Designed metal-organic π-clusters combining the aromaticity of the metal cluster and ligands for a third-order nonlinear optical response

The pivotal role of clusters and aromaticity in chemistry is undeniable, but there remains a gap in systematically understanding the aromaticity of metal-organic clusters. Herein, this article presents a novel metal-organic π-cluster, melding both metal-organic chemistry and aromaticity, to guide th...

Full description

Saved in:
Bibliographic Details
Published inMaterials horizons Vol. 11; no. 1; pp. 297 - 32
Main Authors Wang, Zirui, Yan, Yayu, Chen, Jiali, Li, Qiao-Hong, Zhang, Jian
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 02.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The pivotal role of clusters and aromaticity in chemistry is undeniable, but there remains a gap in systematically understanding the aromaticity of metal-organic clusters. Herein, this article presents a novel metal-organic π-cluster, melding both metal-organic chemistry and aromaticity, to guide the construction of structurally stable Os-organic π-clusters. An in-depth analysis of these clusters reveals their bonding attributes, π-electronic composition, and origins of aromaticity, thereby confirming their unique metal-organic π-cluster properties. Furthermore, the Os 5 cluster exhibits a promising third-order nonlinear optical (NLO) response, attributable to its narrow band gap and uniform electron/hole distribution, suggesting its potential as an optical switching material. This research introduces a fresh perspective on clusters, centered on delocalization, and broadens the domain of aromaticity studies. It also presents a novel method for designing efficient third-order NLO materials through consideration of the structure-activity relationship. "Metal-organic π-clusters" were proposed, combining the π-electrons of both the cluster core and ligand for significant applications in third-order nonlinear optical materials.
AbstractList The pivotal role of clusters and aromaticity in chemistry is undeniable, but there remains a gap in systematically understanding the aromaticity of metal-organic clusters. Herein, this article presents a novel metal-organic π-cluster, melding both metal-organic chemistry and aromaticity, to guide the construction of structurally stable Os-organic π-clusters. An in-depth analysis of these clusters reveals their bonding attributes, π-electronic composition, and origins of aromaticity, thereby confirming their unique metal-organic π-cluster properties. Furthermore, the Os 5 cluster exhibits a promising third-order nonlinear optical (NLO) response, attributable to its narrow band gap and uniform electron/hole distribution, suggesting its potential as an optical switching material. This research introduces a fresh perspective on clusters, centered on delocalization, and broadens the domain of aromaticity studies. It also presents a novel method for designing efficient third-order NLO materials through consideration of the structure-activity relationship. "Metal-organic π-clusters" were proposed, combining the π-electrons of both the cluster core and ligand for significant applications in third-order nonlinear optical materials.
The pivotal role of clusters and aromaticity in chemistry is undeniable, but there remains a gap in systematically understanding the aromaticity of metal-organic clusters. Herein, this article presents a novel metal-organic π-cluster, melding both metal-organic chemistry and aromaticity, to guide the construction of structurally stable Os-organic π-clusters. An in-depth analysis of these clusters reveals their bonding attributes, π-electronic composition, and origins of aromaticity, thereby confirming their unique metal-organic π-cluster properties. Furthermore, the Os cluster exhibits a promising third-order nonlinear optical (NLO) response, attributable to its narrow band gap and uniform electron/hole distribution, suggesting its potential as an optical switching material. This research introduces a fresh perspective on clusters, centered on delocalization, and broadens the domain of aromaticity studies. It also presents a novel method for designing efficient third-order NLO materials through consideration of the structure-activity relationship.
The pivotal role of clusters and aromaticity in chemistry is undeniable, but there remains a gap in systematically understanding the aromaticity of metal–organic clusters. Herein, this article presents a novel metal–organic π-cluster, melding both metal–organic chemistry and aromaticity, to guide the construction of structurally stable Os-organic π-clusters. An in-depth analysis of these clusters reveals their bonding attributes, π-electronic composition, and origins of aromaticity, thereby confirming their unique metal–organic π-cluster properties. Furthermore, the Os 5 cluster exhibits a promising third-order nonlinear optical (NLO) response, attributable to its narrow band gap and uniform electron/hole distribution, suggesting its potential as an optical switching material. This research introduces a fresh perspective on clusters, centered on delocalization, and broadens the domain of aromaticity studies. It also presents a novel method for designing efficient third-order NLO materials through consideration of the structure–activity relationship.
The pivotal role of clusters and aromaticity in chemistry is undeniable, but there remains a gap in systematically understanding the aromaticity of metal–organic clusters. Herein, this article presents a novel metal–organic π-cluster, melding both metal–organic chemistry and aromaticity, to guide the construction of structurally stable Os-organic π-clusters. An in-depth analysis of these clusters reveals their bonding attributes, π-electronic composition, and origins of aromaticity, thereby confirming their unique metal–organic π-cluster properties. Furthermore, the Os5 cluster exhibits a promising third-order nonlinear optical (NLO) response, attributable to its narrow band gap and uniform electron/hole distribution, suggesting its potential as an optical switching material. This research introduces a fresh perspective on clusters, centered on delocalization, and broadens the domain of aromaticity studies. It also presents a novel method for designing efficient third-order NLO materials through consideration of the structure–activity relationship.
The pivotal role of clusters and aromaticity in chemistry is undeniable, but there remains a gap in systematically understanding the aromaticity of metal-organic clusters. Herein, this article presents a novel metal-organic π-cluster, melding both metal-organic chemistry and aromaticity, to guide the construction of structurally stable Os-organic π-clusters. An in-depth analysis of these clusters reveals their bonding attributes, π-electronic composition, and origins of aromaticity, thereby confirming their unique metal-organic π-cluster properties. Furthermore, the Os5 cluster exhibits a promising third-order nonlinear optical (NLO) response, attributable to its narrow band gap and uniform electron/hole distribution, suggesting its potential as an optical switching material. This research introduces a fresh perspective on clusters, centered on delocalization, and broadens the domain of aromaticity studies. It also presents a novel method for designing efficient third-order NLO materials through consideration of the structure-activity relationship.The pivotal role of clusters and aromaticity in chemistry is undeniable, but there remains a gap in systematically understanding the aromaticity of metal-organic clusters. Herein, this article presents a novel metal-organic π-cluster, melding both metal-organic chemistry and aromaticity, to guide the construction of structurally stable Os-organic π-clusters. An in-depth analysis of these clusters reveals their bonding attributes, π-electronic composition, and origins of aromaticity, thereby confirming their unique metal-organic π-cluster properties. Furthermore, the Os5 cluster exhibits a promising third-order nonlinear optical (NLO) response, attributable to its narrow band gap and uniform electron/hole distribution, suggesting its potential as an optical switching material. This research introduces a fresh perspective on clusters, centered on delocalization, and broadens the domain of aromaticity studies. It also presents a novel method for designing efficient third-order NLO materials through consideration of the structure-activity relationship.
Author Wang, Zirui
Yan, Yayu
Li, Qiao-Hong
Zhang, Jian
Chen, Jiali
AuthorAffiliation State Key Laboratory of Structural Chemistry
Chinese Academy of Sciences
Fuzhou University
College of Chemistry
Fujian College
School of Physical Science and Technology
ShanghaiTech University
Fujian Institute of Research on the Structure of Matter
University of Chinese Academy of Sciences
AuthorAffiliation_xml – sequence: 0
  name: State Key Laboratory of Structural Chemistry
– sequence: 0
  name: College of Chemistry
– sequence: 0
  name: Chinese Academy of Sciences
– sequence: 0
  name: School of Physical Science and Technology
– sequence: 0
  name: ShanghaiTech University
– sequence: 0
  name: Fujian College
– sequence: 0
  name: Fujian Institute of Research on the Structure of Matter
– sequence: 0
  name: University of Chinese Academy of Sciences
– sequence: 0
  name: Fuzhou University
Author_xml – sequence: 1
  givenname: Zirui
  surname: Wang
  fullname: Wang, Zirui
– sequence: 2
  givenname: Yayu
  surname: Yan
  fullname: Yan, Yayu
– sequence: 3
  givenname: Jiali
  surname: Chen
  fullname: Chen, Jiali
– sequence: 4
  givenname: Qiao-Hong
  surname: Li
  fullname: Li, Qiao-Hong
– sequence: 5
  givenname: Jian
  surname: Zhang
  fullname: Zhang, Jian
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37947130$$D View this record in MEDLINE/PubMed
BookMark eNptkkFv1DAQhS1URMvSC3eQJS4IKTDOxLFzRC2lSEVceo-8znjrKrEXOzn0xpk_x1_C7C6LVHGyPfO9p9EbP2cnIQZi7KWA9wKw-zDgdAdConZP2FkNUlQtSnlyvDfqlJ3nfA8AAhsJGp6xU1RdowTCGft5SdlvAg18otmMVUwbE7zlv35UdlzyTClzG6e1Dz5s-HxH3KQ4mdlbPz_w6HalnZQfeG7CwEdfbIbMXSzvwvg0FOuhdMv4ow9kEo_b4lJ0ifI2hkwv2FNnxkznh3PFbq8-3V5cVzffPn-5-HhTWUQ1V9gIabXDzpm2qVu1boiUkc7aVnTgtJFowEltgYwxthEdgdSgbNtqJMQVe7u33ab4faE895PPlsbRBIpL7mutu7ppsWS6Ym8eofdxSaEM19cdaFRCSlWo1wdqWU809NvkJ5Me-r8hF-DdHrAp5pzIHREB_Z8l9pf49Xq3xKsCwyO4JF3yjmFOxo__l7zaS1K2R-t__wJ_A6Vpqbk
CitedBy_id crossref_primary_10_1021_acs_jpclett_4c03492
crossref_primary_10_1016_j_surfin_2024_104349
crossref_primary_10_1002_smtd_202401782
crossref_primary_10_1016_j_inoche_2024_113502
crossref_primary_10_1039_D4QI00691G
crossref_primary_10_26599_POM_2024_9140072
Cites_doi 10.1038/s41467-021-21911-z
10.1002/chem.202104245
10.1002/chem.201801715
10.1021/acs.jpclett.1c03541
10.1021/jacs.2c00765
10.1021/ja960582d
10.1021/acs.jpclett.1c02104
10.1021/ct200308m
10.1016/S0039-6028(01)01564-3
10.1039/C9MH00724E
10.1021/jp0034426
10.1021/ja9930364
10.1039/C6TA07457J
10.1039/D1MH01019K
10.1016/j.cjsc.2023.100102
10.1002/anie.202013349
10.1021/cr0300901
10.1360/csb1983-28-1-25
10.1039/D3MH01130E
10.1016/j.carbon.2020.04.099
10.1039/D1MH01136G
10.1021/cr030088+
10.1126/science.aan8083
10.1016/j.carbon.2020.05.023
10.1063/1.466123
10.1021/acs.inorgchem.0c03331
10.1002/anie.202101140
10.1038/ncomms4265
10.1021/ja00102a040
10.1016/S0065-2792(08)60027-8
10.1038/s41563-020-0710-z
10.1038/ncomms7331
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2024
Copyright_xml – notice: Copyright Royal Society of Chemistry 2024
DBID AAYXX
CITATION
NPM
7SR
7TB
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
DOI 10.1039/d3mh01538f
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
MEDLINE - Academic
DatabaseTitleList
PubMed
CrossRef
Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2051-6355
EndPage 32
ExternalDocumentID 37947130
10_1039_D3MH01538F
d3mh01538f
Genre Journal Article
GroupedDBID 0R~
4.4
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABPDG
ABRYZ
ABXOH
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AETIL
AFLYV
AFOGI
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
GGIMP
H13
HZ~
H~N
J3I
O-G
O9-
RAOCF
RCNCU
RPMJG
RRC
RSCEA
RVUXY
AAYXX
AFRZK
AKMSF
CITATION
NPM
7SR
7TB
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
ID FETCH-LOGICAL-c337t-3415c8f39fa64267b4ee7a5fcc6190f8a53a0f58c0eaaac419e05807c6683e33
ISSN 2051-6347
2051-6355
IngestDate Fri Jul 11 08:53:43 EDT 2025
Mon Jun 30 07:06:39 EDT 2025
Wed Feb 19 01:58:38 EST 2025
Thu Apr 24 22:59:24 EDT 2025
Tue Jul 01 01:36:21 EDT 2025
Tue Dec 17 20:58:15 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c337t-3415c8f39fa64267b4ee7a5fcc6190f8a53a0f58c0eaaac419e05807c6683e33
Notes https://doi.org/10.1039/d3mh01538f
Electronic supplementary information (ESI) available: Computational details, supplementary figures and tables. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9286-3580
0000-0003-3094-0282
0000-0003-3373-9621
PMID 37947130
PQID 2908371557
PQPubID 2047518
PageCount 6
ParticipantIDs rsc_primary_d3mh01538f
proquest_miscellaneous_2889246315
crossref_primary_10_1039_D3MH01538F
proquest_journals_2908371557
crossref_citationtrail_10_1039_D3MH01538F
pubmed_primary_37947130
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-02
PublicationDateYYYYMMDD 2024-01-02
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-02
  day: 02
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Materials horizons
PublicationTitleAlternate Mater Horiz
PublicationYear 2024
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Nishiuchi (D3MH01538F/cit19/1) 2021; 60
Liu (D3MH01538F/cit37/1) 2020; 165
Kepenekian (D3MH01538F/cit3/1) 2019; 6
Wu (D3MH01538F/cit5/1) 2023
Sidgwick (D3MH01538F/cit6/1) 1927
Herges (D3MH01538F/cit24/1) 2001; 105
Liu (D3MH01538F/cit2/1) 2021; 12
Jin (D3MH01538F/cit11/1) 2022; 41
Cui (D3MH01538F/cit22/1) 2015; 6
Wang (D3MH01538F/cit34/1) 2021; 12
Le Bahers (D3MH01538F/cit35/1) 2011; 7
Sasagane (D3MH01538F/cit30/1) 1993; 99
Liu (D3MH01538F/cit4/1) 2023; 42
Wade (D3MH01538F/cit7/1) 1976; 18
Lu (D3MH01538F/cit9/1) 1992; 8
Lu (D3MH01538F/cit8/1) 1989; 8
Breitung (D3MH01538F/cit18/1) 2000; 122
Liu (D3MH01538F/cit27/1) 2020; 165
Feng (D3MH01538F/cit33/1) 2021; 60
Renner (D3MH01538F/cit13/1) 2022; 9
Eberhardt (D3MH01538F/cit1/1) 2002; 500
Schleyer (D3MH01538F/cit28/1) 1996; 118
Zhu (D3MH01538F/cit23/1) 2014; 5
Meyers (D3MH01538F/cit31/1) 1994; 116
Tang (D3MH01538F/cit36/1) 2020; 19
Tang (D3MH01538F/cit10/1) 1983; 1
Kong (D3MH01538F/cit15/1) 2021; 60
Klod (D3MH01538F/cit26/1) 2001
Gao (D3MH01538F/cit17/1) 2022; 144
Nishiuchi (D3MH01538F/cit20/1) 2022; 28
Kippenberg Tobias (D3MH01538F/cit32/1) 2018; 361
Yoo (D3MH01538F/cit14/1) 2017; 5
Chen (D3MH01538F/cit29/1) 2005; 105
Wang (D3MH01538F/cit16/1) 2021; 12
Liu (D3MH01538F/cit21/1) 2018; 24
Geuenich (D3MH01538F/cit25/1) 2005; 105
Österholm (D3MH01538F/cit12/1) 2022; 9
References_xml – issn: 1927
  publication-title: The electronic theory of valency
  doi: Sidgwick
– volume: 12
  start-page: 1619
  year: 2021
  ident: D3MH01538F/cit2/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21911-z
– volume: 28
  start-page: e202104245
  year: 2022
  ident: D3MH01538F/cit20/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.202104245
– volume: 24
  start-page: 14583
  year: 2018
  ident: D3MH01538F/cit21/1
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201801715
– volume: 12
  start-page: 11784
  year: 2021
  ident: D3MH01538F/cit16/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.1c03541
– volume: 144
  start-page: 8153
  year: 2022
  ident: D3MH01538F/cit17/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c00765
– volume: 118
  start-page: 6317
  year: 1996
  ident: D3MH01538F/cit28/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja960582d
– volume-title: The electronic theory of valency
  year: 1927
  ident: D3MH01538F/cit6/1
– volume: 12
  start-page: 7537
  year: 2021
  ident: D3MH01538F/cit34/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.1c02104
– volume: 7
  start-page: 2498
  year: 2011
  ident: D3MH01538F/cit35/1
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct200308m
– volume: 500
  start-page: 242
  year: 2002
  ident: D3MH01538F/cit1/1
  publication-title: Surf. Sci.
  doi: 10.1016/S0039-6028(01)01564-3
– start-page: 1893
  year: 2001
  ident: D3MH01538F/cit26/1
  publication-title: J. Chem. Soc., Perkin Trans. 2
– volume: 6
  start-page: 1828
  year: 2019
  ident: D3MH01538F/cit3/1
  publication-title: Mater. Horiz.
  doi: 10.1039/C9MH00724E
– volume: 105
  start-page: 3214
  year: 2001
  ident: D3MH01538F/cit24/1
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp0034426
– volume: 122
  start-page: 1154
  year: 2000
  ident: D3MH01538F/cit18/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9930364
– volume: 8
  start-page: 233
  year: 1989
  ident: D3MH01538F/cit8/1
  publication-title: Chin. J. Struct. Chem.
– volume: 5
  start-page: 748
  year: 2017
  ident: D3MH01538F/cit14/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA07457J
– volume: 9
  start-page: 350
  year: 2022
  ident: D3MH01538F/cit13/1
  publication-title: Mater. Horiz.
  doi: 10.1039/D1MH01019K
– volume: 42
  start-page: 100102
  year: 2023
  ident: D3MH01538F/cit4/1
  publication-title: Chin. J. Struct. Chem.
  doi: 10.1016/j.cjsc.2023.100102
– volume: 60
  start-page: 5400
  year: 2021
  ident: D3MH01538F/cit19/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202013349
– volume: 105
  start-page: 3758
  year: 2005
  ident: D3MH01538F/cit25/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr0300901
– volume: 8
  start-page: 834
  year: 1992
  ident: D3MH01538F/cit9/1
  publication-title: Acta Phys. -Chim. Sin.
– volume: 1
  start-page: 25
  year: 1983
  ident: D3MH01538F/cit10/1
  publication-title: Chin. Sci. Bull.
  doi: 10.1360/csb1983-28-1-25
– year: 2023
  ident: D3MH01538F/cit5/1
  publication-title: Mater. Horiz.
  doi: 10.1039/D3MH01130E
– volume: 165
  start-page: 468
  year: 2020
  ident: D3MH01538F/cit27/1
  publication-title: Carbon
  doi: 10.1016/j.carbon.2020.04.099
– volume: 9
  start-page: 252
  year: 2022
  ident: D3MH01538F/cit12/1
  publication-title: Mater. Horiz.
  doi: 10.1039/D1MH01136G
– volume: 105
  start-page: 3842
  year: 2005
  ident: D3MH01538F/cit29/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr030088+
– volume: 41
  start-page: 218
  year: 2022
  ident: D3MH01538F/cit11/1
  publication-title: Chin. J. Struct. Chem.
– volume: 361
  start-page: eaan8083
  year: 2018
  ident: D3MH01538F/cit32/1
  publication-title: Science
  doi: 10.1126/science.aan8083
– volume: 165
  start-page: 461
  year: 2020
  ident: D3MH01538F/cit37/1
  publication-title: Carbon
  doi: 10.1016/j.carbon.2020.05.023
– volume: 99
  start-page: 3738
  year: 1993
  ident: D3MH01538F/cit30/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.466123
– volume: 60
  start-page: 1885
  year: 2021
  ident: D3MH01538F/cit33/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.0c03331
– volume: 60
  start-page: 9395
  year: 2021
  ident: D3MH01538F/cit15/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202101140
– volume: 5
  start-page: 3265
  year: 2014
  ident: D3MH01538F/cit23/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4265
– volume: 116
  start-page: 10703
  year: 1994
  ident: D3MH01538F/cit31/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00102a040
– volume: 18
  start-page: 1
  year: 1976
  ident: D3MH01538F/cit7/1
  publication-title: Adv. Inorg. Chem. Radiochem.
  doi: 10.1016/S0065-2792(08)60027-8
– volume: 19
  start-page: 1332
  year: 2020
  ident: D3MH01538F/cit36/1
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-020-0710-z
– volume: 6
  start-page: 6331
  year: 2015
  ident: D3MH01538F/cit22/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7331
SSID ssj0001345080
Score 2.3561854
Snippet The pivotal role of clusters and aromaticity in chemistry is undeniable, but there remains a gap in systematically understanding the aromaticity of...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 297
SubjectTerms Aromaticity
Cluster analysis
Hole distribution
Metal clusters
Nonlinear optics
Nonlinear response
Optical properties
Optical switching
Organic chemistry
Title Designed metal-organic π-clusters combining the aromaticity of the metal cluster and ligands for a third-order nonlinear optical response
URI https://www.ncbi.nlm.nih.gov/pubmed/37947130
https://www.proquest.com/docview/2908371557
https://www.proquest.com/docview/2889246315
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9AIHVB6F0IIWQQ8oWrrx-nms2kQBJUVIrhS4WOvNmlpK48qND_TEmT_HX2L2YTtRcihcrGgyXq88n2dnZmdnEHofKZ3vq4waAARx51FIwtR1yZwL0H6hlFGqQgPTC3986X6eebNOp1o_XbJKP4q7nedK_keqQAO5qlOy_yDZZlAgwG-QL1xBwnC9l4zPdfoFmIzXEmxoYjo0if7x2eg4pEQsKlUF4Valjae6D4S2MnlZ6DKtNhdDkfTtfcuvtxMW-Q91BtjkWAJPXs6JrtLZX5raGrzsFzcmDl6aNNuNnKIpX5kX0L8qyvyujgnqyL3RLt_zssobnWPCsN_4z6rNN7DHRmCUhm-icw--5rwg48KuuTZk4bg6ZLEWxXRAExBl6ZhFaAetVs2DLQhaPWuSerf0P2WqfOqcXV9RpcqzdpWrd_YvviSjy8kkiYez-AHac8C7cLpo73QYf5q0wTnmguGq4nPNtOrStiw6aYffNGa2PBSwV8q6j4y2V-J99Ng6GvjUoOYJ6sjlU_RorfzkM_S7xg_ewA_-86vBDm6wgwEoeA07uMg0Sd-KLT8G0GCLHQzYwRyvYQc32MEWO7jGznMUj4bx2ZjY3hxEMBasCBg_nggzFmUcPFg_SF0pA-5lQoBHTrOQe4zTzAsFlZzDdz-IJPVCGgjfD5lk7AB14ZnyJcIeH-g6gJTPA9ehaRhGoFdS1ahDBpmgPfShfseJsHXrVfuURaLzJ1iUnLPpWMtj1EPvGt4bU61lJ9dRLarEfs23iROBMxLARIIeetv8DbpWbaDxpSwq4IG5Oa7PBl4PvTAibh7DYGELwCDsoQOQeUNusfLqHsMeooft93KEuquykq_B6F2lbyxE_wIk_7FP
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Designed+metal-organic+%CF%80-clusters+combining+the+aromaticity+of+the+metal+cluster+and+ligands+for+a+third-order+nonlinear+optical+response&rft.jtitle=Materials+horizons&rft.au=Wang%2C+Zirui&rft.au=Yan%2C+Yayu&rft.au=Chen%2C+Jiali&rft.au=Li%2C+Qiao-Hong&rft.date=2024-01-02&rft.issn=2051-6355&rft.eissn=2051-6355&rft.volume=11&rft.issue=1&rft.spage=297&rft_id=info:doi/10.1039%2Fd3mh01538f&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-6347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-6347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-6347&client=summon