A computational method for solving boundary value problems for third-order singularly perturbed ordinary differential equations
Singularly perturbed two-point boundary value problems (SPBVPs) for third-order ordinary differential equations (ODEs) with a small parameter multiplying the highest derivative are considered. A numerical method is suggested in this paper to solve such problems. In this method, the given BVP is tran...
Saved in:
Published in | Applied mathematics and computation Vol. 129; no. 2; pp. 345 - 373 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York, NY
Elsevier Inc
10.07.2002
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Singularly perturbed two-point boundary value problems (SPBVPs) for third-order ordinary differential equations (ODEs) with a small parameter multiplying the highest derivative are considered. A numerical method is suggested in this paper to solve such problems. In this method, the given BVP is transformed into a system of two ODEs subject to suitable initial and boundary conditions. Then the domain of definition of the differential equation (a closed interval) is divided into two sub-intervals, which we call the inner region (boundary layer) and the outer region. Then the DE is solved in these intervals separately. The solutions obtained in these intervals are combined to give the solution in the whole interval. To obtain boundary conditions at the transition points (boundary values inside this interval) we use mostly the zeroth-order asymptotic expansion of the solution of the BVP or a suitable asymptotic expansion solution. First, the linear equations are considered and then the semi-linear equations. To solve semi-linear equations Newton's method of quasi-linearisation is applied. Examples are provided to illustrate the method. The method is easy to implement and suitable for parallel computing. |
---|---|
AbstractList | Singularly perturbed two-point boundary value problems (SPBVPs) for third-order ordinary differential equations (ODEs) with a small parameter multiplying the highest derivative are considered. A numerical method is suggested in this paper to solve such problems. In this method, the given BVP is transformed into a system of two ODEs subject to suitable initial and boundary conditions. Then the domain of definition of the differential equation (a closed interval) is divided into two sub-intervals, which we call the inner region (boundary layer) and the outer region. Then the DE is solved in these intervals separately. The solutions obtained in these intervals are combined to give the solution in the whole interval. To obtain boundary conditions at the transition points (boundary values inside this interval) we use mostly the zeroth-order asymptotic expansion of the solution of the BVP or a suitable asymptotic expansion solution. First, the linear equations are considered and then the semi-linear equations. To solve semi-linear equations Newton's method of quasi-linearisation is applied. Examples are provided to illustrate the method. The method is easy to implement and suitable for parallel computing. |
Author | Ramanujam, N. Valarmathi, S. |
Author_xml | – sequence: 1 givenname: S. surname: Valarmathi fullname: Valarmathi, S. email: matii@eth.net – sequence: 2 givenname: N. surname: Ramanujam fullname: Ramanujam, N. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13712139$$DView record in Pascal Francis |
BookMark | eNqFkLFqHDEQhkWwIWc7jxBQE0iKTUarXemOFMGYJDYYUjiphVYaxQo6aSNpD1z51a27Cy7SuJpivn_-4TsjJzFFJOQtg48MmPh0B7ARHQfg74F9AIBh6PgrsmJrybtRDJsTsnpGXpOzUv40SAo2rMjjJTVpOy9VV5-iDnSL9T5Z6lKmJYWdj7_plJZodX6gOx0WpHNOU8BtOTD13mfbpWyx8Q1egs7hgc6Y65IntLStfNyHrXcOM8bqWwv-XQ6F5YKcOh0Kvvk3z8mvb19_Xl13tz--31xd3naGc1k7LpiYhEE5ODNNG8bXVo6j7qXQMMLIJXdtCaMenR5EL9duPXEB3Ni-59Bbfk7eHe_OuhgdXNbR-KLm7LftOcW4ZD3jm8Z9PnImp1IyOmX80U3N2gfFQO2dq4NztReqgKmDc8Vbevwv_VzwQu7LMYdNwc5jVsV4jAatz2iqssm_cOEJjaWd7Q |
CODEN | AMHCBQ |
CitedBy_id | crossref_primary_10_1016_j_amc_2007_09_023 crossref_primary_10_1088_1674_1056_18_8_006 crossref_primary_10_1007_s00500_022_07290_7 crossref_primary_10_1016_j_cam_2016_03_009 crossref_primary_10_1007_s12190_008_0110_z crossref_primary_10_4236_am_2011_28132 crossref_primary_10_1016_j_apnum_2015_06_002 crossref_primary_10_1016_S0096_3003_01_00179_5 crossref_primary_10_1016_j_camwa_2004_06_015 crossref_primary_10_1016_j_jksus_2013_01_004 crossref_primary_10_1080_00207160701478862 crossref_primary_10_1007_s12346_018_0307_y crossref_primary_10_1016_j_amc_2010_09_059 crossref_primary_10_1016_j_proeng_2015_11_339 crossref_primary_10_1080_00207160601177200 crossref_primary_10_1080_00207160701295712 crossref_primary_10_1016_S0096_3003_02_00053_X crossref_primary_10_1016_j_amc_2007_02_093 crossref_primary_10_1016_j_amc_2015_08_129 crossref_primary_10_1007_s40009_018_0705_3 crossref_primary_10_1007_s12190_008_0178_5 crossref_primary_10_1155_2010_459754 |
Cites_doi | 10.1137/0513005 10.1007/BF01390214 10.1007/BF01436920 10.1090/S0025-5718-1988-0935072-1 10.1016/0096-3003(87)90001-4 10.1016/0096-3003(87)90003-8 10.1137/0143065 10.1093/imanum/14.1.97 10.1016/S0096-3003(97)10056-X 10.1016/0022-247X(88)90412-X 10.1093/imanum/7.4.459 10.1016/0096-3003(93)90004-X 10.1016/0022-247X(82)90139-1 10.1016/0898-1221(94)90078-7 10.1016/0096-3003(87)90020-8 10.1093/imanum/15.1.117 10.1016/0022-0396(90)90099-B 10.1093/imanum/15.2.197 10.1006/jdeq.1994.1076 |
ContentType | Journal Article |
Copyright | 2002 Elsevier Science Inc. 2002 INIST-CNRS |
Copyright_xml | – notice: 2002 Elsevier Science Inc. – notice: 2002 INIST-CNRS |
DBID | AAYXX CITATION IQODW |
DOI | 10.1016/S0096-3003(01)00044-3 |
DatabaseName | CrossRef Pascal-Francis |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1873-5649 |
EndPage | 373 |
ExternalDocumentID | 13712139 10_1016_S0096_3003_01_00044_3 S0096300301000443 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADGUI ADIYS ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLZ HMJ HVGLF HZ~ IHE J1W KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ RXW SBC SDF SDG SES SEW SME SPC SPCBC SSW SSZ T5K TAE TN5 VH1 VOH WH7 WUQ X6Y XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW |
ID | FETCH-LOGICAL-c337t-3616b6ce74fcbb9138d755a276a0505373fce705a5fa46278f8b3603cd22302d3 |
IEDL.DBID | .~1 |
ISSN | 0096-3003 |
IngestDate | Mon Jul 21 09:17:57 EDT 2025 Thu Apr 24 22:59:50 EDT 2025 Tue Jul 01 01:30:57 EDT 2025 Fri Feb 23 02:26:29 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Exponentially fitted finite difference scheme Non-self-adjoint boundary value problem Asymptotic approximation Singular perturbation Third-order differential equation Boundary layer Third order equation Boundary value problem Differential equation Quasilinearization Numerical method Boundary condition Newton method |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c337t-3616b6ce74fcbb9138d755a276a0505373fce705a5fa46278f8b3603cd22302d3 |
PageCount | 29 |
ParticipantIDs | pascalfrancis_primary_13712139 crossref_citationtrail_10_1016_S0096_3003_01_00044_3 crossref_primary_10_1016_S0096_3003_01_00044_3 elsevier_sciencedirect_doi_10_1016_S0096_3003_01_00044_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2002-07-10 |
PublicationDateYYYYMMDD | 2002-07-10 |
PublicationDate_xml | – month: 07 year: 2002 text: 2002-07-10 day: 10 |
PublicationDecade | 2000 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY |
PublicationTitle | Applied mathematics and computation |
PublicationYear | 2002 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Howes (BIB10) 1983; 43 Krishnamoorthy, Sen (BIB17) 1986 Khadalbajoo, Reddy (BIB20) 1987; 21 O'Malley (BIB6) 1990 Roberts (BIB31) 1982; 87 Weili (BIB12) 1990; 88 Sun, Stynes (BIB26) 1995; 15 Niederdrenk, Yserentant (BIB23) 1983; 41 Doolan, Miller, Schilders (BIB2) 1980 Sember (BIB27) 1994; 14 Feckan (BIB16) 1994; III Jayakumar, Ramanujam (BIB14) 1994; 27 Abrahamsson, Keller, Kries (BIB1) 1974; 22 Roberts (BIB11) 1988; 133 Farrel (BIB3) 1987; 7 Gartlend (BIB24) 1988; 51 Khadalbajoo, Reddy (BIB18) 1987; 21 Nayfeh (BIB7) 1981 Natesan, Ramanujam (BIB15) 1998; 93 Jayakumar, Ramanujam (BIB13) 1993; 55 Roos, Stynes, Tobiska (BIB8) 1996 Roos, Stynes (BIB28) 1991; 228 Howes (BIB9) 1982; 13 O'Malley (BIB29) 1991 O'Malley (BIB5) 1974 Ramanujam, Srivartsava (BIB22) 1980; 23 Sun, Stynes (BIB25) 1995; 15 Khadalbajoo, Reddy (BIB19) 1987; 21 Adams, Spreuer (BIB21) 1975; 55 Protter, Weinberger (BIB32) 1967 Ramanujam, Srivartsava (BIB30) 1979; 71 Miller, O'Riordan, Shishkin (BIB4) 1996 Adams (10.1016/S0096-3003(01)00044-3_BIB21) 1975; 55 Khadalbajoo (10.1016/S0096-3003(01)00044-3_BIB20) 1987; 21 Ramanujam (10.1016/S0096-3003(01)00044-3_BIB22) 1980; 23 Roberts (10.1016/S0096-3003(01)00044-3_BIB11) 1988; 133 Miller (10.1016/S0096-3003(01)00044-3_BIB4) 1996 Sun (10.1016/S0096-3003(01)00044-3_BIB25) 1995; 15 Doolan (10.1016/S0096-3003(01)00044-3_BIB2) 1980 Howes (10.1016/S0096-3003(01)00044-3_BIB9) 1982; 13 O'Malley (10.1016/S0096-3003(01)00044-3_BIB29) 1991 Roberts (10.1016/S0096-3003(01)00044-3_BIB31) 1982; 87 Weili (10.1016/S0096-3003(01)00044-3_BIB12) 1990; 88 Ramanujam (10.1016/S0096-3003(01)00044-3_BIB30) 1979; 71 Protter (10.1016/S0096-3003(01)00044-3_BIB32) 1967 Khadalbajoo (10.1016/S0096-3003(01)00044-3_BIB19) 1987; 21 Niederdrenk (10.1016/S0096-3003(01)00044-3_BIB23) 1983; 41 Gartlend (10.1016/S0096-3003(01)00044-3_BIB24) 1988; 51 Roos (10.1016/S0096-3003(01)00044-3_BIB28) 1991; 228 Farrel (10.1016/S0096-3003(01)00044-3_BIB3) 1987; 7 Krishnamoorthy (10.1016/S0096-3003(01)00044-3_BIB17) 1986 Sun (10.1016/S0096-3003(01)00044-3_BIB26) 1995; 15 Jayakumar (10.1016/S0096-3003(01)00044-3_BIB13) 1993; 55 Nayfeh (10.1016/S0096-3003(01)00044-3_BIB7) 1981 Jayakumar (10.1016/S0096-3003(01)00044-3_BIB14) 1994; 27 Roos (10.1016/S0096-3003(01)00044-3_BIB8) 1996 Natesan (10.1016/S0096-3003(01)00044-3_BIB15) 1998; 93 O'Malley (10.1016/S0096-3003(01)00044-3_BIB6) 1990 O'Malley (10.1016/S0096-3003(01)00044-3_BIB5) 1974 Howes (10.1016/S0096-3003(01)00044-3_BIB10) 1983; 43 Abrahamsson (10.1016/S0096-3003(01)00044-3_BIB1) 1974; 22 Khadalbajoo (10.1016/S0096-3003(01)00044-3_BIB18) 1987; 21 Feckan (10.1016/S0096-3003(01)00044-3_BIB16) 1994; III Sember (10.1016/S0096-3003(01)00044-3_BIB27) 1994; 14 |
References_xml | – volume: 22 start-page: 367 year: 1974 end-page: 391 ident: BIB1 article-title: Difference approximations for singular perturbation of systems of ordinary differential equations publication-title: Numer. Math. – year: 1996 ident: BIB4 publication-title: Fitted Numerical Methods for Singular Perturbation Problems. Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions – volume: 15 start-page: 117 year: 1995 end-page: 139 ident: BIB26 article-title: Finite element methods for singularly perturbed higher order elliptic twopoint boundary value problems I: reaction–diffusion type publication-title: IMA J. Numer. Anal. – year: 1981 ident: BIB7 publication-title: Introduction to Perturbation Methods – volume: 55 start-page: 31 year: 1993 end-page: 48 ident: BIB13 article-title: A computational method for solving singular perturbation problems publication-title: Appl. Math. Comput. – year: 1990 ident: BIB6 publication-title: Singular Perturbation Methods for Ordinary Differential Equations – volume: 23 year: 1980 ident: BIB22 article-title: Singular perturbation problems for systems of differential equations of parabolic type publication-title: Funkcial. Ekvac. – year: 1991 ident: BIB29 publication-title: Singular Perturbation Methods for Ordinary Differential Equations – year: 1974 ident: BIB5 publication-title: Introduction to Singular Perturbations – volume: 7 start-page: 459 year: 1987 end-page: 472 ident: BIB3 article-title: Sufficient conditions for uniform convergence of a class of difference schemes for singular perturbation problems publication-title: IMA J. Numer. Anal. – volume: 87 start-page: 489 year: 1982 end-page: 508 ident: BIB31 article-title: A boundary value technic for singular perturbation problems publication-title: J. Math. Anal. Appl. – volume: 15 start-page: 197 year: 1995 end-page: 219 ident: BIB25 article-title: Finite element methods for singularly perturbed higher order elliptic twopoint boundary value problems II: convection–diffusion type publication-title: IMA J. Numer. Anal. – year: 1986 ident: BIB17 publication-title: Numerical Algorithms – Computations in Science and Engineering – year: 1967 ident: BIB32 publication-title: Maximum Principles in Differential Equations – volume: 27 start-page: 83 year: 1994 end-page: 99 ident: BIB14 article-title: A numerical method for singular perturbation problems arising in chemical reactor theory publication-title: Comput. Math. Appl. – volume: 51 start-page: 631 year: 1988 end-page: 657 ident: BIB24 article-title: Graded mesh difference schemes for singularly perturbed two-point boundary value problems publication-title: Math. Comput. – volume: 93 start-page: 259 year: 1998 end-page: 275 ident: BIB15 article-title: A computational method for solving singularly perturbed turning point problems exhibiting twin boundary layers publication-title: Appl. Math. Comput. – volume: 13 start-page: 61 year: 1982 end-page: 80 ident: BIB9 article-title: Differential inequalities of higher order and the asymptotic solution of the nonlinear boundary value problems publication-title: SIAM J. Math. Anal. – year: 1996 ident: BIB8 publication-title: Numerical Methods for Singularly Perturbed Differential Equations – Convection–Diffusion and Flow Problems – volume: 14 start-page: 97 year: 1994 end-page: 109 ident: BIB27 article-title: Locking in finite element approximation of long thin extensible beams publication-title: IMA J. Numer. Anal. – volume: 71 year: 1979 ident: BIB30 article-title: Singular perturbation problems for systems of PDEs of elliptic type publication-title: JMAA – volume: 43 start-page: 993 year: 1983 end-page: 1004 ident: BIB10 article-title: The asymptotic solution of a class of third-order boundary value problem arising in the theory of thin film flow publication-title: SIAM J. Appl. Math. – volume: 133 start-page: 411 year: 1988 end-page: 436 ident: BIB11 article-title: Further examples of the boundary value technique in singular perturbation problems publication-title: J. Math. Anal. Appl. – volume: 41 start-page: 223 year: 1983 end-page: 253 ident: BIB23 article-title: The uniform stability of singularly perturbed discrete and continuous boundary value problems publication-title: Numer. Math. – volume: 21 start-page: 221 year: 1987 end-page: 232 ident: BIB20 article-title: Perturbation problems via deviating arguments publication-title: Appl. Math. Comput. – volume: 21 start-page: 93 year: 1987 end-page: 110 ident: BIB18 article-title: Numerical treatment of singularly perturbed two-point boundary value problems publication-title: Appl. Math. Comput. – volume: 55 start-page: 191 year: 1975 end-page: 193 ident: BIB21 article-title: Über das vorligen der Eigen schaft von monotoner Art bei fortschreitend bez nur als ganzes losbarem sustemen publication-title: Z. Angew. Math. Mech. – volume: 88 start-page: 265 year: 1990 end-page: 278 ident: BIB12 article-title: Singular perturbations of boundary value problems for a class of third order nonlinear ordinary differential equations publication-title: J. Differential Equations – year: 1980 ident: BIB2 publication-title: Uniform Numerical Methods for Problems with Initial and Boundary Layers – volume: III start-page: 79 year: 1994 end-page: 102 ident: BIB16 article-title: Singularly perturbed higher order boundary value problems publication-title: J. Differential Equations – volume: 21 start-page: 185 year: 1987 end-page: 199 ident: BIB19 article-title: Approximate methods for the numerical solution of singular perturbation problems publication-title: Appl. Math. Comput. – volume: 228 start-page: 30 year: 1991 end-page: 40 ident: BIB28 article-title: A Uniformly convergent discretization method for a fourth order singular perturbation problem publication-title: Bonner Math. Schriften – volume: 13 start-page: 61 issue: 1 year: 1982 ident: 10.1016/S0096-3003(01)00044-3_BIB9 article-title: Differential inequalities of higher order and the asymptotic solution of the nonlinear boundary value problems publication-title: SIAM J. Math. Anal. doi: 10.1137/0513005 – volume: 41 start-page: 223 year: 1983 ident: 10.1016/S0096-3003(01)00044-3_BIB23 article-title: The uniform stability of singularly perturbed discrete and continuous boundary value problems publication-title: Numer. Math. doi: 10.1007/BF01390214 – volume: 22 start-page: 367 year: 1974 ident: 10.1016/S0096-3003(01)00044-3_BIB1 article-title: Difference approximations for singular perturbation of systems of ordinary differential equations publication-title: Numer. Math. doi: 10.1007/BF01436920 – volume: 51 start-page: 631 year: 1988 ident: 10.1016/S0096-3003(01)00044-3_BIB24 article-title: Graded mesh difference schemes for singularly perturbed two-point boundary value problems publication-title: Math. Comput. doi: 10.1090/S0025-5718-1988-0935072-1 – year: 1967 ident: 10.1016/S0096-3003(01)00044-3_BIB32 – volume: 21 start-page: 185 year: 1987 ident: 10.1016/S0096-3003(01)00044-3_BIB19 article-title: Approximate methods for the numerical solution of singular perturbation problems publication-title: Appl. Math. Comput. doi: 10.1016/0096-3003(87)90001-4 – volume: 23 issue: 3 year: 1980 ident: 10.1016/S0096-3003(01)00044-3_BIB22 article-title: Singular perturbation problems for systems of differential equations of parabolic type publication-title: Funkcial. Ekvac. – year: 1991 ident: 10.1016/S0096-3003(01)00044-3_BIB29 – year: 1974 ident: 10.1016/S0096-3003(01)00044-3_BIB5 – volume: 21 start-page: 221 year: 1987 ident: 10.1016/S0096-3003(01)00044-3_BIB20 article-title: Perturbation problems via deviating arguments publication-title: Appl. Math. Comput. doi: 10.1016/0096-3003(87)90003-8 – volume: 43 start-page: 993 issue: 5 year: 1983 ident: 10.1016/S0096-3003(01)00044-3_BIB10 article-title: The asymptotic solution of a class of third-order boundary value problem arising in the theory of thin film flow publication-title: SIAM J. Appl. Math. doi: 10.1137/0143065 – year: 1980 ident: 10.1016/S0096-3003(01)00044-3_BIB2 – year: 1981 ident: 10.1016/S0096-3003(01)00044-3_BIB7 – volume: 228 start-page: 30 year: 1991 ident: 10.1016/S0096-3003(01)00044-3_BIB28 article-title: A Uniformly convergent discretization method for a fourth order singular perturbation problem publication-title: Bonner Math. Schriften – volume: 14 start-page: 97 year: 1994 ident: 10.1016/S0096-3003(01)00044-3_BIB27 article-title: Locking in finite element approximation of long thin extensible beams publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/14.1.97 – volume: 93 start-page: 259 year: 1998 ident: 10.1016/S0096-3003(01)00044-3_BIB15 article-title: A computational method for solving singularly perturbed turning point problems exhibiting twin boundary layers publication-title: Appl. Math. Comput. doi: 10.1016/S0096-3003(97)10056-X – year: 1996 ident: 10.1016/S0096-3003(01)00044-3_BIB8 – volume: 133 start-page: 411 year: 1988 ident: 10.1016/S0096-3003(01)00044-3_BIB11 article-title: Further examples of the boundary value technique in singular perturbation problems publication-title: J. Math. Anal. Appl. doi: 10.1016/0022-247X(88)90412-X – year: 1986 ident: 10.1016/S0096-3003(01)00044-3_BIB17 – volume: 7 start-page: 459 year: 1987 ident: 10.1016/S0096-3003(01)00044-3_BIB3 article-title: Sufficient conditions for uniform convergence of a class of difference schemes for singular perturbation problems publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/7.4.459 – year: 1996 ident: 10.1016/S0096-3003(01)00044-3_BIB4 – volume: 55 start-page: 31 year: 1993 ident: 10.1016/S0096-3003(01)00044-3_BIB13 article-title: A computational method for solving singular perturbation problems publication-title: Appl. Math. Comput. doi: 10.1016/0096-3003(93)90004-X – volume: 71 issue: 1 year: 1979 ident: 10.1016/S0096-3003(01)00044-3_BIB30 article-title: Singular perturbation problems for systems of PDEs of elliptic type publication-title: JMAA – volume: 87 start-page: 489 year: 1982 ident: 10.1016/S0096-3003(01)00044-3_BIB31 article-title: A boundary value technic for singular perturbation problems publication-title: J. Math. Anal. Appl. doi: 10.1016/0022-247X(82)90139-1 – volume: 55 start-page: 191 year: 1975 ident: 10.1016/S0096-3003(01)00044-3_BIB21 article-title: Über das vorligen der Eigen schaft von monotoner Art bei fortschreitend bez nur als ganzes losbarem sustemen publication-title: Z. Angew. Math. Mech. – volume: 27 start-page: 83 issue: 5 year: 1994 ident: 10.1016/S0096-3003(01)00044-3_BIB14 article-title: A numerical method for singular perturbation problems arising in chemical reactor theory publication-title: Comput. Math. Appl. doi: 10.1016/0898-1221(94)90078-7 – volume: 21 start-page: 93 year: 1987 ident: 10.1016/S0096-3003(01)00044-3_BIB18 article-title: Numerical treatment of singularly perturbed two-point boundary value problems publication-title: Appl. Math. Comput. doi: 10.1016/0096-3003(87)90020-8 – volume: 15 start-page: 117 year: 1995 ident: 10.1016/S0096-3003(01)00044-3_BIB26 article-title: Finite element methods for singularly perturbed higher order elliptic twopoint boundary value problems I: reaction–diffusion type publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/15.1.117 – volume: 88 start-page: 265 issue: 2 year: 1990 ident: 10.1016/S0096-3003(01)00044-3_BIB12 article-title: Singular perturbations of boundary value problems for a class of third order nonlinear ordinary differential equations publication-title: J. Differential Equations doi: 10.1016/0022-0396(90)90099-B – volume: 15 start-page: 197 year: 1995 ident: 10.1016/S0096-3003(01)00044-3_BIB25 article-title: Finite element methods for singularly perturbed higher order elliptic twopoint boundary value problems II: convection–diffusion type publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/15.2.197 – year: 1990 ident: 10.1016/S0096-3003(01)00044-3_BIB6 – volume: III start-page: 79 issue: 1 year: 1994 ident: 10.1016/S0096-3003(01)00044-3_BIB16 article-title: Singularly perturbed higher order boundary value problems publication-title: J. Differential Equations doi: 10.1006/jdeq.1994.1076 |
SSID | ssj0007614 |
Score | 1.800825 |
Snippet | Singularly perturbed two-point boundary value problems (SPBVPs) for third-order ordinary differential equations (ODEs) with a small parameter multiplying the... |
SourceID | pascalfrancis crossref elsevier |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 345 |
SubjectTerms | Asymptotic approximation Boundary layer Exact sciences and technology Exponentially fitted finite difference scheme Mathematical analysis Mathematics Non-self-adjoint boundary value problem Numerical analysis Numerical analysis. Scientific computation Ordinary differential equations Sciences and techniques of general use Singular perturbation Third-order differential equation |
Title | A computational method for solving boundary value problems for third-order singularly perturbed ordinary differential equations |
URI | https://dx.doi.org/10.1016/S0096-3003(01)00044-3 |
Volume | 129 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQLCCEeIryqDwwwJDWqRM_xqoCFRBMVGKL4kdEpaqUpgxd4K9z56SUDgiJMXbsRL7T3dm--z5CLnyaFM7GPJIOTCAiekWaWXjUiAbFNDRjofDDo-gPkrvn9HmN9Ba1MJhWWdv-yqYHa123tOvVbE-GQ6zx1YgXBRoariUR8TNJJGp562OZ5gHb9AqJWWOOF-PLKp5qhtB4yeKrMEnEf_NP25O8hFUrKrqLHz7oZpfs1MEj7Vb_t0fW_HifbD18I6-WB-SzS20gaqgP-WhFEU0hNqWgZnh8QE2gUprOKSJ9e1pzypThndnLcOqiAMhJ8RgBs1RHczrxU_BNxjsKXaGEly6oVcBEjKh_qyDDy0MyuLl-6vWjmmQhspzLWcRFLIywXiaFNUbHXDmZpnlHihxJ7rjkBXSyNE-LPBEdqQpluGDcOggsWMfxI7I-fh37Y0KVgN2Jckxa6xLT0UYxD87PKSdUnGvbIMliaTNbI5AjEcYoW6aagUQylEjG4ixIJOMN0voeNqkgOP4aoBZyy1Z0KQM38dfQ5oqclx_kEsHv9Mn_5z4lm4FKBlE52RlZn03f_TlENDPTDCrbJBvd2_v-4xc1__CL |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RemgrVPWpQlvwoZXaQ8CJE9s59IBa0FJYTiBxc-NHxEqr7XazFdoL_VH9g51xErYcEBISxzixM_JMZmxn5vsAPoQir71LRaI8ukBC9EpK7vCyJDQoXmIzFQoPj-XgNP9-VpytwN--FobSKjvf3_r06K27lp1uNnemoxHV-JaEF4UWGn9L9gzWh2Fxgfu25svBN1Tyxyzb3zv5Okg6aoHECaHmiZCptNIFldfO2jIV2quiqDIlK6J2E0rUeJMXVVFXucyUrrUVkgvnMZzyzAsc9wE8zNFdEG3C9uUyr0TJFlAcpUtIvGXZUCtybPzE089R6kTcFBDXplWDaqpbfo3_gt7-M3jarVbZbjshz2ElTF7Ak-EV1GvzEv7sMheZIbpTRdZyUjNcDDO0azqvYDZyN80WjKDFA-tIbJr4zPx8NPNJRABldG5BabHjBZuGGQZDGzzDW7FmmPVcLuiTxiz8ajHKm1dwei9T_xpWJz8n4Q0wLXE7pD1XzvncZqXVPGC09dpLnValW4e8n1rjOshzYt4Ym2VuG2rEkEYMT03UiBHrsH3VbdpiftzWQfd6M9eM12Bcuq3r5jU9L18oFKHtlRt3H3sLHg1Ohkfm6OD48C08jjw2BAnK38HqfPY7vMfl1NxuRvNl8OO-v5d_IgYq0A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+computational+method+for+solving+boundary+value+problems+for+third-order+singularly+perturbed+ordinary+differential+equations&rft.jtitle=Applied+mathematics+and+computation&rft.au=Valarmathi%2C+S.&rft.au=Ramanujam%2C+N.&rft.date=2002-07-10&rft.pub=Elsevier+Inc&rft.issn=0096-3003&rft.eissn=1873-5649&rft.volume=129&rft.issue=2&rft.spage=345&rft.epage=373&rft_id=info:doi/10.1016%2FS0096-3003%2801%2900044-3&rft.externalDocID=S0096300301000443 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon |