A computational method for solving boundary value problems for third-order singularly perturbed ordinary differential equations

Singularly perturbed two-point boundary value problems (SPBVPs) for third-order ordinary differential equations (ODEs) with a small parameter multiplying the highest derivative are considered. A numerical method is suggested in this paper to solve such problems. In this method, the given BVP is tran...

Full description

Saved in:
Bibliographic Details
Published inApplied mathematics and computation Vol. 129; no. 2; pp. 345 - 373
Main Authors Valarmathi, S., Ramanujam, N.
Format Journal Article
LanguageEnglish
Published New York, NY Elsevier Inc 10.07.2002
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Singularly perturbed two-point boundary value problems (SPBVPs) for third-order ordinary differential equations (ODEs) with a small parameter multiplying the highest derivative are considered. A numerical method is suggested in this paper to solve such problems. In this method, the given BVP is transformed into a system of two ODEs subject to suitable initial and boundary conditions. Then the domain of definition of the differential equation (a closed interval) is divided into two sub-intervals, which we call the inner region (boundary layer) and the outer region. Then the DE is solved in these intervals separately. The solutions obtained in these intervals are combined to give the solution in the whole interval. To obtain boundary conditions at the transition points (boundary values inside this interval) we use mostly the zeroth-order asymptotic expansion of the solution of the BVP or a suitable asymptotic expansion solution. First, the linear equations are considered and then the semi-linear equations. To solve semi-linear equations Newton's method of quasi-linearisation is applied. Examples are provided to illustrate the method. The method is easy to implement and suitable for parallel computing.
AbstractList Singularly perturbed two-point boundary value problems (SPBVPs) for third-order ordinary differential equations (ODEs) with a small parameter multiplying the highest derivative are considered. A numerical method is suggested in this paper to solve such problems. In this method, the given BVP is transformed into a system of two ODEs subject to suitable initial and boundary conditions. Then the domain of definition of the differential equation (a closed interval) is divided into two sub-intervals, which we call the inner region (boundary layer) and the outer region. Then the DE is solved in these intervals separately. The solutions obtained in these intervals are combined to give the solution in the whole interval. To obtain boundary conditions at the transition points (boundary values inside this interval) we use mostly the zeroth-order asymptotic expansion of the solution of the BVP or a suitable asymptotic expansion solution. First, the linear equations are considered and then the semi-linear equations. To solve semi-linear equations Newton's method of quasi-linearisation is applied. Examples are provided to illustrate the method. The method is easy to implement and suitable for parallel computing.
Author Ramanujam, N.
Valarmathi, S.
Author_xml – sequence: 1
  givenname: S.
  surname: Valarmathi
  fullname: Valarmathi, S.
  email: matii@eth.net
– sequence: 2
  givenname: N.
  surname: Ramanujam
  fullname: Ramanujam, N.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13712139$$DView record in Pascal Francis
BookMark eNqFkLFqHDEQhkWwIWc7jxBQE0iKTUarXemOFMGYJDYYUjiphVYaxQo6aSNpD1z51a27Cy7SuJpivn_-4TsjJzFFJOQtg48MmPh0B7ARHQfg74F9AIBh6PgrsmJrybtRDJsTsnpGXpOzUv40SAo2rMjjJTVpOy9VV5-iDnSL9T5Z6lKmJYWdj7_plJZodX6gOx0WpHNOU8BtOTD13mfbpWyx8Q1egs7hgc6Y65IntLStfNyHrXcOM8bqWwv-XQ6F5YKcOh0Kvvk3z8mvb19_Xl13tz--31xd3naGc1k7LpiYhEE5ODNNG8bXVo6j7qXQMMLIJXdtCaMenR5EL9duPXEB3Ni-59Bbfk7eHe_OuhgdXNbR-KLm7LftOcW4ZD3jm8Z9PnImp1IyOmX80U3N2gfFQO2dq4NztReqgKmDc8Vbevwv_VzwQu7LMYdNwc5jVsV4jAatz2iqssm_cOEJjaWd7Q
CODEN AMHCBQ
CitedBy_id crossref_primary_10_1016_j_amc_2007_09_023
crossref_primary_10_1088_1674_1056_18_8_006
crossref_primary_10_1007_s00500_022_07290_7
crossref_primary_10_1016_j_cam_2016_03_009
crossref_primary_10_1007_s12190_008_0110_z
crossref_primary_10_4236_am_2011_28132
crossref_primary_10_1016_j_apnum_2015_06_002
crossref_primary_10_1016_S0096_3003_01_00179_5
crossref_primary_10_1016_j_camwa_2004_06_015
crossref_primary_10_1016_j_jksus_2013_01_004
crossref_primary_10_1080_00207160701478862
crossref_primary_10_1007_s12346_018_0307_y
crossref_primary_10_1016_j_amc_2010_09_059
crossref_primary_10_1016_j_proeng_2015_11_339
crossref_primary_10_1080_00207160601177200
crossref_primary_10_1080_00207160701295712
crossref_primary_10_1016_S0096_3003_02_00053_X
crossref_primary_10_1016_j_amc_2007_02_093
crossref_primary_10_1016_j_amc_2015_08_129
crossref_primary_10_1007_s40009_018_0705_3
crossref_primary_10_1007_s12190_008_0178_5
crossref_primary_10_1155_2010_459754
Cites_doi 10.1137/0513005
10.1007/BF01390214
10.1007/BF01436920
10.1090/S0025-5718-1988-0935072-1
10.1016/0096-3003(87)90001-4
10.1016/0096-3003(87)90003-8
10.1137/0143065
10.1093/imanum/14.1.97
10.1016/S0096-3003(97)10056-X
10.1016/0022-247X(88)90412-X
10.1093/imanum/7.4.459
10.1016/0096-3003(93)90004-X
10.1016/0022-247X(82)90139-1
10.1016/0898-1221(94)90078-7
10.1016/0096-3003(87)90020-8
10.1093/imanum/15.1.117
10.1016/0022-0396(90)90099-B
10.1093/imanum/15.2.197
10.1006/jdeq.1994.1076
ContentType Journal Article
Copyright 2002 Elsevier Science Inc.
2002 INIST-CNRS
Copyright_xml – notice: 2002 Elsevier Science Inc.
– notice: 2002 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1016/S0096-3003(01)00044-3
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1873-5649
EndPage 373
ExternalDocumentID 13712139
10_1016_S0096_3003_01_00044_3
S0096300301000443
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
ADIYS
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLZ
HMJ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SES
SEW
SME
SPC
SPCBC
SSW
SSZ
T5K
TAE
TN5
VH1
VOH
WH7
WUQ
X6Y
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
ID FETCH-LOGICAL-c337t-3616b6ce74fcbb9138d755a276a0505373fce705a5fa46278f8b3603cd22302d3
IEDL.DBID .~1
ISSN 0096-3003
IngestDate Mon Jul 21 09:17:57 EDT 2025
Thu Apr 24 22:59:50 EDT 2025
Tue Jul 01 01:30:57 EDT 2025
Fri Feb 23 02:26:29 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Exponentially fitted finite difference scheme
Non-self-adjoint boundary value problem
Asymptotic approximation
Singular perturbation
Third-order differential equation
Boundary layer
Third order equation
Boundary value problem
Differential equation
Quasilinearization
Numerical method
Boundary condition
Newton method
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-3616b6ce74fcbb9138d755a276a0505373fce705a5fa46278f8b3603cd22302d3
PageCount 29
ParticipantIDs pascalfrancis_primary_13712139
crossref_citationtrail_10_1016_S0096_3003_01_00044_3
crossref_primary_10_1016_S0096_3003_01_00044_3
elsevier_sciencedirect_doi_10_1016_S0096_3003_01_00044_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2002-07-10
PublicationDateYYYYMMDD 2002-07-10
PublicationDate_xml – month: 07
  year: 2002
  text: 2002-07-10
  day: 10
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle Applied mathematics and computation
PublicationYear 2002
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Howes (BIB10) 1983; 43
Krishnamoorthy, Sen (BIB17) 1986
Khadalbajoo, Reddy (BIB20) 1987; 21
O'Malley (BIB6) 1990
Roberts (BIB31) 1982; 87
Weili (BIB12) 1990; 88
Sun, Stynes (BIB26) 1995; 15
Niederdrenk, Yserentant (BIB23) 1983; 41
Doolan, Miller, Schilders (BIB2) 1980
Sember (BIB27) 1994; 14
Feckan (BIB16) 1994; III
Jayakumar, Ramanujam (BIB14) 1994; 27
Abrahamsson, Keller, Kries (BIB1) 1974; 22
Roberts (BIB11) 1988; 133
Farrel (BIB3) 1987; 7
Gartlend (BIB24) 1988; 51
Khadalbajoo, Reddy (BIB18) 1987; 21
Nayfeh (BIB7) 1981
Natesan, Ramanujam (BIB15) 1998; 93
Jayakumar, Ramanujam (BIB13) 1993; 55
Roos, Stynes, Tobiska (BIB8) 1996
Roos, Stynes (BIB28) 1991; 228
Howes (BIB9) 1982; 13
O'Malley (BIB29) 1991
O'Malley (BIB5) 1974
Ramanujam, Srivartsava (BIB22) 1980; 23
Sun, Stynes (BIB25) 1995; 15
Khadalbajoo, Reddy (BIB19) 1987; 21
Adams, Spreuer (BIB21) 1975; 55
Protter, Weinberger (BIB32) 1967
Ramanujam, Srivartsava (BIB30) 1979; 71
Miller, O'Riordan, Shishkin (BIB4) 1996
Adams (10.1016/S0096-3003(01)00044-3_BIB21) 1975; 55
Khadalbajoo (10.1016/S0096-3003(01)00044-3_BIB20) 1987; 21
Ramanujam (10.1016/S0096-3003(01)00044-3_BIB22) 1980; 23
Roberts (10.1016/S0096-3003(01)00044-3_BIB11) 1988; 133
Miller (10.1016/S0096-3003(01)00044-3_BIB4) 1996
Sun (10.1016/S0096-3003(01)00044-3_BIB25) 1995; 15
Doolan (10.1016/S0096-3003(01)00044-3_BIB2) 1980
Howes (10.1016/S0096-3003(01)00044-3_BIB9) 1982; 13
O'Malley (10.1016/S0096-3003(01)00044-3_BIB29) 1991
Roberts (10.1016/S0096-3003(01)00044-3_BIB31) 1982; 87
Weili (10.1016/S0096-3003(01)00044-3_BIB12) 1990; 88
Ramanujam (10.1016/S0096-3003(01)00044-3_BIB30) 1979; 71
Protter (10.1016/S0096-3003(01)00044-3_BIB32) 1967
Khadalbajoo (10.1016/S0096-3003(01)00044-3_BIB19) 1987; 21
Niederdrenk (10.1016/S0096-3003(01)00044-3_BIB23) 1983; 41
Gartlend (10.1016/S0096-3003(01)00044-3_BIB24) 1988; 51
Roos (10.1016/S0096-3003(01)00044-3_BIB28) 1991; 228
Farrel (10.1016/S0096-3003(01)00044-3_BIB3) 1987; 7
Krishnamoorthy (10.1016/S0096-3003(01)00044-3_BIB17) 1986
Sun (10.1016/S0096-3003(01)00044-3_BIB26) 1995; 15
Jayakumar (10.1016/S0096-3003(01)00044-3_BIB13) 1993; 55
Nayfeh (10.1016/S0096-3003(01)00044-3_BIB7) 1981
Jayakumar (10.1016/S0096-3003(01)00044-3_BIB14) 1994; 27
Roos (10.1016/S0096-3003(01)00044-3_BIB8) 1996
Natesan (10.1016/S0096-3003(01)00044-3_BIB15) 1998; 93
O'Malley (10.1016/S0096-3003(01)00044-3_BIB6) 1990
O'Malley (10.1016/S0096-3003(01)00044-3_BIB5) 1974
Howes (10.1016/S0096-3003(01)00044-3_BIB10) 1983; 43
Abrahamsson (10.1016/S0096-3003(01)00044-3_BIB1) 1974; 22
Khadalbajoo (10.1016/S0096-3003(01)00044-3_BIB18) 1987; 21
Feckan (10.1016/S0096-3003(01)00044-3_BIB16) 1994; III
Sember (10.1016/S0096-3003(01)00044-3_BIB27) 1994; 14
References_xml – volume: 22
  start-page: 367
  year: 1974
  end-page: 391
  ident: BIB1
  article-title: Difference approximations for singular perturbation of systems of ordinary differential equations
  publication-title: Numer. Math.
– year: 1996
  ident: BIB4
  publication-title: Fitted Numerical Methods for Singular Perturbation Problems. Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions
– volume: 15
  start-page: 117
  year: 1995
  end-page: 139
  ident: BIB26
  article-title: Finite element methods for singularly perturbed higher order elliptic twopoint boundary value problems I: reaction–diffusion type
  publication-title: IMA J. Numer. Anal.
– year: 1981
  ident: BIB7
  publication-title: Introduction to Perturbation Methods
– volume: 55
  start-page: 31
  year: 1993
  end-page: 48
  ident: BIB13
  article-title: A computational method for solving singular perturbation problems
  publication-title: Appl. Math. Comput.
– year: 1990
  ident: BIB6
  publication-title: Singular Perturbation Methods for Ordinary Differential Equations
– volume: 23
  year: 1980
  ident: BIB22
  article-title: Singular perturbation problems for systems of differential equations of parabolic type
  publication-title: Funkcial. Ekvac.
– year: 1991
  ident: BIB29
  publication-title: Singular Perturbation Methods for Ordinary Differential Equations
– year: 1974
  ident: BIB5
  publication-title: Introduction to Singular Perturbations
– volume: 7
  start-page: 459
  year: 1987
  end-page: 472
  ident: BIB3
  article-title: Sufficient conditions for uniform convergence of a class of difference schemes for singular perturbation problems
  publication-title: IMA J. Numer. Anal.
– volume: 87
  start-page: 489
  year: 1982
  end-page: 508
  ident: BIB31
  article-title: A boundary value technic for singular perturbation problems
  publication-title: J. Math. Anal. Appl.
– volume: 15
  start-page: 197
  year: 1995
  end-page: 219
  ident: BIB25
  article-title: Finite element methods for singularly perturbed higher order elliptic twopoint boundary value problems II: convection–diffusion type
  publication-title: IMA J. Numer. Anal.
– year: 1986
  ident: BIB17
  publication-title: Numerical Algorithms – Computations in Science and Engineering
– year: 1967
  ident: BIB32
  publication-title: Maximum Principles in Differential Equations
– volume: 27
  start-page: 83
  year: 1994
  end-page: 99
  ident: BIB14
  article-title: A numerical method for singular perturbation problems arising in chemical reactor theory
  publication-title: Comput. Math. Appl.
– volume: 51
  start-page: 631
  year: 1988
  end-page: 657
  ident: BIB24
  article-title: Graded mesh difference schemes for singularly perturbed two-point boundary value problems
  publication-title: Math. Comput.
– volume: 93
  start-page: 259
  year: 1998
  end-page: 275
  ident: BIB15
  article-title: A computational method for solving singularly perturbed turning point problems exhibiting twin boundary layers
  publication-title: Appl. Math. Comput.
– volume: 13
  start-page: 61
  year: 1982
  end-page: 80
  ident: BIB9
  article-title: Differential inequalities of higher order and the asymptotic solution of the nonlinear boundary value problems
  publication-title: SIAM J. Math. Anal.
– year: 1996
  ident: BIB8
  publication-title: Numerical Methods for Singularly Perturbed Differential Equations – Convection–Diffusion and Flow Problems
– volume: 14
  start-page: 97
  year: 1994
  end-page: 109
  ident: BIB27
  article-title: Locking in finite element approximation of long thin extensible beams
  publication-title: IMA J. Numer. Anal.
– volume: 71
  year: 1979
  ident: BIB30
  article-title: Singular perturbation problems for systems of PDEs of elliptic type
  publication-title: JMAA
– volume: 43
  start-page: 993
  year: 1983
  end-page: 1004
  ident: BIB10
  article-title: The asymptotic solution of a class of third-order boundary value problem arising in the theory of thin film flow
  publication-title: SIAM J. Appl. Math.
– volume: 133
  start-page: 411
  year: 1988
  end-page: 436
  ident: BIB11
  article-title: Further examples of the boundary value technique in singular perturbation problems
  publication-title: J. Math. Anal. Appl.
– volume: 41
  start-page: 223
  year: 1983
  end-page: 253
  ident: BIB23
  article-title: The uniform stability of singularly perturbed discrete and continuous boundary value problems
  publication-title: Numer. Math.
– volume: 21
  start-page: 221
  year: 1987
  end-page: 232
  ident: BIB20
  article-title: Perturbation problems via deviating arguments
  publication-title: Appl. Math. Comput.
– volume: 21
  start-page: 93
  year: 1987
  end-page: 110
  ident: BIB18
  article-title: Numerical treatment of singularly perturbed two-point boundary value problems
  publication-title: Appl. Math. Comput.
– volume: 55
  start-page: 191
  year: 1975
  end-page: 193
  ident: BIB21
  article-title: Über das vorligen der Eigen schaft von monotoner Art bei fortschreitend bez nur als ganzes losbarem sustemen
  publication-title: Z. Angew. Math. Mech.
– volume: 88
  start-page: 265
  year: 1990
  end-page: 278
  ident: BIB12
  article-title: Singular perturbations of boundary value problems for a class of third order nonlinear ordinary differential equations
  publication-title: J. Differential Equations
– year: 1980
  ident: BIB2
  publication-title: Uniform Numerical Methods for Problems with Initial and Boundary Layers
– volume: III
  start-page: 79
  year: 1994
  end-page: 102
  ident: BIB16
  article-title: Singularly perturbed higher order boundary value problems
  publication-title: J. Differential Equations
– volume: 21
  start-page: 185
  year: 1987
  end-page: 199
  ident: BIB19
  article-title: Approximate methods for the numerical solution of singular perturbation problems
  publication-title: Appl. Math. Comput.
– volume: 228
  start-page: 30
  year: 1991
  end-page: 40
  ident: BIB28
  article-title: A Uniformly convergent discretization method for a fourth order singular perturbation problem
  publication-title: Bonner Math. Schriften
– volume: 13
  start-page: 61
  issue: 1
  year: 1982
  ident: 10.1016/S0096-3003(01)00044-3_BIB9
  article-title: Differential inequalities of higher order and the asymptotic solution of the nonlinear boundary value problems
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/0513005
– volume: 41
  start-page: 223
  year: 1983
  ident: 10.1016/S0096-3003(01)00044-3_BIB23
  article-title: The uniform stability of singularly perturbed discrete and continuous boundary value problems
  publication-title: Numer. Math.
  doi: 10.1007/BF01390214
– volume: 22
  start-page: 367
  year: 1974
  ident: 10.1016/S0096-3003(01)00044-3_BIB1
  article-title: Difference approximations for singular perturbation of systems of ordinary differential equations
  publication-title: Numer. Math.
  doi: 10.1007/BF01436920
– volume: 51
  start-page: 631
  year: 1988
  ident: 10.1016/S0096-3003(01)00044-3_BIB24
  article-title: Graded mesh difference schemes for singularly perturbed two-point boundary value problems
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-1988-0935072-1
– year: 1967
  ident: 10.1016/S0096-3003(01)00044-3_BIB32
– volume: 21
  start-page: 185
  year: 1987
  ident: 10.1016/S0096-3003(01)00044-3_BIB19
  article-title: Approximate methods for the numerical solution of singular perturbation problems
  publication-title: Appl. Math. Comput.
  doi: 10.1016/0096-3003(87)90001-4
– volume: 23
  issue: 3
  year: 1980
  ident: 10.1016/S0096-3003(01)00044-3_BIB22
  article-title: Singular perturbation problems for systems of differential equations of parabolic type
  publication-title: Funkcial. Ekvac.
– year: 1991
  ident: 10.1016/S0096-3003(01)00044-3_BIB29
– year: 1974
  ident: 10.1016/S0096-3003(01)00044-3_BIB5
– volume: 21
  start-page: 221
  year: 1987
  ident: 10.1016/S0096-3003(01)00044-3_BIB20
  article-title: Perturbation problems via deviating arguments
  publication-title: Appl. Math. Comput.
  doi: 10.1016/0096-3003(87)90003-8
– volume: 43
  start-page: 993
  issue: 5
  year: 1983
  ident: 10.1016/S0096-3003(01)00044-3_BIB10
  article-title: The asymptotic solution of a class of third-order boundary value problem arising in the theory of thin film flow
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/0143065
– year: 1980
  ident: 10.1016/S0096-3003(01)00044-3_BIB2
– year: 1981
  ident: 10.1016/S0096-3003(01)00044-3_BIB7
– volume: 228
  start-page: 30
  year: 1991
  ident: 10.1016/S0096-3003(01)00044-3_BIB28
  article-title: A Uniformly convergent discretization method for a fourth order singular perturbation problem
  publication-title: Bonner Math. Schriften
– volume: 14
  start-page: 97
  year: 1994
  ident: 10.1016/S0096-3003(01)00044-3_BIB27
  article-title: Locking in finite element approximation of long thin extensible beams
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/14.1.97
– volume: 93
  start-page: 259
  year: 1998
  ident: 10.1016/S0096-3003(01)00044-3_BIB15
  article-title: A computational method for solving singularly perturbed turning point problems exhibiting twin boundary layers
  publication-title: Appl. Math. Comput.
  doi: 10.1016/S0096-3003(97)10056-X
– year: 1996
  ident: 10.1016/S0096-3003(01)00044-3_BIB8
– volume: 133
  start-page: 411
  year: 1988
  ident: 10.1016/S0096-3003(01)00044-3_BIB11
  article-title: Further examples of the boundary value technique in singular perturbation problems
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(88)90412-X
– year: 1986
  ident: 10.1016/S0096-3003(01)00044-3_BIB17
– volume: 7
  start-page: 459
  year: 1987
  ident: 10.1016/S0096-3003(01)00044-3_BIB3
  article-title: Sufficient conditions for uniform convergence of a class of difference schemes for singular perturbation problems
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/7.4.459
– year: 1996
  ident: 10.1016/S0096-3003(01)00044-3_BIB4
– volume: 55
  start-page: 31
  year: 1993
  ident: 10.1016/S0096-3003(01)00044-3_BIB13
  article-title: A computational method for solving singular perturbation problems
  publication-title: Appl. Math. Comput.
  doi: 10.1016/0096-3003(93)90004-X
– volume: 71
  issue: 1
  year: 1979
  ident: 10.1016/S0096-3003(01)00044-3_BIB30
  article-title: Singular perturbation problems for systems of PDEs of elliptic type
  publication-title: JMAA
– volume: 87
  start-page: 489
  year: 1982
  ident: 10.1016/S0096-3003(01)00044-3_BIB31
  article-title: A boundary value technic for singular perturbation problems
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(82)90139-1
– volume: 55
  start-page: 191
  year: 1975
  ident: 10.1016/S0096-3003(01)00044-3_BIB21
  article-title: Über das vorligen der Eigen schaft von monotoner Art bei fortschreitend bez nur als ganzes losbarem sustemen
  publication-title: Z. Angew. Math. Mech.
– volume: 27
  start-page: 83
  issue: 5
  year: 1994
  ident: 10.1016/S0096-3003(01)00044-3_BIB14
  article-title: A numerical method for singular perturbation problems arising in chemical reactor theory
  publication-title: Comput. Math. Appl.
  doi: 10.1016/0898-1221(94)90078-7
– volume: 21
  start-page: 93
  year: 1987
  ident: 10.1016/S0096-3003(01)00044-3_BIB18
  article-title: Numerical treatment of singularly perturbed two-point boundary value problems
  publication-title: Appl. Math. Comput.
  doi: 10.1016/0096-3003(87)90020-8
– volume: 15
  start-page: 117
  year: 1995
  ident: 10.1016/S0096-3003(01)00044-3_BIB26
  article-title: Finite element methods for singularly perturbed higher order elliptic twopoint boundary value problems I: reaction–diffusion type
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/15.1.117
– volume: 88
  start-page: 265
  issue: 2
  year: 1990
  ident: 10.1016/S0096-3003(01)00044-3_BIB12
  article-title: Singular perturbations of boundary value problems for a class of third order nonlinear ordinary differential equations
  publication-title: J. Differential Equations
  doi: 10.1016/0022-0396(90)90099-B
– volume: 15
  start-page: 197
  year: 1995
  ident: 10.1016/S0096-3003(01)00044-3_BIB25
  article-title: Finite element methods for singularly perturbed higher order elliptic twopoint boundary value problems II: convection–diffusion type
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/15.2.197
– year: 1990
  ident: 10.1016/S0096-3003(01)00044-3_BIB6
– volume: III
  start-page: 79
  issue: 1
  year: 1994
  ident: 10.1016/S0096-3003(01)00044-3_BIB16
  article-title: Singularly perturbed higher order boundary value problems
  publication-title: J. Differential Equations
  doi: 10.1006/jdeq.1994.1076
SSID ssj0007614
Score 1.800825
Snippet Singularly perturbed two-point boundary value problems (SPBVPs) for third-order ordinary differential equations (ODEs) with a small parameter multiplying the...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 345
SubjectTerms Asymptotic approximation
Boundary layer
Exact sciences and technology
Exponentially fitted finite difference scheme
Mathematical analysis
Mathematics
Non-self-adjoint boundary value problem
Numerical analysis
Numerical analysis. Scientific computation
Ordinary differential equations
Sciences and techniques of general use
Singular perturbation
Third-order differential equation
Title A computational method for solving boundary value problems for third-order singularly perturbed ordinary differential equations
URI https://dx.doi.org/10.1016/S0096-3003(01)00044-3
Volume 129
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQLCCEeIryqDwwwJDWqRM_xqoCFRBMVGKL4kdEpaqUpgxd4K9z56SUDgiJMXbsRL7T3dm--z5CLnyaFM7GPJIOTCAiekWaWXjUiAbFNDRjofDDo-gPkrvn9HmN9Ba1MJhWWdv-yqYHa123tOvVbE-GQ6zx1YgXBRoariUR8TNJJGp562OZ5gHb9AqJWWOOF-PLKp5qhtB4yeKrMEnEf_NP25O8hFUrKrqLHz7oZpfs1MEj7Vb_t0fW_HifbD18I6-WB-SzS20gaqgP-WhFEU0hNqWgZnh8QE2gUprOKSJ9e1pzypThndnLcOqiAMhJ8RgBs1RHczrxU_BNxjsKXaGEly6oVcBEjKh_qyDDy0MyuLl-6vWjmmQhspzLWcRFLIywXiaFNUbHXDmZpnlHihxJ7rjkBXSyNE-LPBEdqQpluGDcOggsWMfxI7I-fh37Y0KVgN2Jckxa6xLT0UYxD87PKSdUnGvbIMliaTNbI5AjEcYoW6aagUQylEjG4ixIJOMN0voeNqkgOP4aoBZyy1Z0KQM38dfQ5oqclx_kEsHv9Mn_5z4lm4FKBlE52RlZn03f_TlENDPTDCrbJBvd2_v-4xc1__CL
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RemgrVPWpQlvwoZXaQ8CJE9s59IBa0FJYTiBxc-NHxEqr7XazFdoL_VH9g51xErYcEBISxzixM_JMZmxn5vsAPoQir71LRaI8ukBC9EpK7vCyJDQoXmIzFQoPj-XgNP9-VpytwN--FobSKjvf3_r06K27lp1uNnemoxHV-JaEF4UWGn9L9gzWh2Fxgfu25svBN1Tyxyzb3zv5Okg6aoHECaHmiZCptNIFldfO2jIV2quiqDIlK6J2E0rUeJMXVVFXucyUrrUVkgvnMZzyzAsc9wE8zNFdEG3C9uUyr0TJFlAcpUtIvGXZUCtybPzE089R6kTcFBDXplWDaqpbfo3_gt7-M3jarVbZbjshz2ElTF7Ak-EV1GvzEv7sMheZIbpTRdZyUjNcDDO0azqvYDZyN80WjKDFA-tIbJr4zPx8NPNJRABldG5BabHjBZuGGQZDGzzDW7FmmPVcLuiTxiz8ajHKm1dwei9T_xpWJz8n4Q0wLXE7pD1XzvncZqXVPGC09dpLnValW4e8n1rjOshzYt4Ym2VuG2rEkEYMT03UiBHrsH3VbdpiftzWQfd6M9eM12Bcuq3r5jU9L18oFKHtlRt3H3sLHg1Ohkfm6OD48C08jjw2BAnK38HqfPY7vMfl1NxuRvNl8OO-v5d_IgYq0A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+computational+method+for+solving+boundary+value+problems+for+third-order+singularly+perturbed+ordinary+differential+equations&rft.jtitle=Applied+mathematics+and+computation&rft.au=Valarmathi%2C+S.&rft.au=Ramanujam%2C+N.&rft.date=2002-07-10&rft.pub=Elsevier+Inc&rft.issn=0096-3003&rft.eissn=1873-5649&rft.volume=129&rft.issue=2&rft.spage=345&rft.epage=373&rft_id=info:doi/10.1016%2FS0096-3003%2801%2900044-3&rft.externalDocID=S0096300301000443
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon