Designed metal-organic π-clusters combining the aromaticity of the metal cluster and ligands for a third-order nonlinear optical response
The pivotal role of clusters and aromaticity in chemistry is undeniable, but there remains a gap in systematically understanding the aromaticity of metal-organic clusters. Herein, this article presents a novel metal-organic π-cluster, melding both metal-organic chemistry and aromaticity, to guide th...
Saved in:
Published in | Materials horizons Vol. 11; no. 1; pp. 297 - 32 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
02.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The pivotal role of clusters and aromaticity in chemistry is undeniable, but there remains a gap in systematically understanding the aromaticity of metal-organic clusters. Herein, this article presents a novel metal-organic π-cluster, melding both metal-organic chemistry and aromaticity, to guide the construction of structurally stable Os-organic π-clusters. An in-depth analysis of these clusters reveals their bonding attributes, π-electronic composition, and origins of aromaticity, thereby confirming their unique metal-organic π-cluster properties. Furthermore, the Os
5
cluster exhibits a promising third-order nonlinear optical (NLO) response, attributable to its narrow band gap and uniform electron/hole distribution, suggesting its potential as an optical switching material. This research introduces a fresh perspective on clusters, centered on delocalization, and broadens the domain of aromaticity studies. It also presents a novel method for designing efficient third-order NLO materials through consideration of the structure-activity relationship.
"Metal-organic π-clusters" were proposed, combining the π-electrons of both the cluster core and ligand for significant applications in third-order nonlinear optical materials. |
---|---|
AbstractList | The pivotal role of clusters and aromaticity in chemistry is undeniable, but there remains a gap in systematically understanding the aromaticity of metal-organic clusters. Herein, this article presents a novel metal-organic π-cluster, melding both metal-organic chemistry and aromaticity, to guide the construction of structurally stable Os-organic π-clusters. An in-depth analysis of these clusters reveals their bonding attributes, π-electronic composition, and origins of aromaticity, thereby confirming their unique metal-organic π-cluster properties. Furthermore, the Os
5
cluster exhibits a promising third-order nonlinear optical (NLO) response, attributable to its narrow band gap and uniform electron/hole distribution, suggesting its potential as an optical switching material. This research introduces a fresh perspective on clusters, centered on delocalization, and broadens the domain of aromaticity studies. It also presents a novel method for designing efficient third-order NLO materials through consideration of the structure-activity relationship.
"Metal-organic π-clusters" were proposed, combining the π-electrons of both the cluster core and ligand for significant applications in third-order nonlinear optical materials. The pivotal role of clusters and aromaticity in chemistry is undeniable, but there remains a gap in systematically understanding the aromaticity of metal-organic clusters. Herein, this article presents a novel metal-organic π-cluster, melding both metal-organic chemistry and aromaticity, to guide the construction of structurally stable Os-organic π-clusters. An in-depth analysis of these clusters reveals their bonding attributes, π-electronic composition, and origins of aromaticity, thereby confirming their unique metal-organic π-cluster properties. Furthermore, the Os cluster exhibits a promising third-order nonlinear optical (NLO) response, attributable to its narrow band gap and uniform electron/hole distribution, suggesting its potential as an optical switching material. This research introduces a fresh perspective on clusters, centered on delocalization, and broadens the domain of aromaticity studies. It also presents a novel method for designing efficient third-order NLO materials through consideration of the structure-activity relationship. The pivotal role of clusters and aromaticity in chemistry is undeniable, but there remains a gap in systematically understanding the aromaticity of metal–organic clusters. Herein, this article presents a novel metal–organic π-cluster, melding both metal–organic chemistry and aromaticity, to guide the construction of structurally stable Os-organic π-clusters. An in-depth analysis of these clusters reveals their bonding attributes, π-electronic composition, and origins of aromaticity, thereby confirming their unique metal–organic π-cluster properties. Furthermore, the Os 5 cluster exhibits a promising third-order nonlinear optical (NLO) response, attributable to its narrow band gap and uniform electron/hole distribution, suggesting its potential as an optical switching material. This research introduces a fresh perspective on clusters, centered on delocalization, and broadens the domain of aromaticity studies. It also presents a novel method for designing efficient third-order NLO materials through consideration of the structure–activity relationship. The pivotal role of clusters and aromaticity in chemistry is undeniable, but there remains a gap in systematically understanding the aromaticity of metal–organic clusters. Herein, this article presents a novel metal–organic π-cluster, melding both metal–organic chemistry and aromaticity, to guide the construction of structurally stable Os-organic π-clusters. An in-depth analysis of these clusters reveals their bonding attributes, π-electronic composition, and origins of aromaticity, thereby confirming their unique metal–organic π-cluster properties. Furthermore, the Os5 cluster exhibits a promising third-order nonlinear optical (NLO) response, attributable to its narrow band gap and uniform electron/hole distribution, suggesting its potential as an optical switching material. This research introduces a fresh perspective on clusters, centered on delocalization, and broadens the domain of aromaticity studies. It also presents a novel method for designing efficient third-order NLO materials through consideration of the structure–activity relationship. The pivotal role of clusters and aromaticity in chemistry is undeniable, but there remains a gap in systematically understanding the aromaticity of metal-organic clusters. Herein, this article presents a novel metal-organic π-cluster, melding both metal-organic chemistry and aromaticity, to guide the construction of structurally stable Os-organic π-clusters. An in-depth analysis of these clusters reveals their bonding attributes, π-electronic composition, and origins of aromaticity, thereby confirming their unique metal-organic π-cluster properties. Furthermore, the Os5 cluster exhibits a promising third-order nonlinear optical (NLO) response, attributable to its narrow band gap and uniform electron/hole distribution, suggesting its potential as an optical switching material. This research introduces a fresh perspective on clusters, centered on delocalization, and broadens the domain of aromaticity studies. It also presents a novel method for designing efficient third-order NLO materials through consideration of the structure-activity relationship.The pivotal role of clusters and aromaticity in chemistry is undeniable, but there remains a gap in systematically understanding the aromaticity of metal-organic clusters. Herein, this article presents a novel metal-organic π-cluster, melding both metal-organic chemistry and aromaticity, to guide the construction of structurally stable Os-organic π-clusters. An in-depth analysis of these clusters reveals their bonding attributes, π-electronic composition, and origins of aromaticity, thereby confirming their unique metal-organic π-cluster properties. Furthermore, the Os5 cluster exhibits a promising third-order nonlinear optical (NLO) response, attributable to its narrow band gap and uniform electron/hole distribution, suggesting its potential as an optical switching material. This research introduces a fresh perspective on clusters, centered on delocalization, and broadens the domain of aromaticity studies. It also presents a novel method for designing efficient third-order NLO materials through consideration of the structure-activity relationship. |
Author | Wang, Zirui Yan, Yayu Li, Qiao-Hong Zhang, Jian Chen, Jiali |
AuthorAffiliation | State Key Laboratory of Structural Chemistry Chinese Academy of Sciences Fuzhou University College of Chemistry Fujian College School of Physical Science and Technology ShanghaiTech University Fujian Institute of Research on the Structure of Matter University of Chinese Academy of Sciences |
AuthorAffiliation_xml | – sequence: 0 name: State Key Laboratory of Structural Chemistry – sequence: 0 name: College of Chemistry – sequence: 0 name: Chinese Academy of Sciences – sequence: 0 name: School of Physical Science and Technology – sequence: 0 name: ShanghaiTech University – sequence: 0 name: Fujian College – sequence: 0 name: Fujian Institute of Research on the Structure of Matter – sequence: 0 name: University of Chinese Academy of Sciences – sequence: 0 name: Fuzhou University |
Author_xml | – sequence: 1 givenname: Zirui surname: Wang fullname: Wang, Zirui – sequence: 2 givenname: Yayu surname: Yan fullname: Yan, Yayu – sequence: 3 givenname: Jiali surname: Chen fullname: Chen, Jiali – sequence: 4 givenname: Qiao-Hong surname: Li fullname: Li, Qiao-Hong – sequence: 5 givenname: Jian surname: Zhang fullname: Zhang, Jian |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37947130$$D View this record in MEDLINE/PubMed |
BookMark | eNptkkFv1DAQhS1URMvSC3eQJS4IKTDOxLFzRC2lSEVceo-8znjrKrEXOzn0xpk_x1_C7C6LVHGyPfO9p9EbP2cnIQZi7KWA9wKw-zDgdAdConZP2FkNUlQtSnlyvDfqlJ3nfA8AAhsJGp6xU1RdowTCGft5SdlvAg18otmMVUwbE7zlv35UdlzyTClzG6e1Dz5s-HxH3KQ4mdlbPz_w6HalnZQfeG7CwEdfbIbMXSzvwvg0FOuhdMv4ow9kEo_b4lJ0ifI2hkwv2FNnxkznh3PFbq8-3V5cVzffPn-5-HhTWUQ1V9gIabXDzpm2qVu1boiUkc7aVnTgtJFowEltgYwxthEdgdSgbNtqJMQVe7u33ab4faE895PPlsbRBIpL7mutu7ppsWS6Ym8eofdxSaEM19cdaFRCSlWo1wdqWU809NvkJ5Me-r8hF-DdHrAp5pzIHREB_Z8l9pf49Xq3xKsCwyO4JF3yjmFOxo__l7zaS1K2R-t__wJ_A6Vpqbk |
CitedBy_id | crossref_primary_10_1021_acs_jpclett_4c03492 crossref_primary_10_1016_j_surfin_2024_104349 crossref_primary_10_1002_smtd_202401782 crossref_primary_10_1016_j_inoche_2024_113502 crossref_primary_10_1039_D4QI00691G crossref_primary_10_26599_POM_2024_9140072 |
Cites_doi | 10.1038/s41467-021-21911-z 10.1002/chem.202104245 10.1002/chem.201801715 10.1021/acs.jpclett.1c03541 10.1021/jacs.2c00765 10.1021/ja960582d 10.1021/acs.jpclett.1c02104 10.1021/ct200308m 10.1016/S0039-6028(01)01564-3 10.1039/C9MH00724E 10.1021/jp0034426 10.1021/ja9930364 10.1039/C6TA07457J 10.1039/D1MH01019K 10.1016/j.cjsc.2023.100102 10.1002/anie.202013349 10.1021/cr0300901 10.1360/csb1983-28-1-25 10.1039/D3MH01130E 10.1016/j.carbon.2020.04.099 10.1039/D1MH01136G 10.1021/cr030088+ 10.1126/science.aan8083 10.1016/j.carbon.2020.05.023 10.1063/1.466123 10.1021/acs.inorgchem.0c03331 10.1002/anie.202101140 10.1038/ncomms4265 10.1021/ja00102a040 10.1016/S0065-2792(08)60027-8 10.1038/s41563-020-0710-z 10.1038/ncomms7331 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2024 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2024 |
DBID | AAYXX CITATION NPM 7SR 7TB 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
DOI | 10.1039/d3mh01538f |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2051-6355 |
EndPage | 32 |
ExternalDocumentID | 37947130 10_1039_D3MH01538F d3mh01538f |
Genre | Journal Article |
GroupedDBID | 0R~ 4.4 AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV ABASK ABDVN ABEMK ABPDG ABRYZ ABXOH ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AETIL AFLYV AFOGI AGEGJ AGRSR AGSTE AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K EBS ECGLT EE0 EF- GGIMP H13 HZ~ H~N J3I O-G O9- RAOCF RCNCU RPMJG RRC RSCEA RVUXY AAYXX AFRZK AKMSF CITATION NPM 7SR 7TB 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c337t-3415c8f39fa64267b4ee7a5fcc6190f8a53a0f58c0eaaac419e05807c6683e33 |
ISSN | 2051-6347 2051-6355 |
IngestDate | Fri Jul 11 08:53:43 EDT 2025 Mon Jun 30 07:06:39 EDT 2025 Wed Feb 19 01:58:38 EST 2025 Thu Apr 24 22:59:24 EDT 2025 Tue Jul 01 01:36:21 EDT 2025 Tue Dec 17 20:58:15 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c337t-3415c8f39fa64267b4ee7a5fcc6190f8a53a0f58c0eaaac419e05807c6683e33 |
Notes | https://doi.org/10.1039/d3mh01538f Electronic supplementary information (ESI) available: Computational details, supplementary figures and tables. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9286-3580 0000-0003-3094-0282 0000-0003-3373-9621 |
PMID | 37947130 |
PQID | 2908371557 |
PQPubID | 2047518 |
PageCount | 6 |
ParticipantIDs | rsc_primary_d3mh01538f proquest_miscellaneous_2889246315 crossref_primary_10_1039_D3MH01538F proquest_journals_2908371557 crossref_citationtrail_10_1039_D3MH01538F pubmed_primary_37947130 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-02 |
PublicationDateYYYYMMDD | 2024-01-02 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Materials horizons |
PublicationTitleAlternate | Mater Horiz |
PublicationYear | 2024 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Nishiuchi (D3MH01538F/cit19/1) 2021; 60 Liu (D3MH01538F/cit37/1) 2020; 165 Kepenekian (D3MH01538F/cit3/1) 2019; 6 Wu (D3MH01538F/cit5/1) 2023 Sidgwick (D3MH01538F/cit6/1) 1927 Herges (D3MH01538F/cit24/1) 2001; 105 Liu (D3MH01538F/cit2/1) 2021; 12 Jin (D3MH01538F/cit11/1) 2022; 41 Cui (D3MH01538F/cit22/1) 2015; 6 Wang (D3MH01538F/cit34/1) 2021; 12 Le Bahers (D3MH01538F/cit35/1) 2011; 7 Sasagane (D3MH01538F/cit30/1) 1993; 99 Liu (D3MH01538F/cit4/1) 2023; 42 Wade (D3MH01538F/cit7/1) 1976; 18 Lu (D3MH01538F/cit9/1) 1992; 8 Lu (D3MH01538F/cit8/1) 1989; 8 Breitung (D3MH01538F/cit18/1) 2000; 122 Liu (D3MH01538F/cit27/1) 2020; 165 Feng (D3MH01538F/cit33/1) 2021; 60 Renner (D3MH01538F/cit13/1) 2022; 9 Eberhardt (D3MH01538F/cit1/1) 2002; 500 Schleyer (D3MH01538F/cit28/1) 1996; 118 Zhu (D3MH01538F/cit23/1) 2014; 5 Meyers (D3MH01538F/cit31/1) 1994; 116 Tang (D3MH01538F/cit36/1) 2020; 19 Tang (D3MH01538F/cit10/1) 1983; 1 Kong (D3MH01538F/cit15/1) 2021; 60 Klod (D3MH01538F/cit26/1) 2001 Gao (D3MH01538F/cit17/1) 2022; 144 Nishiuchi (D3MH01538F/cit20/1) 2022; 28 Kippenberg Tobias (D3MH01538F/cit32/1) 2018; 361 Yoo (D3MH01538F/cit14/1) 2017; 5 Chen (D3MH01538F/cit29/1) 2005; 105 Wang (D3MH01538F/cit16/1) 2021; 12 Liu (D3MH01538F/cit21/1) 2018; 24 Geuenich (D3MH01538F/cit25/1) 2005; 105 Österholm (D3MH01538F/cit12/1) 2022; 9 |
References_xml | – issn: 1927 publication-title: The electronic theory of valency doi: Sidgwick – volume: 12 start-page: 1619 year: 2021 ident: D3MH01538F/cit2/1 publication-title: Nat. Commun. doi: 10.1038/s41467-021-21911-z – volume: 28 start-page: e202104245 year: 2022 ident: D3MH01538F/cit20/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.202104245 – volume: 24 start-page: 14583 year: 2018 ident: D3MH01538F/cit21/1 publication-title: Chem. Eur. J. doi: 10.1002/chem.201801715 – volume: 12 start-page: 11784 year: 2021 ident: D3MH01538F/cit16/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.1c03541 – volume: 144 start-page: 8153 year: 2022 ident: D3MH01538F/cit17/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c00765 – volume: 118 start-page: 6317 year: 1996 ident: D3MH01538F/cit28/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja960582d – volume-title: The electronic theory of valency year: 1927 ident: D3MH01538F/cit6/1 – volume: 12 start-page: 7537 year: 2021 ident: D3MH01538F/cit34/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.1c02104 – volume: 7 start-page: 2498 year: 2011 ident: D3MH01538F/cit35/1 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct200308m – volume: 500 start-page: 242 year: 2002 ident: D3MH01538F/cit1/1 publication-title: Surf. Sci. doi: 10.1016/S0039-6028(01)01564-3 – start-page: 1893 year: 2001 ident: D3MH01538F/cit26/1 publication-title: J. Chem. Soc., Perkin Trans. 2 – volume: 6 start-page: 1828 year: 2019 ident: D3MH01538F/cit3/1 publication-title: Mater. Horiz. doi: 10.1039/C9MH00724E – volume: 105 start-page: 3214 year: 2001 ident: D3MH01538F/cit24/1 publication-title: J. Phys. Chem. A doi: 10.1021/jp0034426 – volume: 122 start-page: 1154 year: 2000 ident: D3MH01538F/cit18/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9930364 – volume: 8 start-page: 233 year: 1989 ident: D3MH01538F/cit8/1 publication-title: Chin. J. Struct. Chem. – volume: 5 start-page: 748 year: 2017 ident: D3MH01538F/cit14/1 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA07457J – volume: 9 start-page: 350 year: 2022 ident: D3MH01538F/cit13/1 publication-title: Mater. Horiz. doi: 10.1039/D1MH01019K – volume: 42 start-page: 100102 year: 2023 ident: D3MH01538F/cit4/1 publication-title: Chin. J. Struct. Chem. doi: 10.1016/j.cjsc.2023.100102 – volume: 60 start-page: 5400 year: 2021 ident: D3MH01538F/cit19/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202013349 – volume: 105 start-page: 3758 year: 2005 ident: D3MH01538F/cit25/1 publication-title: Chem. Rev. doi: 10.1021/cr0300901 – volume: 8 start-page: 834 year: 1992 ident: D3MH01538F/cit9/1 publication-title: Acta Phys. -Chim. Sin. – volume: 1 start-page: 25 year: 1983 ident: D3MH01538F/cit10/1 publication-title: Chin. Sci. Bull. doi: 10.1360/csb1983-28-1-25 – year: 2023 ident: D3MH01538F/cit5/1 publication-title: Mater. Horiz. doi: 10.1039/D3MH01130E – volume: 165 start-page: 468 year: 2020 ident: D3MH01538F/cit27/1 publication-title: Carbon doi: 10.1016/j.carbon.2020.04.099 – volume: 9 start-page: 252 year: 2022 ident: D3MH01538F/cit12/1 publication-title: Mater. Horiz. doi: 10.1039/D1MH01136G – volume: 105 start-page: 3842 year: 2005 ident: D3MH01538F/cit29/1 publication-title: Chem. Rev. doi: 10.1021/cr030088+ – volume: 41 start-page: 218 year: 2022 ident: D3MH01538F/cit11/1 publication-title: Chin. J. Struct. Chem. – volume: 361 start-page: eaan8083 year: 2018 ident: D3MH01538F/cit32/1 publication-title: Science doi: 10.1126/science.aan8083 – volume: 165 start-page: 461 year: 2020 ident: D3MH01538F/cit37/1 publication-title: Carbon doi: 10.1016/j.carbon.2020.05.023 – volume: 99 start-page: 3738 year: 1993 ident: D3MH01538F/cit30/1 publication-title: J. Chem. Phys. doi: 10.1063/1.466123 – volume: 60 start-page: 1885 year: 2021 ident: D3MH01538F/cit33/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.0c03331 – volume: 60 start-page: 9395 year: 2021 ident: D3MH01538F/cit15/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202101140 – volume: 5 start-page: 3265 year: 2014 ident: D3MH01538F/cit23/1 publication-title: Nat. Commun. doi: 10.1038/ncomms4265 – volume: 116 start-page: 10703 year: 1994 ident: D3MH01538F/cit31/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00102a040 – volume: 18 start-page: 1 year: 1976 ident: D3MH01538F/cit7/1 publication-title: Adv. Inorg. Chem. Radiochem. doi: 10.1016/S0065-2792(08)60027-8 – volume: 19 start-page: 1332 year: 2020 ident: D3MH01538F/cit36/1 publication-title: Nat. Mater. doi: 10.1038/s41563-020-0710-z – volume: 6 start-page: 6331 year: 2015 ident: D3MH01538F/cit22/1 publication-title: Nat. Commun. doi: 10.1038/ncomms7331 |
SSID | ssj0001345080 |
Score | 2.3561854 |
Snippet | The pivotal role of clusters and aromaticity in chemistry is undeniable, but there remains a gap in systematically understanding the aromaticity of... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 297 |
SubjectTerms | Aromaticity Cluster analysis Hole distribution Metal clusters Nonlinear optics Nonlinear response Optical properties Optical switching Organic chemistry |
Title | Designed metal-organic π-clusters combining the aromaticity of the metal cluster and ligands for a third-order nonlinear optical response |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37947130 https://www.proquest.com/docview/2908371557 https://www.proquest.com/docview/2889246315 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9AIHVB6F0IIWQQ8oWrrx-nms2kQBJUVIrhS4WOvNmlpK48qND_TEmT_HX2L2YTtRcihcrGgyXq88n2dnZmdnEHofKZ3vq4waAARx51FIwtR1yZwL0H6hlFGqQgPTC3986X6eebNOp1o_XbJKP4q7nedK_keqQAO5qlOy_yDZZlAgwG-QL1xBwnC9l4zPdfoFmIzXEmxoYjo0if7x2eg4pEQsKlUF4Valjae6D4S2MnlZ6DKtNhdDkfTtfcuvtxMW-Q91BtjkWAJPXs6JrtLZX5raGrzsFzcmDl6aNNuNnKIpX5kX0L8qyvyujgnqyL3RLt_zssobnWPCsN_4z6rNN7DHRmCUhm-icw--5rwg48KuuTZk4bg6ZLEWxXRAExBl6ZhFaAetVs2DLQhaPWuSerf0P2WqfOqcXV9RpcqzdpWrd_YvviSjy8kkiYez-AHac8C7cLpo73QYf5q0wTnmguGq4nPNtOrStiw6aYffNGa2PBSwV8q6j4y2V-J99Ng6GvjUoOYJ6sjlU_RorfzkM_S7xg_ewA_-86vBDm6wgwEoeA07uMg0Sd-KLT8G0GCLHQzYwRyvYQc32MEWO7jGznMUj4bx2ZjY3hxEMBasCBg_nggzFmUcPFg_SF0pA-5lQoBHTrOQe4zTzAsFlZzDdz-IJPVCGgjfD5lk7AB14ZnyJcIeH-g6gJTPA9ehaRhGoFdS1ahDBpmgPfShfseJsHXrVfuURaLzJ1iUnLPpWMtj1EPvGt4bU61lJ9dRLarEfs23iROBMxLARIIeetv8DbpWbaDxpSwq4IG5Oa7PBl4PvTAibh7DYGELwCDsoQOQeUNusfLqHsMeooft93KEuquykq_B6F2lbyxE_wIk_7FP |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Designed+metal-organic+%CF%80-clusters+combining+the+aromaticity+of+the+metal+cluster+and+ligands+for+a+third-order+nonlinear+optical+response&rft.jtitle=Materials+horizons&rft.au=Wang%2C+Zirui&rft.au=Yan%2C+Yayu&rft.au=Chen%2C+Jiali&rft.au=Li%2C+Qiao-Hong&rft.date=2024-01-02&rft.issn=2051-6355&rft.eissn=2051-6355&rft.volume=11&rft.issue=1&rft.spage=297&rft_id=info:doi/10.1039%2Fd3mh01538f&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-6347&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-6347&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-6347&client=summon |