Influence Maximization Algorithm Based on Reverse Reachable Set
Most of the existing influence maximization algorithms are not suitable for large-scale social networks due to their high time complexity or limited influence propagation range. Therefore, a D-RIS (dynamic-reverse reachable set) influence maximization algorithm is proposed based on the independent c...
Saved in:
Published in | Mathematical problems in engineering Vol. 2021; pp. 1 - 12 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Hindawi
2021
John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1024-123X 1563-5147 |
DOI | 10.1155/2021/5535843 |
Cover
Loading…
Abstract | Most of the existing influence maximization algorithms are not suitable for large-scale social networks due to their high time complexity or limited influence propagation range. Therefore, a D-RIS (dynamic-reverse reachable set) influence maximization algorithm is proposed based on the independent cascade model and combined with the reverse reachable set sampling. Under the premise that the influence propagation function satisfies monotonicity and submodularity, the D-RIS algorithm uses an automatic debugging method to determine the critical value of the number of reverse reachable sets, which not only obtains a better influence propagation range but also greatly reduces the time complexity. The experimental results on the two real datasets of Slashdot and Epinions show that D-RIS algorithm is close to the CELF (cost-effective lazy-forward) algorithm and higher than RIS algorithm, HighDegree algorithm, LIR algorithm, and pBmH (population-based metaheuristics) algorithm in influence propagation range. At the same time, it is significantly better than the CELF algorithm and RIS algorithm in running time, which indicates that D-RIS algorithm is more suitable for large-scale social network. |
---|---|
AbstractList | Most of the existing influence maximization algorithms are not suitable for large-scale social networks due to their high time complexity or limited influence propagation range. Therefore, a D-RIS (dynamic-reverse reachable set) influence maximization algorithm is proposed based on the independent cascade model and combined with the reverse reachable set sampling. Under the premise that the influence propagation function satisfies monotonicity and submodularity, the D-RIS algorithm uses an automatic debugging method to determine the critical value of the number of reverse reachable sets, which not only obtains a better influence propagation range but also greatly reduces the time complexity. The experimental results on the two real datasets of Slashdot and Epinions show that D-RIS algorithm is close to the CELF (cost-effective lazy-forward) algorithm and higher than RIS algorithm, HighDegree algorithm, LIR algorithm, and pBmH (population-based metaheuristics) algorithm in influence propagation range. At the same time, it is significantly better than the CELF algorithm and RIS algorithm in running time, which indicates that D-RIS algorithm is more suitable for large-scale social network. |
Author | Chen, Chih-Cheng Sun, Gengxin |
Author_xml | – sequence: 1 givenname: Gengxin orcidid: 0000-0001-7029-2852 surname: Sun fullname: Sun, Gengxin organization: School of Data Science and Software EngineeringQingdao UniversityQingdao 266071Chinaqdu.edu.cn – sequence: 2 givenname: Chih-Cheng orcidid: 0000-0001-8723-6152 surname: Chen fullname: Chen, Chih-Cheng organization: Department of Automatic Control EngineeringFeng Chia UniversityTaichung 40724Taiwanfcu.edu.tw |
BookMark | eNp9kFtLAzEQhYMo2Fbf_AELPuraJJPs5Ulq8VKoCF7AtyWbnbUp292apN5-vantk6BPZ2b4zgxz-mS37Vok5IjRM8akHHLK2VBKkJmAHdJjMoFYMpHuhppyETMOz_uk79ycBlKyrEfOJ23drLDVGN2qD7MwX8qbro1GzUtnjZ8togvlsIrC6B7f0DoMqvRMlQ1GD-gPyF6tGoeHWx2Qp6vLx_FNPL27noxH01gDpD6GhHFRZlSi4DTRGc8rkQvBai1VRiENbYqlTvK6whSwEhqTBPJSlSoDCTUMyPFm79J2ryt0vph3K9uGkwWXMgfIOLBA8Q2lbeecxbrQxv885K0yTcFosQ6qWAdVbIMKptNfpqU1C2U__8JPNvjMtJV6N__T38Nmdh8 |
CitedBy_id | crossref_primary_10_1016_j_array_2022_100264 crossref_primary_10_1155_2022_3081378 crossref_primary_10_1155_2022_2610545 crossref_primary_10_1002_itl2_409 crossref_primary_10_3390_math10224185 crossref_primary_10_33166_AETiC_2025_01_005 crossref_primary_10_1155_2022_4957672 crossref_primary_10_1155_2022_4574294 crossref_primary_10_1155_2022_8477065 crossref_primary_10_1155_2022_9614231 crossref_primary_10_1155_2022_5665636 crossref_primary_10_1155_2022_8758976 crossref_primary_10_1155_2022_1653961 crossref_primary_10_1155_2021_2824689 crossref_primary_10_1155_2022_8260798 crossref_primary_10_1155_2022_6405903 crossref_primary_10_1155_2022_8118605 crossref_primary_10_1155_2022_8495381 crossref_primary_10_1155_2022_4070131 crossref_primary_10_1155_2022_5376587 |
Cites_doi | 10.1145/1557019.1557047 10.1145/2600428.2609464 10.1145/1281192.1281239 10.1103/PhysRevE.64.066112 10.1145/502512.502525 10.1145/1835804.1835934 10.3390/sym13030523 10.1023/a:1011122126881 10.1145/775047.775057 10.1155/2020/4568171 10.1007/s11042-017-4766-y 10.1145/956750.956769 10.1007/s11277-016-3939-8 10.1155/2021/6610645 |
ContentType | Journal Article |
Copyright | Copyright © 2021 Gengxin Sun and Chih-Cheng Chen. Copyright © 2021 Gengxin Sun and Chih-Cheng Chen. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
Copyright_xml | – notice: Copyright © 2021 Gengxin Sun and Chih-Cheng Chen. – notice: Copyright © 2021 Gengxin Sun and Chih-Cheng Chen. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
DBID | RHU RHW RHX AAYXX CITATION 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU CWDGH DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS |
DOI | 10.1155/2021/5535843 |
DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College Middle East & Africa Database ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (ProQuest) Civil Engineering Abstracts ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Middle East & Africa Database ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1563-5147 |
Editor | Torcicollo, Isabella |
Editor_xml | – sequence: 1 givenname: Isabella surname: Torcicollo fullname: Torcicollo, Isabella |
EndPage | 12 |
ExternalDocumentID | 10_1155_2021_5535843 |
GrantInformation_xml | – fundername: Natural Science Foundation of Shandong Province grantid: ZR2017MG011 |
GroupedDBID | 29M 2WC 3V. 4.4 5GY 5VS 8FE 8FG 8R4 8R5 AAFWJ AAJEY ABDBF ABJCF ABUWG ACIPV ACIWK ADBBV AENEX AFKRA AINHJ ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BPHCQ CCPQU CS3 CWDGH E3Z EBS ESX GROUPED_DOAJ HCIFZ I-F IAO IEA IOF ISR ITC K6V K7- KQ8 L6V M7S MK~ M~E OK1 P2P P62 PIMPY PQQKQ PROAC PTHSS Q2X REM RHU RHW RHX RNS TR2 TUS XSB YQT ~8M 0R~ 24P AAYXX ACCMX CITATION H13 OVT PHGZM PHGZT 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY AZQEC DWQXO FR3 GNUQQ JQ2 KR7 PKEHL PQEST PQGLB PQUKI |
ID | FETCH-LOGICAL-c337t-36124b805e4206c829d49441fc5a80379d47ebc69fde73ed4ce6639baba8353f3 |
IEDL.DBID | RHX |
ISSN | 1024-123X |
IngestDate | Fri Jul 25 10:07:59 EDT 2025 Thu Apr 24 23:04:43 EDT 2025 Tue Jul 01 02:14:08 EDT 2025 Sun Jun 02 18:54:55 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c337t-36124b805e4206c829d49441fc5a80379d47ebc69fde73ed4ce6639baba8353f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8723-6152 0000-0001-7029-2852 |
OpenAccessLink | https://dx.doi.org/10.1155/2021/5535843 |
PQID | 2559338231 |
PQPubID | 237775 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2559338231 crossref_citationtrail_10_1155_2021_5535843 crossref_primary_10_1155_2021_5535843 hindawi_primary_10_1155_2021_5535843 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-00-00 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 2021-00-00 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Mathematical problems in engineering |
PublicationYear | 2021 |
Publisher | Hindawi John Wiley & Sons, Inc |
Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc |
References | C. Borgs (18) 2012 12 13 14 17 J. Goldenberg (5) 2011; 9 19 K. Jung (11) S. Xie (15) 2016; 10 J. Cao (16) 2015; 2 1 2 3 4 A. Goyal (7) 6 8 9 20 10 |
References_xml | – ident: 9 doi: 10.1145/1557019.1557047 – volume: 9 start-page: 1 issue: 3 year: 2011 ident: 5 article-title: Using complex systems analysis to advance marketing theory development: modeling heterogeneity effects on new product growth through stochastic cellular automata publication-title: Academy of Marketing Science Review – volume: 2 start-page: 238 year: 2015 ident: 16 article-title: Self-Interest influence maximization algorithm based on subject preference in competitive environment publication-title: Chinese Journal of Computers – start-page: 47 ident: 7 article-title: CELF++: optimizing the greedy algorithm for influence maximization in social networks – ident: 12 doi: 10.1145/2600428.2609464 – ident: 6 doi: 10.1145/1281192.1281239 – ident: 19 doi: 10.1103/PhysRevE.64.066112 – ident: 2 doi: 10.1145/502512.502525 – ident: 10 doi: 10.1145/1835804.1835934 – start-page: 918 ident: 11 article-title: IRIE: scalable and robust influence maximization in social networks – ident: 13 doi: 10.3390/sym13030523 – ident: 4 doi: 10.1023/a:1011122126881 – ident: 1 doi: 10.1145/775047.775057 – ident: 17 doi: 10.1155/2020/4568171 – ident: 20 doi: 10.1007/s11042-017-4766-y – volume: 10 start-page: 646 issue: 5 year: 2016 ident: 15 article-title: Research on topic-based local influence maximizing algorithm in social network publication-title: Journal of Frontiers of Computer Science & Technology – ident: 3 doi: 10.1145/956750.956769 – ident: 14 doi: 10.1007/s11277-016-3939-8 – year: 2012 ident: 18 article-title: Maximizing social influence in nearly optimal time – ident: 8 doi: 10.1155/2021/6610645 |
SSID | ssj0021518 |
Score | 2.3880556 |
Snippet | Most of the existing influence maximization algorithms are not suitable for large-scale social networks due to their high time complexity or limited influence... |
SourceID | proquest crossref hindawi |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Algorithms Communication Complexity Efficiency Heuristic Heuristic methods Information dissemination Maximization Optimization Propagation Simulation Social networks Viral marketing |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bS8MwFA46EXzxLk6n5GE-SbBtmqZ5GlOcU5gP6mBvJU1SN9hNV9Gf70mbTkTUp9L2UMrJSb7vO7kchJoCICsOREAiLxUE9FdGYi00AbGR0sznOpA239G7j7r98G7ABi7htnDLKqsxsRio9UzZHPmFpb60mLRqzV-IrRplZ1ddCY1VtOYD0tgIjzs3S8EFaFZuhQvs2Xx0UC18Z8xqfv-CMQr4S79B0vrQauH30Y-xuQCczjbadEwRt8um3UErZrqLthxrxK5PLvZQ67aqM4J78mM0cRsrcXv8DP-fDyf4EpBKY3j0YOwiDANXqYZ2zxR-NPk-6neun666xJVFIIpSnhMKpCRMY4-ZMPAiBZ7WoQBWkykmY49yuOUmVeB2bTg1OlQGaIVIZSqBbtGMHqDadDY1hwhHRnKtoEmY8EMuFIglCeo61YyrOJJBHZ1XnkmUOzPclq4YJ4V2YCyxfkycH-vobGk9L8_K-MWu6Zz8j1mjaoHEdaxF8hUGR3-_PkYb9mNltqSBavnrmzkB_pCnp0WQfALz_r5z priority: 102 providerName: ProQuest |
Title | Influence Maximization Algorithm Based on Reverse Reachable Set |
URI | https://dx.doi.org/10.1155/2021/5535843 https://www.proquest.com/docview/2559338231 |
Volume | 2021 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8NAGB20InhxF6u1zKGeJNhmMknmJK20VqVFq4XcwmyxhS5iI_rz_SaZFLSInsKELzm8Wd57s3yDUI0BZYUucx2_LpgD_itxQsWUA2ZDkKQRKJeb-Y5e3-8OvbuIRjZJ0mJ1CR_YztjzxiWlBKiSrKN1aGDGlHejpa8C0spPvLkmBR-Jiv3tP779xjybI2N5P8YrQ3DGK51dtG0FIW7mNbiH1vRsH-1YcYht11scoKvb4joR3OOf46k9P4mbk5c5GPzRFLeAkBSGVwNt9lpoeHI5Mkej8JNOD9Gw036-7jr29gNHEhKkDgHt4YmwTrXn1n0JgCqPgXhJJOVhnQRQDLSQgK7SAdHKkxrUAxNccFBVJCFHqDSbz_Qxwr7mgZKAPGUNL2ASPBEHEy0UDWToc7eMLgpkYmlTg5sbKiZxZhEojQ2OscWxjM6X0a95Soxf4moW5D_CKkUNxLb_LGJjdEi2RHnyv7-coi1TzCdHKqiUvr3rM5ALqahCk-ncVNFGq91_GEDp_jGsZg3oC4LXt6k |
linkProvider | Hindawi Publishing |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLYGCMGFN-JNDtsJVduapm0OCI3H2NjGAZi0W0mTjCHBeKwI-FP8Rpw2BSEEnDhVbaIoctx8_hw7BihyhKzQ5a7jV2LuIP_qO6HiykGyEdN-NVCuMP6Ozqnf6HonPdYrwFueC2PCKvM9Md2o1Z00PvKyMX1pemi1d__gmKpR5nQ1L6GRqUVLvz4jZRvtNg9xfUuuWz-6OGg4tqqAIykNEocipntxWGHacyu-xIkqj6NR0JdMhBUa4GugY4mzVjqgWnlSIyrzWMQCrRXapzjuGEx4lHITQhjWjz8IHqJnlnrnmrsAaS8PtGfM-BiqZcYo4j39AoGTA8O9n6-_YUEKcPU5mLGWKallqjQPBT1cgFlrpRK7B4wWYa-Z1zUhHfFyfWsTOUnt5grllQxuyT4ioyL46UyboA-NTyEHJkeLnOtkCbr_IrBlGB_eDfUKEF-LQElUAcarXsAlkjOBbD5WLJChL9xV2MklE0l7R7kplXETpVyFscjIMbJyXIXSR-_77G6OH_oVrZD_6LaRr0Bkf-RR9Kl2a783b8NU46LTjtrN09Y6TJuBM0_NBownj096E22XJN5KFYbA5X9r6DvtnPrl |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB0VEIgLO2LHBzihqGkcx8kBIaAUyibEIvUWHNuhSKUsDQJ-ja9jnDgghIBTT1ESy4rHE7954xkPwFqEkBV6kecEbhI5yL9SJ1SRcpBsJDStceUJ4-84OQ0OrvzDFmtV4L3MhTFhleWamC_U6l4aH3nVmL4037SqpjYs4qze2Hp4dEwFKbPTWpbTKFTkSL-9IH3rbTbrONfrntfYu9w9cGyFAUdSyjOHIr77Segy7XtuIPGjlR-hgZBKJkKXcrzlOpE4AqU51cqXGhE6SkQi0HKhKcV-B2CI09A11RPCxv4n2UMkLdLwPHMuIG2VQfeMGX9DrcoYReyn3-BwuG14-MvtD1zIwa4xAWPWSiXbhVpNQkV3p2DcWqzErge9adhqljVOyIl4vb2zSZ1ku3OD8srad2QHUVIRfHSuTQCIxquQbZOvRS50NgNXfRHYLAx277t6DkigBVcS1YFFNZ9HEomaQGafKMZlGAhvHjZKycTSnlduymZ04py3MBYbOcZWjvOw_tn6oTin45d2a1bI_zRbKmcgtj91L_5SwYW_X6_CCOpmfNw8PVqEUdNv4bRZgsHs6VkvoxmTJSu5vhC47reCfgCKqP8S |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+Maximization+Algorithm+Based+on+Reverse+Reachable+Set&rft.jtitle=Mathematical+problems+in+engineering&rft.au=Sun%2C+Gengxin&rft.au=Chen%2C+Chih-Cheng&rft.date=2021&rft.pub=Hindawi&rft.issn=1024-123X&rft.eissn=1563-5147&rft.volume=2021&rft_id=info:doi/10.1155%2F2021%2F5535843&rft.externalDocID=10_1155_2021_5535843 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1024-123X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1024-123X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1024-123X&client=summon |