Time–Frequency Cross Mutual Information Analysis of the Brain Functional Networks Underlying Multiclass Motor Imagery
To study the physiologic mechanism of the brain during different motor imagery (MI) tasks, the authors employed a method of brain-network modeling based on time-frequency cross mutual information obtained from 4-class (left hand, right hand, feet, and tongue) MI tasks recorded as brain-computer inte...
Saved in:
Published in | Journal of motor behavior Vol. 50; no. 3; pp. 254 - 267 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Taylor & Francis Inc
01.05.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To study the physiologic mechanism of the brain during different motor imagery (MI) tasks, the authors employed a method of brain-network modeling based on time-frequency cross mutual information obtained from 4-class (left hand, right hand, feet, and tongue) MI tasks recorded as brain-computer interface (BCI) electroencephalography data. The authors explored the brain network revealed by these MI tasks using statistical analysis and the analysis of topologic characteristics, and observed significant differences in the reaction level, reaction time, and activated target during 4-class MI tasks. There was a great difference in the reaction level between the execution and resting states during different tasks: the reaction level of the left-hand MI task was the greatest, followed by that of the right-hand, feet, and tongue MI tasks. The reaction time required to perform the tasks also differed: during the left-hand and right-hand MI tasks, the brain networks of subjects reacted promptly and strongly, but there was a delay during the feet and tongue MI task. Statistical analysis and the analysis of network topology revealed the target regions of the brain network during different MI processes. In conclusion, our findings suggest a new way to explain the neural mechanism behind MI. |
---|---|
AbstractList | To study the physiologic mechanism of the brain during different motor imagery (MI) tasks, the authors employed a method of brain-network modeling based on time-frequency cross mutual information obtained from 4-class (left hand, right hand, feet, and tongue) MI tasks recorded as brain-computer interface (BCI) electroencephalography data. The authors explored the brain network revealed by these MI tasks using statistical analysis and the analysis of topologic characteristics, and observed significant differences in the reaction level, reaction time, and activated target during 4-class MI tasks. There was a great difference in the reaction level between the execution and resting states during different tasks: the reaction level of the left-hand MI task was the greatest, followed by that of the right-hand, feet, and tongue MI tasks. The reaction time required to perform the tasks also differed: during the left-hand and right-hand MI tasks, the brain networks of subjects reacted promptly and strongly, but there was a delay during the feet and tongue MI task. Statistical analysis and the analysis of network topology revealed the target regions of the brain network during different MI processes. In conclusion, our findings suggest a new way to explain the neural mechanism behind MI. To study the physiologic mechanism of the brain during different motor imagery (MI) tasks, the authors employed a method of brain-network modeling based on time-frequency cross mutual information obtained from 4-class (left hand, right hand, feet, and tongue) MI tasks recorded as brain-computer interface (BCI) electroencephalography data. The authors explored the brain network revealed by these MI tasks using statistical analysis and the analysis of topologic characteristics, and observed significant differences in the reaction level, reaction time, and activated target during 4-class MI tasks. There was a great difference in the reaction level between the execution and resting states during different tasks: the reaction level of the left-hand MI task was the greatest, followed by that of the right-hand, feet, and tongue MI tasks. The reaction time required to perform the tasks also differed: during the left-hand and right-hand MI tasks, the brain networks of subjects reacted promptly and strongly, but there was a delay during the feet and tongue MI task. Statistical analysis and the analysis of network topology revealed the target regions of the brain network during different MI processes. In conclusion, our findings suggest a new way to explain the neural mechanism behind MI.To study the physiologic mechanism of the brain during different motor imagery (MI) tasks, the authors employed a method of brain-network modeling based on time-frequency cross mutual information obtained from 4-class (left hand, right hand, feet, and tongue) MI tasks recorded as brain-computer interface (BCI) electroencephalography data. The authors explored the brain network revealed by these MI tasks using statistical analysis and the analysis of topologic characteristics, and observed significant differences in the reaction level, reaction time, and activated target during 4-class MI tasks. There was a great difference in the reaction level between the execution and resting states during different tasks: the reaction level of the left-hand MI task was the greatest, followed by that of the right-hand, feet, and tongue MI tasks. The reaction time required to perform the tasks also differed: during the left-hand and right-hand MI tasks, the brain networks of subjects reacted promptly and strongly, but there was a delay during the feet and tongue MI task. Statistical analysis and the analysis of network topology revealed the target regions of the brain network during different MI processes. In conclusion, our findings suggest a new way to explain the neural mechanism behind MI. |
Author | Fu, Yunfa Liu, Jianping Chen, Si Gong, Anmin |
Author_xml | – sequence: 1 givenname: Anmin surname: Gong fullname: Gong, Anmin organization: School of Science, Engineering University of Chinese People's Armed Police Force, Xi'an, China – sequence: 2 givenname: Jianping surname: Liu fullname: Liu, Jianping organization: School of Science, Engineering University of Chinese People's Armed Police Force, Xi'an, China – sequence: 3 givenname: Si surname: Chen fullname: Chen, Si organization: School of Science, Engineering University of Chinese People's Armed Police Force, Xi'an, China – sequence: 4 givenname: Yunfa surname: Fu fullname: Fu, Yunfa organization: School of Automation and Information Engineering, Kunming University of Science and Technology, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28813231$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kcFu1DAURS1URKeFTwBZYsMmUz87iROxakcMHam0m3ZtOY5dUhy72I6q7PgH_pAvwaEzmy7w5i187n16956gI-edRug9kDWQhpwRQilt2mpNCfA1MMpL4K_QCtqSFEAoP0KrhSkW6BidxPhA8uOEvEHHtGmygsEKPd0Oo_7z6_c26J-TdmrGm-BjxN-mNEmLd874MMo0eIfPnbRzHCL2BqfvGl8EOTi8nZxavjN8rdOTDz8ivnO9DnYe3H32sWlQVi6WPvmAd6O812F-i14baaN-t5-n6G775XZzWVzdfN1tzq8KxRhPBauM6jtK676v61L3nFIN0Fa8IUbVXdcwLXtDSNd0VLJOmZp0GlRlauihBsJO0adn38fg84ExiXGISlsrnfZTFNAyCiWUJcvoxxfog59CPiwKSlhLoW6BZ-rDnpq6UffiMQyjDLM4RJqBz8-AWoIM2gg1pH8JphyYFUDEUqA4FCiWAsW-wKyuXqgPC_6v-ws9v58c |
CitedBy_id | crossref_primary_10_1109_TNNLS_2023_3292179 crossref_primary_10_1016_j_neuroimage_2019_116118 crossref_primary_10_3389_fnins_2024_1306283 crossref_primary_10_1155_2018_4097561 crossref_primary_10_3389_fnins_2019_01277 crossref_primary_10_1007_s11571_022_09906_y crossref_primary_10_1088_1741_2552_abd82b crossref_primary_10_3389_fnins_2020_587520 crossref_primary_10_3390_app11156689 crossref_primary_10_3389_fnins_2021_607905 crossref_primary_10_3390_electronics12183894 crossref_primary_10_3390_brainsci12101373 crossref_primary_10_1016_j_neunet_2022_09_016 crossref_primary_10_1109_ACCESS_2023_3303508 crossref_primary_10_1109_ACCESS_2020_3018962 |
Cites_doi | 10.3200/JMBR.37.1.10-20 10.2307/2684733 10.1053/apmr.2001.24286 10.1016/j.neuroimage.2010.06.041 10.1109/JDT.2015.2451087 10.1016/0959-4388(95)80099-9 10.7600/jpfsm.1.103 10.1016/j.brainresrev.2008.12.024 10.1097/00001756-199905140-00003 10.1006/ccog.1999.0426 10.1146/annurev-clinpsy-040510-143934 10.1152/jn.00132.2002 10.1016/j.brainres.2015.10.057 10.1371/journal.pone.0068910 10.1186/1741-7015-9-75 10.1016/j.neuroimage.2010.11.030 10.1016/S1053-8119(03)00286-6 10.1146/annurev.neuro.29.051605.112924 10.1016/j.neubiorev.2013.03.017 10.1002/hbm.20658 10.1016/j.brainres.2014.12.017 10.1152/jn.01113.2002 10.1016/j.neuroimage.2007.10.003 10.1016/j.tics.2007.04.004 10.1016/j.clinph.2011.01.050 10.1016/S0304-3940(99)00632-1 10.1371/journal.pone.0010232 10.1093/brain/121.12.2301 10.1016/j.neuroimage.2008.03.042 10.1371/journal.pone.0001049 10.1103/PhysRevE.77.036104 10.1088/1741-2560/12/3/036004 10.1007/s11055-014-9976-4 10.1002/hbm.20386 10.1016/S0013-4694(97)00129-6 10.1002/1097-0193(200101)12:1<1::AID-HBM10>3.0.CO;2-V 10.1016/S0079-6123(03)43034-3 10.1371/journal.pone.0139441 10.1016/j.bbr.2009.09.011 10.1016/j.neuroimage.2005.12.003 10.1002/nbm.1600 10.1142/S0218127410026198 10.1016/j.neuroimage.2013.06.039 10.1016/0013-4694(92)90133-3 |
ContentType | Journal Article |
Copyright | Copyright © Taylor & Francis Group, LLC |
Copyright_xml | – notice: Copyright © Taylor & Francis Group, LLC |
DBID | AAYXX CITATION NPM K9. NAPCQ 7X8 |
DOI | 10.1080/00222895.2017.1327417 |
DatabaseName | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic |
DatabaseTitleList | PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Education Anatomy & Physiology Psychology |
EISSN | 1940-1027 |
EndPage | 267 |
ExternalDocumentID | 28813231 10_1080_00222895_2017_1327417 |
Genre | Journal Article |
GroupedDBID | --- --Z -ET -~X .7I .QK 0BK 0R~ 29L 2QV 36B 4.4 53G 5GY AAGDL AAGZJ AAHIA AAMFJ AAMIU AAPUL AAWTL AAYXX AAZMC ABCCY ABDBF ABFIM ABIVO ABJNI ABLIJ ABPEM ABRYG ABTAI ABXUL ABXYU ACGFO ACGFS ACGOD ACHQT ACNCT ACTIO ACTOA ACUHS ADAHI ADCVX ADKVQ ADYSH AECIN AEFOU AEGXH AEISY AEKEX AENEX AEOZL AEPSL AEYOC AEZRU AFHDM AFRVT AGDLA AGMYJ AGRBW AHDZW AHMBA AIAGR AIJEM AIYEW AKBVH ALIPV ALMA_UNASSIGNED_HOLDINGS ALQZU ALSLI AMPGV AVBZW AWYRJ B0M BEJHT BLEHA BMOTO BOHLJ CCCUG CITATION CS3 DGFLZ DKSSO DU5 DXH EAP EAS EBC EBD EBS EJD EMK EPL EPS ESX E~B E~C F5P FEDTE G-F GTTXZ H13 HF~ HZ~ IPNFZ J.O KYCEM M0P M4Z MK~ ML~ NA5 NHB NW- O9- P2P QN7 RIG RNANH ROSJB RSYQP S-F STATR TAE TBQAZ TDBHL TEH TFH TFL TFW TN5 TNTFI TRJHH TUROJ TUS TWZ UHB UPT UT5 UT9 WH7 YQT ~01 ~8M ~S~ 0-V 07M 186 3V. 41~ 7RV 7X7 88E 88I 8AF 8FI 8FJ AANPH ABUWG ABVXC ABWZE ACPKE ACRBO ADBBV ADEWX ADIUE ADXAZ AEXSR AFFDN AFKRA AIXGP ALLRG ARALO AZQEC BENPR BKEYQ BKNYI BPHCQ BVXVI CAG CBZAQ CCPQU CJNVE CKOZC COF C~T DGXZK DWQXO EFRLQ EGDCR EX3 FXNIP FYUFA GNUQQ HCIFZ HMCUK HVGLF H~9 JLMOS K9- L7Y LJTGL M0R M1P M2M M2P M2Q NAPCQ NPM OHT PQEDU PQQKQ PROAC PSQYO PSYQQ QF4 QM4 QO4 QZZOY RBICI S0X UA1 UKHRP UKR VXZ WOW XOL YCJ YQJ YYQ Z5M ZCG K9. TASJS 7X8 |
ID | FETCH-LOGICAL-c337t-35fcdb226dd664ed722e1195780fc6bb83eadf00b8b2a3bcf60be1c5f61d16103 |
ISSN | 0022-2895 1940-1027 |
IngestDate | Mon Jul 21 10:22:10 EDT 2025 Wed Aug 13 11:34:00 EDT 2025 Wed Feb 19 02:33:26 EST 2025 Tue Jul 01 01:26:37 EDT 2025 Thu Apr 24 23:08:42 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | electroencephalography motor imagery time–frequency cross mutual information brain-network topologic features brain-network connectivity |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c337t-35fcdb226dd664ed722e1195780fc6bb83eadf00b8b2a3bcf60be1c5f61d16103 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 28813231 |
PQID | 2039216917 |
PQPubID | 35941 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_1932141443 proquest_journals_2039216917 pubmed_primary_28813231 crossref_citationtrail_10_1080_00222895_2017_1327417 crossref_primary_10_1080_00222895_2017_1327417 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018 May-Jun |
PublicationDateYYYYMMDD | 2018-05-01 |
PublicationDate_xml | – month: 05 year: 2018 text: 2018 May-Jun |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Journal of motor behavior |
PublicationTitleAlternate | J Mot Behav |
PublicationYear | 2018 |
Publisher | Taylor & Francis Inc |
Publisher_xml | – name: Taylor & Francis Inc |
References | cit0033 Muldoon S. F. (cit0035) 2015 cit0031 cit0032 Chang Y. (cit0008) 2011; 24 cit0030 Arvaneh M. (cit0103) 2016 cit0039 cit0037 cit0038 cit0023 cit0020 cit0021 Popivanov D. (cit0043) 1999; 7 Tung S. W. (cit0049) 2015 cit0028 cit0029 cit0026 cit0027 cit0024 cit0025 cit0011 cit0012 cit0053 cit0010 cit0051 cit0052 cit0050 cit0019 cit0017 cit0018 cit0015 cit0016 Müller K. R. (cit0036) 2004; 4557 cit0013 cit0014 cit0001 cit0045 cit0042 cit0040 cit0041 Hogg R. V. (cit0022) 1987; 31 Mühl C. (cit0034) 2010 cit0009 cit0006 cit0007 cit0004 cit0048 cit0005 cit0002 cit0046 cit0047 |
References_xml | – ident: cit0016 doi: 10.3200/JMBR.37.1.10-20 – ident: cit0038 doi: 10.2307/2684733 – volume-title: Paper presented at the International Conference on Information, Communications and Signal Processing year: 2015 ident: cit0049 – ident: cit0023 doi: 10.1053/apmr.2001.24286 – ident: cit0052 doi: 10.1016/j.neuroimage.2010.06.041 – ident: cit0053 doi: 10.1109/JDT.2015.2451087 – volume: 31 issue: 787 year: 1987 ident: cit0022 publication-title: Engineering statistics – ident: cit0024 doi: 10.1016/0959-4388(95)80099-9 – ident: cit0033 doi: 10.7600/jpfsm.1.103 – ident: cit0037 doi: 10.1016/j.brainresrev.2008.12.024 – start-page: 1 year: 2015 ident: cit0035 publication-title: Quantitative Biology – ident: cit0042 doi: 10.1097/00001756-199905140-00003 – ident: cit0027 doi: 10.1006/ccog.1999.0426 – ident: cit0005 doi: 10.1146/annurev-clinpsy-040510-143934 – ident: cit0019 doi: 10.1152/jn.00132.2002 – ident: cit0021 doi: 10.1016/j.brainres.2015.10.057 – ident: cit0050 doi: 10.1371/journal.pone.0068910 – volume: 7 start-page: 205 year: 1999 ident: cit0043 publication-title: Technology & Health Care Official Journal of the European Society for Engineering & Medicine – ident: cit0046 doi: 10.1186/1741-7015-9-75 – ident: cit0013 doi: 10.1016/j.neuroimage.2010.11.030 – ident: cit0028 doi: 10.1016/S1053-8119(03)00286-6 – ident: cit0014 doi: 10.1146/annurev.neuro.29.051605.112924 – volume-title: Presented at the Fifth International Summer Workshop on Multimodal Interfaces year: 2010 ident: cit0034 – ident: cit0020 doi: 10.1016/j.neubiorev.2013.03.017 – ident: cit0018 doi: 10.1002/hbm.20658 – ident: cit0025 doi: 10.1016/j.brainres.2014.12.017 – ident: cit0010 doi: 10.1152/jn.01113.2002 – ident: cit0029 doi: 10.1016/j.neuroimage.2007.10.003 – ident: cit0045 doi: 10.1016/j.tics.2007.04.004 – ident: cit0032 doi: 10.1016/j.clinph.2011.01.050 – ident: cit0002 doi: 10.1016/S0304-3940(99)00632-1 – ident: cit0004 – ident: cit0031 doi: 10.1371/journal.pone.0010232 – ident: cit0009 doi: 10.1093/brain/121.12.2301 – ident: cit0017 doi: 10.1016/j.neuroimage.2008.03.042 – ident: cit0047 doi: 10.1371/journal.pone.0001049 – ident: cit0001 doi: 10.1103/PhysRevE.77.036104 – start-page: 1 year: 2016 ident: cit0103 publication-title: Neural Computing & Applications – ident: cit0051 doi: 10.1088/1741-2560/12/3/036004 – ident: cit0006 doi: 10.1007/s11055-014-9976-4 – ident: cit0007 doi: 10.1002/hbm.20386 – ident: cit0030 doi: 10.1016/S0013-4694(97)00129-6 – volume: 4557 start-page: 705 volume-title: Human interface and management of information. Methods, techniques, and tools in information design. Human Interface 2007. Lecture notes in computer science year: 2004 ident: cit0036 – ident: cit0015 doi: 10.1002/1097-0193(200101)12:1<1::AID-HBM10>3.0.CO;2-V – ident: cit0048 doi: 10.1016/S0079-6123(03)43034-3 – ident: cit0026 doi: 10.1371/journal.pone.0139441 – ident: cit0039 doi: 10.1016/j.bbr.2009.09.011 – ident: cit0041 doi: 10.1016/j.neuroimage.2005.12.003 – volume: 24 start-page: 366 year: 2011 ident: cit0008 publication-title: Nmr in Biomedicine doi: 10.1002/nbm.1600 – ident: cit0011 doi: 10.1142/S0218127410026198 – ident: cit0012 doi: 10.1016/j.neuroimage.2013.06.039 – ident: cit0040 doi: 10.1016/0013-4694(92)90133-3 |
SSID | ssj0000700 |
Score | 2.2770994 |
Snippet | To study the physiologic mechanism of the brain during different motor imagery (MI) tasks, the authors employed a method of brain-network modeling based on... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 254 |
SubjectTerms | Brain Brain research Computer Interfaces Handedness Motor ability Networks Neurology Physiology Reaction Time Statistical Analysis Topology |
Title | Time–Frequency Cross Mutual Information Analysis of the Brain Functional Networks Underlying Multiclass Motor Imagery |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28813231 https://www.proquest.com/docview/2039216917 https://www.proquest.com/docview/1932141443 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZb-tKXsaW7ZOuKBmMvwcG25Esey2hIS5vB5kD2ZCxZAkPtlNZ-aH99jy6-dMtouxcTZMkOPp_ORfrOEUJfweRCXCUyh3rMdWjmEyfOwJGbR4RIn0Qi5mq942IVLtf0bBNs-h18nV1Ssxm_25lX8j9ShTaQq8qSfYZku4dCA_wG-cIVJAzXp8m4KIWzuDZsaJjbyuJNLxqdEmLzjLR4h5VHDCEgK6rpAkyaXQlcGTK4IsvkiuGp1g90ai5XzjVMfIjMp6dl9mcG9cCdLXWfNuu_o_VYxu9xVRY9-adoNHgAmVet5dQMA6MCfxUdqHS_300ls-HqhBf3XECrUOdq79g1-f8zsaPNamFTftaijQxVqiky_Zeqb7mRaglrHiiSXjSD0Bo8pKi3be1-_upHulifn6fJySZ5ifZ8iCn8EdpLfp4tl73hNhlL3d9rE75UKfZdr3noyvwjPtF-SvIavbISwccGLW_QC1GN0QEgoN6Wt_gb1pRfvZcyVkd2W3rPGO13pvD2ADUPkYU1srBBFh4gC7fIwluJAVlYIwv3yMItsnCPLNwjC2tkYYust2i9OEm-Lx17QIfDCYlqhwSS5wwc-DwPQypy-KhClRCMYlfykLGYgJ6Srsti5meEcRm6THg8kKGXQ6ThkndoVG0r8QFhwogMWUZ9nxNVw28uKYlcEUB_mgfCmyDafuuU2-r16hCVy9TritwaEaVKRKkV0QTNumFXpnzLYwMOW0GmdqbfQAdQaaqqFNz-0t0GPaw217JKbJubVAVCHvUoJRP03gCgeyOoQ3g88T4-YfQntN_Po0M0qq8b8Rn83podWbzeA4Djqr4 |
linkProvider | Taylor & Francis |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Time-Frequency+Cross+Mutual+Information+Analysis+of+the+Brain+Functional+Networks+Underlying+Multiclass+Motor+Imagery&rft.jtitle=Journal+of+motor+behavior&rft.au=Gong%2C+Anmin&rft.au=Liu%2C+Jianping&rft.au=Chen%2C+Si&rft.au=Fu%2C+Yunfa&rft.date=2018-05-01&rft.issn=1940-1027&rft.eissn=1940-1027&rft.volume=50&rft.issue=3&rft.spage=254&rft_id=info:doi/10.1080%2F00222895.2017.1327417&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2895&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2895&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2895&client=summon |