Effect of UV-radiation on structure and properties of PP nanocomposites

Products made of polypropylene (PP) are subject to photodegradation under UV-radiation leading to a change in the physical characteristics of the polymer. The addition of UV-filters, like ZnO nanoparticles, contribute to absorb UV-radiation and protect the polymer matrix. In this study ZnO nanopowde...

Full description

Saved in:
Bibliographic Details
Published inJournal of alloys and compounds Vol. 707; pp. 304 - 309
Main Authors Senatova, S.I., Senatov, F.S., Kuznetsov, D.V., Stepashkin, A.A., Issi, J.P.
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 15.06.2017
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Products made of polypropylene (PP) are subject to photodegradation under UV-radiation leading to a change in the physical characteristics of the polymer. The addition of UV-filters, like ZnO nanoparticles, contribute to absorb UV-radiation and protect the polymer matrix. In this study ZnO nanopowder with a particle size of 50 nm was modified by 3-aminopropyltriethoxysilane (APTES) and introduced into the PP matrix. The optimal concentration of nanoparticles was determined. PP-films with a thickness of 100 and 200 μm were obtained. Structural and mechanical characteristics before and after irradiation by UV-radiation were studied by means of FTIR-spectroscopy, XRD, DSC, UV-VIS spectrophotometry and tensile tests. It was observed that UV irradiation of PP leads to the break of molecular chains, therefore releasing more molecular segments released. These segments can move and form a new crystal structure in the initial amorphous phase. The oxidation index of PP increased due to the formation of ketones. ZnO nanoparticles modified by APTES acted as nucleation sites and γ-phase was formed in the polymer. Also, the addition of ZnO-APTES nanoparticles in the polymer promoted absorption of UV-radiation in the wavelength range of 200–400 nm, thus protecting the polymer from degradation. •DSC data demonstrated the presence of two melting peaks of α-PP: α1-α2.•Introduction of 1% wt. ZnO-APTES led to decrease in transmittance and total absorbing in the UV region of 200–380 nm.•ZnO nanoparticles acted as nucleation centers during crystallization of PP from the melt.•ZnO-APTES nanoparticles led to reduction in oxidative degradation of the polymer under the action of UV-radiation.
AbstractList Products made of polypropylene (PP) are subject to photodegradation under UV-radiation leading to a change in the physical characteristics of the polymer. The addition of UV-filters, like ZnO nanoparticles, contribute to absorb UV-radiation and protect the polymer matrix. In this study ZnO nanopowder with a particle size of 50 nm was modified by 3-aminopropyltriethoxysilane (APTES) and introduced into the PP matrix. The optimal concentration of nanoparticles was determined. PP-films with a thickness of 100 and 200 µm were obtained. Structural and mechanical characteristics before and after irradiation by UV-radiation were studied by means of FTIR-spectroscopy, XRD, DSC, UV-VIS spectrophotometry and tensile tests. It was observed that UV irradiation of PP leads to the break of molecular chains, therefore releasing more molecular segments released. These segments can move and form a new crystal structure in the initial amorphous phase. The oxidation index of PP increased due to the formation of ketones. ZnO nanoparticles modified by APTES acted as nucleation sites and γ-phase was formed in the polymer. Also, the addition of ZnO-APTES nanoparticles in the polymer promoted absorption of UV-radiation in the wavelength range of 200-400 nm, thus protecting the polymer from degradation.
Products made of polypropylene (PP) are subject to photodegradation under UV-radiation leading to a change in the physical characteristics of the polymer. The addition of UV-filters, like ZnO nanoparticles, contribute to absorb UV-radiation and protect the polymer matrix. In this study ZnO nanopowder with a particle size of 50 nm was modified by 3-aminopropyltriethoxysilane (APTES) and introduced into the PP matrix. The optimal concentration of nanoparticles was determined. PP-films with a thickness of 100 and 200 μm were obtained. Structural and mechanical characteristics before and after irradiation by UV-radiation were studied by means of FTIR-spectroscopy, XRD, DSC, UV-VIS spectrophotometry and tensile tests. It was observed that UV irradiation of PP leads to the break of molecular chains, therefore releasing more molecular segments released. These segments can move and form a new crystal structure in the initial amorphous phase. The oxidation index of PP increased due to the formation of ketones. ZnO nanoparticles modified by APTES acted as nucleation sites and γ-phase was formed in the polymer. Also, the addition of ZnO-APTES nanoparticles in the polymer promoted absorption of UV-radiation in the wavelength range of 200–400 nm, thus protecting the polymer from degradation. •DSC data demonstrated the presence of two melting peaks of α-PP: α1-α2.•Introduction of 1% wt. ZnO-APTES led to decrease in transmittance and total absorbing in the UV region of 200–380 nm.•ZnO nanoparticles acted as nucleation centers during crystallization of PP from the melt.•ZnO-APTES nanoparticles led to reduction in oxidative degradation of the polymer under the action of UV-radiation.
Author Senatova, S.I.
Issi, J.P.
Stepashkin, A.A.
Senatov, F.S.
Kuznetsov, D.V.
Author_xml – sequence: 1
  givenname: S.I.
  surname: Senatova
  fullname: Senatova, S.I.
  email: s-milyaeva@misis.ru
– sequence: 2
  givenname: F.S.
  surname: Senatov
  fullname: Senatov, F.S.
– sequence: 3
  givenname: D.V.
  surname: Kuznetsov
  fullname: Kuznetsov, D.V.
– sequence: 4
  givenname: A.A.
  surname: Stepashkin
  fullname: Stepashkin, A.A.
– sequence: 5
  givenname: J.P.
  orcidid: 0000-0003-0276-156X
  surname: Issi
  fullname: Issi, J.P.
BookMark eNqFkNFLwzAQxoNMcE7_BKHgc2uSNm2KDyJjTmHgHpyvIb1eIWVrZpIK_vdmbk--DA6Og-_77u53TSaDHZCQO0YzRln50Ge93m7B7jIex4yxjFX0gkyZrPK0KMt6Qqa05iKVuZRX5Nr7nlLK6pxNyXLRdQghsV2y-Uydbo0Oxg5JLB_cCGF0mOihTfbO7tEFg_6gXa-TQQ827txbbwL6G3LZ6a3H21Ofkc3L4mP-mq7el2_z51UKeV6FlKMoaqqhpB2tpUDdSoCuQt5wBpyKotClLASXueh0XUHDQUAjmwZaWgPqfEbuj7nxnq8RfVC9Hd0QV6r4kKgqyqsiqsRRBc5677BTe2d22v0oRtWBmerViZk6MFOMqcgs-h7_-cCEPyDBabM96346ujEC-DbolAeDA2BrXGSsWmvOJPwC5EWN_g
CitedBy_id crossref_primary_10_1590_0104_1428_20240047
crossref_primary_10_3390_ijms24097882
crossref_primary_10_1039_c8pp90065e
crossref_primary_10_1002_pc_27509
crossref_primary_10_1088_1402_4896_ac5ce2
crossref_primary_10_1016_j_polymdegradstab_2017_10_016
crossref_primary_10_1149_2162_8777_ad105f
crossref_primary_10_1007_s10118_019_2194_3
crossref_primary_10_1007_s10904_017_0568_y
crossref_primary_10_1016_j_radphyschem_2021_109442
crossref_primary_10_3390_molecules27144448
crossref_primary_10_1016_j_foodhyd_2018_07_015
crossref_primary_10_9767_bcrec_20045
crossref_primary_10_1016_j_apsusc_2018_03_067
crossref_primary_10_1021_acs_iecr_8b02373
crossref_primary_10_3390_ma13040914
crossref_primary_10_1002_pat_70145
crossref_primary_10_1002_app_56529
crossref_primary_10_1016_j_nanoso_2024_101306
Cites_doi 10.1021/ma102684f
10.1016/j.polymdegradstab.2004.12.014
10.1039/c0jm00063a
10.1016/0032-3861(93)90002-R
10.1021/cm031079k
10.1039/C1RA00758K
10.1016/j.polymdegradstab.2010.06.010
10.1021/jp2052536
10.1016/j.apcatb.2016.08.056
10.1021/cr00099a003
10.1039/c3cc40566d
10.1016/j.polymer.2016.05.017
10.1021/am5082183
10.1016/j.polymer.2010.04.019
10.1002/pen.11167
10.2174/1573413710666141119221345
10.1039/B403530E
10.1023/A:1020121700825
10.1002/macp.201300608
10.1023/A:1018553901058
10.1016/0032-3861(86)90130-8
10.1016/j.polymer.2016.02.052
10.1021/jp507975r
10.1016/S0032-3861(98)00404-2
10.1021/mz3000978
10.1016/j.colsurfa.2013.03.021
10.1016/j.jallcom.2010.04.162
10.1016/j.polymer.2007.01.039
10.1016/j.polymer.2016.08.016
10.1016/j.polymdegradstab.2013.05.023
10.1002/app.12869
10.1016/j.optmat.2013.08.021
10.1016/j.polymer.2005.01.087
10.1002/adma.200700736
10.1016/j.polymer.2006.02.089
10.1039/B613286C
10.1002/(SICI)1099-0488(19981115)36:15<2821::AID-POLB16>3.0.CO;2-P
10.1007/BF00445969
10.1016/0032-3861(84)90110-1
10.1016/0032-3861(93)90670-6
ContentType Journal Article
Copyright 2016
Copyright Elsevier BV Jun 15, 2017
Copyright_xml – notice: 2016
– notice: Copyright Elsevier BV Jun 15, 2017
DBID AAYXX
CITATION
8BQ
8FD
JG9
DOI 10.1016/j.jallcom.2016.11.170
DatabaseName CrossRef
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Physics
EISSN 1873-4669
EndPage 309
ExternalDocumentID 10_1016_j_jallcom_2016_11_170
S0925838816336507
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SPD
SSM
SSZ
T5K
TWZ
XPP
ZMT
~G-
29J
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SEW
SMS
SSH
T9H
WUQ
8BQ
8FD
AFXIZ
EFKBS
JG9
ID FETCH-LOGICAL-c337t-2e5490ac60f0985ead8ccf7e2b21c20544a68452835fa97cb2c5cb8bbcd09cea3
IEDL.DBID .~1
ISSN 0925-8388
IngestDate Fri Jul 25 06:29:43 EDT 2025
Tue Jul 01 01:54:19 EDT 2025
Thu Apr 24 23:00:13 EDT 2025
Fri Feb 23 02:37:36 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Photodegradation
UV-radiation
Phase transformation
ZnO nanoparticles
Polypropylene
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-2e5490ac60f0985ead8ccf7e2b21c20544a68452835fa97cb2c5cb8bbcd09cea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0276-156X
PQID 1935770274
PQPubID 2045454
PageCount 6
ParticipantIDs proquest_journals_1935770274
crossref_primary_10_1016_j_jallcom_2016_11_170
crossref_citationtrail_10_1016_j_jallcom_2016_11_170
elsevier_sciencedirect_doi_10_1016_j_jallcom_2016_11_170
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-06-15
PublicationDateYYYYMMDD 2017-06-15
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-15
  day: 15
PublicationDecade 2010
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Journal of alloys and compounds
PublicationYear 2017
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Zhang, Yan, He, Wei, Long, Guo, Gu, Yu, Liu, Ding, Sun, Wei, Guo (bib2) 2015; 7
Nishino, Matsumoto, Nakarnae (bib34) 2000; 40
Xue, Yin, Zhang, Zhang, Ji, Jia (bib17) 2013; 427
Gorelik, Rastorguev, Skakov (bib30) 2002
Galeski (bib31) 1999
Zhang, Luo, Gui (bib16) 1997; 32
Hench, West (bib15) 1990; 90
Kulyk, Kapustianyk, Tsybulskyy, Krupka, Sahraoui (bib21) 2010; 502
Zhang, Qin, Zheng, Dai, Liu, Yan, Guo, Shen, Guo (bib5) 2016; 90
Xiong, Gu, You, Wu (bib20) 2003; 90
Qiu, Gao, Yan, Guo, Umar, Guo, Wang (bib6) 2015; 5
van Erp, Balzano, Peters (bib35) 2012; 1
Sui, Shao, Liu (bib19) 2007; 48
Zhang, Zhuang, Xu, Hu (bib22) 2013; 36
Guo, Wei, Shedd, Scaffaro, Pereira, Hahn (bib12) 2007; 17
Ammala, Hill, Meakin, Pas, Turney (bib24) 2002; 4
Lan, Liu, Cao, Zhao, Dai, Yan, Zheng, Liu, Shen, Guo (bib4) 2016; 97
Zhu, Wei, Li, Sun, Haldolaarachchige, Young, Southworth, Khasanov, Luo, Guo (bib38) 2011; 44
Morlat, Mailhot, Gonzalez, Gardette (bib44) 2004; 16
Obadal, Raab, Verney, Commereuc (bib45) 2005; 88
He, Yuan, Luo, Haldolaarachchige, Young, Wei, Guo (bib9) 2013; 49
Qin, Zhang, Liu, Xie, Yang, Shen (bib43) 2005; 46
White, Turnbull (bib10) 1994; 29
Yadav, Jain (bib40) 1986; 27
Li, Toprak, Jo, Muhammed (bib23) 2007; 19
Dean, Register (bib37) 1998; 36
Qin, Xu, Zhang, Zheng, Yan, Dai, Liu, Shen, Guo (bib3) 2016; 100
Paukkeri, Lehtinen (bib41) 1993; 34
Zhu, Wei, Lee, Park, Willis, Haldolaarachchige, Young, Luo, Guo (bib25) 2012; 2
He, Yuan, Yan, Ding, Wang, Luo, Shen, Wei, Cao, Guo (bib8) 2014; 215
Karger-Kocsis (bib33) 1995; vol. 1
Campbell, Phillips, Lin (bib36) 1993; 34
Zhao, Li (bib32) 2006; 47
Zhu, Wei, Ryu, Budhathoki, Liang, Guo (bib27) 2010; 20
Senatova, Mandal, Senatov, Anisimova, Kondakov, Samanta, Kuznetsov (bib29) 2015; 11
Liu, Liu, Tan, Wang, Wei (bib13) 2013; 98
Cho, Li, Choi (bib39) 1999; 40
He, Yuan, Zhang, Yan, Guo, Ding, Khan, Young, Khasanov, Luo, Liu, Shen, Liu, Wei, Guo (bib7) 2014; 118
Yang, Christensen, Egerton, White (bib18) 2010; 95
Carfagna, De Rosa, Guerra, Petraccone (bib42) 1984; 25
N.S. Allen, M. Edge, Elsevier Science Publishers, Essex. (1994).
Zhanga, Zhangb, Xiea, Guoc, Lyuc, Lib, Suna, Wangb, Guo (bib11) 2017; 201
Zhu, Wei, Haldolaarachchige, Young, Guo (bib26) 2011; 115
Yuwono, Liu, Xue, Wang, Elim, Ji, Li, White (bib14) 2004; 14
Zhu, Wei, Yadav, Guo (bib28) 2010; 51
Zhu (10.1016/j.jallcom.2016.11.170_bib38) 2011; 44
Kulyk (10.1016/j.jallcom.2016.11.170_bib21) 2010; 502
Zhu (10.1016/j.jallcom.2016.11.170_bib28) 2010; 51
Gorelik (10.1016/j.jallcom.2016.11.170_bib30) 2002
Zhang (10.1016/j.jallcom.2016.11.170_bib22) 2013; 36
Xue (10.1016/j.jallcom.2016.11.170_bib17) 2013; 427
Zhu (10.1016/j.jallcom.2016.11.170_bib27) 2010; 20
Dean (10.1016/j.jallcom.2016.11.170_bib37) 1998; 36
Guo (10.1016/j.jallcom.2016.11.170_bib12) 2007; 17
van Erp (10.1016/j.jallcom.2016.11.170_bib35) 2012; 1
Zhao (10.1016/j.jallcom.2016.11.170_bib32) 2006; 47
Zhu (10.1016/j.jallcom.2016.11.170_bib26) 2011; 115
Li (10.1016/j.jallcom.2016.11.170_bib23) 2007; 19
Paukkeri (10.1016/j.jallcom.2016.11.170_bib41) 1993; 34
Carfagna (10.1016/j.jallcom.2016.11.170_bib42) 1984; 25
Hench (10.1016/j.jallcom.2016.11.170_bib15) 1990; 90
Zhang (10.1016/j.jallcom.2016.11.170_bib16) 1997; 32
Qin (10.1016/j.jallcom.2016.11.170_bib3) 2016; 100
Nishino (10.1016/j.jallcom.2016.11.170_bib34) 2000; 40
He (10.1016/j.jallcom.2016.11.170_bib9) 2013; 49
Galeski (10.1016/j.jallcom.2016.11.170_bib31) 1999
Yadav (10.1016/j.jallcom.2016.11.170_bib40) 1986; 27
10.1016/j.jallcom.2016.11.170_bib1
Xiong (10.1016/j.jallcom.2016.11.170_bib20) 2003; 90
Karger-Kocsis (10.1016/j.jallcom.2016.11.170_bib33) 1995; vol. 1
Morlat (10.1016/j.jallcom.2016.11.170_bib44) 2004; 16
Zhanga (10.1016/j.jallcom.2016.11.170_bib11) 2017; 201
Yuwono (10.1016/j.jallcom.2016.11.170_bib14) 2004; 14
Campbell (10.1016/j.jallcom.2016.11.170_bib36) 1993; 34
He (10.1016/j.jallcom.2016.11.170_bib8) 2014; 215
Ammala (10.1016/j.jallcom.2016.11.170_bib24) 2002; 4
Obadal (10.1016/j.jallcom.2016.11.170_bib45) 2005; 88
Senatova (10.1016/j.jallcom.2016.11.170_bib29) 2015; 11
Zhang (10.1016/j.jallcom.2016.11.170_bib2) 2015; 7
Qiu (10.1016/j.jallcom.2016.11.170_bib6) 2015; 5
Liu (10.1016/j.jallcom.2016.11.170_bib13) 2013; 98
Yang (10.1016/j.jallcom.2016.11.170_bib18) 2010; 95
Lan (10.1016/j.jallcom.2016.11.170_bib4) 2016; 97
Sui (10.1016/j.jallcom.2016.11.170_bib19) 2007; 48
He (10.1016/j.jallcom.2016.11.170_bib7) 2014; 118
Zhu (10.1016/j.jallcom.2016.11.170_bib25) 2012; 2
Qin (10.1016/j.jallcom.2016.11.170_bib43) 2005; 46
Zhang (10.1016/j.jallcom.2016.11.170_bib5) 2016; 90
Cho (10.1016/j.jallcom.2016.11.170_bib39) 1999; 40
White (10.1016/j.jallcom.2016.11.170_bib10) 1994; 29
References_xml – volume: 40
  start-page: 1719
  year: 1999
  end-page: 1729
  ident: bib39
  article-title: Crystallization and melting behavior of polypropylene and maleated polypropylene blends
  publication-title: Polymer
– volume: 90
  start-page: 18
  year: 2016
  end-page: 25
  ident: bib5
  article-title: Interfacial crystallization and mechanical property of isotactic polypropylene based single-polymer composites
  publication-title: Polymer
– year: 2002
  ident: bib30
  article-title: Rentgenograficheskij i jelektronno-opticheskij analiz
– volume: 201
  start-page: 470
  year: 2017
  end-page: 478
  ident: bib11
  article-title: Electrospun titania nanofibers segregated by graphene oxide for improved visible light photocatalysis
  publication-title: Appl. Catal. B Environ.
– volume: 51
  start-page: 2643
  year: 2010
  end-page: 2651
  ident: bib28
  article-title: Rheological behaviors and electrical conductivity of epoxy resin nanocomposites suspended with in-situ stabilized carbon nanofibers
  publication-title: Polymer
– volume: 25
  start-page: 1462
  year: 1984
  end-page: 1464
  ident: bib42
  article-title: Recrystallization kinetics of isotactic polypropylene (α-form)
  publication-title: Polymer
– volume: 427
  start-page: 7
  year: 2013
  end-page: 12
  ident: bib17
  article-title: UV-durable superhydrophobic textiles with UV-shielding properties by introduction of ZnO/SiO2 core/shell nanorods on PET fibers and hydrophobization
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
– volume: 20
  start-page: 4937
  year: 2010
  end-page: 4948
  ident: bib27
  article-title: In situ stabilized carbon nanofiber (CNF) reinforced epoxy nanocomposites
  publication-title: J. Mater. Chem.
– volume: 34
  start-page: 4809
  year: 1993
  end-page: 4816
  ident: bib36
  article-title: The gamma phase of high-molecularweight polypropylene: 1. Morphological aspects
  publication-title: Polymer
– volume: 5
  start-page: 51900
  year: 2015
  end-page: 51911
  ident: bib6
  article-title: Morphology-dependent performance of Mg3Al-CO3 layered double hydroxide as nanofiller for polypropylene nanocomposites
  publication-title: RCS Adv.
– volume: 502
  start-page: 24
  year: 2010
  end-page: 27
  ident: bib21
  article-title: Optical properties of ZnO/PMMA nanocomposite films
  publication-title: J. Alloys Compd.
– start-page: 135
  year: 1999
  end-page: 141
  ident: bib31
  publication-title: Crystallization in Polypropylene: an A-Z Reference
– volume: 49
  start-page: 2679
  year: 2013
  end-page: 2681
  ident: bib9
  article-title: Morphology and phase controlled cobalt nanostructures in magnetic polypropylene nanocomposites: the role of alkyl chain-length in maleic anhydride grafted polypropylene
  publication-title: Chem. Commun.
– volume: 98
  start-page: 1744
  year: 2013
  end-page: 1753
  ident: bib13
  article-title: Zh. Guo, Structural evolution and degradation mechanism of Vectran fibers upon exposure to UV-radiation
  publication-title: Polym. Degrad. Stab.
– volume: 2
  start-page: 1136
  year: 2012
  end-page: 1143
  ident: bib25
  article-title: Silica stabilized iron particles toward anti-corrosion magnetic polyurethane nanocomposites
  publication-title: RSC Adv.
– volume: 32
  start-page: 1469
  year: 1997
  end-page: 1472
  ident: bib16
  publication-title: J. Mater. Sci.
– volume: 29
  start-page: 584
  year: 1994
  end-page: 613
  ident: bib10
  publication-title: Mater. Sci.
– volume: 36
  start-page: 169
  year: 2013
  end-page: 172
  ident: bib22
  article-title: Transparent and UV-shielding nanocomposite films
  publication-title: Opt. Mater.
– volume: 14
  start-page: 2978
  year: 2004
  end-page: 2987
  ident: bib14
  publication-title: J. Mater. Chem.
– volume: 36
  start-page: 2821
  year: 1998
  end-page: 2827
  ident: bib37
  article-title: Oriented γ-isotactic polypropylene crystallized at atmospheric pressure
  publication-title: J. Polym. Sci. Part B Polym. Phys.
– volume: 40
  start-page: 336
  year: 2000
  end-page: 343
  ident: bib34
  article-title: Surface structure of isotactic polypropylene by X-ray diffraction
  publication-title: Polym. Eng. Sci.
– volume: 34
  start-page: 4083
  year: 1993
  end-page: 4088
  ident: bib41
  article-title: Thermal behavior of polypropylene fractions: 2. The multiple melting peaks
  publication-title: Polymer
– volume: 97
  start-page: 11
  year: 2016
  end-page: 19
  ident: bib4
  article-title: Electrically conductive thermoplastic polyurethane/polypropylene nanocomposites with selectively distributed graphene
  publication-title: Polymer
– volume: 115
  start-page: 15304
  year: 2011
  end-page: 15310
  ident: bib26
  article-title: Electromagnetic field shielding polyurethane nanocomposites reinforced with core-shell Fe- silica nanoparticles
  publication-title: J. Phys. Chem.
– volume: 90
  start-page: 1923
  year: 2003
  end-page: 1931
  ident: bib20
  publication-title: J. Appl. Polym. Sci.
– volume: 27
  start-page: 721
  year: 1986
  end-page: 727
  ident: bib40
  article-title: Melting behavior of isotactic polypropylene isothermally crystallized from the melt
  publication-title: Polymer
– reference: N.S. Allen, M. Edge, Elsevier Science Publishers, Essex. (1994).
– volume: 118
  start-page: 24784
  year: 2014
  end-page: 24796
  ident: bib7
  article-title: Electromagnetic field absorbing polypropylene nanocomposites with tuned permittivity and permeability by nanoiron and carbon nanotubes
  publication-title: J. Phys. Chem. C
– volume: 17
  start-page: 806
  year: 2007
  end-page: 813
  ident: bib12
  article-title: Particle surface engineering effect on the mechanical, optical and photoluminescent properties of ZnO/vinyl-ester resin nanocomposites
  publication-title: J. Mater. Chem.
– volume: 90
  start-page: 33
  year: 1990
  end-page: 72
  ident: bib15
  publication-title: Chem. Rev.
– volume: 1
  start-page: 618
  year: 2012
  end-page: 622
  ident: bib35
  article-title: Oriented gamma phase in isotactic polypropylene homopolymer
  publication-title: ACS Macro Lett.
– volume: 16
  start-page: 377
  year: 2004
  end-page: 383
  ident: bib44
  article-title: Photo-oxidation of polypropylene/montmorillonite nanocomposites. 1. Influence of nanoclay and compatibilizing agent
  publication-title: Chem. Mater.
– volume: 11
  start-page: 354
  year: 2015
  end-page: 359
  ident: bib29
  article-title: Optical properties of stabilized ZnO nanoparticles, perspective for UV-protection in sunscreens
  publication-title: Curr. Nanosci.
– volume: 88
  start-page: 532
  year: 2005
  end-page: 539
  ident: bib45
  publication-title: Degr. Stab.
– volume: 7
  start-page: 6125
  year: 2015
  end-page: 6138
  ident: bib2
  article-title: Electrically conductive polypropylene nanocomposites with negative permittivity at low carbon nanotube loading levels
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  start-page: 167
  year: 2002
  end-page: 174
  ident: bib24
  article-title: Degradation studies of polyolefins incorporating transparent nanoparticulate zinc oxide UV stabilizers
  publication-title: J. Nanopart. Res.
– volume: 47
  start-page: 3207
  year: 2006
  end-page: 3217
  ident: bib32
  publication-title: Polymer
– volume: 100
  start-page: 111
  year: 2016
  end-page: 118
  ident: bib3
  article-title: Interfacial interaction enhancement by shear-induced b-cylindrite in isotactic polypropylene/glass fiber composites
  publication-title: Polymer
– volume: 48
  start-page: 1459
  year: 2007
  end-page: 1463
  ident: bib19
  article-title: Photoluminescence of polyethylene oxide-ZnO composite electrospun fibers
  publication-title: Polymer
– volume: 19
  start-page: 4347
  year: 2007
  end-page: 4352
  ident: bib23
  article-title: Bulk synthesis of transparent and homogeneous polymeric hybrid materials with ZnO quantum dots and PMMA
  publication-title: Adv. Mater.
– volume: 46
  start-page: 3149
  year: 2005
  end-page: 3156
  ident: bib43
  publication-title: Polymer
– volume: vol. 1
  year: 1995
  ident: bib33
  publication-title: Polypropylene: Structure, Blends and Composites. Structure and Morphology
– volume: 215
  start-page: 327
  year: 2014
  end-page: 340
  ident: bib8
  article-title: Flame-retardant polypropylene/multiwall carbon nanotube nanocomposites: effects of surface functionalization and surfactant molecular weight
  publication-title: Macromol. Chem. Phys.
– volume: 95
  start-page: 1533
  year: 2010
  end-page: 1541
  ident: bib18
  article-title: Degradation products formed during UV exposure of polyethylene–ZnO nano-composites
  publication-title: Polym. Degrad. Stab.
– volume: 44
  start-page: 4382
  year: 2011
  end-page: 4391
  ident: bib38
  article-title: Surfactant-free synthesized magnetic polypropylene nanocomposites: rheological, electrical, magnetic and thermal properties
  publication-title: Macromolecules
– volume: 44
  start-page: 4382
  year: 2011
  ident: 10.1016/j.jallcom.2016.11.170_bib38
  article-title: Surfactant-free synthesized magnetic polypropylene nanocomposites: rheological, electrical, magnetic and thermal properties
  publication-title: Macromolecules
  doi: 10.1021/ma102684f
– volume: 88
  start-page: 532
  year: 2005
  ident: 10.1016/j.jallcom.2016.11.170_bib45
  publication-title: Degr. Stab.
  doi: 10.1016/j.polymdegradstab.2004.12.014
– start-page: 135
  year: 1999
  ident: 10.1016/j.jallcom.2016.11.170_bib31
– volume: 5
  start-page: 51900
  year: 2015
  ident: 10.1016/j.jallcom.2016.11.170_bib6
  article-title: Morphology-dependent performance of Mg3Al-CO3 layered double hydroxide as nanofiller for polypropylene nanocomposites
  publication-title: RCS Adv.
– volume: 20
  start-page: 4937
  year: 2010
  ident: 10.1016/j.jallcom.2016.11.170_bib27
  article-title: In situ stabilized carbon nanofiber (CNF) reinforced epoxy nanocomposites
  publication-title: J. Mater. Chem.
  doi: 10.1039/c0jm00063a
– volume: 34
  start-page: 4809
  year: 1993
  ident: 10.1016/j.jallcom.2016.11.170_bib36
  article-title: The gamma phase of high-molecularweight polypropylene: 1. Morphological aspects
  publication-title: Polymer
  doi: 10.1016/0032-3861(93)90002-R
– volume: 16
  start-page: 377
  year: 2004
  ident: 10.1016/j.jallcom.2016.11.170_bib44
  article-title: Photo-oxidation of polypropylene/montmorillonite nanocomposites. 1. Influence of nanoclay and compatibilizing agent
  publication-title: Chem. Mater.
  doi: 10.1021/cm031079k
– volume: 2
  start-page: 1136
  year: 2012
  ident: 10.1016/j.jallcom.2016.11.170_bib25
  article-title: Silica stabilized iron particles toward anti-corrosion magnetic polyurethane nanocomposites
  publication-title: RSC Adv.
  doi: 10.1039/C1RA00758K
– volume: 95
  start-page: 1533
  year: 2010
  ident: 10.1016/j.jallcom.2016.11.170_bib18
  article-title: Degradation products formed during UV exposure of polyethylene–ZnO nano-composites
  publication-title: Polym. Degrad. Stab.
  doi: 10.1016/j.polymdegradstab.2010.06.010
– volume: 115
  start-page: 15304
  year: 2011
  ident: 10.1016/j.jallcom.2016.11.170_bib26
  article-title: Electromagnetic field shielding polyurethane nanocomposites reinforced with core-shell Fe- silica nanoparticles
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp2052536
– year: 2002
  ident: 10.1016/j.jallcom.2016.11.170_bib30
– ident: 10.1016/j.jallcom.2016.11.170_bib1
– volume: 201
  start-page: 470
  year: 2017
  ident: 10.1016/j.jallcom.2016.11.170_bib11
  article-title: Electrospun titania nanofibers segregated by graphene oxide for improved visible light photocatalysis
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2016.08.056
– volume: 90
  start-page: 33
  year: 1990
  ident: 10.1016/j.jallcom.2016.11.170_bib15
  publication-title: Chem. Rev.
  doi: 10.1021/cr00099a003
– volume: 49
  start-page: 2679
  year: 2013
  ident: 10.1016/j.jallcom.2016.11.170_bib9
  article-title: Morphology and phase controlled cobalt nanostructures in magnetic polypropylene nanocomposites: the role of alkyl chain-length in maleic anhydride grafted polypropylene
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc40566d
– volume: 97
  start-page: 11
  year: 2016
  ident: 10.1016/j.jallcom.2016.11.170_bib4
  article-title: Electrically conductive thermoplastic polyurethane/polypropylene nanocomposites with selectively distributed graphene
  publication-title: Polymer
  doi: 10.1016/j.polymer.2016.05.017
– volume: 7
  start-page: 6125
  year: 2015
  ident: 10.1016/j.jallcom.2016.11.170_bib2
  article-title: Electrically conductive polypropylene nanocomposites with negative permittivity at low carbon nanotube loading levels
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am5082183
– volume: 51
  start-page: 2643
  year: 2010
  ident: 10.1016/j.jallcom.2016.11.170_bib28
  article-title: Rheological behaviors and electrical conductivity of epoxy resin nanocomposites suspended with in-situ stabilized carbon nanofibers
  publication-title: Polymer
  doi: 10.1016/j.polymer.2010.04.019
– volume: 40
  start-page: 336
  year: 2000
  ident: 10.1016/j.jallcom.2016.11.170_bib34
  article-title: Surface structure of isotactic polypropylene by X-ray diffraction
  publication-title: Polym. Eng. Sci.
  doi: 10.1002/pen.11167
– volume: vol. 1
  year: 1995
  ident: 10.1016/j.jallcom.2016.11.170_bib33
– volume: 11
  start-page: 354
  year: 2015
  ident: 10.1016/j.jallcom.2016.11.170_bib29
  article-title: Optical properties of stabilized ZnO nanoparticles, perspective for UV-protection in sunscreens
  publication-title: Curr. Nanosci.
  doi: 10.2174/1573413710666141119221345
– volume: 14
  start-page: 2978
  year: 2004
  ident: 10.1016/j.jallcom.2016.11.170_bib14
  publication-title: J. Mater. Chem.
  doi: 10.1039/B403530E
– volume: 4
  start-page: 167
  year: 2002
  ident: 10.1016/j.jallcom.2016.11.170_bib24
  article-title: Degradation studies of polyolefins incorporating transparent nanoparticulate zinc oxide UV stabilizers
  publication-title: J. Nanopart. Res.
  doi: 10.1023/A:1020121700825
– volume: 215
  start-page: 327
  year: 2014
  ident: 10.1016/j.jallcom.2016.11.170_bib8
  article-title: Flame-retardant polypropylene/multiwall carbon nanotube nanocomposites: effects of surface functionalization and surfactant molecular weight
  publication-title: Macromol. Chem. Phys.
  doi: 10.1002/macp.201300608
– volume: 32
  start-page: 1469
  year: 1997
  ident: 10.1016/j.jallcom.2016.11.170_bib16
  publication-title: J. Mater. Sci.
  doi: 10.1023/A:1018553901058
– volume: 27
  start-page: 721
  year: 1986
  ident: 10.1016/j.jallcom.2016.11.170_bib40
  article-title: Melting behavior of isotactic polypropylene isothermally crystallized from the melt
  publication-title: Polymer
  doi: 10.1016/0032-3861(86)90130-8
– volume: 90
  start-page: 18
  year: 2016
  ident: 10.1016/j.jallcom.2016.11.170_bib5
  article-title: Interfacial crystallization and mechanical property of isotactic polypropylene based single-polymer composites
  publication-title: Polymer
  doi: 10.1016/j.polymer.2016.02.052
– volume: 118
  start-page: 24784
  year: 2014
  ident: 10.1016/j.jallcom.2016.11.170_bib7
  article-title: Electromagnetic field absorbing polypropylene nanocomposites with tuned permittivity and permeability by nanoiron and carbon nanotubes
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp507975r
– volume: 40
  start-page: 1719
  year: 1999
  ident: 10.1016/j.jallcom.2016.11.170_bib39
  article-title: Crystallization and melting behavior of polypropylene and maleated polypropylene blends
  publication-title: Polymer
  doi: 10.1016/S0032-3861(98)00404-2
– volume: 1
  start-page: 618
  year: 2012
  ident: 10.1016/j.jallcom.2016.11.170_bib35
  article-title: Oriented gamma phase in isotactic polypropylene homopolymer
  publication-title: ACS Macro Lett.
  doi: 10.1021/mz3000978
– volume: 427
  start-page: 7
  year: 2013
  ident: 10.1016/j.jallcom.2016.11.170_bib17
  article-title: UV-durable superhydrophobic textiles with UV-shielding properties by introduction of ZnO/SiO2 core/shell nanorods on PET fibers and hydrophobization
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2013.03.021
– volume: 502
  start-page: 24
  year: 2010
  ident: 10.1016/j.jallcom.2016.11.170_bib21
  article-title: Optical properties of ZnO/PMMA nanocomposite films
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2010.04.162
– volume: 48
  start-page: 1459
  year: 2007
  ident: 10.1016/j.jallcom.2016.11.170_bib19
  article-title: Photoluminescence of polyethylene oxide-ZnO composite electrospun fibers
  publication-title: Polymer
  doi: 10.1016/j.polymer.2007.01.039
– volume: 100
  start-page: 111
  year: 2016
  ident: 10.1016/j.jallcom.2016.11.170_bib3
  article-title: Interfacial interaction enhancement by shear-induced b-cylindrite in isotactic polypropylene/glass fiber composites
  publication-title: Polymer
  doi: 10.1016/j.polymer.2016.08.016
– volume: 98
  start-page: 1744
  year: 2013
  ident: 10.1016/j.jallcom.2016.11.170_bib13
  article-title: Zh. Guo, Structural evolution and degradation mechanism of Vectran fibers upon exposure to UV-radiation
  publication-title: Polym. Degrad. Stab.
  doi: 10.1016/j.polymdegradstab.2013.05.023
– volume: 90
  start-page: 1923
  year: 2003
  ident: 10.1016/j.jallcom.2016.11.170_bib20
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.12869
– volume: 36
  start-page: 169
  issue: 2
  year: 2013
  ident: 10.1016/j.jallcom.2016.11.170_bib22
  article-title: Transparent and UV-shielding nanocomposite films
  publication-title: Opt. Mater.
  doi: 10.1016/j.optmat.2013.08.021
– volume: 46
  start-page: 3149
  year: 2005
  ident: 10.1016/j.jallcom.2016.11.170_bib43
  publication-title: Polymer
  doi: 10.1016/j.polymer.2005.01.087
– volume: 19
  start-page: 4347
  year: 2007
  ident: 10.1016/j.jallcom.2016.11.170_bib23
  article-title: Bulk synthesis of transparent and homogeneous polymeric hybrid materials with ZnO quantum dots and PMMA
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200700736
– volume: 47
  start-page: 3207
  year: 2006
  ident: 10.1016/j.jallcom.2016.11.170_bib32
  publication-title: Polymer
  doi: 10.1016/j.polymer.2006.02.089
– volume: 17
  start-page: 806
  year: 2007
  ident: 10.1016/j.jallcom.2016.11.170_bib12
  article-title: Particle surface engineering effect on the mechanical, optical and photoluminescent properties of ZnO/vinyl-ester resin nanocomposites
  publication-title: J. Mater. Chem.
  doi: 10.1039/B613286C
– volume: 36
  start-page: 2821
  year: 1998
  ident: 10.1016/j.jallcom.2016.11.170_bib37
  article-title: Oriented γ-isotactic polypropylene crystallized at atmospheric pressure
  publication-title: J. Polym. Sci. Part B Polym. Phys.
  doi: 10.1002/(SICI)1099-0488(19981115)36:15<2821::AID-POLB16>3.0.CO;2-P
– volume: 29
  start-page: 584
  year: 1994
  ident: 10.1016/j.jallcom.2016.11.170_bib10
  publication-title: Mater. Sci.
  doi: 10.1007/BF00445969
– volume: 25
  start-page: 1462
  year: 1984
  ident: 10.1016/j.jallcom.2016.11.170_bib42
  article-title: Recrystallization kinetics of isotactic polypropylene (α-form)
  publication-title: Polymer
  doi: 10.1016/0032-3861(84)90110-1
– volume: 34
  start-page: 4083
  year: 1993
  ident: 10.1016/j.jallcom.2016.11.170_bib41
  article-title: Thermal behavior of polypropylene fractions: 2. The multiple melting peaks
  publication-title: Polymer
  doi: 10.1016/0032-3861(93)90670-6
SSID ssj0001931
Score 2.3198075
Snippet Products made of polypropylene (PP) are subject to photodegradation under UV-radiation leading to a change in the physical characteristics of the polymer. The...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 304
SubjectTerms Addition polymerization
Aminopropyltriethoxysilane
Amorphous structure
Crystal structure
Fourier transforms
Ketones
Molecular chains
Nanocomposites
Nanoparticles
Oxidation
Phase transformation
Photodegradation
Polypropylene
Protective coatings
Spectrophotometry
Tensile tests
Ultraviolet radiation
UV-radiation
Zinc oxide
ZnO nanoparticles
Title Effect of UV-radiation on structure and properties of PP nanocomposites
URI https://dx.doi.org/10.1016/j.jallcom.2016.11.170
https://www.proquest.com/docview/1935770274
Volume 707
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5EEfUgWhWrVfbgNWmy2c3jKEWtiqWgld6WzWYDlpKWtl797c7k4QtBEHIKuyHMTGa-yc58A3CRIAoPtbbEU5lhghL4Tmo94wQaLSqLZF71cT8Mwv5I3I3leA16TS8MlVXWvr_y6aW3ru90a2l25y8v3Ucv4XTmFyOiCBBnUEe5EBFZufv2WeaBAKWcmoeLHVr92cXTnbgTPZ1S0QhGwRCdh-vTzOLf49MPT12Gn-s92K1xI7usXm0f1mzRgq1eM66tBTtfmAVbsFlWdprlAdxU_MRslrPRs7MgKgLSBcOr4o59XVimi4zN6bf8gvhVae1wyApdzKjinMq67PIQRtdXT72-U09PcEwQRCuHW0z9PG1CL_eSWKLFxMbkkeUp9w1HpCZ0GAvidpG5TiKTciNNGqepybzEWB0cwXoxK-wxMD-TXJgssMKzIrZSSx6lMuGZ4BnCR78NopGZMjW1OE24mKqmhmyialErEjWmHQpF3Qb3Y9u84tb4a0PcKER9MxKF_v-vrZ1Ggar-SpcKbUNGESXmJ_9_8ilscwr1NM9IdmAdVWfPEKis0vPSEs9h4_L2vj94B5gn51M
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8NADA9zQ9QH0ak4ndoHX7u1114_HsdQN3VD0Ilvx_V6hY3RjW3-_ybrdX4gCEKfyqWUJE1-6eV-AbiOEYUHUmriqUyxQPFcO9GOsj2JHpWGPCvOcQ-GQW_k37_xtwp0y7Mw1FZpYn8R09fR2txpG2225-Nx-9mJGe35RYgoPMQZ4RbUiJ2KV6HW6T_0hpuAjBhlPTgP19sk8HmQpz1pTeR0Sn0jmAgDjB8tl8YW_56ifgTrdQa6PYB9Ax2tTvF2h1DReR12uuXEtjrsfSEXrMP2urlTLY_grqAotmaZNXq1F8RGQOaw8CroY98X2pJ5as3pz_yCKFZp7dOTlct8Rk3n1Nmll8cwur156fZsM0DBVp4XrmymsfpzpAqczIkjjk4TKZWFmiXMVQzBmi-DyCd6F57JOFQJU1wlUZKo1ImVlt4JVPNZrk_BclPOfJV62ne0H2kuOQsTHrPUZykiSLcBfqkzoQy7OA25mIqyjWwijKoFqRorD4GqbkBrIzYv6DX-EohKg4hvfiIwBfwl2iwNKMyHuhToGzwMqTY_-_-Tr2Cn9zJ4FI_94cM57DLK_DTeiDehimbUF4hbVsml8csPi3rqBA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+UV-radiation+on+structure+and+properties+of+PP+nanocomposites&rft.jtitle=Journal+of+alloys+and+compounds&rft.au=Senatova%2C+S.I.&rft.au=Senatov%2C+F.S.&rft.au=Kuznetsov%2C+D.V.&rft.au=Stepashkin%2C+A.A.&rft.date=2017-06-15&rft.issn=0925-8388&rft.volume=707&rft.spage=304&rft.epage=309&rft_id=info:doi/10.1016%2Fj.jallcom.2016.11.170&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jallcom_2016_11_170
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-8388&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-8388&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-8388&client=summon