Machine Learning-Based Model to Predict the Disease Severity and Outcome in COVID-19 Patients
The novel coronavirus (COVID-19) outbreak produced devastating effects on the global economy and the health of entire communities. Although the COVID-19 survival rate is high, the number of severe cases that result in death is increasing daily. A timely prediction of at-risk patients of COVID-19 wit...
Saved in:
Published in | Scientific programming Vol. 2021; pp. 1 - 10 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Hindawi
2021
John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The novel coronavirus (COVID-19) outbreak produced devastating effects on the global economy and the health of entire communities. Although the COVID-19 survival rate is high, the number of severe cases that result in death is increasing daily. A timely prediction of at-risk patients of COVID-19 with precautionary measures is expected to increase the survival rate of patients and reduce the fatality rate. This research provides a prediction method for the early identification of COVID-19 patient’s outcome based on patients’ characteristics monitored at home, while in quarantine. The study was performed using 287 COVID-19 samples of patients from the King Fahad University Hospital, Saudi Arabia. The data were analyzed using three classification algorithms, namely, logistic regression (LR), random forest (RF), and extreme gradient boosting (XGB). Initially, the data were preprocessed using several preprocessing techniques. Furthermore, 10-k cross-validation was applied for data partitioning and SMOTE for alleviating the data imbalance. Experiments were performed using twenty clinical features, identified as significant for predicting the survival versus the deceased COVID-19 patients. The results showed that RF outperformed the other classifiers with an accuracy of 0.95 and area under curve (AUC) of 0.99. The proposed model can assist the decision-making and health care professional by early identification of at-risk COVID-19 patients effectively. |
---|---|
AbstractList | The novel coronavirus (COVID-19) outbreak produced devastating effects on the global economy and the health of entire communities. Although the COVID-19 survival rate is high, the number of severe cases that result in death is increasing daily. A timely prediction of at-risk patients of COVID-19 with precautionary measures is expected to increase the survival rate of patients and reduce the fatality rate. This research provides a prediction method for the early identification of COVID-19 patient’s outcome based on patients’ characteristics monitored at home, while in quarantine. The study was performed using 287 COVID-19 samples of patients from the King Fahad University Hospital, Saudi Arabia. The data were analyzed using three classification algorithms, namely, logistic regression (LR), random forest (RF), and extreme gradient boosting (XGB). Initially, the data were preprocessed using several preprocessing techniques. Furthermore, 10-k cross-validation was applied for data partitioning and SMOTE for alleviating the data imbalance. Experiments were performed using twenty clinical features, identified as significant for predicting the survival versus the deceased COVID-19 patients. The results showed that RF outperformed the other classifiers with an accuracy of 0.95 and area under curve (AUC) of 0.99. The proposed model can assist the decision-making and health care professional by early identification of at-risk COVID-19 patients effectively. |
Author | Aljabri, Malak Alsulmi, Eman S. Khan, Irfan Ullah Aljameel, Sumayh S. Aslam, Nida |
Author_xml | – sequence: 1 givenname: Sumayh S. orcidid: 0000-0001-8246-4658 surname: Aljameel fullname: Aljameel, Sumayh S. organization: College of Computer Science and Information TechnologyImam Abdulrahman Bin Faisal UniversityDammamSaudi Arabiaiau.edu.sa – sequence: 2 givenname: Irfan Ullah surname: Khan fullname: Khan, Irfan Ullah organization: College of Computer Science and Information TechnologyImam Abdulrahman Bin Faisal UniversityDammamSaudi Arabiaiau.edu.sa – sequence: 3 givenname: Nida surname: Aslam fullname: Aslam, Nida organization: College of Computer Science and Information TechnologyImam Abdulrahman Bin Faisal UniversityDammamSaudi Arabiaiau.edu.sa – sequence: 4 givenname: Malak surname: Aljabri fullname: Aljabri, Malak organization: College of Computer Science and Information TechnologyImam Abdulrahman Bin Faisal UniversityDammamSaudi Arabiaiau.edu.sa – sequence: 5 givenname: Eman S. surname: Alsulmi fullname: Alsulmi, Eman S. organization: Department of Obstetrics and GynecologyCollege of MedicineImam Abdulrahman Bin Faisal UniversityDammamSaudi Arabiaiau.edu.sa |
BookMark | eNp9kE1PAjEQhhuDiYDe_AFNPOpKu7vdbY8KfpBAIPEjXsymtLNSAi22RcO_dwmcTPQ0k5nnnXnzdlDLOgsInVNyTSljvZSktMcYLynnR6hNeckSQcVbq-kJ44lI8_wEdUJYEEI5JaSN3sdSzY0FPALprbEfya0MoPHYaVji6PDUgzYq4jgHPDABmi1-gi_wJm6xtBpPNlG5FWBjcX_yOhwkVOCpjAZsDKfouJbLAGeH2kUv93fP_cdkNHkY9m9GicqyMiZprRQXM8prEIroAgolJM_zYmdSK8FAcjmrRVnkpOTNOAdW1DNSKq0Zz0XWRRf7u2vvPjcQYrVwG2-bl1XKUlKULM-Khkr3lPIuBA91pUxsnDobvTTLipJqF2O1i7E6xNiIrn6J1t6spN_-hV_u8SZULb_N__QPm5OACA |
CitedBy_id | crossref_primary_10_54525_bbmd_1595417 crossref_primary_10_3390_ijerph18126429 crossref_primary_10_4108_eetsis_3586 crossref_primary_10_1109_ACCESS_2024_3424231 crossref_primary_10_47164_ijngc_v13i5_925 crossref_primary_10_1007_s42979_021_00965_2 crossref_primary_10_1155_2022_3783058 crossref_primary_10_37394_23208_2024_21_21 crossref_primary_10_4108_eetpht_9_3472 crossref_primary_10_1002_cpe_7393 crossref_primary_10_1007_s42979_024_03431_x crossref_primary_10_1155_2021_8971349 crossref_primary_10_1371_journal_pone_0270933 crossref_primary_10_4018_IJRQEH_320480 crossref_primary_10_1155_2024_5891177 crossref_primary_10_1155_2022_1289221 crossref_primary_10_32604_cmc_2022_021884 crossref_primary_10_1016_j_procs_2024_09_281 crossref_primary_10_1155_2022_3113119 crossref_primary_10_1007_s12559_021_09978_8 crossref_primary_10_3389_fpsyg_2022_951027 crossref_primary_10_1155_2021_1679835 |
Cites_doi | 10.3390/ijerph17228386 10.1016/j.chaos.2020.110059 10.3389/fcell.2020.00683 10.1371/journal.pone.0243262 10.1002/9781118548387 10.1093/ije/dyaa171 10.1038/s41598-020-75767-2 10.32604/cmc.2021.014042 10.1007/978-1-4419-9326-7 10.1007/s10916-020-01582-x 10.1101/2020.02.27.20028027 10.1101/2020.09.18.20197319 10.1016/j.jcv.2020.104431 10.1016/j.patter.2020.100074 10.1613/jair.953 10.1016/j.chaos.2020.110137 |
ContentType | Journal Article |
Copyright | Copyright © 2021 Sumayh S. Aljameel et al. Copyright © 2021 Sumayh S. Aljameel et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
Copyright_xml | – notice: Copyright © 2021 Sumayh S. Aljameel et al. – notice: Copyright © 2021 Sumayh S. Aljameel et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
DBID | RHU RHW RHX AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1155/2021/5587188 |
DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Technology Research Database |
Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1875-919X |
Editor | Nazir, Shah |
Editor_xml | – sequence: 1 givenname: Shah surname: Nazir fullname: Nazir, Shah |
EndPage | 10 |
ExternalDocumentID | 10_1155_2021_5587188 |
GrantInformation_xml | – fundername: Ministry of Education – Kingdom of Saudi Arabi grantid: Covid19-2020-059-CSIT |
GroupedDBID | .4S .DC 0R~ 4.4 5VS AAFWJ AAJEY ABDBF ABJNI ACGFS ADBBV AENEX ALMA_UNASSIGNED_HOLDINGS ARCSS ASPBG AVWKF BCNDV DU5 EAD EAP EBS EDO EMK EPL EST ESX GROUPED_DOAJ HZ~ I-F IAO IHR IOS KQ8 MIO MK~ ML~ MV1 NGNOM O9- OK1 RHU RHW RHX TUS 24P AAYXX ACCMX CITATION H13 7SC 7SP 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c337t-2fcc89b18fe9c0d6e6c9a84461810dc95ea8abf97640784614e56fb07cdd58493 |
IEDL.DBID | RHX |
ISSN | 1058-9244 |
IngestDate | Fri Jul 25 09:29:28 EDT 2025 Thu Apr 24 23:01:44 EDT 2025 Tue Jul 01 02:50:04 EDT 2025 Sun Jun 02 19:18:03 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c337t-2fcc89b18fe9c0d6e6c9a84461810dc95ea8abf97640784614e56fb07cdd58493 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8246-4658 |
OpenAccessLink | https://dx.doi.org/10.1155/2021/5587188 |
PQID | 2520675436 |
PQPubID | 2046410 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2520675436 crossref_citationtrail_10_1155_2021_5587188 crossref_primary_10_1155_2021_5587188 hindawi_primary_10_1155_2021_5587188 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-00-00 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 2021-00-00 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Scientific programming |
PublicationYear | 2021 |
Publisher | Hindawi John Wiley & Sons, Inc |
Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc |
References | 11 12 13 14 15 M. E. H. Chowdhury (8) 2020 16 A. Kumar (6) 17 R. X. S. D. W. Hosmer (18) 2013 1 2 3 4 5 7 Y. M. C. Zhang (19) 2012 9 20 10 |
References_xml | – ident: 2 – ident: 16 doi: 10.3390/ijerph17228386 – start-page: 1 ident: 6 article-title: Anxious depression prediction in real-time social data – ident: 7 doi: 10.1016/j.chaos.2020.110059 – ident: 13 doi: 10.3389/fcell.2020.00683 – ident: 15 doi: 10.1371/journal.pone.0243262 – volume-title: Applied Logistic Regression year: 2013 ident: 18 doi: 10.1002/9781118548387 – ident: 14 doi: 10.1093/ije/dyaa171 – ident: 1 – ident: 17 doi: 10.1038/s41598-020-75767-2 – ident: 5 doi: 10.32604/cmc.2021.014042 – year: 2020 ident: 8 article-title: An early warning tool for predicting mortality risk of COVID-19 patients using machine learning – volume-title: Ensemble Machine Learning year: 2012 ident: 19 doi: 10.1007/978-1-4419-9326-7 – ident: 4 doi: 10.1007/s10916-020-01582-x – ident: 10 doi: 10.1101/2020.02.27.20028027 – ident: 11 doi: 10.1101/2020.09.18.20197319 – ident: 12 doi: 10.1016/j.jcv.2020.104431 – ident: 9 doi: 10.1016/j.patter.2020.100074 – ident: 20 doi: 10.1613/jair.953 – ident: 3 doi: 10.1016/j.chaos.2020.110137 |
SSID | ssj0018100 |
Score | 2.4728918 |
Snippet | The novel coronavirus (COVID-19) outbreak produced devastating effects on the global economy and the health of entire communities. Although the COVID-19... |
SourceID | proquest crossref hindawi |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Algorithms Coronaviruses COVID-19 Decision making Decision trees Fatalities Global economy Machine learning Mortality Survival Viral diseases |
Title | Machine Learning-Based Model to Predict the Disease Severity and Outcome in COVID-19 Patients |
URI | https://dx.doi.org/10.1155/2021/5587188 https://www.proquest.com/docview/2520675436 |
Volume | 2021 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwEA5uIPjib3E6Rx7mkxTbtcnSR90cU5gb6GQvUprkqoPRydbhv--lTQc6RF8KLdcWLpfe9-XS7whpIqKINTDhJCJRTiDxIJXrOgBcxJifIWbm3-HBI--Pg4cJm1iRpOVmCR-znaHn3jVjiOyFqJAKBpgh5f3JulggPLcQHcBXIp0Iyv3tP-79lnm23w3l_ZxufILzvNLbJ7sWENKbYgQPyBakh2SvbLZA7dw7Iq-DfNsjUKuI-ubcYgLS1DQzm9FsTkcLU3PJKCI62i3KLvQJMFIRZ9M41XS4yjC8gE5T2hm-3HcdL6SjQlZ1eUzGvbvnTt-xvREc5fvtzGklSolQeiKBULmaA1dhLJDbGW9oFTKIRSwTBBumUIeXA2A8kW5baY2YI_RPSDWdp3BKqJYaaZ4ntc8hyFugh6BAJNzXWktP1chV6bdIWeFw079iFuUEgrHIeDmyXq6Ry7X1RyGY8Ytd0w7BH2b1cnwiO7uWUYsZ0XkW-Pzsf085JzvmtFg6qZNqtljBBYKJTDZIpRWMGnlAfQH-Z8Df |
linkProvider | Hindawi Publishing |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning-Based+Model+to+Predict+the+Disease+Severity+and+Outcome+in+COVID-19+Patients&rft.jtitle=Scientific+programming&rft.au=Aljameel%2C+Sumayh+S.&rft.au=Khan%2C+Irfan+Ullah&rft.au=Aslam%2C+Nida&rft.au=Aljabri%2C+Malak&rft.date=2021&rft.issn=1058-9244&rft.eissn=1875-919X&rft.volume=2021&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1155%2F2021%2F5587188&rft.externalDBID=n%2Fa&rft.externalDocID=10_1155_2021_5587188 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1058-9244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1058-9244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1058-9244&client=summon |