A Variance-reduction Approach to Detection of the Thyroid-nodule Boundary on Ultrasound Images

To perform computer-aided diagnosis of the thyroid nodules on ultrasound images, the location and boundary of nodules should be clearly defined. However, the identification of thyroid nodule boundary is a difficult issue due to the biological characteristics of the nodules, the physics and quality o...

Full description

Saved in:
Bibliographic Details
Published inUltrasonic imaging Vol. 41; no. 4; pp. 206 - 230
Main Authors Chiu, Ling-Ying, Chen, Argon
Format Journal Article
LanguageEnglish
Published Los Angeles, CA SAGE Publications 01.07.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To perform computer-aided diagnosis of the thyroid nodules on ultrasound images, the location and boundary of nodules should be clearly defined. However, the identification of thyroid nodule boundary is a difficult issue due to the biological characteristics of the nodules, the physics and quality of ultrasound imaging, and the subjective factors and operating conditions of the operator. In this study, we propose a novel and semiautomatic method for detecting the boundary of thyroid nodule based on the Variance-Reduction (V-R) statistics without image preprocessing. The region of interest (ROI) is first automatically generated according to the initial inputs of the nodule’s major and minor axes. The boundary candidate pixel points are then extracted by using the V-R statistics from the grayscale values of all pixel points in the ROI. Three filtering methods are further applied to eliminate the outlier pixel points to ensure that the remaining candidate pixel points are located on the nodule boundary. Finally, the remaining pixel points are smoothened and linked together to form the final boundary. The proposed method is validated with ultrasound images of 538 thyroid nodules, with manual delineation by experienced radiologist as gold standard. The effectiveness is evaluated and compared with previous publications using boundary error metrics and overlapping area metrics with the same data set. The results show that the normalized average mean boundary error is 1.02%, the true positive overlapping area ratio achieves 93.66% and false positive overlapping area ratio is limited to 7.68%. In conclusion, our proposed method is reliable and effective in detecting thyroid nodule boundary on ultrasound images.
AbstractList To perform computer-aided diagnosis of the thyroid nodules on ultrasound images, the location and boundary of nodules should be clearly defined. However, the identification of thyroid nodule boundary is a difficult issue due to the biological characteristics of the nodules, the physics and quality of ultrasound imaging, and the subjective factors and operating conditions of the operator. In this study, we propose a novel and semiautomatic method for detecting the boundary of thyroid nodule based on the Variance-Reduction (V-R) statistics without image preprocessing. The region of interest (ROI) is first automatically generated according to the initial inputs of the nodule’s major and minor axes. The boundary candidate pixel points are then extracted by using the V-R statistics from the grayscale values of all pixel points in the ROI. Three filtering methods are further applied to eliminate the outlier pixel points to ensure that the remaining candidate pixel points are located on the nodule boundary. Finally, the remaining pixel points are smoothened and linked together to form the final boundary. The proposed method is validated with ultrasound images of 538 thyroid nodules, with manual delineation by experienced radiologist as gold standard. The effectiveness is evaluated and compared with previous publications using boundary error metrics and overlapping area metrics with the same data set. The results show that the normalized average mean boundary error is 1.02%, the true positive overlapping area ratio achieves 93.66% and false positive overlapping area ratio is limited to 7.68%. In conclusion, our proposed method is reliable and effective in detecting thyroid nodule boundary on ultrasound images.
To perform computer-aided diagnosis of the thyroid nodules on ultrasound images, the location and boundary of nodules should be clearly defined. However, the identification of thyroid nodule boundary is a difficult issue due to the biological characteristics of the nodules, the physics and quality of ultrasound imaging, and the subjective factors and operating conditions of the operator. In this study, we propose a novel and semiautomatic method for detecting the boundary of thyroid nodule based on the Variance-Reduction (V-R) statistics without image preprocessing. The region of interest (ROI) is first automatically generated according to the initial inputs of the nodule's major and minor axes. The boundary candidate pixel points are then extracted by using the V-R statistics from the grayscale values of all pixel points in the ROI. Three filtering methods are further applied to eliminate the outlier pixel points to ensure that the remaining candidate pixel points are located on the nodule boundary. Finally, the remaining pixel points are smoothened and linked together to form the final boundary. The proposed method is validated with ultrasound images of 538 thyroid nodules, with manual delineation by experienced radiologist as gold standard. The effectiveness is evaluated and compared with previous publications using boundary error metrics and overlapping area metrics with the same data set. The results show that the normalized average mean boundary error is 1.02%, the true positive overlapping area ratio achieves 93.66% and false positive overlapping area ratio is limited to 7.68%. In conclusion, our proposed method is reliable and effective in detecting thyroid nodule boundary on ultrasound images.To perform computer-aided diagnosis of the thyroid nodules on ultrasound images, the location and boundary of nodules should be clearly defined. However, the identification of thyroid nodule boundary is a difficult issue due to the biological characteristics of the nodules, the physics and quality of ultrasound imaging, and the subjective factors and operating conditions of the operator. In this study, we propose a novel and semiautomatic method for detecting the boundary of thyroid nodule based on the Variance-Reduction (V-R) statistics without image preprocessing. The region of interest (ROI) is first automatically generated according to the initial inputs of the nodule's major and minor axes. The boundary candidate pixel points are then extracted by using the V-R statistics from the grayscale values of all pixel points in the ROI. Three filtering methods are further applied to eliminate the outlier pixel points to ensure that the remaining candidate pixel points are located on the nodule boundary. Finally, the remaining pixel points are smoothened and linked together to form the final boundary. The proposed method is validated with ultrasound images of 538 thyroid nodules, with manual delineation by experienced radiologist as gold standard. The effectiveness is evaluated and compared with previous publications using boundary error metrics and overlapping area metrics with the same data set. The results show that the normalized average mean boundary error is 1.02%, the true positive overlapping area ratio achieves 93.66% and false positive overlapping area ratio is limited to 7.68%. In conclusion, our proposed method is reliable and effective in detecting thyroid nodule boundary on ultrasound images.
Author Chiu, Ling-Ying
Chen, Argon
Author_xml – sequence: 1
  givenname: Ling-Ying
  orcidid: 0000-0001-7887-219X
  surname: Chiu
  fullname: Chiu, Ling-Ying
– sequence: 2
  givenname: Argon
  orcidid: 0000-0002-7951-9950
  surname: Chen
  fullname: Chen, Argon
  email: achen@ntu.edu.tw
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30990130$$D View this record in MEDLINE/PubMed
BookMark eNp9kD1PwzAQhi0EgvKxMyGPLIG7OHXqsZSvSkgsLSOR41xoUBIXOxn673EUYECC6aT3nvd0eo7ZfmtbYuwc4QoxTa8BJaYikahmQslktscmCEpGoBD22WRYR8P-iB17_w6AKJP0kB0JUApQwIS9zvmLdpVuDUWOit50lW35fLt1VpsN7yy_pY7G1Ja82xBfbXbOVkXU2qKvid_Yvi202_FArOvOaT8EfNnoN_Kn7KDUtaezr3nC1vd3q8Vj9PT8sFzMnyIjRNpFQhikJDESi5IElUluEkKhVCzKPJapELLMAQwhodZKItA0BjkFU8BMx0acsMvxbvj7oyffZU3lDdW1bsn2PotjhHiayFgG9OIL7fOGimzrqia8n307CQCMgHHWe0flD4KQDdqz39pDRf6qmKrTg7Tgo6r_K0Zj0Qdb2bvtXRs0_c1_AtX9kYQ
CitedBy_id crossref_primary_10_1016_j_bspc_2023_104856
crossref_primary_10_1038_s41598_023_28932_2
crossref_primary_10_3788_LOP231464
crossref_primary_10_3233_CH_242099
Cites_doi 10.1089/ct.2017;29.107-109
10.1093/jnci/95.7.511
10.1038/srep35632
10.1016/j.asoc.2015.11.035
10.1109/TITB.2006.890018
10.1109/TBME.2010.2041003
10.1001/jama.2017.2719
10.1001/jamaoto.2014.1
10.1007/BF00133570
10.1007/s10278-017-9997-y
10.1109/TITB.2008.2007192
10.1016/j.ultrasmedbio.2011.10.022
10.1109/34.87344
10.1016/j.ultrasmedbio.2014.06.009
10.1007/s10489-007-0066-y
10.1109/TCYB.2014.2315293
10.1109/TMI.2002.808364
10.1109/TIP.2010.2069690
10.1016/j.cmpb.2006.09.006
10.1016/j.ultrasmedbio.2016.06.022
10.1530/ERC-16-0432
ContentType Journal Article
Copyright The Author(s) 2019
Copyright_xml – notice: The Author(s) 2019
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1177/0161734619839648
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1096-0910
EndPage 230
ExternalDocumentID 30990130
10_1177_0161734619839648
10.1177_0161734619839648
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: national research council of science and technology
  funderid: https://doi.org/10.13039/501100008783
– fundername: AmCad BioMed industrial Grant
GroupedDBID ---
--K
-TM
-TN
.2G
.2I
.2J
.2N
.2O
.GJ
01A
0R~
123
1B1
1RT
1~5
29Q
4.4
4G.
53G
54M
5RE
5VS
6PF
7-5
AABMB
AACKU
AACMV
AACTG
AADUE
AAEDT
AAEWN
AAGGD
AAGLT
AAGMC
AAJIQ
AAJOX
AAKGS
AALRI
AANSI
AAPEO
AAQDB
AAQFI
AAQXH
AAQXI
AAQXK
AARDL
AARIX
AATAA
AATBZ
AAUAS
AAWTL
AAXUO
AAYTG
AAYWO
ABAWP
ABCCA
ABCJG
ABDPE
ABDWY
ABEIX
ABFWQ
ABHKI
ABIDT
ABJNI
ABJZC
ABKRH
ABLUO
ABMAC
ABPGX
ABPNF
ABQKF
ABQXT
ABRHV
ABUJY
ABVFX
ABWVN
ABYTW
ACARO
ACDSZ
ACDXX
ACFEJ
ACFMA
ACGBL
ACGFS
ACGZU
ACJER
ACJTF
ACLFY
ACLHI
ACLZU
ACOFE
ACOXC
ACROE
ACRPL
ACSIQ
ACUAV
ACUIR
ACXKE
ACXMB
ADBBV
ADDLC
ADEIA
ADMUD
ADNMO
ADNON
ADRRZ
ADSTG
ADTBJ
ADUKL
ADVBO
ADYCS
ADZZY
AECGH
AECVZ
AEDFJ
AEDTQ
AEKYL
AENEX
AEPTA
AEQLS
AERKM
AESZF
AEUHG
AEWDL
AEWHI
AEXNY
AFEET
AFKBI
AFKRG
AFMOU
AFQAA
AFUIA
AFWMB
AGHKR
AGKLV
AGNHF
AGPXR
AGQPQ
AGWFA
AHDMH
AHHFK
AHHHB
AIIQI
AITUG
AIZZC
AJEFB
AJMMQ
AJUZI
AJXAJ
AKRWK
ALKWR
ALMA_UNASSIGNED_HOLDINGS
AMCVQ
ANDLU
ARTOV
ASPBG
AUTPY
AUVAJ
AVWKF
AYAKG
AZFZN
B8M
BBRGL
BDDNI
BKIIM
BKSCU
BPACV
BSEHC
BWJAD
C45
CAG
CBRKF
CDWPY
CFDXU
COF
CORYS
CQQTX
CS3
DC-
DC.
DD-
DD0
DE-
DF0
DH.
DM4
DO-
DOPDO
DU5
DV7
D~Y
EBS
EJD
EMOBN
F5P
FDB
FEDTE
FGOYB
FHBDP
FIRID
G-2
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
H13
HEI
HME
HMK
HMO
HVGLF
HZ~
IHE
J8X
K.F
K.J
LG5
LZ3
M29
O-L
O9-
OVD
P.B
P2P
Q1R
R2-
RIG
ROL
RPZ
S01
SAE
SASJQ
SAUOL
SCNPE
SFC
SHG
SHN
SPQ
SPV
SSZ
TEORI
TN5
UHS
WUQ
XPP
ZONMY
ZPPRI
ZRKOI
ZSSAH
ZY4
AAYXX
AJGYC
CITATION
AACTN
ABTAH
ALTZF
NPM
7X8
AJVBE
ID FETCH-LOGICAL-c337t-33c1e44c61dfe3ef4bc4e139923fb267336fb00ce1e1aa9610e520650cd08a2c3
ISSN 0161-7346
1096-0910
IngestDate Fri Jul 11 05:34:30 EDT 2025
Thu Apr 03 07:02:07 EDT 2025
Tue Jul 01 05:29:15 EDT 2025
Thu Apr 24 22:52:38 EDT 2025
Tue Jun 17 22:48:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords nodule boundary
automatic detection
thyroid nodules
ultrasound images
Variance-Reduction statistic
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c337t-33c1e44c61dfe3ef4bc4e139923fb267336fb00ce1e1aa9610e520650cd08a2c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7951-9950
0000-0001-7887-219X
PMID 30990130
PQID 2210254626
PQPubID 23479
PageCount 25
ParticipantIDs proquest_miscellaneous_2210254626
pubmed_primary_30990130
crossref_primary_10_1177_0161734619839648
crossref_citationtrail_10_1177_0161734619839648
sage_journals_10_1177_0161734619839648
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190700
2019-07-00
20190701
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 7
  year: 2019
  text: 20190700
PublicationDecade 2010
PublicationPlace Los Angeles, CA
PublicationPlace_xml – name: Los Angeles, CA
– name: England
PublicationTitle Ultrasonic imaging
PublicationTitleAlternate Ultrason Imaging
PublicationYear 2019
Publisher SAGE Publications
Publisher_xml – name: SAGE Publications
References Li, Xu, Gui, Fox 2010; 19
Baker 2003; 95
Davies, Welch 2014; 140
Shan, Cheng, Wang 2012; 38
Koundal, Gupta, Singh 2016; 40
Kass, Witkin, Terzopoulos 1988; 1
Iakovidis, Savelonas, Karkanis, Maroulis 2007; 27
Wu, Chen, Chen, Ho, Tai, Wang 2016; 6
Nabhan, Ringel 2017; 24
Maroulis, Savelonas, Iakovidis, Karkanis, Dimitropoulos 2007; 11
Savelonas, Iakovidis, Legakis, Maroulis 2009; 13
Fish 2017; 29
Chang, Lei, Tseng, Shih 2010; 57
Tsantis, Dimitropoulos, Cavouras, Nikiforidis 2006; 84
Chi, Walia, Babyn, Wang, Groot, Eramian 2017; 30
Chen, Chen, Wu, Ho, Tai, Kuo 2014; 40
Zhang, Ma, Yuan 2008; 6
Madabhushi, Metaxas 2003; 22
Vincent, Soille 1991; 13
Mylona, Savelonas, Maroulis 2014; 44
Lim, Devesa, Sosa, Check, Kitahara 2017; 317
Cosgrove, Barr, Bojunga, Cantisani, Chammas, Dighe 2017; 43
bibr3-0161734619839648
bibr20-0161734619839648
bibr2-0161734619839648
bibr17-0161734619839648
bibr8-0161734619839648
bibr11-0161734619839648
bibr21-0161734619839648
Chiu L-Y (bibr13-0161734619839648)
Aby PK (bibr24-0161734619839648)
bibr16-0161734619839648
bibr7-0161734619839648
bibr12-0161734619839648
bibr14-0161734619839648
bibr22-0161734619839648
Zhang Y (bibr25-0161734619839648) 2008; 6
bibr19-0161734619839648
Hong L (bibr26-0161734619839648); 3
bibr6-0161734619839648
bibr4-0161734619839648
bibr9-0161734619839648
bibr15-0161734619839648
bibr1-0161734619839648
bibr18-0161734619839648
bibr23-0161734619839648
bibr5-0161734619839648
bibr10-0161734619839648
References_xml – volume: 29
  start-page: 107
  issue: 3
  year: 2017
  article-title: Incidental thyroid nodules detected on CT, MRI, or PET-CT correlate well with subsequent ultrasound evaluation
  publication-title: Clin Thyroidol
– volume: 1
  start-page: 321
  issue: 4
  year: 1988
  article-title: Snakes: active contour models
  publication-title: Int J Comput Vision
– volume: 95
  start-page: 511
  issue: 7
  year: 2003
  article-title: The central role of receiver operating characteristic (ROC) curves in evaluating tests for the early detection of cancer
  publication-title: J Natl Cancer Inst
– volume: 27
  start-page: 193
  issue: 3
  year: 2007
  end-page: 203
  article-title: A genetically optimized level set approach to segmentation of thyroid ultrasound images
  publication-title: Appl Intell
– volume: 6
  start-page: 35632
  year: 2016
  article-title: Quantitative analysis of echogenicity for patients with thyroid nodules
  publication-title: Sci Rep
– volume: 84
  start-page: 86
  issue: 2-3
  year: 2006
  end-page: 98
  article-title: A hybrid multi-scale model for thyroid nodule boundary detection on ultrasound images
  publication-title: Comput Methods Programs Biomed
– volume: 44
  start-page: 2757
  issue: 12
  year: 2014
  article-title: Automated adjustment of region-based active contour parameters using local image geometry
  publication-title: IEEE Trans Cybern
– volume: 13
  start-page: 519
  issue: 4
  year: 2009
  article-title: Active contours guided by echogenicity and texture for delineation of thyroid nodules in ultrasound images
  publication-title: IEEE Trans Inf Technol Biomed
– volume: 317
  start-page: 1338
  issue: 13
  year: 2017
  article-title: Trends in thyroid cancer incidence and mortality in the United States,1974-2013
  publication-title: JAMA
– volume: 19
  start-page: 3243
  issue: 12
  year: 2010
  article-title: Distance regularized level set evolution and its application to image segmentation
  publication-title: IEEE Trans Image Process
– volume: 6
  start-page: 012
  year: 2008
  article-title: The method and implementation of mixed programming with Visual C# and Matlab
  publication-title: J Northwest Normal Univ
– volume: 140
  start-page: 317
  issue: 4
  year: 2014
  article-title: Current thyroid cancer trends in the United States
  publication-title: JAMA Otolaryngol Head Neck Surg
– volume: 11
  start-page: 537
  issue: 5
  year: 2007
  article-title: Variable background active contour model for computer-aided delineation of nodules in thyroid ultrasound images
  publication-title: IEEE Trans Inf Technol Biomed
– volume: 30
  start-page: 477
  issue: 4
  year: 2017
  article-title: Thyroid nodule classification in ultrasound images by fine-tuning deep convolutional neural network
  publication-title: J Digit Imaging
– volume: 40
  start-page: 86
  year: 2016
  end-page: 97
  article-title: Automated delineation of thyroid nodules in ultrasound images using spatial neutrosophic clustering and level set
  publication-title: Applied Soft Computing
– volume: 24
  start-page: R13
  issue: 2
  year: 2017
  article-title: Thyroid nodules and cancer management guidelines: comparisons and controversies
  publication-title: Endocr Relat Cancer
– volume: 38
  start-page: 262
  issue: 2
  year: 2012
  article-title: Completely automated segmentation approach for breast ultrasound images using multiple-domain features
  publication-title: Ultrasound Med Biol
– volume: 22
  start-page: 155
  issue: 2
  year: 2003
  article-title: Combining low-, high-level and empirical domain knowledge for automated segmentation of ultrasonic breast lesions
  publication-title: IEEE Trans Med Imaging
– volume: 40
  start-page: 2581
  issue: 11
  year: 2014
  article-title: Computerized quantification of ultrasonic heterogeneity in thyroid nodules
  publication-title: Ultrasound Med Biol
– volume: 13
  start-page: 583
  issue: 6
  year: 1991
  article-title: Watersheds in digital spaces: an efficient algorithm based on immersion simulations
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 43
  start-page: 4
  issue: 1
  year: 2017
  end-page: 26
  article-title: WFUMB guidelines and recommendations on the clinical use of ultrasound elastography: Part 4. Thyroid
  publication-title: Ultrasound Med Biol
– volume: 57
  start-page: 1348
  issue: 6
  year: 2010
  article-title: Thyroid segmentation and volume estimation in ultrasound images
  publication-title: IEEE Trans Biomed Eng
– ident: bibr8-0161734619839648
  doi: 10.1089/ct.2017;29.107-109
– start-page: 250
  volume-title: Proceedings of 2011 International Conference on Signal Processing, Communication, Computing and Network Technologies
  ident: bibr24-0161734619839648
– ident: bibr3-0161734619839648
  doi: 10.1093/jnci/95.7.511
– ident: bibr23-0161734619839648
– volume: 6
  start-page: 012
  year: 2008
  ident: bibr25-0161734619839648
  publication-title: J Northwest Normal Univ
– ident: bibr6-0161734619839648
  doi: 10.1038/srep35632
– ident: bibr14-0161734619839648
  doi: 10.1016/j.asoc.2015.11.035
– ident: bibr11-0161734619839648
  doi: 10.1109/TITB.2006.890018
– ident: bibr22-0161734619839648
  doi: 10.1109/TBME.2010.2041003
– ident: bibr1-0161734619839648
  doi: 10.1001/jama.2017.2719
– ident: bibr2-0161734619839648
  doi: 10.1001/jamaoto.2014.1
– volume: 3
  start-page: 185
  volume-title: 2010 the 2nd International Conference on Computer and Automation Engineering
  ident: bibr26-0161734619839648
– ident: bibr19-0161734619839648
  doi: 10.1007/BF00133570
– ident: bibr7-0161734619839648
  doi: 10.1007/s10278-017-9997-y
– ident: bibr12-0161734619839648
  doi: 10.1109/TITB.2008.2007192
– ident: bibr18-0161734619839648
  doi: 10.1016/j.ultrasmedbio.2011.10.022
– ident: bibr20-0161734619839648
  doi: 10.1109/34.87344
– ident: bibr5-0161734619839648
  doi: 10.1016/j.ultrasmedbio.2014.06.009
– ident: bibr10-0161734619839648
  doi: 10.1007/s10489-007-0066-y
– ident: bibr16-0161734619839648
  doi: 10.1109/TCYB.2014.2315293
– ident: bibr17-0161734619839648
  doi: 10.1109/TMI.2002.808364
– ident: bibr21-0161734619839648
  doi: 10.1109/TIP.2010.2069690
– ident: bibr9-0161734619839648
  doi: 10.1016/j.cmpb.2006.09.006
– start-page: 681
  volume-title: 2014 IEEE International Conference on Automation Science and Engineering
  ident: bibr13-0161734619839648
– ident: bibr15-0161734619839648
  doi: 10.1016/j.ultrasmedbio.2016.06.022
– ident: bibr4-0161734619839648
  doi: 10.1530/ERC-16-0432
SSID ssj0011647
Score 2.1995535
Snippet To perform computer-aided diagnosis of the thyroid nodules on ultrasound images, the location and boundary of nodules should be clearly defined. However, the...
SourceID proquest
pubmed
crossref
sage
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 206
Title A Variance-reduction Approach to Detection of the Thyroid-nodule Boundary on Ultrasound Images
URI https://journals.sagepub.com/doi/full/10.1177/0161734619839648
https://www.ncbi.nlm.nih.gov/pubmed/30990130
https://www.proquest.com/docview/2210254626
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgE4iXCcat4yIjISRUmSWxkzSP4abBNB5QC-OFyLGdUalLpiR9gF_P8SVJLwMNXqLKcW0138npd65G6HmUJxRYtkdixWPCGI8I99WEFHIieJzkgTB13CefoqMZ-3gang4lBKa6pM1fiV-X1pX8D6owBrjqKtl_QLZfFAbgM-ALV0AYrlfCOB1_AVNX40Zq3YLVYJleDFVSb1WrRMcJNcWc_vhZV3NJykouF2r82hyqpKPs5Xi2aGve6IHxh3PQMs0qb3U39Wk583NzsNGQFzBfOuP-jHxbu2E1WlqfOeidc8HUM606F2xU63L_IVBFElPnP1RWe3o6ozlxeapOvdq-Vk6M2Kqu9KKVv93Ahme2NbqJKevd9GZ-AoQusr05N_pku8nZ5tTraDcAEwJ04G56_PnrcR9j0p3UbOd3-0OGIPbh5hrrpGXLElnLAjTEZHob7TmLAqdWPO6ga6rcRzdPXM7EPrphknxFcxd9T_G2vOBOXnBb4V5ecFVgkBe8Li-4kxcMMwZ5wVZe7qHZ-3fTN0fEna9BBKVxSygVvmJMRL4sFFUFywVTvu5UTIs8iHSjzAK0slC-8jlPgGirMNCUXkhvwgNB76OdsirVQ4Rl6McqDhOZhxwW1KQ3lCKPRSQZUywcocPuAWbCNZ_XZ6AsMr_rN7_xyEfoZf-NC9t45S9zn3WYZKAddciLl6paNlmgPRohA6t9hB5YsPrVqIkJU2-EXmj0MvdiN3_c5uCqEx-hW8PL9BjttPVSPQHu2uZPnRD-BhHsjx0
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Variance-reduction+Approach+to+Detection+of+the+Thyroid-nodule+Boundary+on+Ultrasound+Images&rft.jtitle=Ultrasonic+imaging&rft.au=Chiu%2C+Ling-Ying&rft.au=Chen%2C+Argon&rft.date=2019-07-01&rft.pub=SAGE+Publications&rft.issn=0161-7346&rft.eissn=1096-0910&rft.volume=41&rft.issue=4&rft.spage=206&rft.epage=230&rft_id=info:doi/10.1177%2F0161734619839648&rft.externalDocID=10.1177_0161734619839648
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0161-7346&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0161-7346&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0161-7346&client=summon