Machine Learning-Based Model to Predict the Disease Severity and Outcome in COVID-19 Patients

The novel coronavirus (COVID-19) outbreak produced devastating effects on the global economy and the health of entire communities. Although the COVID-19 survival rate is high, the number of severe cases that result in death is increasing daily. A timely prediction of at-risk patients of COVID-19 wit...

Full description

Saved in:
Bibliographic Details
Published inScientific programming Vol. 2021; pp. 1 - 10
Main Authors Aljameel, Sumayh S., Khan, Irfan Ullah, Aslam, Nida, Aljabri, Malak, Alsulmi, Eman S.
Format Journal Article
LanguageEnglish
Published New York Hindawi 2021
John Wiley & Sons, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The novel coronavirus (COVID-19) outbreak produced devastating effects on the global economy and the health of entire communities. Although the COVID-19 survival rate is high, the number of severe cases that result in death is increasing daily. A timely prediction of at-risk patients of COVID-19 with precautionary measures is expected to increase the survival rate of patients and reduce the fatality rate. This research provides a prediction method for the early identification of COVID-19 patient’s outcome based on patients’ characteristics monitored at home, while in quarantine. The study was performed using 287 COVID-19 samples of patients from the King Fahad University Hospital, Saudi Arabia. The data were analyzed using three classification algorithms, namely, logistic regression (LR), random forest (RF), and extreme gradient boosting (XGB). Initially, the data were preprocessed using several preprocessing techniques. Furthermore, 10-k cross-validation was applied for data partitioning and SMOTE for alleviating the data imbalance. Experiments were performed using twenty clinical features, identified as significant for predicting the survival versus the deceased COVID-19 patients. The results showed that RF outperformed the other classifiers with an accuracy of 0.95 and area under curve (AUC) of 0.99. The proposed model can assist the decision-making and health care professional by early identification of at-risk COVID-19 patients effectively.
AbstractList The novel coronavirus (COVID-19) outbreak produced devastating effects on the global economy and the health of entire communities. Although the COVID-19 survival rate is high, the number of severe cases that result in death is increasing daily. A timely prediction of at-risk patients of COVID-19 with precautionary measures is expected to increase the survival rate of patients and reduce the fatality rate. This research provides a prediction method for the early identification of COVID-19 patient’s outcome based on patients’ characteristics monitored at home, while in quarantine. The study was performed using 287 COVID-19 samples of patients from the King Fahad University Hospital, Saudi Arabia. The data were analyzed using three classification algorithms, namely, logistic regression (LR), random forest (RF), and extreme gradient boosting (XGB). Initially, the data were preprocessed using several preprocessing techniques. Furthermore, 10-k cross-validation was applied for data partitioning and SMOTE for alleviating the data imbalance. Experiments were performed using twenty clinical features, identified as significant for predicting the survival versus the deceased COVID-19 patients. The results showed that RF outperformed the other classifiers with an accuracy of 0.95 and area under curve (AUC) of 0.99. The proposed model can assist the decision-making and health care professional by early identification of at-risk COVID-19 patients effectively.
Author Aljabri, Malak
Alsulmi, Eman S.
Khan, Irfan Ullah
Aljameel, Sumayh S.
Aslam, Nida
Author_xml – sequence: 1
  givenname: Sumayh S.
  orcidid: 0000-0001-8246-4658
  surname: Aljameel
  fullname: Aljameel, Sumayh S.
  organization: College of Computer Science and Information TechnologyImam Abdulrahman Bin Faisal UniversityDammamSaudi Arabiaiau.edu.sa
– sequence: 2
  givenname: Irfan Ullah
  surname: Khan
  fullname: Khan, Irfan Ullah
  organization: College of Computer Science and Information TechnologyImam Abdulrahman Bin Faisal UniversityDammamSaudi Arabiaiau.edu.sa
– sequence: 3
  givenname: Nida
  surname: Aslam
  fullname: Aslam, Nida
  organization: College of Computer Science and Information TechnologyImam Abdulrahman Bin Faisal UniversityDammamSaudi Arabiaiau.edu.sa
– sequence: 4
  givenname: Malak
  surname: Aljabri
  fullname: Aljabri, Malak
  organization: College of Computer Science and Information TechnologyImam Abdulrahman Bin Faisal UniversityDammamSaudi Arabiaiau.edu.sa
– sequence: 5
  givenname: Eman S.
  surname: Alsulmi
  fullname: Alsulmi, Eman S.
  organization: Department of Obstetrics and GynecologyCollege of MedicineImam Abdulrahman Bin Faisal UniversityDammamSaudi Arabiaiau.edu.sa
BookMark eNp9kE1PAjEQhhuDiYDe_AFNPOpKu7vdbY8KfpBAIPEjXsymtLNSAi22RcO_dwmcTPQ0k5nnnXnzdlDLOgsInVNyTSljvZSktMcYLynnR6hNeckSQcVbq-kJ44lI8_wEdUJYEEI5JaSN3sdSzY0FPALprbEfya0MoPHYaVji6PDUgzYq4jgHPDABmi1-gi_wJm6xtBpPNlG5FWBjcX_yOhwkVOCpjAZsDKfouJbLAGeH2kUv93fP_cdkNHkY9m9GicqyMiZprRQXM8prEIroAgolJM_zYmdSK8FAcjmrRVnkpOTNOAdW1DNSKq0Zz0XWRRf7u2vvPjcQYrVwG2-bl1XKUlKULM-Khkr3lPIuBA91pUxsnDobvTTLipJqF2O1i7E6xNiIrn6J1t6spN_-hV_u8SZULb_N__QPm5OACA
CitedBy_id crossref_primary_10_54525_bbmd_1595417
crossref_primary_10_3390_ijerph18126429
crossref_primary_10_4108_eetsis_3586
crossref_primary_10_1109_ACCESS_2024_3424231
crossref_primary_10_47164_ijngc_v13i5_925
crossref_primary_10_1007_s42979_021_00965_2
crossref_primary_10_1155_2022_3783058
crossref_primary_10_37394_23208_2024_21_21
crossref_primary_10_4108_eetpht_9_3472
crossref_primary_10_1002_cpe_7393
crossref_primary_10_1007_s42979_024_03431_x
crossref_primary_10_1155_2021_8971349
crossref_primary_10_1371_journal_pone_0270933
crossref_primary_10_4018_IJRQEH_320480
crossref_primary_10_1155_2024_5891177
crossref_primary_10_1155_2022_1289221
crossref_primary_10_32604_cmc_2022_021884
crossref_primary_10_1016_j_procs_2024_09_281
crossref_primary_10_1155_2022_3113119
crossref_primary_10_1007_s12559_021_09978_8
crossref_primary_10_3389_fpsyg_2022_951027
crossref_primary_10_1155_2021_1679835
Cites_doi 10.3390/ijerph17228386
10.1016/j.chaos.2020.110059
10.3389/fcell.2020.00683
10.1371/journal.pone.0243262
10.1002/9781118548387
10.1093/ije/dyaa171
10.1038/s41598-020-75767-2
10.32604/cmc.2021.014042
10.1007/978-1-4419-9326-7
10.1007/s10916-020-01582-x
10.1101/2020.02.27.20028027
10.1101/2020.09.18.20197319
10.1016/j.jcv.2020.104431
10.1016/j.patter.2020.100074
10.1613/jair.953
10.1016/j.chaos.2020.110137
ContentType Journal Article
Copyright Copyright © 2021 Sumayh S. Aljameel et al.
Copyright © 2021 Sumayh S. Aljameel et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: Copyright © 2021 Sumayh S. Aljameel et al.
– notice: Copyright © 2021 Sumayh S. Aljameel et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
DBID RHU
RHW
RHX
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1155/2021/5587188
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef

Technology Research Database
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1875-919X
Editor Nazir, Shah
Editor_xml – sequence: 1
  givenname: Shah
  surname: Nazir
  fullname: Nazir, Shah
EndPage 10
ExternalDocumentID 10_1155_2021_5587188
GrantInformation_xml – fundername: Ministry of Education – Kingdom of Saudi Arabi
  grantid: Covid19-2020-059-CSIT
GroupedDBID .4S
.DC
0R~
4.4
5VS
AAFWJ
AAJEY
ABDBF
ABJNI
ACGFS
ADBBV
AENEX
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ASPBG
AVWKF
BCNDV
DU5
EAD
EAP
EBS
EDO
EMK
EPL
EST
ESX
GROUPED_DOAJ
HZ~
I-F
IAO
IHR
IOS
KQ8
MIO
MK~
ML~
MV1
NGNOM
O9-
OK1
RHU
RHW
RHX
TUS
24P
AAYXX
ACCMX
CITATION
H13
7SC
7SP
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c337t-2fcc89b18fe9c0d6e6c9a84461810dc95ea8abf97640784614e56fb07cdd58493
IEDL.DBID RHX
ISSN 1058-9244
IngestDate Fri Jul 25 09:29:28 EDT 2025
Thu Apr 24 23:01:44 EDT 2025
Tue Jul 01 02:50:04 EDT 2025
Sun Jun 02 19:18:03 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-2fcc89b18fe9c0d6e6c9a84461810dc95ea8abf97640784614e56fb07cdd58493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8246-4658
OpenAccessLink https://dx.doi.org/10.1155/2021/5587188
PQID 2520675436
PQPubID 2046410
PageCount 10
ParticipantIDs proquest_journals_2520675436
crossref_citationtrail_10_1155_2021_5587188
crossref_primary_10_1155_2021_5587188
hindawi_primary_10_1155_2021_5587188
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Scientific programming
PublicationYear 2021
Publisher Hindawi
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
References 11
12
13
14
15
M. E. H. Chowdhury (8) 2020
16
A. Kumar (6)
17
R. X. S. D. W. Hosmer (18) 2013
1
2
3
4
5
7
Y. M. C. Zhang (19) 2012
9
20
10
References_xml – ident: 2
– ident: 16
  doi: 10.3390/ijerph17228386
– start-page: 1
  ident: 6
  article-title: Anxious depression prediction in real-time social data
– ident: 7
  doi: 10.1016/j.chaos.2020.110059
– ident: 13
  doi: 10.3389/fcell.2020.00683
– ident: 15
  doi: 10.1371/journal.pone.0243262
– volume-title: Applied Logistic Regression
  year: 2013
  ident: 18
  doi: 10.1002/9781118548387
– ident: 14
  doi: 10.1093/ije/dyaa171
– ident: 1
– ident: 17
  doi: 10.1038/s41598-020-75767-2
– ident: 5
  doi: 10.32604/cmc.2021.014042
– year: 2020
  ident: 8
  article-title: An early warning tool for predicting mortality risk of COVID-19 patients using machine learning
– volume-title: Ensemble Machine Learning
  year: 2012
  ident: 19
  doi: 10.1007/978-1-4419-9326-7
– ident: 4
  doi: 10.1007/s10916-020-01582-x
– ident: 10
  doi: 10.1101/2020.02.27.20028027
– ident: 11
  doi: 10.1101/2020.09.18.20197319
– ident: 12
  doi: 10.1016/j.jcv.2020.104431
– ident: 9
  doi: 10.1016/j.patter.2020.100074
– ident: 20
  doi: 10.1613/jair.953
– ident: 3
  doi: 10.1016/j.chaos.2020.110137
SSID ssj0018100
Score 2.4728918
Snippet The novel coronavirus (COVID-19) outbreak produced devastating effects on the global economy and the health of entire communities. Although the COVID-19...
SourceID proquest
crossref
hindawi
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Coronaviruses
COVID-19
Decision making
Decision trees
Fatalities
Global economy
Machine learning
Mortality
Survival
Viral diseases
Title Machine Learning-Based Model to Predict the Disease Severity and Outcome in COVID-19 Patients
URI https://dx.doi.org/10.1155/2021/5587188
https://www.proquest.com/docview/2520675436
Volume 2021
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwEA5uIPjib3E6Rx7mkxTbtcnSR90cU5gb6GQvUprkqoPRydbhv--lTQc6RF8KLdcWLpfe9-XS7whpIqKINTDhJCJRTiDxIJXrOgBcxJifIWbm3-HBI--Pg4cJm1iRpOVmCR-znaHn3jVjiOyFqJAKBpgh5f3JulggPLcQHcBXIp0Iyv3tP-79lnm23w3l_ZxufILzvNLbJ7sWENKbYgQPyBakh2SvbLZA7dw7Iq-DfNsjUKuI-ubcYgLS1DQzm9FsTkcLU3PJKCI62i3KLvQJMFIRZ9M41XS4yjC8gE5T2hm-3HcdL6SjQlZ1eUzGvbvnTt-xvREc5fvtzGklSolQeiKBULmaA1dhLJDbGW9oFTKIRSwTBBumUIeXA2A8kW5baY2YI_RPSDWdp3BKqJYaaZ4ntc8hyFugh6BAJNzXWktP1chV6bdIWeFw079iFuUEgrHIeDmyXq6Ry7X1RyGY8Ytd0w7BH2b1cnwiO7uWUYsZ0XkW-Pzsf085JzvmtFg6qZNqtljBBYKJTDZIpRWMGnlAfQH-Z8Df
linkProvider Hindawi Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning-Based+Model+to+Predict+the+Disease+Severity+and+Outcome+in+COVID-19+Patients&rft.jtitle=Scientific+programming&rft.au=Aljameel%2C+Sumayh+S.&rft.au=Khan%2C+Irfan+Ullah&rft.au=Aslam%2C+Nida&rft.au=Aljabri%2C+Malak&rft.date=2021&rft.issn=1058-9244&rft.eissn=1875-919X&rft.volume=2021&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1155%2F2021%2F5587188&rft.externalDBID=n%2Fa&rft.externalDocID=10_1155_2021_5587188
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1058-9244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1058-9244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1058-9244&client=summon