D4CS00370E/cit400/1) 2016; 28
Jia (D4CS00370E/cit335/1) 2018; 2
Wang (D4CS00370E/cit366/1) 2022; 15
Wu (D4CS00370E/cit290/1) 2020; 5
Jiang (D4CS00370E/cit123/1) 2024; 146
Zeradjanin (D4CS00370E/cit139/1) 2017; 19
Dubouis (D4CS00370E/cit404/1) 2018; 9
Shen (D4CS00370E/cit118/1) 2022; 12
Staszak Jirkovský (D4CS00370E/cit158/1) 2016; 15
Xu (D4CS00370E/cit331/1) 2022; 74
Tan (D4CS00370E/cit279/1) 2022; 13
Li (D4CS00370E/cit387/1) 2023; 8
Gao (D4CS00370E/cit121/1) 2023; 17
Gera (D4CS00370E/cit384/1) 2021; 143
Wei (D4CS00370E/cit319/1) 2023; 16
Chen (D4CS00370E/cit288/1) 2014; 343
Qiaowei (D4CS00370E/cit339/1) 2022; 456
Chen (D4CS00370E/cit114/1) 2018; 30
Zhang (D4CS00370E/cit262/1) 2021; 297
Chen (D4CS00370E/cit149/1) 2017; 56
Peng (D4CS00370E/cit135/1) 2019; 245
Qi (D4CS00370E/cit342/1) 2023; 35
Miu (D4CS00370E/cit278/1) 2022; 144
Lasia (D4CS00370E/cit154/1) 2004; 562
Wang (D4CS00370E/cit306/1) 2021; 60
Shen (D4CS00370E/cit176/1) 2024; 146
Davydova (D4CS00370E/cit67/1) 2018; 8
Genorio (D4CS00370E/cit159/1) 2010; 9
Oshchepkov (D4CS00370E/cit22/1) 2020; 10
Ledezma-Yanez (D4CS00370E/cit71/1) 2017; 2
Tang (D4CS00370E/cit396/1) 2024; 3
Wei (D4CS00370E/cit401/1) 2020; 142
Jorge (D4CS00370E/cit274/1) 2019; 10
Jia (D4CS00370E/cit19/1) 2018; 12
Rehl (D4CS00370E/cit230/1) 2022; 144
Zhang (D4CS00370E/cit303/1) 2022; 4
Li (D4CS00370E/cit165/1) 2024; 20
Han (D4CS00370E/cit281/1) 2023; 16
Cheng (D4CS00370E/cit144/1) 2018; 140
Björneholm (D4CS00370E/cit383/1) 2016; 116
Ramaswamy (D4CS00370E/cit98/1) 2017; 41
Tian (D4CS00370E/cit248/1) 2023; 19
Ma (D4CS00370E/cit244/1) 2023; 10
Han (D4CS00370E/cit292/1) 2023; 36
Guo (D4CS00370E/cit326/1) 2023; 35
Yaozhou (D4CS00370E/cit251/1) 2023; 13
Jia (D4CS00370E/cit354/1) 2016; 28
Le (D4CS00370E/cit29/1) 2020; 6
Li (D4CS00370E/cit318/1) 2019; 9
Sheng (D4CS00370E/cit75/1) 2013; 6
Strmcnik (D4CS00370E/cit232/1) 2010; 2
Subbaraman (D4CS00370E/cit145/1) 2011; 334
Craig (D4CS00370E/cit21/1) 2022; 35
Yan (D4CS00370E/cit325/1) 2023; 145
Wang (D4CS00370E/cit167/1) 2021; 60
Goyal (D4CS00370E/cit220/1) 2021; 60
Jin (D4CS00370E/cit171/1) 2018; 53
Mahmood (D4CS00370E/cit170/1) 2017; 12
Monteiro (D4CS00370E/cit14/1) 2021; 11
Greeley (D4CS00370E/cit390/1) 2004; 3
Li (D4CS00370E/cit84/1) 2022; 13
Peng (D4CS00370E/cit282/1) 2023; 3
Osawa (D4CS00370E/cit188/1) 2008; 112
Ojha (D4CS00370E/cit208/1) 2021; 11
Wang (D4CS00370E/cit91/1) 2024; n/a
Li (D4CS00370E/cit172/1) 2018; 8
Guan (D4CS00370E/cit367/1) 2024; 63
Wang (D4CS00370E/cit394/1) 2024
Zhao (D4CS00370E/cit253/1) 2023; 19
Lin (D4CS00370E/cit126/1) 2024; 146
McCrum (D4CS00370E/cit38/1) 2020; 5
Luyu (D4CS00370E/cit307/1) 2023; 59
He (D4CS00370E/cit378/1) 2020; 59
Chen (D4CS00370E/cit398/1) 2018; 57
Tang (D4CS00370E/cit314/1) 2023; 33
Mu (D4CS00370E/cit285/1) 2023; 4
Hua (D4CS00370E/cit265/1) 2017; 7
Lamoureux (D4CS00370E/cit24/1) 2019; 9
Luo (D4CS00370E/cit323/1) 2017; 2
Zhu (D4CS00370E/cit369/1) 2022; 15
Shang (D4CS00370E/cit209/1) 2022; 15
Gileadi (D4CS00370E/cit49/1) 1966; 70
Miao (D4CS00370E/cit97/1) 2024; 53
Chen (D4CS00370E/cit109/1) 2024; 17
Zhao (D4CS00370E/cit206/1) 2022; 61
Ito (D4CS00370E/cit385/1) 2018; 8
Sun (D4CS00370E/cit33/1) 2023; 8
Schmidt (D4CS00370E/cit131/1) 2003; 5
Mao (D4CS00370E/cit245/1) 2023; 11
Dinh (D4CS00370E/cit258/1) 2018; 4
Shi (D4CS00370E/cit210/1) 2022; 13
Zhang (D4CS00370E/cit153/1) 2017; 29
Luo (D4CS00370E/cit7/1) 2022; 34
Mao (D4CS00370E/cit320/1) 2023; 10
Shin (D4CS00370E/cit34/1) 2018; 122
Feng (D4CS00370E/cit58/1) 2019; 123
Luo (D4CS00370E/cit93/1) 2023; 14
Intikhab (D4CS00370E/cit179/1) 2017; 7
Pan (D4CS00370E/cit110/1) 2023; 341
Zeng (D4CS00370E/cit47/1) 2022; 12
Asefa (D4CS00370E/cit334/1) 2017; 7
Wang (D4CS00370E/cit343/1) 2023; 19
Chen (D4CS00370E/cit299/1) 2024; 17
Kim (D4CS00370E/cit381/1) 2019; 141
Fu (D4CS00370E/cit178/1) 2023; 14
Ding (D4CS00370E/cit70/1) 2021; 50
Xie (D4CS00370E/cit217/1) 2020; 19
Li (D4CS00370E/cit376/1) 2024
Su (D4CS00370E/cit263/1) 2022; 66
Xie (D4CS00370E/cit297/1) 2023; 83
Zhang (D4CS00370E/cit89/1) 2022; 15
Luzar (D4CS00370E/cit101/1) 1996; 379
Wei (D4CS00370E/cit26/1) 2017; 81
Ojha (D4CS00370E/cit54/1) 2022; 119
Sheng (D4CS00370E/cit133/1) 2015; 6
Wu (D4CS00370E/cit296/1) 2023; 36
Yang (D4CS00370E/cit373/1) 2024; 63
Wan (D4CS00370E/cit11/1) 2023; 22
Shih (D4CS00370E/cit234/1) 2021; 11
Tan (D4CS00370E/cit324/1) 2023; 153
Wang (D4CS00370E/cit137/1) 2019; 10
Yang (D4CS00370E/cit311/1) 2021; 125
Auer (D4CS00370E/cit200/1) 2021; 11
Shviro (D4CS00370E/cit289/1) 2018; 5
Pan (D4CS00370E/cit254/1) 2024; 341
Yang (D4CS00370E/cit386/1) 2023; 8
Schwarz (D4CS00370E/cit134/1) 2016; 18
Zhang (D4CS00370E/cit211/1) 2023; 35
Minghui (D4CS00370E/cit246/1) 2023; 10
Xu (D4CS00370E/cit298/1) 2023; 16
Chen (D4CS00370E/cit410/1) 2010; 132
Schmidt (D4CS00370E/cit141/1) 2002; 524–525
Capdevila-Cortada (D4CS00370E/cit283/1) 2023; 6
Zhang (D4CS00370E/cit125/1) 2022; 43
Kim (D4CS00370E/cit183/1) 2021; 7
Huizhen (D4CS00370E/cit240/1) 2023; 87
Hao (D4CS00370E/cit237/1) 2023; 13
Li (D4CS00370E/cit32/1) 2022; 5
Fu (D4CS00370E/cit115/1) 2023; 35
Wang (D4CS00370E/cit295/1) 2023; 36
Hu (D4CS00370E/cit269/1) 2019; 12
Bodhankar (D4CS00370E/cit336/1) 2021; 9
Yang (D4CS00370E/cit6/1) 2023; 478
Yao (D4CS00370E/cit284/1) 2022; 16
Juarez (D4CS00370E/cit100/1) 2019; 10
Zeng (D4CS00370E/cit130/1) 2017; 2
Xu (D4CS00370E/cit65/1) 2023; 4
Mukerjee (D4CS00370E/cit313/1) 1996; 143
Yang (D4CS00370E/cit83/1) 2019; 58
Farinazzo Bergamo Dias Martins (D4CS00370E/cit161/1) 2019; 100
Zhang (D4CS00370E/cit358/1) 2024; 7
Baek (D4CS00370E/cit417/1) 2021; 5
Sarma (D4CS00370E/cit116/1) 2019; 13
Yang (D4CS00370E/cit15/1) 2022; 51
Cai (D4CS00370E/cit174/1) 2023; 62
Wenming (D4CS00370E/cit332/1) 2023; 11
Hongjing (D4CS00370E/cit341/1) 2023; 10
An (D4CS00370E/cit280/1) 2023; 16
Wang (D4CS00370E/cit215/1) 2022; 5
Strmcnik (D4CS00370E/cit80/1) 2009; 1
Kumeda (D4CS00370E/cit403/1) 2018; 9
Gupta (D4CS00370E/cit363/1) 2020; 49
Rossmeisl (D4CS00370E/cit82/1) 2016; 262
Stiopkin (D4CS00370E/cit102/1) 2011; 474
Huang (D4CS00370E/cit226/1) 2019; 123
Xu (D4CS00370E/cit103/1) 2023; 621
Trasatti (D4CS00370E/cit4/1) 1972; 39
Yang (D4CS00370E/cit37/1) 2020; 11
Marković (D4CS00370E/cit197/1) 2002; 45
Shen (D4CS00370E/cit31/1) 2020; 59
Chen (D4CS00370E/cit380/1) 2023; 467
Martínez Hincapié (D4CS00370E/cit196/1) 2017; 53
Ding (D4CS00370E/cit46/1) 2024; 15
Chen (D4CS00370E/cit309/1) 2021; 877
Lin (D4CS00370E/cit55/1) 2021; 122
Fan (D4CS00370E/cit45/1) 2024; 14
Zhao (D4CS00370E/cit352/1) 2022; 15
Wang (D4CS00370E/cit64/1) 2023; 37
Sheng (D4CS00370E/cit99/1) 2010; 157
Shah (D4CS00370E/cit227/1) 2024; 146
Ringe (D4CS00370E/cit77/1) 2023; 39
Strmcnik (D4CS00370E/cit156/1) 2008; 10
Wang (D4CS00370E/cit216/1) 2022; 45
Wang (D4CS00370E/cit317/1) 2022; 12
Marin (D4CS00370E/cit18/1) 2023; 7
Kelly (D4CS00370E/cit50/1) 2022; 126
Kong (D4CS00370E/cit362/1) 2024; 664
Luo (D4CS00370E/cit160/1) 2023; 35
Wei (D4CS00370E/cit361/1) 2023; 460
Liu (D4CS00370E/cit72/1) 2019; 141
Kepp (D4CS00370E/cit391/1) 2016; 55
Auer (D4CS00370E/cit199/1) 2021; 125
Xiong (D4CS00370E/cit120/1) 2022; 104
Yao (D4CS00370E/cit260/1) 2019; 9
McHugh (D4CS00370E/cit117/1) 2020; 10
Deng (D4CS00370E/cit375/1) 2024; 53
Domínguez-Saldaña (D4CS00370E/cit374/1) 2024
Liu (D4CS00370E/cit73/1) 2018
McCrum (D4CS00370E/cit148/1) 2016; 120
Miao (D4CS00370E/cit321/1) 2022; 34
Seunggun (D4CS00370E/cit270/1) 2021; 298
Wang (D4CS00370E/cit162/1) 2014; 2015
Huang (D4CS00370E/cit87/1) 2021; 14
Chung (D4CS00370E/cit41/1) 2020; 5
Cong (D4CS00370E/cit286/1) 2018; 44
Huimin (D4CS00370E/cit239/1) 2023; 470
Ovalle (D4CS00370E/cit79/1) 2021; 125
Shah (D4CS00370E/cit59/1) 2023; 127
Hu (D4CS00370E/cit395/1) 2024; 17
Qiang (D4CS00370E/cit247/1) 2023; 14
Zhang (D4CS00370E/cit252/1) 2023; 13
Zhang (D4CS00370E/cit44/1) 2018; 3
Tang (D4CS00370E/cit113/1) 2022; 32
Guo (D4CS00370E/cit94/1) 2023; 87
Dereka (D4CS00370E/cit202/1) 2021; 371
Wang (D4CS00370E/cit316/1) 2019; 5
Wang (D4CS00370E/cit259/1) 2019; 12
Intikhab (D4CS00370E/cit218/1) 2020; 10
Deng (D4CS00370E/cit257/1) 2023; 16
Chen (D4CS00370E/cit348/1) 2022; 35
Hammer (D4CS00370E/cit397/1) 1995; 376
Long (D4CS00370E/cit267/1) 2018; 3
Meng (D4CS00370E/cit175/1) 2024; 17
Giles (D4CS00370E/cit78/1) 2018; 367
Anastasopoulos (D4CS00370E/cit357/1) 2011; 115
Stamenkovic (D4CS00370E/cit2/1) 2017; 16
Ze (D4CS00370E/cit360/1) 2024; 146
Kim (D4CS00370E/cit405/1) 2019; 31
Lin (D4CS00370E/cit330/1) 2022; 34
Bellissent-Funel (D4CS00370E/cit105/1) 2016; 116
Li (D4CS00370E/cit411/1) 2022; 12
Ruban (D4CS00370E/cit
References_xml – issn: 2018
  doi: Liu Li Jiao Doan Liu Zhao Huang Abraham Mukerjee Jia
– volume: 123
  start-page: 23931
  year: 2019
  ident: D4CS00370E/cit58/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b04731
– volume: 5
  start-page: 4042
  year: 2021
  ident: D4CS00370E/cit417/1
  publication-title: Mater. Chem. Front.
  doi: 10.1039/D1QM00183C
– volume: 5
  start-page: 2326
  year: 2018
  ident: D4CS00370E/cit221/1
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201800690
– volume: 31
  start-page: 1807771
  year: 2019
  ident: D4CS00370E/cit127/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201807771
– volume: 37
  start-page: 17765
  year: 2023
  ident: D4CS00370E/cit122/1
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.3c02671
– volume: 309
  start-page: 121279
  year: 2022
  ident: D4CS00370E/cit350/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2022.121279
– volume: 15
  start-page: 1234
  year: 2022
  ident: D4CS00370E/cit352/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE03482K
– volume: 53
  start-page: 227
  year: 2017
  ident: D4CS00370E/cit196/1
  publication-title: Russ. J. Electrochem.
  doi: 10.1134/S1023193517030107
– volume: 11
  start-page: 10892
  year: 2021
  ident: D4CS00370E/cit234/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c02145
– volume: 3
  start-page: 1052
  year: 2023
  ident: D4CS00370E/cit231/1
  publication-title: JACS Au
  doi: 10.1021/jacsau.2c00662
– volume: 13
  start-page: 6666
  year: 2022
  ident: D4CS00370E/cit210/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-33868-8
– volume: 3
  start-page: 2640
  year: 2023
  ident: D4CS00370E/cit282/1
  publication-title: JACS Au
  doi: 10.1021/jacsau.3c00004
– volume: 153
  start-page: 139
  year: 2023
  ident: D4CS00370E/cit324/1
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2022.12.054
– volume: 12
  start-page: 2201713
  year: 2022
  ident: D4CS00370E/cit47/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202201713
– volume: 146
  start-page: 8928
  year: 2024
  ident: D4CS00370E/cit39/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c12011
– volume: 2
  start-page: 1612
  year: 2015
  ident: D4CS00370E/cit408/1
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201500341
– volume: 13
  start-page: 2024
  year: 2022
  ident: D4CS00370E/cit279/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29710-w
– volume: 33
  start-page: 101666
  year: 2023
  ident: D4CS00370E/cit314/1
  publication-title: Mater. Today Chem.
  doi: 10.1016/j.mtchem.2023.101666
– volume: 7
  start-page: 1652
  year: 2023
  ident: D4CS00370E/cit186/1
  publication-title: Joule
  doi: 10.1016/j.joule.2023.06.008
– volume: 104
  start-page: 107882
  year: 2022
  ident: D4CS00370E/cit120/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107882
– volume: 341
  start-page: 123275
  year: 2023
  ident: D4CS00370E/cit110/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2023.123275
– volume: 36
  start-page: 125
  year: 2020
  ident: D4CS00370E/cit86/1
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2019.12.003
– volume: 11
  start-page: 23653
  year: 2023
  ident: D4CS00370E/cit332/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D3TA04947G
– volume: 7
  start-page: 818
  year: 2024
  ident: D4CS00370E/cit112/1
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-024-01180-x
– volume: 35
  start-page: 101044
  year: 2022
  ident: D4CS00370E/cit21/1
  publication-title: Curr. Opin. Electrochem.
  doi: 10.1016/j.coelec.2022.101044
– volume: 15
  start-page: 4511
  year: 2022
  ident: D4CS00370E/cit89/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D2EE02216H
– volume: 19
  start-page: 17019
  year: 2017
  ident: D4CS00370E/cit139/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C7CP03081A
– volume: 37
  start-page: 17667
  year: 2023
  ident: D4CS00370E/cit64/1
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.3c02358
– volume: 60
  start-page: 5771
  year: 2021
  ident: D4CS00370E/cit306/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202013047
– volume: 16
  start-page: 4009
  year: 2023
  ident: D4CS00370E/cit319/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D3EE01929B
– volume: 142
  start-page: 11698
  year: 2020
  ident: D4CS00370E/cit53/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c05162
– volume: 146
  start-page: 5355
  year: 2024
  ident: D4CS00370E/cit300/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c12419
– volume: 17
  start-page: 1397
  year: 2024
  ident: D4CS00370E/cit359/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D3EE02760K
– volume: 7
  start-page: 765
  year: 2023
  ident: D4CS00370E/cit18/1
  publication-title: Joule
  doi: 10.1016/j.joule.2023.03.005
– volume: 11
  start-page: 1378
  year: 2020
  ident: D4CS00370E/cit37/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15231-x
– volume: 12
  start-page: 209
  year: 2018
  ident: D4CS00370E/cit19/1
  publication-title: Curr. Opin. Electrochem.
  doi: 10.1016/j.coelec.2018.11.017
– volume: 5
  start-page: 900
  year: 2022
  ident: D4CS00370E/cit32/1
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-022-00846-8
– volume: 32
  start-page: 1224
  year: 2020
  ident: D4CS00370E/cit392/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b04377
– volume: 50
  start-page: 1495
  year: 2021
  ident: D4CS00370E/cit70/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS01239D
– volume: 35
  start-page: 2301369
  year: 2023
  ident: D4CS00370E/cit242/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202301369
– volume: 1
  start-page: 466
  year: 2009
  ident: D4CS00370E/cit80/1
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.330
– volume: 45
  start-page: 117
  year: 2002
  ident: D4CS00370E/cit197/1
  publication-title: Surf. Sci. Rep.
  doi: 10.1016/S0167-5729(01)00022-X
– volume: 301
  start-page: 1698
  year: 2003
  ident: D4CS00370E/cit205/1
  publication-title: Science
  doi: 10.1126/science.1087251
– volume: 11
  start-page: 7662
  year: 2023
  ident: D4CS00370E/cit413/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA09891A
– volume: 6
  start-page: 2174
  year: 2021
  ident: D4CS00370E/cit233/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.1c00833
– volume: 2
  start-page: 17059
  year: 2017
  ident: D4CS00370E/cit323/1
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2017.59
– volume: 12
  start-page: 2201478
  year: 2022
  ident: D4CS00370E/cit317/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202201478
– volume: 16
  start-page: 6120
  year: 2023
  ident: D4CS00370E/cit298/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D3EE02382F
– volume: 140
  start-page: 7787
  year: 2018
  ident: D4CS00370E/cit144/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b04006
– volume: 7
  start-page: 98
  year: 2017
  ident: D4CS00370E/cit152/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b02849
– volume: 460
  start-page: 141783
  year: 2023
  ident: D4CS00370E/cit361/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.141783
– volume: 31
  start-page: 5190
  year: 2019
  ident: D4CS00370E/cit405/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b01334
– volume: 35
  start-page: 2210727
  year: 2023
  ident: D4CS00370E/cit211/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202210727
– volume: 14
  start-page: 2384
  year: 2023
  ident: D4CS00370E/cit129/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-37935-6
– volume: 5
  start-page: 162
  year: 2022
  ident: D4CS00370E/cit215/1
  publication-title: Matter
  doi: 10.1016/j.matt.2021.10.021
– volume: 524–525
  start-page: 252
  year: 2002
  ident: D4CS00370E/cit141/1
  publication-title: J. Electronal. Chem.
  doi: 10.1016/S0022-0728(02)00683-6
– volume: 51
  start-page: 1454
  year: 2022
  ident: D4CS00370E/cit203/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D1CS00838B
– volume: 15
  start-page: 2653
  year: 2022
  ident: D4CS00370E/cit209/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D2EE00417H
– volume: 3
  start-page: 834
  year: 2019
  ident: D4CS00370E/cit315/1
  publication-title: Joule
  doi: 10.1016/j.joule.2018.12.015
– volume: 2
  start-page: 17070
  year: 2017
  ident: D4CS00370E/cit130/1
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2017.70
– volume: 594
  start-page: 62
  year: 2021
  ident: D4CS00370E/cit364/1
  publication-title: Nature
  doi: 10.1038/s41586-021-03504-4
– volume: 119
  start-page: e2116016119
  year: 2022
  ident: D4CS00370E/cit54/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2116016119
– volume: 13
  start-page: 5894
  year: 2022
  ident: D4CS00370E/cit138/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-33625-x
– volume: 146
  start-page: 12538
  year: 2024
  ident: D4CS00370E/cit360/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.4c00948
– volume: 2
  start-page: 7886
  year: 2019
  ident: D4CS00370E/cit302/1
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.9b01366
– volume: 16
  start-page: 4584
  year: 2023
  ident: D4CS00370E/cit293/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D3EE01541F
– volume: 123
  start-page: 12507
  year: 2023
  ident: D4CS00370E/cit10/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.3c00382
– volume: 6
  start-page: 773
  year: 2023
  ident: D4CS00370E/cit207/1
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-023-01007-1
– volume: 30
  start-page: 1706279
  year: 2018
  ident: D4CS00370E/cit114/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706279
– volume: 60
  start-page: 5771
  year: 2021
  ident: D4CS00370E/cit329/1
  publication-title: Energy Environ. Sci.
– volume: 154
  start-page: 1
  year: 2023
  ident: D4CS00370E/cit333/1
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2022.12.042
– volume: 312
  start-page: 121389
  year: 2022
  ident: D4CS00370E/cit273/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2022.121389
– volume: 19
  start-page: 2208076
  year: 2023
  ident: D4CS00370E/cit253/1
  publication-title: Small
  doi: 10.1002/smll.202208076
– volume: 74
  start-page: 104877
  year: 2020
  ident: D4CS00370E/cit164/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104877
– volume: 19
  start-page: 1006
  year: 2020
  ident: D4CS00370E/cit217/1
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-020-0667-y
– volume: 52
  start-page: 5652
  year: 2023
  ident: D4CS00370E/cit3/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D2CS00681B
– volume: 10
  start-page: 1506
  year: 2019
  ident: D4CS00370E/cit137/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09503-4
– volume: 53
  start-page: 2022
  year: 2024
  ident: D4CS00370E/cit76/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D3CS00669G
– volume: 14
  start-page: 5363
  year: 2023
  ident: D4CS00370E/cit255/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-41097-w
– volume: 50
  start-page: 306
  year: 2023
  ident: D4CS00370E/cit235/1
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(23)64459-6
– volume: 35
  start-page: 2211854
  year: 2023
  ident: D4CS00370E/cit160/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202211854
– volume: 19
  start-page: 2207569
  year: 2023
  ident: D4CS00370E/cit248/1
  publication-title: Small
  doi: 10.1002/smll.202207569
– volume: 157
  start-page: B1529
  year: 2010
  ident: D4CS00370E/cit99/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3483106
– volume: 15
  start-page: 197
  year: 2016
  ident: D4CS00370E/cit158/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4481
– volume: 10
  start-page: 2303110
  year: 2023
  ident: D4CS00370E/cit244/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202303110
– volume: 165
  start-page: J3209
  year: 2018
  ident: D4CS00370E/cit180/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0271815jes
– volume: 58
  start-page: 17718
  year: 2019
  ident: D4CS00370E/cit83/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201909697
– volume: 43
  start-page: 2987
  year: 2022
  ident: D4CS00370E/cit125/1
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(22)64103-2
– volume: 74
  start-page: 45
  year: 2022
  ident: D4CS00370E/cit331/1
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2022.06.031
– volume: 430
  start-page: 132862
  year: 2022
  ident: D4CS00370E/cit60/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.132862
– volume: 14
  start-page: 2620
  year: 2021
  ident: D4CS00370E/cit128/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE03609A
– volume: 4
  start-page: 107
  year: 2018
  ident: D4CS00370E/cit258/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0296-8
– volume: 371
  start-page: 160
  year: 2021
  ident: D4CS00370E/cit202/1
  publication-title: Science
  doi: 10.1126/science.abe1951
– volume: 53
  start-page: 8137
  year: 2024
  ident: D4CS00370E/cit375/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D4CS00412D
– volume: 15
  start-page: 5792
  year: 2022
  ident: D4CS00370E/cit369/1
  publication-title: Nano Res.
  doi: 10.1007/s12274-022-4265-y
– volume: 8
  start-page: 6665
  year: 2018
  ident: D4CS00370E/cit67/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b00689
– volume: 35
  start-page: 221057
  year: 2023
  ident: D4CS00370E/cit342/1
  publication-title: Adv. Mater.
– volume: 14
  start-page: 547
  year: 2023
  ident: D4CS00370E/cit236/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-36100-3
– volume: 125
  start-page: 5020
  year: 2021
  ident: D4CS00370E/cit199/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.0c09289
– volume: 7
  start-page: 8314
  year: 2017
  ident: D4CS00370E/cit179/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b02787
– volume: 367
  start-page: 328
  year: 2018
  ident: D4CS00370E/cit78/1
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2018.09.030
– volume: 22
  start-page: 8768
  year: 2020
  ident: D4CS00370E/cit190/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D0CP01108H
– volume: 123
  start-page: 17325
  year: 2019
  ident: D4CS00370E/cit226/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b03639
– volume: 126
  start-page: 5521
  year: 2022
  ident: D4CS00370E/cit50/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.1c10362
– volume: 8
  start-page: 2342
  year: 2024
  ident: D4CS00370E/cit124/1
  publication-title: Joule
  doi: 10.1016/j.joule.2024.06.004
– volume: 6
  start-page: 916
  year: 2023
  ident: D4CS00370E/cit229/1
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-023-01017-z
– volume: 39
  start-page: 101268
  year: 2023
  ident: D4CS00370E/cit77/1
  publication-title: Curr. Opin. Electrochem.
  doi: 10.1016/j.coelec.2023.101268
– volume: 33
  start-page: 2006292
  year: 2021
  ident: D4CS00370E/cit43/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202006292
– volume: 7
  start-page: 5661
  year: 2023
  ident: D4CS00370E/cit95/1
  publication-title: Mater. Chem. Front.
  doi: 10.1039/D3QM00557G
– volume: 367
  start-page: 332
  year: 2018
  ident: D4CS00370E/cit150/1
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2018.09.031
– volume: 31
  start-page: 1806769
  year: 2019
  ident: D4CS00370E/cit268/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201806769
– volume: 10
  start-page: 4876
  year: 2019
  ident: D4CS00370E/cit36/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12773-7
– volume: 12
  start-page: 2100640
  year: 2021
  ident: D4CS00370E/cit277/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202100640
– volume: 2015
  start-page: 177
  issue: 8
  year: 2014
  ident: D4CS00370E/cit162/1
  publication-title: Energy Environ. Sci.
– volume: 10
  start-page: 11099
  year: 2020
  ident: D4CS00370E/cit222/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c02762
– volume: 6
  start-page: 5848
  year: 2015
  ident: D4CS00370E/cit133/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6848
– volume: 282
  start-page: 119584
  year: 2021
  ident: D4CS00370E/cit111/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2020.119584
– volume: 34
  start-page: 2204624
  year: 2022
  ident: D4CS00370E/cit271/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202204624
– volume: 34
  start-page: 2108133
  year: 2022
  ident: D4CS00370E/cit7/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202108133
– volume: 3
  start-page: 74
  year: 2024
  ident: D4CS00370E/cit368/1
  publication-title: Interdiscip. Mater.
– volume: 45
  start-page: 24
  year: 2022
  ident: D4CS00370E/cit216/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2021.11.030
– volume: 3
  start-page: 290
  year: 2018
  ident: D4CS00370E/cit267/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b01130
– volume: 34
  start-page: 2110680
  year: 2022
  ident: D4CS00370E/cit349/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202110680
– volume: 877
  start-page: 160271
  year: 2021
  ident: D4CS00370E/cit309/1
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2021.160271
– volume: 17
  start-page: 20804
  year: 2023
  ident: D4CS00370E/cit121/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.3c05810
– volume: 621
  start-page: 506
  year: 2023
  ident: D4CS00370E/cit103/1
  publication-title: Nature
  doi: 10.1038/s41586-023-06374-0
– volume: 298
  start-page: 120530
  year: 2021
  ident: D4CS00370E/cit270/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2021.120530
– volume: 343
  start-page: 1339
  year: 2014
  ident: D4CS00370E/cit288/1
  publication-title: Science
  doi: 10.1126/science.1249061
– volume: 61
  start-page: e202114310
  year: 2022
  ident: D4CS00370E/cit214/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202114310
– volume: 9
  start-page: 5084
  year: 2019
  ident: D4CS00370E/cit318/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b04814
– volume: 81
  start-page: 1
  year: 2017
  ident: D4CS00370E/cit26/1
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2017.05.012
– volume: 10
  start-page: 2303110
  year: 2023
  ident: D4CS00370E/cit246/1
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 222
  year: 2020
  ident: D4CS00370E/cit41/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-0576-y
– volume: 12
  start-page: 1806
  year: 2022
  ident: D4CS00370E/cit340/1
  publication-title: Nanomaterials
  doi: 10.3390/nano12111806
– volume: 39
  start-page: 163
  year: 1972
  ident: D4CS00370E/cit4/1
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/S0022-0728(72)80485-6
– volume: 33
  start-page: 2306340
  year: 2023
  ident: D4CS00370E/cit238/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202303384
– volume: 375
  start-page: 379
  year: 2022
  ident: D4CS00370E/cit23/1
  publication-title: Science
  doi: 10.1126/science.abj2421
– volume: 53
  start-page: 690
  year: 2018
  ident: D4CS00370E/cit171/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.09.046
– volume: 14
  start-page: 2400052
  year: 2024
  ident: D4CS00370E/cit45/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202400052
– volume: 376
  start-page: 238
  year: 1995
  ident: D4CS00370E/cit397/1
  publication-title: Nature
  doi: 10.1038/376238a0
– volume: 352
  start-page: 124047
  year: 2024
  ident: D4CS00370E/cit108/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2024.124047
– volume: 9
  start-page: 3180
  year: 2021
  ident: D4CS00370E/cit336/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA10712C
– volume: 10
  start-page: 584
  year: 2019
  ident: D4CS00370E/cit100/1
  publication-title: Electrocatalysis
  doi: 10.1007/s12678-019-00546-1
– volume: 4
  start-page: 2200281
  year: 2023
  ident: D4CS00370E/cit285/1
  publication-title: Small Struct.
  doi: 10.1002/sstr.202200281
– start-page: 2402391
  year: 2024
  ident: D4CS00370E/cit394/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202402391
– volume: 8
  start-page: 5175
  year: 2023
  ident: D4CS00370E/cit386/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.3c02100
– volume: 13
  start-page: 10448
  year: 2019
  ident: D4CS00370E/cit116/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b04250
– volume: 11
  start-page: 613
  year: 2019
  ident: D4CS00370E/cit191/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b15003
– volume: 44
  start-page: 288
  year: 2018
  ident: D4CS00370E/cit286/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.12.008
– volume: 7
  start-page: 1700513
  year: 2017
  ident: D4CS00370E/cit266/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700513
– volume: 621
  start-page: 300
  year: 2023
  ident: D4CS00370E/cit228/1
  publication-title: Nature
  doi: 10.1038/s41586-023-06339-3
– volume: 56
  start-page: 4211
  year: 2017
  ident: D4CS00370E/cit181/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201612183
– volume: 8
  start-page: 177
  year: 2015
  ident: D4CS00370E/cit74/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE02564D
– volume: 56
  start-page: 15594
  year: 2017
  ident: D4CS00370E/cit166/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201708484
– volume: 87
  start-page: 518
  year: 2023
  ident: D4CS00370E/cit94/1
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2023.08.049
– volume: 122
  start-page: 6781
  year: 2018
  ident: D4CS00370E/cit34/1
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.8b02438
– volume: 51
  start-page: 3794
  year: 2022
  ident: D4CS00370E/cit412/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D1CS00648G
– volume: 101
  start-page: 5405
  year: 1997
  ident: D4CS00370E/cit157/1
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp970930d
– volume: 57
  start-page: 5076
  year: 2018
  ident: D4CS00370E/cit398/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201801834
– volume: 7
  start-page: 6366
  year: 2023
  ident: D4CS00370E/cit96/1
  publication-title: Mater. Chem. Front.
  doi: 10.1039/D3QM00600J
– volume: 146
  start-page: 4883
  year: 2024
  ident: D4CS00370E/cit126/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c13676
– volume: 28
  start-page: 9532
  year: 2016
  ident: D4CS00370E/cit354/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201602912
– volume: 7
  start-page: 1245
  year: 2024
  ident: D4CS00370E/cit301/1
  publication-title: Matter
  doi: 10.1016/j.matt.2024.01.013
– volume: 562
  start-page: 23
  year: 2004
  ident: D4CS00370E/cit154/1
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2003.07.033
– volume: 5
  start-page: 1704
  year: 2021
  ident: D4CS00370E/cit40/1
  publication-title: Joule
  doi: 10.1016/j.joule.2021.05.005
– volume: 6
  start-page: eabb1219
  year: 2020
  ident: D4CS00370E/cit29/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abb1219
– volume: 30
  start-page: 1908708
  year: 2020
  ident: D4CS00370E/cit337/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201908708
– volume: 22
  start-page: 1022
  year: 2023
  ident: D4CS00370E/cit11/1
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-023-01584-3
– volume: 105
  start-page: 71
  year: 2015
  ident: D4CS00370E/cit322/1
  publication-title: Comb. Mater. Sci.
  doi: 10.1016/j.commatsci.2015.04.026
– volume: 112
  start-page: 4248
  year: 2008
  ident: D4CS00370E/cit188/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp710386g
– volume: 36
  start-page: 2307035
  year: 2023
  ident: D4CS00370E/cit256/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202307035
– volume: 12
  start-page: 13930
  year: 2022
  ident: D4CS00370E/cit411/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.2c03780
– volume: 28
  start-page: 9026
  year: 2016
  ident: D4CS00370E/cit400/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b03972
– volume: 11
  start-page: 14328
  year: 2021
  ident: D4CS00370E/cit14/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c04268
– volume: 13
  start-page: 2301222
  year: 2023
  ident: D4CS00370E/cit177/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202301222
– volume: 26
  start-page: 1245
  year: 2017
  ident: D4CS00370E/cit310/1
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2017.09.028
– volume: 12
  start-page: 2201823
  year: 2022
  ident: D4CS00370E/cit118/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202201823
– volume: 334
  start-page: 1256
  year: 2011
  ident: D4CS00370E/cit145/1
  publication-title: Science
  doi: 10.1126/science.1211934
– volume: 40
  start-page: 7632
  year: 2024
  ident: D4CS00370E/cit56/1
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.4c00298
– volume: 143
  start-page: 2285
  year: 1996
  ident: D4CS00370E/cit313/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1836995
– volume: 62
  start-page: e20231006
  year: 2023
  ident: D4CS00370E/cit305/1
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  start-page: 3579
  year: 2018
  ident: D4CS00370E/cit385/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b04091
– volume: 35
  start-page: 2208337
  year: 2022
  ident: D4CS00370E/cit348/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202208337
– volume: 5
  start-page: 923
  year: 2022
  ident: D4CS00370E/cit13/1
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-022-00851-x
– volume: 139
  start-page: 5156
  year: 2017
  ident: D4CS00370E/cit147/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b00765
– volume: 7
  start-page: 2255
  year: 2014
  ident: D4CS00370E/cit81/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE00440J
– volume: 60
  start-page: 5708
  year: 2021
  ident: D4CS00370E/cit167/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202015571
– volume: 59
  start-page: 13978
  year: 2023
  ident: D4CS00370E/cit307/1
  publication-title: Chem. Commun.
  doi: 10.1039/D3CC04195F
– volume: 141
  start-page: 3232
  year: 2019
  ident: D4CS00370E/cit72/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b13228
– volume: 6
  start-page: 1509
  year: 2013
  ident: D4CS00370E/cit75/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee00045a
– volume: 245
  start-page: 122
  year: 2019
  ident: D4CS00370E/cit135/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2018.12.035
– volume: 10
  start-page: 2001561
  year: 2020
  ident: D4CS00370E/cit276/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202001561
– volume: 18
  start-page: 697
  year: 2019
  ident: D4CS00370E/cit182/1
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0356-x
– volume: 8
  start-page: 450
  year: 2018
  ident: D4CS00370E/cit155/1
  publication-title: Catalysts
  doi: 10.3390/catal8100450
– volume: 142
  start-page: 7765
  year: 2020
  ident: D4CS00370E/cit401/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b12005
– volume: 122
  start-page: 11830
  year: 2022
  ident: D4CS00370E/cit92/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c00854
– volume: 146
  start-page: 9012
  year: 2024
  ident: D4CS00370E/cit123/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c13367
– volume: 113
  start-page: 108557
  year: 2023
  ident: D4CS00370E/cit353/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2023.108557
– volume: 53
  start-page: 2771
  year: 2024
  ident: D4CS00370E/cit97/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D2CS01068B
– volume: 141
  start-page: 15524
  year: 2019
  ident: D4CS00370E/cit192/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b05148
– volume: 467
  start-page: 143374
  year: 2023
  ident: D4CS00370E/cit380/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.143374
– volume: 17
  start-page: 704
  year: 2024
  ident: D4CS00370E/cit388/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D3EE03383J
– volume: 7
  start-page: 441
  year: 2024
  ident: D4CS00370E/cit358/1
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-024-01126-3
– volume: 60
  start-page: 13452
  year: 2021
  ident: D4CS00370E/cit220/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202102803
– volume: 9
  start-page: 998
  year: 2010
  ident: D4CS00370E/cit159/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2883
– volume: 9
  start-page: 4378
  year: 2018
  ident: D4CS00370E/cit403/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06917-4
– volume: 10
  start-page: 7043
  year: 2020
  ident: D4CS00370E/cit22/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c00101
– volume: 426
  start-page: 131227
  year: 2021
  ident: D4CS00370E/cit346/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.131227
– volume: 5
  start-page: 192
  year: 2020
  ident: D4CS00370E/cit290/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b02374
– volume: 10
  start-page: 2002453
  year: 2020
  ident: D4CS00370E/cit117/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202002453
– volume: 63
  start-page: e202316550
  year: 2024
  ident: D4CS00370E/cit367/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202316550
– volume: 5
  start-page: 300
  year: 2013
  ident: D4CS00370E/cit27/1
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1574
– volume: 58
  start-page: 62
  year: 2015
  ident: D4CS00370E/cit193/1
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2015.06.005
– volume: 144
  start-page: 16338
  year: 2022
  ident: D4CS00370E/cit230/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c01830
– volume: 1
  start-page: 383
  year: 2017
  ident: D4CS00370E/cit168/1
  publication-title: Joule
  doi: 10.1016/j.joule.2017.07.011
– volume: 13
  start-page: 7597
  year: 2023
  ident: D4CS00370E/cit251/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.3c01610
– volume: 7
  start-page: 1602122
  year: 2017
  ident: D4CS00370E/cit264/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201602122
– volume: 16
  start-page: 57
  year: 2017
  ident: D4CS00370E/cit2/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4738
– volume: 3
  start-page: 967
  year: 2020
  ident: D4CS00370E/cit8/1
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-020-00540-7
– volume: 59
  start-page: 22397
  year: 2020
  ident: D4CS00370E/cit31/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202007567
– volume: 122
  start-page: 6117
  year: 2022
  ident: D4CS00370E/cit5/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c00331
– volume: 19
  start-page: 2304132
  year: 2023
  ident: D4CS00370E/cit379/1
  publication-title: Small
  doi: 10.1002/smll.202304132
– volume: 145
  start-page: 12051
  year: 2023
  ident: D4CS00370E/cit85/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c01164
– volume: 13
  start-page: 3064
  year: 2020
  ident: D4CS00370E/cit223/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE01754J
– volume: 123
  start-page: 7697
  year: 2001
  ident: D4CS00370E/cit409/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja016063e
– volume: 4
  start-page: e12357
  year: 2022
  ident: D4CS00370E/cit42/1
  publication-title: InfoMat
  doi: 10.1002/inf2.12357
– volume: 368
  start-page: 444
  year: 1994
  ident: D4CS00370E/cit187/1
  publication-title: Nature
  doi: 10.1038/368444a0
– volume: 145
  start-page: 24218
  year: 2023
  ident: D4CS00370E/cit325/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c08598
– volume: 143
  start-page: 15103
  year: 2021
  ident: D4CS00370E/cit384/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c05112
– volume: 16
  start-page: 2002212
  year: 2020
  ident: D4CS00370E/cit275/1
  publication-title: Small
  doi: 10.1002/smll.202002212
– volume: 35
  start-page: 2301533
  year: 2023
  ident: D4CS00370E/cit115/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202301533
– volume: 17
  start-page: 704
  year: 2024
  ident: D4CS00370E/cit175/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D3EE03383J
– volume: 10
  start-page: 340
  year: 2023
  ident: D4CS00370E/cit320/1
  publication-title: Mater. Horiz.
  doi: 10.1039/D2MH01171A
– volume: 10
  start-page: 850
  year: 2019
  ident: D4CS00370E/cit406/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08789-8
– volume: 13
  start-page: 2301492
  year: 2023
  ident: D4CS00370E/cit252/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202301492
– volume: 12
  start-page: 2200067
  year: 2022
  ident: D4CS00370E/cit272/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202200067
– volume: 8
  start-page: 211
  year: 2006
  ident: D4CS00370E/cit407/1
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2005.10.036
– volume: 3
  start-page: 1197
  year: 2021
  ident: D4CS00370E/cit338/1
  publication-title: ACS Mater. Lett.
  doi: 10.1021/acsmaterialslett.1c00266
– volume: 28
  start-page: 6845
  year: 2016
  ident: D4CS00370E/cit355/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601406
– volume: 474
  start-page: 192
  year: 2011
  ident: D4CS00370E/cit102/1
  publication-title: Nature
  doi: 10.1038/nature10173
– volume: 146
  start-page: 5324
  year: 2024
  ident: D4CS00370E/cit176/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c11861
– volume: 35
  start-page: 2302285
  year: 2023
  ident: D4CS00370E/cit326/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202302285
– volume: 36
  start-page: 2311018
  year: 2023
  ident: D4CS00370E/cit296/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202311018
– volume: 17
  start-page: 3099
  year: 2024
  ident: D4CS00370E/cit395/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D3EE04503J
– volume: 600
  start-page: 81
  year: 2021
  ident: D4CS00370E/cit184/1
  publication-title: Nature
  doi: 10.1038/s41586-021-04068-z
– volume: 15
  start-page: 1730
  year: 2022
  ident: D4CS00370E/cit366/1
  publication-title: Nano Res.
  doi: 10.1007/s12274-021-3794-0
– volume: 125
  start-page: 18567
  year: 2021
  ident: D4CS00370E/cit79/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.1c05921
– volume: 121
  start-page: 13174
  year: 2021
  ident: D4CS00370E/cit287/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c00234
– year: 2018
  ident: D4CS00370E/cit73/1
  doi: 10.26434/chemrxiv.7137026
– volume: 664
  start-page: 178
  year: 2024
  ident: D4CS00370E/cit362/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2024.03.002
– volume: 9
  start-page: 15415
  year: 2021
  ident: D4CS00370E/cit163/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA02067F
– volume: 49
  start-page: 9154
  year: 2020
  ident: D4CS00370E/cit62/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS00575D
– volume: 4
  start-page: 2200404
  year: 2023
  ident: D4CS00370E/cit65/1
  publication-title: Small Struct.
  doi: 10.1002/sstr.202200404
– volume: 14
  start-page: 6462
  year: 2023
  ident: D4CS00370E/cit247/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-37148-x
– volume: 297
  start-page: 120418
  year: 2021
  ident: D4CS00370E/cit262/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2021.120418
– volume: 17
  start-page: 3261
  year: 2024
  ident: D4CS00370E/cit372/1
  publication-title: Nano Res.
  doi: 10.1007/s12274-023-6037-8
– volume: 32
  start-page: 5256
  year: 2020
  ident: D4CS00370E/cit48/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.0c01396
– volume: 8
  start-page: 657
  year: 2023
  ident: D4CS00370E/cit415/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.2c02500
– volume: 5
  start-page: 909
  year: 2006
  ident: D4CS00370E/cit389/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1752
– volume: 478
  start-page: 214980
  year: 2023
  ident: D4CS00370E/cit6/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2022.214980
– volume: 127
  start-page: 12841
  year: 2023
  ident: D4CS00370E/cit59/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.3c03217
– volume: 28
  start-page: 2256
  year: 2016
  ident: D4CS00370E/cit119/1
  publication-title: Electroanalysis
  doi: 10.1002/elan.201600270
– volume: 16
  start-page: 2846
  year: 2020
  ident: D4CS00370E/cit204/1
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.9b01248
– volume: 613
  start-page: 234856
  year: 2024
  ident: D4CS00370E/cit57/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2024.234856
– volume: 31
  start-page: 2106715
  year: 2021
  ident: D4CS00370E/cit304/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202106715
– volume: 23
  start-page: 2310591
  year: 2023
  ident: D4CS00370E/cit294/1
  publication-title: Adv. Mater.
– volume: 122
  start-page: 5209
  year: 2021
  ident: D4CS00370E/cit55/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c00176
– volume: 145
  start-page: 16548
  year: 2023
  ident: D4CS00370E/cit249/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c11263
– volume: 152
  start-page: J23
  year: 2005
  ident: D4CS00370E/cit140/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1856988
– volume: 146
  start-page: 9623
  year: 2024
  ident: D4CS00370E/cit227/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c12934
– volume: 470
  start-page: 144375
  year: 2023
  ident: D4CS00370E/cit239/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.144375
– volume: 83
  start-page: 150
  year: 2023
  ident: D4CS00370E/cit297/1
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2023.04.026
– start-page: 2405970
  year: 2024
  ident: D4CS00370E/cit393/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202405970
– volume: 34
  start-page: 101003
  year: 2022
  ident: D4CS00370E/cit20/1
  publication-title: Curr. Opin. Electrochem.
  doi: 10.1016/j.coelec.2022.101003
– volume: 20
  start-page: 2309226
  year: 2024
  ident: D4CS00370E/cit165/1
  publication-title: Small
  doi: 10.1002/smll.202309226
– volume: 12
  start-page: 3522
  year: 2019
  ident: D4CS00370E/cit259/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE01743G
– volume: 122
  start-page: 10821
  year: 2022
  ident: D4CS00370E/cit52/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.2c00097
– volume: 141
  start-page: 18256
  year: 2019
  ident: D4CS00370E/cit381/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b09229
– volume: 10
  start-page: 1902494
  year: 2019
  ident: D4CS00370E/cit274/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201902494
– volume: 62
  start-page: e202300873
  year: 2023
  ident: D4CS00370E/cit174/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202300873
– volume: 124
  start-page: 12442
  year: 2020
  ident: D4CS00370E/cit219/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.0c01715
– volume: 8
  start-page: 5161
  year: 2023
  ident: D4CS00370E/cit387/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.3c02021
– volume: 17
  start-page: 1885
  year: 2024
  ident: D4CS00370E/cit299/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D3EE03396A
– volume: 41
  start-page: 765
  year: 2017
  ident: D4CS00370E/cit98/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.07.053
– volume: 3
  start-page: 810
  year: 2004
  ident: D4CS00370E/cit390/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1223
– volume: 5
  start-page: 466
  year: 2021
  ident: D4CS00370E/cit30/1
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-021-00293-2
– volume: 35
  start-page: 2211854
  year: 2023
  ident: D4CS00370E/cit243/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202211854
– volume: 144
  start-page: 6420
  year: 2022
  ident: D4CS00370E/cit278/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c00825
– volume: 596
  start-page: 531
  year: 2021
  ident: D4CS00370E/cit104/1
  publication-title: Nature
  doi: 10.1038/s41586-021-03793-9
– volume: 4
  start-page: 753
  year: 2021
  ident: D4CS00370E/cit213/1
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-021-00668-0
– volume: 115
  start-page: 421
  year: 1997
  ident: D4CS00370E/cit402/1
  publication-title: J. Mol. Catal. A: Chem.
  doi: 10.1016/S1381-1169(96)00348-2
– volume: 304
  start-page: 332
  year: 2016
  ident: D4CS00370E/cit169/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.11.026
– volume: 5
  start-page: 1701666
  year: 2018
  ident: D4CS00370E/cit289/1
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201701666
– volume: 3
  start-page: 1360
  year: 2018
  ident: D4CS00370E/cit44/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00514
– volume: 8
  start-page: 466
  year: 2018
  ident: D4CS00370E/cit35/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b02814
– volume: 40
  start-page: 22069
  year: 2023
  ident: D4CS00370E/cit312/1
  publication-title: J. Am. Chem. Soc.
– volume: 379
  start-page: 55
  year: 1996
  ident: D4CS00370E/cit101/1
  publication-title: Nature
  doi: 10.1038/379055a0
– volume: 99
  start-page: 126101
  year: 2007
  ident: D4CS00370E/cit142/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.126101
– volume: 36
  start-page: 1476
  year: 2015
  ident: D4CS00370E/cit382/1
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(15)60911-1
– volume: 10
  start-page: 9165
  year: 2019
  ident: D4CS00370E/cit68/1
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC03831K
– volume: 3
  start-page: 100053
  year: 2021
  ident: D4CS00370E/cit90/1
  publication-title: EnergyChem
  doi: 10.1016/j.enchem.2021.100053
– volume: 120
  start-page: 457
  year: 2016
  ident: D4CS00370E/cit148/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b10979
– volume: 16
  start-page: 5220
  year: 2023
  ident: D4CS00370E/cit257/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D3EE01856C
– volume: 142
  start-page: 4985
  year: 2020
  ident: D4CS00370E/cit28/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b13694
– volume: 48
  start-page: 115
  year: 2021
  ident: D4CS00370E/cit347/1
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2021.02.004
– volume: 34
  start-page: 220086
  year: 2022
  ident: D4CS00370E/cit321/1
  publication-title: Adv. Mater.
– volume: 14
  start-page: 883
  year: 2021
  ident: D4CS00370E/cit87/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE03639K
– volume: 16
  start-page: 5153
  year: 2022
  ident: D4CS00370E/cit284/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c00641
– volume: 54
  start-page: 1034
  year: 2021
  ident: D4CS00370E/cit416/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.0c00795
– volume: 70
  start-page: 2044
  year: 1966
  ident: D4CS00370E/cit49/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/j100878a501
– volume: 280
  start-page: 824
  year: 1979
  ident: D4CS00370E/cit365/1
  publication-title: Nature
  doi: 10.1038/280824a0
– volume: 341
  start-page: 123275
  year: 2024
  ident: D4CS00370E/cit254/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2023.123275
– volume: 87
  start-page: 286
  year: 2023
  ident: D4CS00370E/cit240/1
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2023.08.039
– volume: 59
  start-page: 3544
  year: 2020
  ident: D4CS00370E/cit378/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201914752
– volume: 17
  start-page: 5091
  year: 2024
  ident: D4CS00370E/cit109/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D4EE01855A
– volume: 8
  start-page: 1801258
  year: 2018
  ident: D4CS00370E/cit172/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201801258
– volume: 4
  start-page: 2097
  year: 2022
  ident: D4CS00370E/cit303/1
  publication-title: ACS Mater. Lett.
  doi: 10.1021/acsmaterialslett.2c00699
– volume: 140
  start-page: 9046
  year: 2018
  ident: D4CS00370E/cit224/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b04770
– volume: 64
  start-page: 103963
  year: 2019
  ident: D4CS00370E/cit194/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.103963
– volume: 8
  start-page: 859
  year: 2023
  ident: D4CS00370E/cit33/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-023-01302-y
– volume: 3
  start-page: 9635
  year: 2020
  ident: D4CS00370E/cit17/1
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.0c01127
– volume: 13
  start-page: 2300837
  year: 2023
  ident: D4CS00370E/cit237/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202300837
– volume: 6
  start-page: 217
  year: 2023
  ident: D4CS00370E/cit283/1
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-023-00942-3
– volume: 10
  start-page: 14747
  year: 2020
  ident: D4CS00370E/cit66/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c03801
– start-page: 2401443
  year: 2024
  ident: D4CS00370E/cit374/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202401443
– volume: 100
  start-page: 30
  year: 2019
  ident: D4CS00370E/cit161/1
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2019.01.006
– volume: 42
  start-page: 1145
  year: 2006
  ident: D4CS00370E/cit195/1
  publication-title: Russ. J. Electrochem.
  doi: 10.1134/S1023193506110012
– volume: 132
  start-page: 11336
  year: 2010
  ident: D4CS00370E/cit410/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1048237
– volume: 11
  start-page: 2456
  year: 2021
  ident: D4CS00370E/cit208/1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-81635-4
– volume: 16
  start-page: e202300218
  year: 2023
  ident: D4CS00370E/cit280/1
  publication-title: ChemSusChem
  doi: 10.1002/cssc.202300218
– volume: 10
  start-page: 2302358
  year: 2023
  ident: D4CS00370E/cit241/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202302358
– volume: 2
  start-page: e1501602
  year: 2016
  ident: D4CS00370E/cit132/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1501602
– volume: 8
  start-page: 1502
  year: 2023
  ident: D4CS00370E/cit63/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.2c02897
– volume: n/a
  start-page: 2303451
  year: 2024
  ident: D4CS00370E/cit91/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202303451
– volume: 2
  start-page: 880
  year: 2010
  ident: D4CS00370E/cit232/1
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.771
– volume: 17
  start-page: 18
  year: 2024
  ident: D4CS00370E/cit370/1
  publication-title: Nano Res.
  doi: 10.1007/s12274-023-5700-4
– volume: 19
  start-page: 2302866
  year: 2023
  ident: D4CS00370E/cit343/1
  publication-title: Small
  doi: 10.1002/smll.202302866
– volume: 48
  start-page: 3265
  year: 2019
  ident: D4CS00370E/cit327/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00846A
– volume: 51
  start-page: 4583
  year: 2022
  ident: D4CS00370E/cit1/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS01079K
– volume: 56
  start-page: 15025
  year: 2017
  ident: D4CS00370E/cit149/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201709455
– volume: 5
  start-page: 891
  year: 2020
  ident: D4CS00370E/cit38/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-00710-8
– volume: 9
  start-page: 6194
  year: 2019
  ident: D4CS00370E/cit24/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b00268
– volume: 5
  start-page: 494
  year: 2019
  ident: D4CS00370E/cit316/1
  publication-title: Chem
  doi: 10.1016/j.chempr.2019.02.013
– volume: 119
  start-page: 11945
  year: 2019
  ident: D4CS00370E/cit61/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00157
– volume: 12
  start-page: 2686
  year: 2021
  ident: D4CS00370E/cit291/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22996-2
– volume: 262
  start-page: 36
  year: 2016
  ident: D4CS00370E/cit82/1
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2015.08.016
– volume: 66
  start-page: 107
  year: 2022
  ident: D4CS00370E/cit263/1
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2021.07.015
– volume: 11
  start-page: 21420
  year: 2023
  ident: D4CS00370E/cit245/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D3TA03473A
– volume: 34
  start-page: 2202084
  year: 2022
  ident: D4CS00370E/cit330/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202202084
– volume: 3
  start-page: 878
  year: 2024
  ident: D4CS00370E/cit396/1
  publication-title: Nat. Synth.
  doi: 10.1038/s44160-024-00545-1
– volume: 142
  start-page: 8748
  year: 2020
  ident: D4CS00370E/cit136/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c01104
– volume: 51
  start-page: 12495
  year: 2012
  ident: D4CS00370E/cit146/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201204842
– volume: 49
  start-page: 3398
  year: 2020
  ident: D4CS00370E/cit363/1
  publication-title: Dalton Trans.
  doi: 10.1039/D0DT00050G
– volume: 13
  start-page: 6260
  year: 2022
  ident: D4CS00370E/cit185/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-33984-5
– volume: 3
  start-page: 221
  year: 2012
  ident: D4CS00370E/cit225/1
  publication-title: Electrocatalysis
  doi: 10.1007/s12678-012-0100-7
– volume: 116
  start-page: 7698
  year: 2016
  ident: D4CS00370E/cit383/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00045
– volume: 32
  start-page: 2107479
  year: 2022
  ident: D4CS00370E/cit113/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202107479
– volume: 11
  start-page: 550
  year: 2012
  ident: D4CS00370E/cit69/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3313
– volume: 12
  start-page: 441
  year: 2017
  ident: D4CS00370E/cit170/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.304
– volume: 39
  start-page: 3455
  year: 2021
  ident: D4CS00370E/cit308/1
  publication-title: Chin. J. Chem.
  doi: 10.1002/cjoc.202100425
– volume: 162
  start-page: 138
  year: 2015
  ident: D4CS00370E/cit51/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.01.069
– volume: 42
  start-page: 2094
  year: 2021
  ident: D4CS00370E/cit88/1
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(21)64088-3
– volume: 8
  start-page: 1509
  year: 2017
  ident: D4CS00370E/cit344/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01872-y
– volume: 66
  start-page: 85
  year: 2020
  ident: D4CS00370E/cit345/1
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2020.09.014
– volume: 36
  start-page: 2304496
  year: 2023
  ident: D4CS00370E/cit292/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202304496
– volume: 63
  start-page: e202319618
  year: 2024
  ident: D4CS00370E/cit371/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202319618
– volume: 12
  start-page: 15217
  year: 2010
  ident: D4CS00370E/cit198/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c0cp00104j
– volume: 14
  start-page: 3400
  year: 2023
  ident: D4CS00370E/cit93/1
  publication-title: Chem. Sci.
  doi: 10.1039/D2SC06298D
– volume: 50
  start-page: 915
  year: 2017
  ident: D4CS00370E/cit356/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00635
– volume: 10
  start-page: 6798
  year: 2020
  ident: D4CS00370E/cit218/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c01635
– volume: 5
  start-page: 400
  year: 2003
  ident: D4CS00370E/cit131/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b208322a
– volume: 115
  start-page: 19226
  year: 2011
  ident: D4CS00370E/cit357/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp205287b
– volume: 8
  start-page: 40
  year: 2023
  ident: D4CS00370E/cit212/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.2c01993
– volume: 124
  start-page: 3694
  year: 2024
  ident: D4CS00370E/cit377/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.3c00332
– start-page: 2404658
  year: 2024
  ident: D4CS00370E/cit376/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202404658
– volume: 51
  start-page: 9620
  year: 2022
  ident: D4CS00370E/cit15/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D2CS00038E
– volume: 456
  start-page: 141056
  year: 2022
  ident: D4CS00370E/cit339/1
  publication-title: Chem. Eng. J.
– volume: 13
  start-page: 10550
  year: 2022
  ident: D4CS00370E/cit84/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.2c02907
– volume: 10
  start-page: 1602
  year: 2008
  ident: D4CS00370E/cit156/1
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2008.08.019
– volume: 14
  start-page: 6462
  year: 2023
  ident: D4CS00370E/cit178/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-42221-6
– volume: 3
  start-page: 656
  year: 2020
  ident: D4CS00370E/cit414/1
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-020-0482-5
– volume: 116
  start-page: 7673
  year: 2016
  ident: D4CS00370E/cit105/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00664
– volume: 14
  start-page: 11224
  year: 2012
  ident: D4CS00370E/cit189/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c2cp40717e
– volume: 7
  start-page: 1602
  year: 2021
  ident: D4CS00370E/cit183/1
  publication-title: Chem
  doi: 10.1016/j.chempr.2021.03.006
– volume: 303
  start-page: 120873
  year: 2021
  ident: D4CS00370E/cit261/1
  publication-title: Appl. Catal., B
– volume: 125
  start-page: 27185
  year: 2021
  ident: D4CS00370E/cit311/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.1c07465
– volume: 63
  start-page: e202314382
  year: 2024
  ident: D4CS00370E/cit373/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202314382
– volume: 9
  start-page: 1902449
  year: 2019
  ident: D4CS00370E/cit260/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201902449
– volume: 135
  start-page: 13473
  year: 2013
  ident: D4CS00370E/cit173/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja405598a
– volume: 6
  start-page: 476
  year: 2022
  ident: D4CS00370E/cit9/1
  publication-title: Joule
  doi: 10.1016/j.joule.2022.01.007
– volume: 434
  start-page: 199
  year: 2005
  ident: D4CS00370E/cit201/1
  publication-title: Nature
  doi: 10.1038/nature03383
– volume: 7
  start-page: 1602122
  year: 2017
  ident: D4CS00370E/cit334/1
  publication-title: Chem. – Eur. J.
– volume: 35
  start-page: 101037
  year: 2022
  ident: D4CS00370E/cit107/1
  publication-title: Curr. Opin. Electrochem.
  doi: 10.1016/j.coelec.2022.101037
– volume: 15
  start-page: 5336
  year: 2024
  ident: D4CS00370E/cit46/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-49015-4
– volume: 18
  start-page: 16216
  year: 2016
  ident: D4CS00370E/cit134/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP01652A
– volume: 13
  start-page: 4200
  year: 2022
  ident: D4CS00370E/cit351/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-31971-4
– volume: 9
  start-page: 6683
  year: 2018
  ident: D4CS00370E/cit404/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.8b03066
– volume: 2
  start-page: 84
  year: 2022
  ident: D4CS00370E/cit16/1
  publication-title: Nat. Rev. Methods Primers
  doi: 10.1038/s43586-022-00164-0
– volume: 138
  start-page: 16174
  year: 2016
  ident: D4CS00370E/cit151/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b11291
– volume: 7
  start-page: 1700666
  year: 2017
  ident: D4CS00370E/cit265/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700666
– volume: 10
  start-page: 3755
  year: 2019
  ident: D4CS00370E/cit399/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11847-w
– volume: 29
  start-page: 1605502
  year: 2017
  ident: D4CS00370E/cit153/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201605502
– volume: 135
  start-page: 9991
  year: 2013
  ident: D4CS00370E/cit25/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja403578s
– volume: 2
  start-page: 17031
  year: 2017
  ident: D4CS00370E/cit71/1
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2017.31
– volume: 55
  start-page: 9461
  year: 2016
  ident: D4CS00370E/cit391/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.6b01702
– volume: 16
  start-page: 619
  year: 2023
  ident: D4CS00370E/cit281/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D2EE03185J
– volume: 165
  start-page: H27
  year: 2018
  ident: D4CS00370E/cit143/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0881802jes
– volume: 12
  start-page: 2620
  year: 2019
  ident: D4CS00370E/cit269/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE01202H
– volume: 470
  start-page: 144344
  year: 2023
  ident: D4CS00370E/cit250/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.144344
– volume: 32
  start-page: 1907879
  year: 2020
  ident: D4CS00370E/cit328/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201907879
– volume: 5
  start-page: 846
  year: 2022
  ident: D4CS00370E/cit12/1
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-022-00858-4
– volume: 11
  start-page: 10324
  year: 2021
  ident: D4CS00370E/cit200/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c02673
– volume: 36
  start-page: 2305437
  year: 2023
  ident: D4CS00370E/cit295/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202305437
– volume: 2
  start-page: 1250
  year: 2018
  ident: D4CS00370E/cit335/1
  publication-title: Mater. Chem. Front.
  doi: 10.1039/C8QM00070K
– volume: 354
  start-page: 136620
  year: 2020
  ident: D4CS00370E/cit106/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2020.136620
– volume: 61
  start-page: e202207197
  year: 2022
  ident: D4CS00370E/cit206/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202207197
– volume: 10
  start-page: 5686
  year: 2023
  ident: D4CS00370E/cit341/1
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/D3QI00994G
SSID ssj0011762
Score 2.5788307
SecondaryResourceType review_article
Snippet Hydrogen electrocatalytic reactions, including the hydrogen evolution reaction (HER) and the hydrogen oxidation reaction (HOR), play a crucial role in a wide...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1253
SubjectTerms Acidic oxides
Anion exchanging
Catalysts
Design optimization
Electrocatalysis
Electrolysis
Electrolytes
Electrolytic cells
Energy conversion
Fuel cells
Hydrogen
Hydrogen evolution reactions
Kinetics
Oxidation
Reaction kinetics
Title Insights into the pH effect on hydrogen electrocatalysis
URI https://www.ncbi.nlm.nih.gov/pubmed/39239864
https://www.proquest.com/docview/3116206725
https://www.proquest.com/docview/3101236590
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BeoBLxatgKMgILhwMtvfpYxXSpgj1QqrmZtnrdUFCTprHAX49M96HAwQJuFjR7jq29lvPzO7MfEPIa96CTmhSmnCtRMKKzCSFbnhCa9D2hqtM6j7K90JML9mHOZ_7Gu4uu2RTv9Xf9-aV_A-q0Aa4YpbsPyAb_hQa4DfgC1dAGK5_hfF5t8a9NYZUORNyOXURGugE-PytWS2ukcbf1rrpj2qQgWTXIg2MAT5-0_GTBufEtvf3X5kuOaucmsN4nao_Yz0dFtdFb4aebUHTDI1X7jh6Dhry5ou_350y5AzFs83u9NlVePKQupBnY4UlE2nCpOVv9NLUUv-6VZPviEawpOiOmkWan70iPKXIgNowvUZunNQMiiqEDw6dt8lBDvuDfEQOTiaz84_BgZRJ4RxI9rU9My0t3g13_2yL_LbBAHNj5cvA9ObG7B45dPuE-MSCfp_cMt0Dcmfsy_M9JMqDHyP4MYAfL6exBT9edLEHP_4V_Efk8nQyG08TVwYj0ZTKTUKFaFXWCpC8WuCLI0lbploOn5MRTCsptWoFlbk2Da14UXMDRlzawF7QtJWgR2TULTrzhMSyBQvTUNVg_jKjaa1qU2VNUyjkfZR5RN74CSm144jHUiVfyz5WgRblezb-1E_eJCKvwtilZUbZO-rYz2vpvpx1CdALLBuQ84i8DN0wf-isqjqz2OKYnl2QF2lEHls8wmPApqdYViAiRwBQaB6Affqnjmfk7rC6j8los9qa52BVbuoXbgX9ANNVc1c
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insights+into+the+pH+effect+on+hydrogen+electrocatalysis&rft.jtitle=Chemical+Society+reviews&rft.au=Cui%2C+Wen-Gang&rft.au=Gao%2C+Fan&rft.au=Na%2C+Guoquan&rft.au=Wang%2C+Xingqiang&rft.date=2024-10-14&rft.issn=0306-0012&rft.eissn=1460-4744&rft.volume=53&rft.issue=2&rft.spage=1253&rft.epage=1311&rft_id=info:doi/10.1039%2Fd4cs00370e&rft.externalDocID=d4cs00370e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-0012&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-0012&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-0012&client=summon