Time–Frequency Cross Mutual Information Analysis of the Brain Functional Networks Underlying Multiclass Motor Imagery

To study the physiologic mechanism of the brain during different motor imagery (MI) tasks, the authors employed a method of brain-network modeling based on time-frequency cross mutual information obtained from 4-class (left hand, right hand, feet, and tongue) MI tasks recorded as brain-computer inte...

Full description

Saved in:
Bibliographic Details
Published inJournal of motor behavior Vol. 50; no. 3; pp. 254 - 267
Main Authors Gong, Anmin, Liu, Jianping, Chen, Si, Fu, Yunfa
Format Journal Article
LanguageEnglish
Published United States Taylor & Francis Inc 01.05.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To study the physiologic mechanism of the brain during different motor imagery (MI) tasks, the authors employed a method of brain-network modeling based on time-frequency cross mutual information obtained from 4-class (left hand, right hand, feet, and tongue) MI tasks recorded as brain-computer interface (BCI) electroencephalography data. The authors explored the brain network revealed by these MI tasks using statistical analysis and the analysis of topologic characteristics, and observed significant differences in the reaction level, reaction time, and activated target during 4-class MI tasks. There was a great difference in the reaction level between the execution and resting states during different tasks: the reaction level of the left-hand MI task was the greatest, followed by that of the right-hand, feet, and tongue MI tasks. The reaction time required to perform the tasks also differed: during the left-hand and right-hand MI tasks, the brain networks of subjects reacted promptly and strongly, but there was a delay during the feet and tongue MI task. Statistical analysis and the analysis of network topology revealed the target regions of the brain network during different MI processes. In conclusion, our findings suggest a new way to explain the neural mechanism behind MI.
AbstractList To study the physiologic mechanism of the brain during different motor imagery (MI) tasks, the authors employed a method of brain-network modeling based on time-frequency cross mutual information obtained from 4-class (left hand, right hand, feet, and tongue) MI tasks recorded as brain-computer interface (BCI) electroencephalography data. The authors explored the brain network revealed by these MI tasks using statistical analysis and the analysis of topologic characteristics, and observed significant differences in the reaction level, reaction time, and activated target during 4-class MI tasks. There was a great difference in the reaction level between the execution and resting states during different tasks: the reaction level of the left-hand MI task was the greatest, followed by that of the right-hand, feet, and tongue MI tasks. The reaction time required to perform the tasks also differed: during the left-hand and right-hand MI tasks, the brain networks of subjects reacted promptly and strongly, but there was a delay during the feet and tongue MI task. Statistical analysis and the analysis of network topology revealed the target regions of the brain network during different MI processes. In conclusion, our findings suggest a new way to explain the neural mechanism behind MI.
To study the physiologic mechanism of the brain during different motor imagery (MI) tasks, the authors employed a method of brain-network modeling based on time-frequency cross mutual information obtained from 4-class (left hand, right hand, feet, and tongue) MI tasks recorded as brain-computer interface (BCI) electroencephalography data. The authors explored the brain network revealed by these MI tasks using statistical analysis and the analysis of topologic characteristics, and observed significant differences in the reaction level, reaction time, and activated target during 4-class MI tasks. There was a great difference in the reaction level between the execution and resting states during different tasks: the reaction level of the left-hand MI task was the greatest, followed by that of the right-hand, feet, and tongue MI tasks. The reaction time required to perform the tasks also differed: during the left-hand and right-hand MI tasks, the brain networks of subjects reacted promptly and strongly, but there was a delay during the feet and tongue MI task. Statistical analysis and the analysis of network topology revealed the target regions of the brain network during different MI processes. In conclusion, our findings suggest a new way to explain the neural mechanism behind MI.To study the physiologic mechanism of the brain during different motor imagery (MI) tasks, the authors employed a method of brain-network modeling based on time-frequency cross mutual information obtained from 4-class (left hand, right hand, feet, and tongue) MI tasks recorded as brain-computer interface (BCI) electroencephalography data. The authors explored the brain network revealed by these MI tasks using statistical analysis and the analysis of topologic characteristics, and observed significant differences in the reaction level, reaction time, and activated target during 4-class MI tasks. There was a great difference in the reaction level between the execution and resting states during different tasks: the reaction level of the left-hand MI task was the greatest, followed by that of the right-hand, feet, and tongue MI tasks. The reaction time required to perform the tasks also differed: during the left-hand and right-hand MI tasks, the brain networks of subjects reacted promptly and strongly, but there was a delay during the feet and tongue MI task. Statistical analysis and the analysis of network topology revealed the target regions of the brain network during different MI processes. In conclusion, our findings suggest a new way to explain the neural mechanism behind MI.
Author Fu, Yunfa
Liu, Jianping
Chen, Si
Gong, Anmin
Author_xml – sequence: 1
  givenname: Anmin
  surname: Gong
  fullname: Gong, Anmin
  organization: School of Science, Engineering University of Chinese People's Armed Police Force, Xi'an, China
– sequence: 2
  givenname: Jianping
  surname: Liu
  fullname: Liu, Jianping
  organization: School of Science, Engineering University of Chinese People's Armed Police Force, Xi'an, China
– sequence: 3
  givenname: Si
  surname: Chen
  fullname: Chen, Si
  organization: School of Science, Engineering University of Chinese People's Armed Police Force, Xi'an, China
– sequence: 4
  givenname: Yunfa
  surname: Fu
  fullname: Fu, Yunfa
  organization: School of Automation and Information Engineering, Kunming University of Science and Technology, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28813231$$D View this record in MEDLINE/PubMed
BookMark eNp9kcFu1DAURS1URKeFTwBZYsMmUz87iROxakcMHam0m3ZtOY5dUhy72I6q7PgH_pAvwaEzmy7w5i187n16956gI-edRug9kDWQhpwRQilt2mpNCfA1MMpL4K_QCtqSFEAoP0KrhSkW6BidxPhA8uOEvEHHtGmygsEKPd0Oo_7z6_c26J-TdmrGm-BjxN-mNEmLd874MMo0eIfPnbRzHCL2BqfvGl8EOTi8nZxavjN8rdOTDz8ivnO9DnYe3H32sWlQVi6WPvmAd6O812F-i14baaN-t5-n6G775XZzWVzdfN1tzq8KxRhPBauM6jtK676v61L3nFIN0Fa8IUbVXdcwLXtDSNd0VLJOmZp0GlRlauihBsJO0adn38fg84ExiXGISlsrnfZTFNAyCiWUJcvoxxfog59CPiwKSlhLoW6BZ-rDnpq6UffiMQyjDLM4RJqBz8-AWoIM2gg1pH8JphyYFUDEUqA4FCiWAsW-wKyuXqgPC_6v-ws9v58c
CitedBy_id crossref_primary_10_1109_TNNLS_2023_3292179
crossref_primary_10_1016_j_neuroimage_2019_116118
crossref_primary_10_3389_fnins_2024_1306283
crossref_primary_10_1155_2018_4097561
crossref_primary_10_3389_fnins_2019_01277
crossref_primary_10_1007_s11571_022_09906_y
crossref_primary_10_1088_1741_2552_abd82b
crossref_primary_10_3389_fnins_2020_587520
crossref_primary_10_3390_app11156689
crossref_primary_10_3389_fnins_2021_607905
crossref_primary_10_3390_electronics12183894
crossref_primary_10_3390_brainsci12101373
crossref_primary_10_1016_j_neunet_2022_09_016
crossref_primary_10_1109_ACCESS_2023_3303508
crossref_primary_10_1109_ACCESS_2020_3018962
Cites_doi 10.3200/JMBR.37.1.10-20
10.2307/2684733
10.1053/apmr.2001.24286
10.1016/j.neuroimage.2010.06.041
10.1109/JDT.2015.2451087
10.1016/0959-4388(95)80099-9
10.7600/jpfsm.1.103
10.1016/j.brainresrev.2008.12.024
10.1097/00001756-199905140-00003
10.1006/ccog.1999.0426
10.1146/annurev-clinpsy-040510-143934
10.1152/jn.00132.2002
10.1016/j.brainres.2015.10.057
10.1371/journal.pone.0068910
10.1186/1741-7015-9-75
10.1016/j.neuroimage.2010.11.030
10.1016/S1053-8119(03)00286-6
10.1146/annurev.neuro.29.051605.112924
10.1016/j.neubiorev.2013.03.017
10.1002/hbm.20658
10.1016/j.brainres.2014.12.017
10.1152/jn.01113.2002
10.1016/j.neuroimage.2007.10.003
10.1016/j.tics.2007.04.004
10.1016/j.clinph.2011.01.050
10.1016/S0304-3940(99)00632-1
10.1371/journal.pone.0010232
10.1093/brain/121.12.2301
10.1016/j.neuroimage.2008.03.042
10.1371/journal.pone.0001049
10.1103/PhysRevE.77.036104
10.1088/1741-2560/12/3/036004
10.1007/s11055-014-9976-4
10.1002/hbm.20386
10.1016/S0013-4694(97)00129-6
10.1002/1097-0193(200101)12:1<1::AID-HBM10>3.0.CO;2-V
10.1016/S0079-6123(03)43034-3
10.1371/journal.pone.0139441
10.1016/j.bbr.2009.09.011
10.1016/j.neuroimage.2005.12.003
10.1002/nbm.1600
10.1142/S0218127410026198
10.1016/j.neuroimage.2013.06.039
10.1016/0013-4694(92)90133-3
ContentType Journal Article
Copyright Copyright © Taylor & Francis Group, LLC
Copyright_xml – notice: Copyright © Taylor & Francis Group, LLC
DBID AAYXX
CITATION
NPM
K9.
NAPCQ
7X8
DOI 10.1080/00222895.2017.1327417
DatabaseName CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
DatabaseTitleList PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Education
Anatomy & Physiology
Psychology
EISSN 1940-1027
EndPage 267
ExternalDocumentID 28813231
10_1080_00222895_2017_1327417
Genre Journal Article
GroupedDBID ---
--Z
-ET
-~X
.7I
.QK
0BK
0R~
29L
2QV
36B
4.4
53G
5GY
AAGDL
AAGZJ
AAHIA
AAMFJ
AAMIU
AAPUL
AAWTL
AAYXX
AAZMC
ABCCY
ABDBF
ABFIM
ABIVO
ABJNI
ABLIJ
ABPEM
ABRYG
ABTAI
ABXUL
ABXYU
ACGFO
ACGFS
ACGOD
ACHQT
ACNCT
ACTIO
ACTOA
ACUHS
ADAHI
ADCVX
ADKVQ
ADYSH
AECIN
AEFOU
AEGXH
AEISY
AEKEX
AENEX
AEOZL
AEPSL
AEYOC
AEZRU
AFHDM
AFRVT
AGDLA
AGMYJ
AGRBW
AHDZW
AHMBA
AIAGR
AIJEM
AIYEW
AKBVH
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALSLI
AMPGV
AVBZW
AWYRJ
B0M
BEJHT
BLEHA
BMOTO
BOHLJ
CCCUG
CITATION
CS3
DGFLZ
DKSSO
DU5
DXH
EAP
EAS
EBC
EBD
EBS
EJD
EMK
EPL
EPS
ESX
E~B
E~C
F5P
FEDTE
G-F
GTTXZ
H13
HF~
HZ~
IPNFZ
J.O
KYCEM
M0P
M4Z
MK~
ML~
NA5
NHB
NW-
O9-
P2P
QN7
RIG
RNANH
ROSJB
RSYQP
S-F
STATR
TAE
TBQAZ
TDBHL
TEH
TFH
TFL
TFW
TN5
TNTFI
TRJHH
TUROJ
TUS
TWZ
UHB
UPT
UT5
UT9
WH7
YQT
~01
~8M
~S~
0-V
07M
186
3V.
41~
7RV
7X7
88E
88I
8AF
8FI
8FJ
AANPH
ABUWG
ABVXC
ABWZE
ACPKE
ACRBO
ADBBV
ADEWX
ADIUE
ADXAZ
AEXSR
AFFDN
AFKRA
AIXGP
ALLRG
ARALO
AZQEC
BENPR
BKEYQ
BKNYI
BPHCQ
BVXVI
CAG
CBZAQ
CCPQU
CJNVE
CKOZC
COF
C~T
DGXZK
DWQXO
EFRLQ
EGDCR
EX3
FXNIP
FYUFA
GNUQQ
HCIFZ
HMCUK
HVGLF
H~9
JLMOS
K9-
L7Y
LJTGL
M0R
M1P
M2M
M2P
M2Q
NAPCQ
NPM
OHT
PQEDU
PQQKQ
PROAC
PSQYO
PSYQQ
QF4
QM4
QO4
QZZOY
RBICI
S0X
UA1
UKHRP
UKR
VXZ
WOW
XOL
YCJ
YQJ
YYQ
Z5M
ZCG
K9.
TASJS
7X8
ID FETCH-LOGICAL-c337t-35fcdb226dd664ed722e1195780fc6bb83eadf00b8b2a3bcf60be1c5f61d16103
ISSN 0022-2895
1940-1027
IngestDate Mon Jul 21 10:22:10 EDT 2025
Wed Aug 13 11:34:00 EDT 2025
Wed Feb 19 02:33:26 EST 2025
Tue Jul 01 01:26:37 EDT 2025
Thu Apr 24 23:08:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords electroencephalography
motor imagery
time–frequency cross mutual information
brain-network topologic features
brain-network connectivity
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c337t-35fcdb226dd664ed722e1195780fc6bb83eadf00b8b2a3bcf60be1c5f61d16103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 28813231
PQID 2039216917
PQPubID 35941
PageCount 14
ParticipantIDs proquest_miscellaneous_1932141443
proquest_journals_2039216917
pubmed_primary_28813231
crossref_citationtrail_10_1080_00222895_2017_1327417
crossref_primary_10_1080_00222895_2017_1327417
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018 May-Jun
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: 2018 May-Jun
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Journal of motor behavior
PublicationTitleAlternate J Mot Behav
PublicationYear 2018
Publisher Taylor & Francis Inc
Publisher_xml – name: Taylor & Francis Inc
References cit0033
Muldoon S. F. (cit0035) 2015
cit0031
cit0032
Chang Y. (cit0008) 2011; 24
cit0030
Arvaneh M. (cit0103) 2016
cit0039
cit0037
cit0038
cit0023
cit0020
cit0021
Popivanov D. (cit0043) 1999; 7
Tung S. W. (cit0049) 2015
cit0028
cit0029
cit0026
cit0027
cit0024
cit0025
cit0011
cit0012
cit0053
cit0010
cit0051
cit0052
cit0050
cit0019
cit0017
cit0018
cit0015
cit0016
Müller K. R. (cit0036) 2004; 4557
cit0013
cit0014
cit0001
cit0045
cit0042
cit0040
cit0041
Hogg R. V. (cit0022) 1987; 31
Mühl C. (cit0034) 2010
cit0009
cit0006
cit0007
cit0004
cit0048
cit0005
cit0002
cit0046
cit0047
References_xml – ident: cit0016
  doi: 10.3200/JMBR.37.1.10-20
– ident: cit0038
  doi: 10.2307/2684733
– volume-title: Paper presented at the International Conference on Information, Communications and Signal Processing
  year: 2015
  ident: cit0049
– ident: cit0023
  doi: 10.1053/apmr.2001.24286
– ident: cit0052
  doi: 10.1016/j.neuroimage.2010.06.041
– ident: cit0053
  doi: 10.1109/JDT.2015.2451087
– volume: 31
  issue: 787
  year: 1987
  ident: cit0022
  publication-title: Engineering statistics
– ident: cit0024
  doi: 10.1016/0959-4388(95)80099-9
– ident: cit0033
  doi: 10.7600/jpfsm.1.103
– ident: cit0037
  doi: 10.1016/j.brainresrev.2008.12.024
– start-page: 1
  year: 2015
  ident: cit0035
  publication-title: Quantitative Biology
– ident: cit0042
  doi: 10.1097/00001756-199905140-00003
– ident: cit0027
  doi: 10.1006/ccog.1999.0426
– ident: cit0005
  doi: 10.1146/annurev-clinpsy-040510-143934
– ident: cit0019
  doi: 10.1152/jn.00132.2002
– ident: cit0021
  doi: 10.1016/j.brainres.2015.10.057
– ident: cit0050
  doi: 10.1371/journal.pone.0068910
– volume: 7
  start-page: 205
  year: 1999
  ident: cit0043
  publication-title: Technology & Health Care Official Journal of the European Society for Engineering & Medicine
– ident: cit0046
  doi: 10.1186/1741-7015-9-75
– ident: cit0013
  doi: 10.1016/j.neuroimage.2010.11.030
– ident: cit0028
  doi: 10.1016/S1053-8119(03)00286-6
– ident: cit0014
  doi: 10.1146/annurev.neuro.29.051605.112924
– volume-title: Presented at the Fifth International Summer Workshop on Multimodal Interfaces
  year: 2010
  ident: cit0034
– ident: cit0020
  doi: 10.1016/j.neubiorev.2013.03.017
– ident: cit0018
  doi: 10.1002/hbm.20658
– ident: cit0025
  doi: 10.1016/j.brainres.2014.12.017
– ident: cit0010
  doi: 10.1152/jn.01113.2002
– ident: cit0029
  doi: 10.1016/j.neuroimage.2007.10.003
– ident: cit0045
  doi: 10.1016/j.tics.2007.04.004
– ident: cit0032
  doi: 10.1016/j.clinph.2011.01.050
– ident: cit0002
  doi: 10.1016/S0304-3940(99)00632-1
– ident: cit0004
– ident: cit0031
  doi: 10.1371/journal.pone.0010232
– ident: cit0009
  doi: 10.1093/brain/121.12.2301
– ident: cit0017
  doi: 10.1016/j.neuroimage.2008.03.042
– ident: cit0047
  doi: 10.1371/journal.pone.0001049
– ident: cit0001
  doi: 10.1103/PhysRevE.77.036104
– start-page: 1
  year: 2016
  ident: cit0103
  publication-title: Neural Computing & Applications
– ident: cit0051
  doi: 10.1088/1741-2560/12/3/036004
– ident: cit0006
  doi: 10.1007/s11055-014-9976-4
– ident: cit0007
  doi: 10.1002/hbm.20386
– ident: cit0030
  doi: 10.1016/S0013-4694(97)00129-6
– volume: 4557
  start-page: 705
  volume-title: Human interface and management of information. Methods, techniques, and tools in information design. Human Interface 2007. Lecture notes in computer science
  year: 2004
  ident: cit0036
– ident: cit0015
  doi: 10.1002/1097-0193(200101)12:1<1::AID-HBM10>3.0.CO;2-V
– ident: cit0048
  doi: 10.1016/S0079-6123(03)43034-3
– ident: cit0026
  doi: 10.1371/journal.pone.0139441
– ident: cit0039
  doi: 10.1016/j.bbr.2009.09.011
– ident: cit0041
  doi: 10.1016/j.neuroimage.2005.12.003
– volume: 24
  start-page: 366
  year: 2011
  ident: cit0008
  publication-title: Nmr in Biomedicine
  doi: 10.1002/nbm.1600
– ident: cit0011
  doi: 10.1142/S0218127410026198
– ident: cit0012
  doi: 10.1016/j.neuroimage.2013.06.039
– ident: cit0040
  doi: 10.1016/0013-4694(92)90133-3
SSID ssj0000700
Score 2.2770994
Snippet To study the physiologic mechanism of the brain during different motor imagery (MI) tasks, the authors employed a method of brain-network modeling based on...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 254
SubjectTerms Brain
Brain research
Computer Interfaces
Handedness
Motor ability
Networks
Neurology
Physiology
Reaction Time
Statistical Analysis
Topology
Title Time–Frequency Cross Mutual Information Analysis of the Brain Functional Networks Underlying Multiclass Motor Imagery
URI https://www.ncbi.nlm.nih.gov/pubmed/28813231
https://www.proquest.com/docview/2039216917
https://www.proquest.com/docview/1932141443
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZb-tKXsaW7ZOuKBmMvwcG25Esey2hIS5vB5kD2ZCxZAkPtlNZ-aH99jy6-dMtouxcTZMkOPp_ORfrOEUJfweRCXCUyh3rMdWjmEyfOwJGbR4RIn0Qi5mq942IVLtf0bBNs-h18nV1Ssxm_25lX8j9ShTaQq8qSfYZku4dCA_wG-cIVJAzXp8m4KIWzuDZsaJjbyuJNLxqdEmLzjLR4h5VHDCEgK6rpAkyaXQlcGTK4IsvkiuGp1g90ai5XzjVMfIjMp6dl9mcG9cCdLXWfNuu_o_VYxu9xVRY9-adoNHgAmVet5dQMA6MCfxUdqHS_300ls-HqhBf3XECrUOdq79g1-f8zsaPNamFTftaijQxVqiky_Zeqb7mRaglrHiiSXjSD0Bo8pKi3be1-_upHulifn6fJySZ5ifZ8iCn8EdpLfp4tl73hNhlL3d9rE75UKfZdr3noyvwjPtF-SvIavbISwccGLW_QC1GN0QEgoN6Wt_gb1pRfvZcyVkd2W3rPGO13pvD2ADUPkYU1srBBFh4gC7fIwluJAVlYIwv3yMItsnCPLNwjC2tkYYust2i9OEm-Lx17QIfDCYlqhwSS5wwc-DwPQypy-KhClRCMYlfykLGYgJ6Srsti5meEcRm6THg8kKGXQ6ThkndoVG0r8QFhwogMWUZ9nxNVw28uKYlcEUB_mgfCmyDafuuU2-r16hCVy9TritwaEaVKRKkV0QTNumFXpnzLYwMOW0GmdqbfQAdQaaqqFNz-0t0GPaw217JKbJubVAVCHvUoJRP03gCgeyOoQ3g88T4-YfQntN_Po0M0qq8b8Rn83podWbzeA4Djqr4
linkProvider Taylor & Francis
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Time-Frequency+Cross+Mutual+Information+Analysis+of+the+Brain+Functional+Networks+Underlying+Multiclass+Motor+Imagery&rft.jtitle=Journal+of+motor+behavior&rft.au=Gong%2C+Anmin&rft.au=Liu%2C+Jianping&rft.au=Chen%2C+Si&rft.au=Fu%2C+Yunfa&rft.date=2018-05-01&rft.issn=1940-1027&rft.eissn=1940-1027&rft.volume=50&rft.issue=3&rft.spage=254&rft_id=info:doi/10.1080%2F00222895.2017.1327417&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2895&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2895&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2895&client=summon