Effect of UV-radiation on structure and properties of PP nanocomposites
Products made of polypropylene (PP) are subject to photodegradation under UV-radiation leading to a change in the physical characteristics of the polymer. The addition of UV-filters, like ZnO nanoparticles, contribute to absorb UV-radiation and protect the polymer matrix. In this study ZnO nanopowde...
Saved in:
Published in | Journal of alloys and compounds Vol. 707; pp. 304 - 309 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
15.06.2017
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Products made of polypropylene (PP) are subject to photodegradation under UV-radiation leading to a change in the physical characteristics of the polymer. The addition of UV-filters, like ZnO nanoparticles, contribute to absorb UV-radiation and protect the polymer matrix. In this study ZnO nanopowder with a particle size of 50 nm was modified by 3-aminopropyltriethoxysilane (APTES) and introduced into the PP matrix. The optimal concentration of nanoparticles was determined. PP-films with a thickness of 100 and 200 μm were obtained. Structural and mechanical characteristics before and after irradiation by UV-radiation were studied by means of FTIR-spectroscopy, XRD, DSC, UV-VIS spectrophotometry and tensile tests. It was observed that UV irradiation of PP leads to the break of molecular chains, therefore releasing more molecular segments released. These segments can move and form a new crystal structure in the initial amorphous phase. The oxidation index of PP increased due to the formation of ketones. ZnO nanoparticles modified by APTES acted as nucleation sites and γ-phase was formed in the polymer. Also, the addition of ZnO-APTES nanoparticles in the polymer promoted absorption of UV-radiation in the wavelength range of 200–400 nm, thus protecting the polymer from degradation.
•DSC data demonstrated the presence of two melting peaks of α-PP: α1-α2.•Introduction of 1% wt. ZnO-APTES led to decrease in transmittance and total absorbing in the UV region of 200–380 nm.•ZnO nanoparticles acted as nucleation centers during crystallization of PP from the melt.•ZnO-APTES nanoparticles led to reduction in oxidative degradation of the polymer under the action of UV-radiation. |
---|---|
AbstractList | Products made of polypropylene (PP) are subject to photodegradation under UV-radiation leading to a change in the physical characteristics of the polymer. The addition of UV-filters, like ZnO nanoparticles, contribute to absorb UV-radiation and protect the polymer matrix. In this study ZnO nanopowder with a particle size of 50 nm was modified by 3-aminopropyltriethoxysilane (APTES) and introduced into the PP matrix. The optimal concentration of nanoparticles was determined. PP-films with a thickness of 100 and 200 µm were obtained. Structural and mechanical characteristics before and after irradiation by UV-radiation were studied by means of FTIR-spectroscopy, XRD, DSC, UV-VIS spectrophotometry and tensile tests. It was observed that UV irradiation of PP leads to the break of molecular chains, therefore releasing more molecular segments released. These segments can move and form a new crystal structure in the initial amorphous phase. The oxidation index of PP increased due to the formation of ketones. ZnO nanoparticles modified by APTES acted as nucleation sites and γ-phase was formed in the polymer. Also, the addition of ZnO-APTES nanoparticles in the polymer promoted absorption of UV-radiation in the wavelength range of 200-400 nm, thus protecting the polymer from degradation. Products made of polypropylene (PP) are subject to photodegradation under UV-radiation leading to a change in the physical characteristics of the polymer. The addition of UV-filters, like ZnO nanoparticles, contribute to absorb UV-radiation and protect the polymer matrix. In this study ZnO nanopowder with a particle size of 50 nm was modified by 3-aminopropyltriethoxysilane (APTES) and introduced into the PP matrix. The optimal concentration of nanoparticles was determined. PP-films with a thickness of 100 and 200 μm were obtained. Structural and mechanical characteristics before and after irradiation by UV-radiation were studied by means of FTIR-spectroscopy, XRD, DSC, UV-VIS spectrophotometry and tensile tests. It was observed that UV irradiation of PP leads to the break of molecular chains, therefore releasing more molecular segments released. These segments can move and form a new crystal structure in the initial amorphous phase. The oxidation index of PP increased due to the formation of ketones. ZnO nanoparticles modified by APTES acted as nucleation sites and γ-phase was formed in the polymer. Also, the addition of ZnO-APTES nanoparticles in the polymer promoted absorption of UV-radiation in the wavelength range of 200–400 nm, thus protecting the polymer from degradation. •DSC data demonstrated the presence of two melting peaks of α-PP: α1-α2.•Introduction of 1% wt. ZnO-APTES led to decrease in transmittance and total absorbing in the UV region of 200–380 nm.•ZnO nanoparticles acted as nucleation centers during crystallization of PP from the melt.•ZnO-APTES nanoparticles led to reduction in oxidative degradation of the polymer under the action of UV-radiation. |
Author | Senatova, S.I. Issi, J.P. Stepashkin, A.A. Senatov, F.S. Kuznetsov, D.V. |
Author_xml | – sequence: 1 givenname: S.I. surname: Senatova fullname: Senatova, S.I. email: s-milyaeva@misis.ru – sequence: 2 givenname: F.S. surname: Senatov fullname: Senatov, F.S. – sequence: 3 givenname: D.V. surname: Kuznetsov fullname: Kuznetsov, D.V. – sequence: 4 givenname: A.A. surname: Stepashkin fullname: Stepashkin, A.A. – sequence: 5 givenname: J.P. orcidid: 0000-0003-0276-156X surname: Issi fullname: Issi, J.P. |
BookMark | eNqFkNFLwzAQxoNMcE7_BKHgc2uSNm2KDyJjTmHgHpyvIb1eIWVrZpIK_vdmbk--DA6Og-_77u53TSaDHZCQO0YzRln50Ge93m7B7jIex4yxjFX0gkyZrPK0KMt6Qqa05iKVuZRX5Nr7nlLK6pxNyXLRdQghsV2y-Uydbo0Oxg5JLB_cCGF0mOihTfbO7tEFg_6gXa-TQQ827txbbwL6G3LZ6a3H21Ofkc3L4mP-mq7el2_z51UKeV6FlKMoaqqhpB2tpUDdSoCuQt5wBpyKotClLASXueh0XUHDQUAjmwZaWgPqfEbuj7nxnq8RfVC9Hd0QV6r4kKgqyqsiqsRRBc5677BTe2d22v0oRtWBmerViZk6MFOMqcgs-h7_-cCEPyDBabM96346ujEC-DbolAeDA2BrXGSsWmvOJPwC5EWN_g |
CitedBy_id | crossref_primary_10_1590_0104_1428_20240047 crossref_primary_10_3390_ijms24097882 crossref_primary_10_1039_c8pp90065e crossref_primary_10_1002_pc_27509 crossref_primary_10_1088_1402_4896_ac5ce2 crossref_primary_10_1016_j_polymdegradstab_2017_10_016 crossref_primary_10_1149_2162_8777_ad105f crossref_primary_10_1007_s10118_019_2194_3 crossref_primary_10_1007_s10904_017_0568_y crossref_primary_10_1016_j_radphyschem_2021_109442 crossref_primary_10_3390_molecules27144448 crossref_primary_10_1016_j_foodhyd_2018_07_015 crossref_primary_10_9767_bcrec_20045 crossref_primary_10_1016_j_apsusc_2018_03_067 crossref_primary_10_1021_acs_iecr_8b02373 crossref_primary_10_3390_ma13040914 crossref_primary_10_1002_pat_70145 crossref_primary_10_1002_app_56529 crossref_primary_10_1016_j_nanoso_2024_101306 |
Cites_doi | 10.1021/ma102684f 10.1016/j.polymdegradstab.2004.12.014 10.1039/c0jm00063a 10.1016/0032-3861(93)90002-R 10.1021/cm031079k 10.1039/C1RA00758K 10.1016/j.polymdegradstab.2010.06.010 10.1021/jp2052536 10.1016/j.apcatb.2016.08.056 10.1021/cr00099a003 10.1039/c3cc40566d 10.1016/j.polymer.2016.05.017 10.1021/am5082183 10.1016/j.polymer.2010.04.019 10.1002/pen.11167 10.2174/1573413710666141119221345 10.1039/B403530E 10.1023/A:1020121700825 10.1002/macp.201300608 10.1023/A:1018553901058 10.1016/0032-3861(86)90130-8 10.1016/j.polymer.2016.02.052 10.1021/jp507975r 10.1016/S0032-3861(98)00404-2 10.1021/mz3000978 10.1016/j.colsurfa.2013.03.021 10.1016/j.jallcom.2010.04.162 10.1016/j.polymer.2007.01.039 10.1016/j.polymer.2016.08.016 10.1016/j.polymdegradstab.2013.05.023 10.1002/app.12869 10.1016/j.optmat.2013.08.021 10.1016/j.polymer.2005.01.087 10.1002/adma.200700736 10.1016/j.polymer.2006.02.089 10.1039/B613286C 10.1002/(SICI)1099-0488(19981115)36:15<2821::AID-POLB16>3.0.CO;2-P 10.1007/BF00445969 10.1016/0032-3861(84)90110-1 10.1016/0032-3861(93)90670-6 |
ContentType | Journal Article |
Copyright | 2016 Copyright Elsevier BV Jun 15, 2017 |
Copyright_xml | – notice: 2016 – notice: Copyright Elsevier BV Jun 15, 2017 |
DBID | AAYXX CITATION 8BQ 8FD JG9 |
DOI | 10.1016/j.jallcom.2016.11.170 |
DatabaseName | CrossRef METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Physics |
EISSN | 1873-4669 |
EndPage | 309 |
ExternalDocumentID | 10_1016_j_jallcom_2016_11_170 S0925838816336507 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNCT ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SPD SSM SSZ T5K TWZ XPP ZMT ~G- 29J AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ R2- SEW SMS SSH T9H WUQ 8BQ 8FD AFXIZ EFKBS JG9 |
ID | FETCH-LOGICAL-c337t-2e5490ac60f0985ead8ccf7e2b21c20544a68452835fa97cb2c5cb8bbcd09cea3 |
IEDL.DBID | .~1 |
ISSN | 0925-8388 |
IngestDate | Fri Jul 25 06:29:43 EDT 2025 Tue Jul 01 01:54:19 EDT 2025 Thu Apr 24 23:00:13 EDT 2025 Fri Feb 23 02:37:36 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Photodegradation UV-radiation Phase transformation ZnO nanoparticles Polypropylene |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c337t-2e5490ac60f0985ead8ccf7e2b21c20544a68452835fa97cb2c5cb8bbcd09cea3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0276-156X |
PQID | 1935770274 |
PQPubID | 2045454 |
PageCount | 6 |
ParticipantIDs | proquest_journals_1935770274 crossref_primary_10_1016_j_jallcom_2016_11_170 crossref_citationtrail_10_1016_j_jallcom_2016_11_170 elsevier_sciencedirect_doi_10_1016_j_jallcom_2016_11_170 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-06-15 |
PublicationDateYYYYMMDD | 2017-06-15 |
PublicationDate_xml | – month: 06 year: 2017 text: 2017-06-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Journal of alloys and compounds |
PublicationYear | 2017 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Zhang, Yan, He, Wei, Long, Guo, Gu, Yu, Liu, Ding, Sun, Wei, Guo (bib2) 2015; 7 Nishino, Matsumoto, Nakarnae (bib34) 2000; 40 Xue, Yin, Zhang, Zhang, Ji, Jia (bib17) 2013; 427 Gorelik, Rastorguev, Skakov (bib30) 2002 Galeski (bib31) 1999 Zhang, Luo, Gui (bib16) 1997; 32 Hench, West (bib15) 1990; 90 Kulyk, Kapustianyk, Tsybulskyy, Krupka, Sahraoui (bib21) 2010; 502 Zhang, Qin, Zheng, Dai, Liu, Yan, Guo, Shen, Guo (bib5) 2016; 90 Xiong, Gu, You, Wu (bib20) 2003; 90 Qiu, Gao, Yan, Guo, Umar, Guo, Wang (bib6) 2015; 5 van Erp, Balzano, Peters (bib35) 2012; 1 Sui, Shao, Liu (bib19) 2007; 48 Zhang, Zhuang, Xu, Hu (bib22) 2013; 36 Guo, Wei, Shedd, Scaffaro, Pereira, Hahn (bib12) 2007; 17 Ammala, Hill, Meakin, Pas, Turney (bib24) 2002; 4 Lan, Liu, Cao, Zhao, Dai, Yan, Zheng, Liu, Shen, Guo (bib4) 2016; 97 Zhu, Wei, Li, Sun, Haldolaarachchige, Young, Southworth, Khasanov, Luo, Guo (bib38) 2011; 44 Morlat, Mailhot, Gonzalez, Gardette (bib44) 2004; 16 Obadal, Raab, Verney, Commereuc (bib45) 2005; 88 He, Yuan, Luo, Haldolaarachchige, Young, Wei, Guo (bib9) 2013; 49 Qin, Zhang, Liu, Xie, Yang, Shen (bib43) 2005; 46 White, Turnbull (bib10) 1994; 29 Yadav, Jain (bib40) 1986; 27 Li, Toprak, Jo, Muhammed (bib23) 2007; 19 Dean, Register (bib37) 1998; 36 Qin, Xu, Zhang, Zheng, Yan, Dai, Liu, Shen, Guo (bib3) 2016; 100 Paukkeri, Lehtinen (bib41) 1993; 34 Zhu, Wei, Lee, Park, Willis, Haldolaarachchige, Young, Luo, Guo (bib25) 2012; 2 He, Yuan, Yan, Ding, Wang, Luo, Shen, Wei, Cao, Guo (bib8) 2014; 215 Karger-Kocsis (bib33) 1995; vol. 1 Campbell, Phillips, Lin (bib36) 1993; 34 Zhao, Li (bib32) 2006; 47 Zhu, Wei, Ryu, Budhathoki, Liang, Guo (bib27) 2010; 20 Senatova, Mandal, Senatov, Anisimova, Kondakov, Samanta, Kuznetsov (bib29) 2015; 11 Liu, Liu, Tan, Wang, Wei (bib13) 2013; 98 Cho, Li, Choi (bib39) 1999; 40 He, Yuan, Zhang, Yan, Guo, Ding, Khan, Young, Khasanov, Luo, Liu, Shen, Liu, Wei, Guo (bib7) 2014; 118 Yang, Christensen, Egerton, White (bib18) 2010; 95 Carfagna, De Rosa, Guerra, Petraccone (bib42) 1984; 25 N.S. Allen, M. Edge, Elsevier Science Publishers, Essex. (1994). Zhanga, Zhangb, Xiea, Guoc, Lyuc, Lib, Suna, Wangb, Guo (bib11) 2017; 201 Zhu, Wei, Haldolaarachchige, Young, Guo (bib26) 2011; 115 Yuwono, Liu, Xue, Wang, Elim, Ji, Li, White (bib14) 2004; 14 Zhu, Wei, Yadav, Guo (bib28) 2010; 51 Zhu (10.1016/j.jallcom.2016.11.170_bib38) 2011; 44 Kulyk (10.1016/j.jallcom.2016.11.170_bib21) 2010; 502 Zhu (10.1016/j.jallcom.2016.11.170_bib28) 2010; 51 Gorelik (10.1016/j.jallcom.2016.11.170_bib30) 2002 Zhang (10.1016/j.jallcom.2016.11.170_bib22) 2013; 36 Xue (10.1016/j.jallcom.2016.11.170_bib17) 2013; 427 Zhu (10.1016/j.jallcom.2016.11.170_bib27) 2010; 20 Dean (10.1016/j.jallcom.2016.11.170_bib37) 1998; 36 Guo (10.1016/j.jallcom.2016.11.170_bib12) 2007; 17 van Erp (10.1016/j.jallcom.2016.11.170_bib35) 2012; 1 Zhao (10.1016/j.jallcom.2016.11.170_bib32) 2006; 47 Zhu (10.1016/j.jallcom.2016.11.170_bib26) 2011; 115 Li (10.1016/j.jallcom.2016.11.170_bib23) 2007; 19 Paukkeri (10.1016/j.jallcom.2016.11.170_bib41) 1993; 34 Carfagna (10.1016/j.jallcom.2016.11.170_bib42) 1984; 25 Hench (10.1016/j.jallcom.2016.11.170_bib15) 1990; 90 Zhang (10.1016/j.jallcom.2016.11.170_bib16) 1997; 32 Qin (10.1016/j.jallcom.2016.11.170_bib3) 2016; 100 Nishino (10.1016/j.jallcom.2016.11.170_bib34) 2000; 40 He (10.1016/j.jallcom.2016.11.170_bib9) 2013; 49 Galeski (10.1016/j.jallcom.2016.11.170_bib31) 1999 Yadav (10.1016/j.jallcom.2016.11.170_bib40) 1986; 27 10.1016/j.jallcom.2016.11.170_bib1 Xiong (10.1016/j.jallcom.2016.11.170_bib20) 2003; 90 Karger-Kocsis (10.1016/j.jallcom.2016.11.170_bib33) 1995; vol. 1 Morlat (10.1016/j.jallcom.2016.11.170_bib44) 2004; 16 Zhanga (10.1016/j.jallcom.2016.11.170_bib11) 2017; 201 Yuwono (10.1016/j.jallcom.2016.11.170_bib14) 2004; 14 Campbell (10.1016/j.jallcom.2016.11.170_bib36) 1993; 34 He (10.1016/j.jallcom.2016.11.170_bib8) 2014; 215 Ammala (10.1016/j.jallcom.2016.11.170_bib24) 2002; 4 Obadal (10.1016/j.jallcom.2016.11.170_bib45) 2005; 88 Senatova (10.1016/j.jallcom.2016.11.170_bib29) 2015; 11 Zhang (10.1016/j.jallcom.2016.11.170_bib2) 2015; 7 Qiu (10.1016/j.jallcom.2016.11.170_bib6) 2015; 5 Liu (10.1016/j.jallcom.2016.11.170_bib13) 2013; 98 Yang (10.1016/j.jallcom.2016.11.170_bib18) 2010; 95 Lan (10.1016/j.jallcom.2016.11.170_bib4) 2016; 97 Sui (10.1016/j.jallcom.2016.11.170_bib19) 2007; 48 He (10.1016/j.jallcom.2016.11.170_bib7) 2014; 118 Zhu (10.1016/j.jallcom.2016.11.170_bib25) 2012; 2 Qin (10.1016/j.jallcom.2016.11.170_bib43) 2005; 46 Zhang (10.1016/j.jallcom.2016.11.170_bib5) 2016; 90 Cho (10.1016/j.jallcom.2016.11.170_bib39) 1999; 40 White (10.1016/j.jallcom.2016.11.170_bib10) 1994; 29 |
References_xml | – volume: 40 start-page: 1719 year: 1999 end-page: 1729 ident: bib39 article-title: Crystallization and melting behavior of polypropylene and maleated polypropylene blends publication-title: Polymer – volume: 90 start-page: 18 year: 2016 end-page: 25 ident: bib5 article-title: Interfacial crystallization and mechanical property of isotactic polypropylene based single-polymer composites publication-title: Polymer – year: 2002 ident: bib30 article-title: Rentgenograficheskij i jelektronno-opticheskij analiz – volume: 201 start-page: 470 year: 2017 end-page: 478 ident: bib11 article-title: Electrospun titania nanofibers segregated by graphene oxide for improved visible light photocatalysis publication-title: Appl. Catal. B Environ. – volume: 51 start-page: 2643 year: 2010 end-page: 2651 ident: bib28 article-title: Rheological behaviors and electrical conductivity of epoxy resin nanocomposites suspended with in-situ stabilized carbon nanofibers publication-title: Polymer – volume: 25 start-page: 1462 year: 1984 end-page: 1464 ident: bib42 article-title: Recrystallization kinetics of isotactic polypropylene (α-form) publication-title: Polymer – volume: 427 start-page: 7 year: 2013 end-page: 12 ident: bib17 article-title: UV-durable superhydrophobic textiles with UV-shielding properties by introduction of ZnO/SiO2 core/shell nanorods on PET fibers and hydrophobization publication-title: Colloids Surf. A Physicochem. Eng. Asp. – volume: 20 start-page: 4937 year: 2010 end-page: 4948 ident: bib27 article-title: In situ stabilized carbon nanofiber (CNF) reinforced epoxy nanocomposites publication-title: J. Mater. Chem. – volume: 34 start-page: 4809 year: 1993 end-page: 4816 ident: bib36 article-title: The gamma phase of high-molecularweight polypropylene: 1. Morphological aspects publication-title: Polymer – volume: 5 start-page: 51900 year: 2015 end-page: 51911 ident: bib6 article-title: Morphology-dependent performance of Mg3Al-CO3 layered double hydroxide as nanofiller for polypropylene nanocomposites publication-title: RCS Adv. – volume: 502 start-page: 24 year: 2010 end-page: 27 ident: bib21 article-title: Optical properties of ZnO/PMMA nanocomposite films publication-title: J. Alloys Compd. – start-page: 135 year: 1999 end-page: 141 ident: bib31 publication-title: Crystallization in Polypropylene: an A-Z Reference – volume: 49 start-page: 2679 year: 2013 end-page: 2681 ident: bib9 article-title: Morphology and phase controlled cobalt nanostructures in magnetic polypropylene nanocomposites: the role of alkyl chain-length in maleic anhydride grafted polypropylene publication-title: Chem. Commun. – volume: 98 start-page: 1744 year: 2013 end-page: 1753 ident: bib13 article-title: Zh. Guo, Structural evolution and degradation mechanism of Vectran fibers upon exposure to UV-radiation publication-title: Polym. Degrad. Stab. – volume: 2 start-page: 1136 year: 2012 end-page: 1143 ident: bib25 article-title: Silica stabilized iron particles toward anti-corrosion magnetic polyurethane nanocomposites publication-title: RSC Adv. – volume: 32 start-page: 1469 year: 1997 end-page: 1472 ident: bib16 publication-title: J. Mater. Sci. – volume: 29 start-page: 584 year: 1994 end-page: 613 ident: bib10 publication-title: Mater. Sci. – volume: 36 start-page: 169 year: 2013 end-page: 172 ident: bib22 article-title: Transparent and UV-shielding nanocomposite films publication-title: Opt. Mater. – volume: 14 start-page: 2978 year: 2004 end-page: 2987 ident: bib14 publication-title: J. Mater. Chem. – volume: 36 start-page: 2821 year: 1998 end-page: 2827 ident: bib37 article-title: Oriented γ-isotactic polypropylene crystallized at atmospheric pressure publication-title: J. Polym. Sci. Part B Polym. Phys. – volume: 40 start-page: 336 year: 2000 end-page: 343 ident: bib34 article-title: Surface structure of isotactic polypropylene by X-ray diffraction publication-title: Polym. Eng. Sci. – volume: 34 start-page: 4083 year: 1993 end-page: 4088 ident: bib41 article-title: Thermal behavior of polypropylene fractions: 2. The multiple melting peaks publication-title: Polymer – volume: 97 start-page: 11 year: 2016 end-page: 19 ident: bib4 article-title: Electrically conductive thermoplastic polyurethane/polypropylene nanocomposites with selectively distributed graphene publication-title: Polymer – volume: 115 start-page: 15304 year: 2011 end-page: 15310 ident: bib26 article-title: Electromagnetic field shielding polyurethane nanocomposites reinforced with core-shell Fe- silica nanoparticles publication-title: J. Phys. Chem. – volume: 90 start-page: 1923 year: 2003 end-page: 1931 ident: bib20 publication-title: J. Appl. Polym. Sci. – volume: 27 start-page: 721 year: 1986 end-page: 727 ident: bib40 article-title: Melting behavior of isotactic polypropylene isothermally crystallized from the melt publication-title: Polymer – reference: N.S. Allen, M. Edge, Elsevier Science Publishers, Essex. (1994). – volume: 118 start-page: 24784 year: 2014 end-page: 24796 ident: bib7 article-title: Electromagnetic field absorbing polypropylene nanocomposites with tuned permittivity and permeability by nanoiron and carbon nanotubes publication-title: J. Phys. Chem. C – volume: 17 start-page: 806 year: 2007 end-page: 813 ident: bib12 article-title: Particle surface engineering effect on the mechanical, optical and photoluminescent properties of ZnO/vinyl-ester resin nanocomposites publication-title: J. Mater. Chem. – volume: 90 start-page: 33 year: 1990 end-page: 72 ident: bib15 publication-title: Chem. Rev. – volume: 1 start-page: 618 year: 2012 end-page: 622 ident: bib35 article-title: Oriented gamma phase in isotactic polypropylene homopolymer publication-title: ACS Macro Lett. – volume: 16 start-page: 377 year: 2004 end-page: 383 ident: bib44 article-title: Photo-oxidation of polypropylene/montmorillonite nanocomposites. 1. Influence of nanoclay and compatibilizing agent publication-title: Chem. Mater. – volume: 11 start-page: 354 year: 2015 end-page: 359 ident: bib29 article-title: Optical properties of stabilized ZnO nanoparticles, perspective for UV-protection in sunscreens publication-title: Curr. Nanosci. – volume: 88 start-page: 532 year: 2005 end-page: 539 ident: bib45 publication-title: Degr. Stab. – volume: 7 start-page: 6125 year: 2015 end-page: 6138 ident: bib2 article-title: Electrically conductive polypropylene nanocomposites with negative permittivity at low carbon nanotube loading levels publication-title: ACS Appl. Mater. Interfaces – volume: 4 start-page: 167 year: 2002 end-page: 174 ident: bib24 article-title: Degradation studies of polyolefins incorporating transparent nanoparticulate zinc oxide UV stabilizers publication-title: J. Nanopart. Res. – volume: 47 start-page: 3207 year: 2006 end-page: 3217 ident: bib32 publication-title: Polymer – volume: 100 start-page: 111 year: 2016 end-page: 118 ident: bib3 article-title: Interfacial interaction enhancement by shear-induced b-cylindrite in isotactic polypropylene/glass fiber composites publication-title: Polymer – volume: 48 start-page: 1459 year: 2007 end-page: 1463 ident: bib19 article-title: Photoluminescence of polyethylene oxide-ZnO composite electrospun fibers publication-title: Polymer – volume: 19 start-page: 4347 year: 2007 end-page: 4352 ident: bib23 article-title: Bulk synthesis of transparent and homogeneous polymeric hybrid materials with ZnO quantum dots and PMMA publication-title: Adv. Mater. – volume: 46 start-page: 3149 year: 2005 end-page: 3156 ident: bib43 publication-title: Polymer – volume: vol. 1 year: 1995 ident: bib33 publication-title: Polypropylene: Structure, Blends and Composites. Structure and Morphology – volume: 215 start-page: 327 year: 2014 end-page: 340 ident: bib8 article-title: Flame-retardant polypropylene/multiwall carbon nanotube nanocomposites: effects of surface functionalization and surfactant molecular weight publication-title: Macromol. Chem. Phys. – volume: 95 start-page: 1533 year: 2010 end-page: 1541 ident: bib18 article-title: Degradation products formed during UV exposure of polyethylene–ZnO nano-composites publication-title: Polym. Degrad. Stab. – volume: 44 start-page: 4382 year: 2011 end-page: 4391 ident: bib38 article-title: Surfactant-free synthesized magnetic polypropylene nanocomposites: rheological, electrical, magnetic and thermal properties publication-title: Macromolecules – volume: 44 start-page: 4382 year: 2011 ident: 10.1016/j.jallcom.2016.11.170_bib38 article-title: Surfactant-free synthesized magnetic polypropylene nanocomposites: rheological, electrical, magnetic and thermal properties publication-title: Macromolecules doi: 10.1021/ma102684f – volume: 88 start-page: 532 year: 2005 ident: 10.1016/j.jallcom.2016.11.170_bib45 publication-title: Degr. Stab. doi: 10.1016/j.polymdegradstab.2004.12.014 – start-page: 135 year: 1999 ident: 10.1016/j.jallcom.2016.11.170_bib31 – volume: 5 start-page: 51900 year: 2015 ident: 10.1016/j.jallcom.2016.11.170_bib6 article-title: Morphology-dependent performance of Mg3Al-CO3 layered double hydroxide as nanofiller for polypropylene nanocomposites publication-title: RCS Adv. – volume: 20 start-page: 4937 year: 2010 ident: 10.1016/j.jallcom.2016.11.170_bib27 article-title: In situ stabilized carbon nanofiber (CNF) reinforced epoxy nanocomposites publication-title: J. Mater. Chem. doi: 10.1039/c0jm00063a – volume: 34 start-page: 4809 year: 1993 ident: 10.1016/j.jallcom.2016.11.170_bib36 article-title: The gamma phase of high-molecularweight polypropylene: 1. Morphological aspects publication-title: Polymer doi: 10.1016/0032-3861(93)90002-R – volume: 16 start-page: 377 year: 2004 ident: 10.1016/j.jallcom.2016.11.170_bib44 article-title: Photo-oxidation of polypropylene/montmorillonite nanocomposites. 1. Influence of nanoclay and compatibilizing agent publication-title: Chem. Mater. doi: 10.1021/cm031079k – volume: 2 start-page: 1136 year: 2012 ident: 10.1016/j.jallcom.2016.11.170_bib25 article-title: Silica stabilized iron particles toward anti-corrosion magnetic polyurethane nanocomposites publication-title: RSC Adv. doi: 10.1039/C1RA00758K – volume: 95 start-page: 1533 year: 2010 ident: 10.1016/j.jallcom.2016.11.170_bib18 article-title: Degradation products formed during UV exposure of polyethylene–ZnO nano-composites publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2010.06.010 – volume: 115 start-page: 15304 year: 2011 ident: 10.1016/j.jallcom.2016.11.170_bib26 article-title: Electromagnetic field shielding polyurethane nanocomposites reinforced with core-shell Fe- silica nanoparticles publication-title: J. Phys. Chem. doi: 10.1021/jp2052536 – year: 2002 ident: 10.1016/j.jallcom.2016.11.170_bib30 – ident: 10.1016/j.jallcom.2016.11.170_bib1 – volume: 201 start-page: 470 year: 2017 ident: 10.1016/j.jallcom.2016.11.170_bib11 article-title: Electrospun titania nanofibers segregated by graphene oxide for improved visible light photocatalysis publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2016.08.056 – volume: 90 start-page: 33 year: 1990 ident: 10.1016/j.jallcom.2016.11.170_bib15 publication-title: Chem. Rev. doi: 10.1021/cr00099a003 – volume: 49 start-page: 2679 year: 2013 ident: 10.1016/j.jallcom.2016.11.170_bib9 article-title: Morphology and phase controlled cobalt nanostructures in magnetic polypropylene nanocomposites: the role of alkyl chain-length in maleic anhydride grafted polypropylene publication-title: Chem. Commun. doi: 10.1039/c3cc40566d – volume: 97 start-page: 11 year: 2016 ident: 10.1016/j.jallcom.2016.11.170_bib4 article-title: Electrically conductive thermoplastic polyurethane/polypropylene nanocomposites with selectively distributed graphene publication-title: Polymer doi: 10.1016/j.polymer.2016.05.017 – volume: 7 start-page: 6125 year: 2015 ident: 10.1016/j.jallcom.2016.11.170_bib2 article-title: Electrically conductive polypropylene nanocomposites with negative permittivity at low carbon nanotube loading levels publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am5082183 – volume: 51 start-page: 2643 year: 2010 ident: 10.1016/j.jallcom.2016.11.170_bib28 article-title: Rheological behaviors and electrical conductivity of epoxy resin nanocomposites suspended with in-situ stabilized carbon nanofibers publication-title: Polymer doi: 10.1016/j.polymer.2010.04.019 – volume: 40 start-page: 336 year: 2000 ident: 10.1016/j.jallcom.2016.11.170_bib34 article-title: Surface structure of isotactic polypropylene by X-ray diffraction publication-title: Polym. Eng. Sci. doi: 10.1002/pen.11167 – volume: vol. 1 year: 1995 ident: 10.1016/j.jallcom.2016.11.170_bib33 – volume: 11 start-page: 354 year: 2015 ident: 10.1016/j.jallcom.2016.11.170_bib29 article-title: Optical properties of stabilized ZnO nanoparticles, perspective for UV-protection in sunscreens publication-title: Curr. Nanosci. doi: 10.2174/1573413710666141119221345 – volume: 14 start-page: 2978 year: 2004 ident: 10.1016/j.jallcom.2016.11.170_bib14 publication-title: J. Mater. Chem. doi: 10.1039/B403530E – volume: 4 start-page: 167 year: 2002 ident: 10.1016/j.jallcom.2016.11.170_bib24 article-title: Degradation studies of polyolefins incorporating transparent nanoparticulate zinc oxide UV stabilizers publication-title: J. Nanopart. Res. doi: 10.1023/A:1020121700825 – volume: 215 start-page: 327 year: 2014 ident: 10.1016/j.jallcom.2016.11.170_bib8 article-title: Flame-retardant polypropylene/multiwall carbon nanotube nanocomposites: effects of surface functionalization and surfactant molecular weight publication-title: Macromol. Chem. Phys. doi: 10.1002/macp.201300608 – volume: 32 start-page: 1469 year: 1997 ident: 10.1016/j.jallcom.2016.11.170_bib16 publication-title: J. Mater. Sci. doi: 10.1023/A:1018553901058 – volume: 27 start-page: 721 year: 1986 ident: 10.1016/j.jallcom.2016.11.170_bib40 article-title: Melting behavior of isotactic polypropylene isothermally crystallized from the melt publication-title: Polymer doi: 10.1016/0032-3861(86)90130-8 – volume: 90 start-page: 18 year: 2016 ident: 10.1016/j.jallcom.2016.11.170_bib5 article-title: Interfacial crystallization and mechanical property of isotactic polypropylene based single-polymer composites publication-title: Polymer doi: 10.1016/j.polymer.2016.02.052 – volume: 118 start-page: 24784 year: 2014 ident: 10.1016/j.jallcom.2016.11.170_bib7 article-title: Electromagnetic field absorbing polypropylene nanocomposites with tuned permittivity and permeability by nanoiron and carbon nanotubes publication-title: J. Phys. Chem. C doi: 10.1021/jp507975r – volume: 40 start-page: 1719 year: 1999 ident: 10.1016/j.jallcom.2016.11.170_bib39 article-title: Crystallization and melting behavior of polypropylene and maleated polypropylene blends publication-title: Polymer doi: 10.1016/S0032-3861(98)00404-2 – volume: 1 start-page: 618 year: 2012 ident: 10.1016/j.jallcom.2016.11.170_bib35 article-title: Oriented gamma phase in isotactic polypropylene homopolymer publication-title: ACS Macro Lett. doi: 10.1021/mz3000978 – volume: 427 start-page: 7 year: 2013 ident: 10.1016/j.jallcom.2016.11.170_bib17 article-title: UV-durable superhydrophobic textiles with UV-shielding properties by introduction of ZnO/SiO2 core/shell nanorods on PET fibers and hydrophobization publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2013.03.021 – volume: 502 start-page: 24 year: 2010 ident: 10.1016/j.jallcom.2016.11.170_bib21 article-title: Optical properties of ZnO/PMMA nanocomposite films publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2010.04.162 – volume: 48 start-page: 1459 year: 2007 ident: 10.1016/j.jallcom.2016.11.170_bib19 article-title: Photoluminescence of polyethylene oxide-ZnO composite electrospun fibers publication-title: Polymer doi: 10.1016/j.polymer.2007.01.039 – volume: 100 start-page: 111 year: 2016 ident: 10.1016/j.jallcom.2016.11.170_bib3 article-title: Interfacial interaction enhancement by shear-induced b-cylindrite in isotactic polypropylene/glass fiber composites publication-title: Polymer doi: 10.1016/j.polymer.2016.08.016 – volume: 98 start-page: 1744 year: 2013 ident: 10.1016/j.jallcom.2016.11.170_bib13 article-title: Zh. Guo, Structural evolution and degradation mechanism of Vectran fibers upon exposure to UV-radiation publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2013.05.023 – volume: 90 start-page: 1923 year: 2003 ident: 10.1016/j.jallcom.2016.11.170_bib20 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.12869 – volume: 36 start-page: 169 issue: 2 year: 2013 ident: 10.1016/j.jallcom.2016.11.170_bib22 article-title: Transparent and UV-shielding nanocomposite films publication-title: Opt. Mater. doi: 10.1016/j.optmat.2013.08.021 – volume: 46 start-page: 3149 year: 2005 ident: 10.1016/j.jallcom.2016.11.170_bib43 publication-title: Polymer doi: 10.1016/j.polymer.2005.01.087 – volume: 19 start-page: 4347 year: 2007 ident: 10.1016/j.jallcom.2016.11.170_bib23 article-title: Bulk synthesis of transparent and homogeneous polymeric hybrid materials with ZnO quantum dots and PMMA publication-title: Adv. Mater. doi: 10.1002/adma.200700736 – volume: 47 start-page: 3207 year: 2006 ident: 10.1016/j.jallcom.2016.11.170_bib32 publication-title: Polymer doi: 10.1016/j.polymer.2006.02.089 – volume: 17 start-page: 806 year: 2007 ident: 10.1016/j.jallcom.2016.11.170_bib12 article-title: Particle surface engineering effect on the mechanical, optical and photoluminescent properties of ZnO/vinyl-ester resin nanocomposites publication-title: J. Mater. Chem. doi: 10.1039/B613286C – volume: 36 start-page: 2821 year: 1998 ident: 10.1016/j.jallcom.2016.11.170_bib37 article-title: Oriented γ-isotactic polypropylene crystallized at atmospheric pressure publication-title: J. Polym. Sci. Part B Polym. Phys. doi: 10.1002/(SICI)1099-0488(19981115)36:15<2821::AID-POLB16>3.0.CO;2-P – volume: 29 start-page: 584 year: 1994 ident: 10.1016/j.jallcom.2016.11.170_bib10 publication-title: Mater. Sci. doi: 10.1007/BF00445969 – volume: 25 start-page: 1462 year: 1984 ident: 10.1016/j.jallcom.2016.11.170_bib42 article-title: Recrystallization kinetics of isotactic polypropylene (α-form) publication-title: Polymer doi: 10.1016/0032-3861(84)90110-1 – volume: 34 start-page: 4083 year: 1993 ident: 10.1016/j.jallcom.2016.11.170_bib41 article-title: Thermal behavior of polypropylene fractions: 2. The multiple melting peaks publication-title: Polymer doi: 10.1016/0032-3861(93)90670-6 |
SSID | ssj0001931 |
Score | 2.3198075 |
Snippet | Products made of polypropylene (PP) are subject to photodegradation under UV-radiation leading to a change in the physical characteristics of the polymer. The... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 304 |
SubjectTerms | Addition polymerization Aminopropyltriethoxysilane Amorphous structure Crystal structure Fourier transforms Ketones Molecular chains Nanocomposites Nanoparticles Oxidation Phase transformation Photodegradation Polypropylene Protective coatings Spectrophotometry Tensile tests Ultraviolet radiation UV-radiation Zinc oxide ZnO nanoparticles |
Title | Effect of UV-radiation on structure and properties of PP nanocomposites |
URI | https://dx.doi.org/10.1016/j.jallcom.2016.11.170 https://www.proquest.com/docview/1935770274 |
Volume | 707 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5EEfUgWhWrVfbgNWmy2c3jKEWtiqWgld6WzWYDlpKWtl797c7k4QtBEHIKuyHMTGa-yc58A3CRIAoPtbbEU5lhghL4Tmo94wQaLSqLZF71cT8Mwv5I3I3leA16TS8MlVXWvr_y6aW3ru90a2l25y8v3Ucv4XTmFyOiCBBnUEe5EBFZufv2WeaBAKWcmoeLHVr92cXTnbgTPZ1S0QhGwRCdh-vTzOLf49MPT12Gn-s92K1xI7usXm0f1mzRgq1eM66tBTtfmAVbsFlWdprlAdxU_MRslrPRs7MgKgLSBcOr4o59XVimi4zN6bf8gvhVae1wyApdzKjinMq67PIQRtdXT72-U09PcEwQRCuHW0z9PG1CL_eSWKLFxMbkkeUp9w1HpCZ0GAvidpG5TiKTciNNGqepybzEWB0cwXoxK-wxMD-TXJgssMKzIrZSSx6lMuGZ4BnCR78NopGZMjW1OE24mKqmhmyialErEjWmHQpF3Qb3Y9u84tb4a0PcKER9MxKF_v-vrZ1Ggar-SpcKbUNGESXmJ_9_8ilscwr1NM9IdmAdVWfPEKis0vPSEs9h4_L2vj94B5gn51M |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8NADA9zQ9QH0ak4ndoHX7u1114_HsdQN3VD0Ilvx_V6hY3RjW3-_ybrdX4gCEKfyqWUJE1-6eV-AbiOEYUHUmriqUyxQPFcO9GOsj2JHpWGPCvOcQ-GQW_k37_xtwp0y7Mw1FZpYn8R09fR2txpG2225-Nx-9mJGe35RYgoPMQZ4RbUiJ2KV6HW6T_0hpuAjBhlPTgP19sk8HmQpz1pTeR0Sn0jmAgDjB8tl8YW_56ifgTrdQa6PYB9Ax2tTvF2h1DReR12uuXEtjrsfSEXrMP2urlTLY_grqAotmaZNXq1F8RGQOaw8CroY98X2pJ5as3pz_yCKFZp7dOTlct8Rk3n1Nmll8cwur156fZsM0DBVp4XrmymsfpzpAqczIkjjk4TKZWFmiXMVQzBmi-DyCd6F57JOFQJU1wlUZKo1ImVlt4JVPNZrk_BclPOfJV62ne0H2kuOQsTHrPUZykiSLcBfqkzoQy7OA25mIqyjWwijKoFqRorD4GqbkBrIzYv6DX-EohKg4hvfiIwBfwl2iwNKMyHuhToGzwMqTY_-_-Tr2Cn9zJ4FI_94cM57DLK_DTeiDehimbUF4hbVsml8csPi3rqBA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+UV-radiation+on+structure+and+properties+of+PP+nanocomposites&rft.jtitle=Journal+of+alloys+and+compounds&rft.au=Senatova%2C+S.I.&rft.au=Senatov%2C+F.S.&rft.au=Kuznetsov%2C+D.V.&rft.au=Stepashkin%2C+A.A.&rft.date=2017-06-15&rft.issn=0925-8388&rft.volume=707&rft.spage=304&rft.epage=309&rft_id=info:doi/10.1016%2Fj.jallcom.2016.11.170&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jallcom_2016_11_170 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-8388&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-8388&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-8388&client=summon |