Online Cyber-Attack Detection in the Industrial Control System: A Deep Reinforcement Learning Approach
In the open network environment, industrial control systems face huge security risks and are often subject to network attacks. The existing abnormal detection methods of industrial control networks have the problem of a low intelligence degree of adaptive detection and recognition. To overcome this...
Saved in:
Published in | Mathematical problems in engineering Vol. 2022; pp. 1 - 9 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Hindawi
06.07.2022
John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the open network environment, industrial control systems face huge security risks and are often subject to network attacks. The existing abnormal detection methods of industrial control networks have the problem of a low intelligence degree of adaptive detection and recognition. To overcome this problem, this article makes full use of the advantages of deep reinforcement learning in decision-making and builds a learning system with continuous learning ability. Specifically, industrial control network and deep reinforcement learning characteristics are applied to design a unique reward and learning mechanism. Moreover, an industrial control anomaly detection system based on deep reinforcement learning is constructed. Finally, we verify the algorithm on the gas pipeline industrial control dataset of Mississippi State University. The experimental results show that the convergence rate of this model is significantly higher than that of traditional deep learning methods. More importantly, this model can get a higher F1 score. |
---|---|
AbstractList | In the open network environment, industrial control systems face huge security risks and are often subject to network attacks. The existing abnormal detection methods of industrial control networks have the problem of a low intelligence degree of adaptive detection and recognition. To overcome this problem, this article makes full use of the advantages of deep reinforcement learning in decision-making and builds a learning system with continuous learning ability. Specifically, industrial control network and deep reinforcement learning characteristics are applied to design a unique reward and learning mechanism. Moreover, an industrial control anomaly detection system based on deep reinforcement learning is constructed. Finally, we verify the algorithm on the gas pipeline industrial control dataset of Mississippi State University. The experimental results show that the convergence rate of this model is significantly higher than that of traditional deep learning methods. More importantly, this model can get a higher F1 score. |
Author | Wang, Chunyang Liu, Zhenze Wang, Weiping |
Author_xml | – sequence: 1 givenname: Zhenze orcidid: 0000-0002-0708-6084 surname: Liu fullname: Liu, Zhenze organization: College of Communication EngineeringJilin UniversityChangchunJilin 130025Chinajlu.edu.cn – sequence: 2 givenname: Chunyang orcidid: 0000-0002-9565-1257 surname: Wang fullname: Wang, Chunyang organization: School of Computer and Communication EngineeringUniversity of Science and Technology BeijingBeijing 100083Chinaustb.edu.cn – sequence: 3 givenname: Weiping orcidid: 0000-0002-6796-7596 surname: Wang fullname: Wang, Weiping organization: School of Computer and Communication EngineeringUniversity of Science and Technology BeijingBeijing 100083Chinaustb.edu.cn |
BookMark | eNp9kE1Lw0AQhhepYFu9-QMWPGrsziabbLyF-gmFgh_gLWw3s3ZruombLdJ_b0p7EvQ0c3jeeZlnRAaucUjIObBrACEmnHE-4VwymcERGYJI40hAkg36nfEkAh6_n5BR160Y4yBADomZu9o6pNPtAn1UhKD0J73FgDrYxlHraFgifXLVpgveqppOGxd8U9OXbRdwfUOLnsaWPqN1pvEa1-gCnaHyzroPWrStb5RenpJjo-oOzw5zTN7u716nj9Fs_vA0LWaRjuMsRHEsciOAK5BKSMwZZjoDSLPECLaohJCqQp6zKpE85Ys4yTBPUaWMM23AsHhMLvZ3-9qvDXahXDUb7_rKkqc5kzxPAXqK7yntm67zaEptg9o9HLyydQms3Pksdz7Lg88-dPUr1Hq7Vn77F365x5fWVerb_k__AJSog4U |
CitedBy_id | crossref_primary_10_1016_j_aej_2023_10_061 |
Cites_doi | 10.1007/978-3-030-12330-7_1 10.3389/fenrg.2021.666130 10.1016/j.cose.2019.03.009 10.1145/3318464.3389779 10.1109/cagre.2019.8713289 10.23919/softcom.2019.8903886 10.1109/jiot.2019.2944632 10.1109/access.2020.2965259 10.15837/ijccc.2019.3.3548 10.1109/tpds.2021.3135412 10.1109/access.2020.2982057 10.1007/978-1-4842-5914-6_14 10.1109/rweek.2016.7573322 10.1109/comst.2021.3094360 10.1109/tii.2019.2891261 10.1016/j.cose.2019.101677 10.1109/dsn.2017.34 10.1109/eurospw.2017.62 10.1016/j.ijcip.2018.10.008 10.1145/3357613.3357637 10.1007/s10845-017-1315-5 10.1109/tste.2021.3105529 10.1109/access.2020.2992249 10.23919/softcom.2019.8903672 10.1016/j.cose.2020.101935 10.1109/jiot.2019.2919635 10.1109/dcoss.2019.00059 |
ContentType | Journal Article |
Copyright | Copyright © 2022 Zhenze Liu et al. Copyright © 2022 Zhenze Liu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
Copyright_xml | – notice: Copyright © 2022 Zhenze Liu et al. – notice: Copyright © 2022 Zhenze Liu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
DBID | RHU RHW RHX AAYXX CITATION 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU CWDGH DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.1155/2022/2280871 |
DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College Middle East & Africa Database ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Middle East & Africa Database ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1563-5147 |
Editor | Li, Yang |
Editor_xml | – sequence: 1 givenname: Yang surname: Li fullname: Li, Yang |
EndPage | 9 |
ExternalDocumentID | 10_1155_2022_2280871 |
GeographicLocations | India |
GeographicLocations_xml | – name: India |
GrantInformation_xml | – fundername: Peking University Third Hospital grantid: BYSYZHKC2021107 – fundername: Science and Technology Department of Jilin Province grantid: 20200401144GX – fundername: Foshan Municipal Government grantid: BK21BF001 – fundername: National Natural Science Foundation of China grantid: 81961138010 – fundername: Fundamental Research Funds for the Central Universities grantid: QNXM20210036 – fundername: Technological Innovation Foundation of Shunde Graduate School, USTB grantid: BK19BF006 |
GroupedDBID | 29M 2WC 3V. 4.4 5GY 5VS 8FE 8FG 8R4 8R5 AAFWJ AAJEY ABDBF ABJCF ABUWG ACIPV ACIWK ADBBV AENEX AFKRA AINHJ ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BPHCQ CCPQU CS3 CWDGH E3Z EBS ESX GROUPED_DOAJ HCIFZ I-F IAO IEA IOF ISR ITC K6V K7- KQ8 L6V M7S MK~ M~E OK1 P2P P62 PIMPY PQQKQ PROAC PTHSS Q2X REM RHU RHW RHX RNS TR2 TUS XSB YQT ~8M 0R~ 24P AAYXX ACCMX CITATION H13 OVT PHGZM PHGZT 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY AZQEC DWQXO FR3 GNUQQ JQ2 KR7 PKEHL PQEST PQGLB PQUKI PRINS |
ID | FETCH-LOGICAL-c337t-3359f512a18a58e90e7c711674f50bd558ade290d48262b347e96ea6020cf1f03 |
IEDL.DBID | BENPR |
ISSN | 1024-123X |
IngestDate | Fri Jul 25 10:13:24 EDT 2025 Thu Apr 24 23:16:03 EDT 2025 Tue Jul 01 04:24:29 EDT 2025 Sun Jun 02 18:51:58 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c337t-3359f512a18a58e90e7c711674f50bd558ade290d48262b347e96ea6020cf1f03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0708-6084 0000-0002-6796-7596 0000-0002-9565-1257 |
OpenAccessLink | https://www.proquest.com/docview/2690829611?pq-origsite=%requestingapplication% |
PQID | 2690829611 |
PQPubID | 237775 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2690829611 crossref_citationtrail_10_1155_2022_2280871 crossref_primary_10_1155_2022_2280871 hindawi_primary_10_1155_2022_2280871 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-06 |
PublicationDateYYYYMMDD | 2022-07-06 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-06 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Mathematical problems in engineering |
PublicationYear | 2022 |
Publisher | Hindawi John Wiley & Sons, Inc |
Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc |
References | 22 23 25 26 27 28 J. F. Hernandez-Garcia (24) 2019 29 R. Setola (5) 2019; 77 M. Barrère (8) 2019 30 10 11 12 13 14 15 16 17 18 19 1 2 3 4 6 7 9 20 21 |
References_xml | – ident: 16 doi: 10.1007/978-3-030-12330-7_1 – ident: 11 doi: 10.3389/fenrg.2021.666130 – ident: 15 doi: 10.1016/j.cose.2019.03.009 – ident: 23 doi: 10.1145/3318464.3389779 – ident: 4 doi: 10.1109/cagre.2019.8713289 – ident: 30 doi: 10.23919/softcom.2019.8903886 – ident: 21 doi: 10.1109/jiot.2019.2944632 – ident: 2 doi: 10.1109/access.2020.2965259 – ident: 17 doi: 10.15837/ijccc.2019.3.3548 – ident: 14 doi: 10.1109/tpds.2021.3135412 – volume: 77 start-page: 907 year: 2019 ident: 5 article-title: An overview of cyber attack to industrial control system publication-title: Chemical Engineering Transactions – ident: 12 doi: 10.1109/access.2020.2982057 – ident: 19 doi: 10.1007/978-1-4842-5914-6_14 – ident: 27 doi: 10.1109/rweek.2016.7573322 – ident: 7 doi: 10.1109/comst.2021.3094360 – ident: 3 doi: 10.1109/tii.2019.2891261 – ident: 20 doi: 10.1016/j.cose.2019.101677 – ident: 28 doi: 10.1109/dsn.2017.34 – year: 2019 ident: 24 article-title: Understanding multi-step deep reinforcement learning: a systematic study of the dqn target – ident: 18 doi: 10.1109/eurospw.2017.62 – ident: 6 doi: 10.1016/j.ijcip.2018.10.008 – ident: 1 doi: 10.1145/3357613.3357637 – ident: 22 doi: 10.1007/s10845-017-1315-5 – ident: 25 doi: 10.1109/tste.2021.3105529 – ident: 26 doi: 10.1109/access.2020.2992249 – year: 2019 ident: 8 article-title: Identifying Security-Critical Cyber-Physical Components in Industrial Control Systems – ident: 29 doi: 10.23919/softcom.2019.8903672 – ident: 9 doi: 10.1016/j.cose.2020.101935 – ident: 10 doi: 10.1109/jiot.2019.2919635 – ident: 13 doi: 10.1109/dcoss.2019.00059 |
SSID | ssj0021518 |
Score | 2.3153906 |
Snippet | In the open network environment, industrial control systems face huge security risks and are often subject to network attacks. The existing abnormal detection... |
SourceID | proquest crossref hindawi |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Adaptive control Algorithms Anomalies Cybersecurity Datasets Decision making Deep learning Design Gas pipelines Industrial electronics Machine learning Natural gas Neural networks Nuclear power plants |
SummonAdditionalLinks | – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8QwEA26IHjxW1xdJYf1JMW2-WjirazKIuhBXOitpOlEF6UuuxXx35u02RVdRI-FaQ8zSee9ZOYNQn0pJDex6-gxGixBkTpQFjYHLJFMu4ROS3fecXvHhyN6k7HMiyTNlq_wbbZz9Dw-d6otwvWKr9oF5kj5MFvwKpu02o632EnwkWxe3_7j3W-ZZ-3JUd738dIvuMkr11towwNCnLYR3EYrUO2gTQ8Osd96s11kWlFQPPgoYBqkda30M76EuimlqvC4whbK4a9JHHjQFqHjVpP8AqfWGib4HhqtVN0cC2Ivr_qIU68tvodG11cPg2HghyQEmpCkDghh0tisrSKhmAAZQqITd7lCDQuLkjGhSohlWFJLJOKC0AQkB8UtTNQmMiHZR53qtYIDhAkxYPEKFKECKkiklODEIjimiFGKxl10Nndgrr2CuBtk8ZI3TIKx3Lk79-7uotOF9aRVzvjFru9j8YdZbx6o3G-zWR5zN7Fd8ig6_N9XjtC6e2zqbXkPderpGxxbVFEXJ82a-gQxxcFT priority: 102 providerName: Hindawi Publishing |
Title | Online Cyber-Attack Detection in the Industrial Control System: A Deep Reinforcement Learning Approach |
URI | https://dx.doi.org/10.1155/2022/2280871 https://www.proquest.com/docview/2690829611 |
Volume | 2022 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fS8MwEA5uQ_DF3-J0jjzMJylrm6ZNfJE6N4fi0OFgbyVNEx1KN7eK-N-btOmGiPpSKD36cJfcfXe5fAdAixLqS1ff6JFcqASFcosp2GzhgGKuA7qX6HrH3cDvj7ybMR6bgtvCtFWWPjF31MmU6xp52_X1cG7qO87F7M3SU6P06aoZoVEBNeWCCamC2mV3cD9cplwqnhWX4VzNzofGZes7xjrrd9uaDIYEzregtP6ss-GPyQ_vnIec3jbYNFgRhoVxd8CaSHfBlsGN0OzKxR6QBV8o7HzGYm6FWcb4C7wSWd5llcJJChXKg6shHbBT9KfDgq78HIZKWszgUOQ0qjyvGELDvPoEQ0M7vg9Gve5jp2-Z-QkWRyjILIQwlSqgM4cwTAS1RcADfe7iSWzHCcaEJcKlduKpHMONkRcI6gvmKwTJpSNtdACq6TQVhwAiJIWCMiK2mfAIchgjPlLgDjMkGfPcOjgrFRhxQy6uZ1y8RnmSgXGk1R0ZddfB6VJ6VpBq_CLXMrb4R6xRGioyO3ARrdbL0d-fj8GG_lnegus3QDWbv4sTBTSyuAkqpHfdNGtKvd0-EPUc9sdfUcDP9g |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB1RKlQupaVF0C6tD3CqIhI7TuJKCK0Wtkv5OCCQ9pY6zhgQKGzZVGj_VH9jPYkDQqjtiXNGPownM2_GM28ANlSmEstposcadAmKMoF2sDmQqZKGAnpcUr3j6DgZncXfx3I8B7-7WRhqq-x8YuOoyxtDNfItntBybpVE0c7kZ0Bbo-h1tVuh0ZrFAc7uXMo23d7fdfe7yflw73QwCvxWgcAIkdaBEFJZF-Z0lGmZoQoxNSm9RsRWhkUpZaZL5CosY4e8eSHiFFWCOnG4ytjIhsKd-wJexsJFcppMH367T_Bc9GxH7zhxAYpx12gvJdUY-BZRz2Rp9CgELlxQ7n13-SQWNAFu-AZee2TK-q0pvYU5rJZhyaNU5n3A9B3Ylp2UDWYF3gb9utbmiu1i3fR0VeyyYg5TsoeVIGzQdsOzlhz9K-s7aZywE2xIW01Tn2Se5_Wc9T3J-Xs4exa9rsB8dVPhKjAhLDrghEWoMc5EpHWWCAclpRZW65ivwZdOgbnxVOa0UeM6b1IaKXNSd-7VvQab99KTlsLjL3Ib_i7-I9brLir3__s0f7DOD__-_BlejU6PDvPD_eODj7BIBzfNv0kP5uvbX7juIE5dfGrsisGP5zbkPxYLBt8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fT9wwDLbYoU17AfYDjcFYHuBpqq5NmrZBmqbjjhOM7YTQkO6tS1MH0KZy44oQ_9r-usVtCpomxhPPtfJgu_Znx_kMsKUylVhOL3qsQVegKBNoB5sDmSppKKHHJfU7vk6S_ZP481ROF-B39xaGxiq7mNgE6vLCUI-8zxNazq2SKOpbPxZxNBp_mv0KaIMU3bR26zRaFznEm2tXvs0_Hoycrbc5H-99G-4HfsNAYIRI60AIqaxLeTrKtMxQhZialG4mYivDopQy0yVyFZaxQ-G8EHGKKkGdOIxlbGRD4c59AospVUU9WNzdmxwd35Z7Lpe2D_E4MQOKaTd2LyV1HHifiGiyNPorIT49o0r8-vyfzNCku_EKLHmcygatY72ABaxewrLHrMxHhPkrsC1XKRveFHgZDOpamx9shHUz4VWx84o5hMnuFoSwYTsbz1qq9B02cNI4Y8fYULiaplvJPOvrKRt4yvPXcPIoml2FXnVR4RtgQlh0MAqLUGOciUjrLBEOWEotrNYxX4MPnQJz44nNab_Gz7wpcKTMSd25V_cabN9Kz1pCj3vktrwtHhDb6AyV-79_nt_56tv_f34Pz5wT518OJofr8JzObSaBkw3o1ZdX-M7hnbrY9I7F4Ptj-_If92QMcQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+Cyber-Attack+Detection+in+the+Industrial+Control+System%3A+A+Deep+Reinforcement+Learning+Approach&rft.jtitle=Mathematical+problems+in+engineering&rft.au=Liu%2C+Zhenze&rft.au=Wang%2C+Chunyang&rft.au=Wang%2C+Weiping&rft.date=2022-07-06&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1024-123X&rft.eissn=1563-5147&rft.volume=2022&rft_id=info:doi/10.1155%2F2022%2F2280871&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1024-123X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1024-123X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1024-123X&client=summon |