Uniform global attractors for non-isothermal viscous and non-viscous Cahn–Hilliard equations with dynamic boundary conditions
We consider a model of non-isothermal phase separation taking place in a confined container. The order parameter ϕ is governed by a viscous or non-viscous Cahn–Hilliard type equation which is coupled with a heat equation for the temperature θ . The former is subject to a non-linear dynamic boundary...
Saved in:
Published in | Nonlinear analysis: real world applications Vol. 10; no. 3; pp. 1738 - 1766 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.06.2009
|
Subjects | |
Online Access | Get full text |
ISSN | 1468-1218 1878-5719 |
DOI | 10.1016/j.nonrwa.2008.02.013 |
Cover
Loading…
Abstract | We consider a model of non-isothermal phase separation taking place in a confined container. The order parameter
ϕ
is governed by a viscous or non-viscous Cahn–Hilliard type equation which is coupled with a heat equation for the temperature
θ
. The former is subject to a non-linear dynamic boundary condition recently proposed by physicists to account for interactions with the walls, while the latter is endowed with a standard (Dirichlet, Neumann or Robin) boundary condition. We indicate by
α
the viscosity coefficient, by
ε
a (small) relaxation parameter multiplying
∂
t
θ
in the heat equation and by
δ
a small latent heat coefficient (satisfying
δ
≤
λ
α
,
λ
>
0
) multiplying
Δ
θ
in the Cahn–Hilliard equation and
∂
t
ϕ
in the heat equation. We analyze the asymptotic behavior of the solutions within the theory of infinite-dimensional dynamical systems. We first prove that the model generates a strongly continuous semigroup on a suitable phase space
Y
K
α
(depending on the choice of the boundary conditions) which possesses the global attractor
A
ε
,
δ
,
α
. Our main results allow us to show that a proper lifting
A
0
,
0
,
α
,
α
>
0
, of the global attractor of the well-known viscous Cahn–Hilliard equation (that is, the system corresponding to
(
ε
,
δ
)
=
(
0
,
0
)
) is upper semicontinuous at
(
0
,
0
)
with respect to the family
{
A
ε
,
δ
,
α
}
ε
,
δ
,
α
>
0
. We also establish that the global attractor
A
0
,
0
,
0
of the non-viscous Cahn–Hilliard equation (corresponding to
(
ε
,
α
)
=
(
0
,
0
)
) is upper semicontinuous at
(
0
,
0
)
with respect to the same family of global attractors. Finally, the existence of exponential attractors
M
ε
,
δ
,
α
is also obtained in the cases
ε
≠
0
,
δ
≠
0
,
α
≠
0
,
(
0
,
δ
,
α
)
,
δ
≠
0
,
α
≠
0
and
(
ε
,
δ
,
α
)
=
(
0
,
0
,
α
)
,
α
≥
0
, respectively. This allows us to infer that, for each
(
ε
,
δ
,
α
)
∈
[
0
,
ε
0
]
×
[
0
,
δ
0
]
×
[
0
,
α
0
]
,
A
ε
,
δ
,
α
has finite fractal dimension and this dimension is bounded, uniformly with respect to
ε
,
δ
and
α
. |
---|---|
AbstractList | We consider a model of non-isothermal phase separation taking place in a confined container. The order parameter is governed by a viscous or non-viscous Cahn-Hilliard type equation which is coupled with a heat equation for the temperature c. The former is subject to a non-linear dynamic boundary condition recently proposed by physicists to account for interactions with the walls, while the latter is endowed with a standard (Dirichlet, Neumann or Robin) boundary condition. We indicate by a the viscosity coefficient, by e a (small) relaxation parameter multiplying {partial differential}tc in the heat equation and by d a small latent heat coefficient (satisfying d < =la, l > 0) multiplying c in the Cahn-Hilliard equation and {partial differential}t in the heat equation. We analyze the asymptotic behavior of the solutions within the theory of infinite-dimensional dynamical systems. We first prove that the model generates a strongly continuous semigroup on a suitable phase space (depending on the choice of the boundary conditions) which possesses the global attractor . Our main results allow us to show that a proper lifting , of the global attractor of the well-known viscous Cahn-Hilliard equation (that is, the system corresponding to (e,d)=(0,0)) is upper semicontinuous at (0,0) with respect to the family . We also establish that the global attractor of the non-viscous Cahn-Hilliard equation (corresponding to (e,a)=(0,0)) is upper semicontinuous at (0,0) with respect to the same family of global attractors. Finally, the existence of exponential attractors is also obtained in the cases e not = 0,d not = 0, a not = 0, (0,d,a),d not = 0, a not = 0 and (e,d,a)=(0,0,a),a > =0, respectively. This allows us to infer that, for each has finite fractal dimension and this dimension is bounded, uniformly with respect to and a. We consider a model of non-isothermal phase separation taking place in a confined container. The order parameter ϕ is governed by a viscous or non-viscous Cahn–Hilliard type equation which is coupled with a heat equation for the temperature θ . The former is subject to a non-linear dynamic boundary condition recently proposed by physicists to account for interactions with the walls, while the latter is endowed with a standard (Dirichlet, Neumann or Robin) boundary condition. We indicate by α the viscosity coefficient, by ε a (small) relaxation parameter multiplying ∂ t θ in the heat equation and by δ a small latent heat coefficient (satisfying δ ≤ λ α , λ > 0 ) multiplying Δ θ in the Cahn–Hilliard equation and ∂ t ϕ in the heat equation. We analyze the asymptotic behavior of the solutions within the theory of infinite-dimensional dynamical systems. We first prove that the model generates a strongly continuous semigroup on a suitable phase space Y K α (depending on the choice of the boundary conditions) which possesses the global attractor A ε , δ , α . Our main results allow us to show that a proper lifting A 0 , 0 , α , α > 0 , of the global attractor of the well-known viscous Cahn–Hilliard equation (that is, the system corresponding to ( ε , δ ) = ( 0 , 0 ) ) is upper semicontinuous at ( 0 , 0 ) with respect to the family { A ε , δ , α } ε , δ , α > 0 . We also establish that the global attractor A 0 , 0 , 0 of the non-viscous Cahn–Hilliard equation (corresponding to ( ε , α ) = ( 0 , 0 ) ) is upper semicontinuous at ( 0 , 0 ) with respect to the same family of global attractors. Finally, the existence of exponential attractors M ε , δ , α is also obtained in the cases ε ≠ 0 , δ ≠ 0 , α ≠ 0 , ( 0 , δ , α ) , δ ≠ 0 , α ≠ 0 and ( ε , δ , α ) = ( 0 , 0 , α ) , α ≥ 0 , respectively. This allows us to infer that, for each ( ε , δ , α ) ∈ [ 0 , ε 0 ] × [ 0 , δ 0 ] × [ 0 , α 0 ] , A ε , δ , α has finite fractal dimension and this dimension is bounded, uniformly with respect to ε , δ and α . |
Author | Gal, Ciprian G. Miranville, Alain |
Author_xml | – sequence: 1 givenname: Ciprian G. surname: Gal fullname: Gal, Ciprian G. email: ciprian@math.missouri.edu organization: Department of Mathematics, University of Missouri, 202 Mathematical Sciences Bldg, Columbia, MO, 65211, USA – sequence: 2 givenname: Alain surname: Miranville fullname: Miranville, Alain email: Alain.Miranville@math.univ-poitiers.fr organization: Laboratoire de Mathématiques et Applications, Université de Poitiers, Boulevard Marie et Pierre Curie - Téléport 2, 86962 Chasseneuil Futuroscope Cedex, France |
BookMark | eNqFkL1OHDEUhS20SGGBN0jhKt0M_psZTwoktIKAhJQGasvjH9arGZu1vaCtknfgDfMkmF1oUkBl-95zjny-OZj54A0A3zGqMcLt2aoug_gsa4IQrxGpEaYH4AjzjldNh_tZubOWV5hg_g3MU1ohhDtM8RH4c--dDXGCD2MY5AhlzlGqHGKCZQxLbuVSyEsTp7J9ckmFTYLS693q472QS__v78u1G0cno4ZmvZHZBZ_gs8tLqLdeTk7BIWy8lnELVfDa7QQn4NDKMZnT9_MY3F9d3i2uq9vfv24WF7eVorTLFRlapRsmKUIMMUw0oj0eMDeN7RtGOkYGLZllTCtmjTINt9aillqObC-5pcfgxz73MYb1xqQspvJ3M47Sm9JA0JbxviG0CH_uhSqGlKKxQrm8K1PAuFFgJN6Yi5XYMxdvzAUiojAvZvaf-TG6qTT-yna-t5lC4MmZKJJyxiujXTQqCx3c5wGvN5ylGA |
CitedBy_id | crossref_primary_10_1016_j_jfa_2013_10_017 crossref_primary_10_1007_s12044_013_0146_3 crossref_primary_10_1016_j_jde_2013_04_007 crossref_primary_10_1016_j_jmaa_2016_05_054 crossref_primary_10_3934_dcdsb_2013_18_1581 crossref_primary_10_1016_j_nonrwa_2022_103689 crossref_primary_10_3934_cpaa_2018035 crossref_primary_10_1016_j_na_2009_11_043 crossref_primary_10_1007_s00009_021_01874_7 crossref_primary_10_1007_s10114_017_7245_5 crossref_primary_10_1016_j_na_2016_04_014 crossref_primary_10_1016_j_nonrwa_2016_11_002 crossref_primary_10_1007_s00332_011_9109_y crossref_primary_10_1093_imanum_drab045 crossref_primary_10_3390_fractalfract6090505 crossref_primary_10_3934_cpaa_2014_13_1855 crossref_primary_10_1155_2017_5196513 crossref_primary_10_1002_mma_1432 crossref_primary_10_1137_19M1286839 crossref_primary_10_3390_sym16060665 crossref_primary_10_3934_era_2022143 crossref_primary_10_1007_s11854_023_0306_z crossref_primary_10_1007_s00033_013_0395_0 crossref_primary_10_1007_s41808_020_00072_y crossref_primary_10_1007_s00205_019_01356_x crossref_primary_10_1016_j_nonrwa_2014_05_003 crossref_primary_10_1007_s00032_011_0165_4 crossref_primary_10_3934_Math_2017_2_479 |
Cites_doi | 10.1080/00036819108840173 10.1016/S0010-4655(00)00159-4 10.1016/0362-546X(94)90255-0 10.1016/S0764-4442(00)00259-7 10.1016/0893-9659(91)90076-8 10.57262/ade/1355867704 10.1006/jdeq.1995.1056 10.1007/BF01049391 10.1007/s10231-005-0175-3 10.57262/ade/1355926869 10.1016/j.jde.2007.05.003 10.1002/mana.200310186 10.1007/BF00254827 10.1007/BF00251803 10.1016/0001-6160(79)90196-2 10.5209/rev_REMA.2002.v15.n1.16964 10.1017/S0308210500030663 10.1103/PhysRevLett.79.893 10.1002/mana.200410431 10.1006/jdeq.1999.3753 10.1209/epl/i1998-00550-y 10.1002/mma.590 10.4171/ZAA/1277 10.1016/j.jde.2004.05.004 10.3934/cpaa.2005.4.683 10.1063/1.1744102 10.1093/imamat/44.1.77 10.1216/jiea/1181074968 10.1090/conm/306/05251 |
ContentType | Journal Article |
Copyright | 2008 Elsevier Ltd |
Copyright_xml | – notice: 2008 Elsevier Ltd |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 H8D JQ2 KR7 L7M L~C L~D |
DOI | 10.1016/j.nonrwa.2008.02.013 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1878-5719 |
EndPage | 1766 |
ExternalDocumentID | 10_1016_j_nonrwa_2008_02_013 S1468121808000564 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1~. 1~5 29N 4.4 457 4G. 5VS 6OB 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADGUI ADMUD ADTZH AEBSH AECPX AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W J9A JJJVA KOM M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSW SSZ T5K XPP YQT ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH 7SC 7TB 8FD EFKBS FR3 H8D JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c337t-2b6cd54a30040412d0391b18e5f9542742bda4f44dc4fece58fff063f80f9a8f3 |
IEDL.DBID | .~1 |
ISSN | 1468-1218 |
IngestDate | Fri Sep 05 00:44:48 EDT 2025 Tue Jul 01 01:04:47 EDT 2025 Thu Apr 24 22:58:50 EDT 2025 Fri Feb 23 02:20:03 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Exponential attractors Dynamic boundary conditions Non-isothermal Cahn–Hilliard equations Viscous Cahn–Hilliard equation Global attractors |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c337t-2b6cd54a30040412d0391b18e5f9542742bda4f44dc4fece58fff063f80f9a8f3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 36489523 |
PQPubID | 23500 |
PageCount | 29 |
ParticipantIDs | proquest_miscellaneous_36489523 crossref_citationtrail_10_1016_j_nonrwa_2008_02_013 crossref_primary_10_1016_j_nonrwa_2008_02_013 elsevier_sciencedirect_doi_10_1016_j_nonrwa_2008_02_013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-06-01 |
PublicationDateYYYYMMDD | 2009-06-01 |
PublicationDate_xml | – month: 06 year: 2009 text: 2009-06-01 day: 01 |
PublicationDecade | 2000 |
PublicationTitle | Nonlinear analysis: real world applications |
PublicationYear | 2009 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Prüss, Wilke (b41) 2006; vol. 168 Caginalp (b8) 1986; 92 Caginalp (b9) 1990; 44 Brokate, Sprekels (b6) 1996 Fischer, Maass, Dieterich (b19) 1997; 79 Kenzler, Eurich, Maass, Rinn, Schropp, Bohl, Dieterich (b31) 2001; 133 Brochet, Hilhorst (b5) 1991; 4 C.G. Gal, M. Grasselli, A. Miranville, Exponential attractors for singularly perturbed phase-field equations with dynamic boundary conditions, NoDEA Nonlinear Differential Equations Appl. (in press) Elliott, Zheng (b18) 1986; 96 Cahn, Hilliard (b7) 1958; 28 C.G. Gal, M. Grasselli, The non-isothermal Allen-Cahn equation with dynamic boundary conditions, Discrete Contin. Dynam. Syst. A (in press) Novick-Cohen (b39) 1988 Zheng (b48) 1986; 3 Grasselli, Petzeltová, Schimperna (b27) 2007; 239 Zhang (b47) 2005; 4 Grasselli, Petzeltová, Schimperna (b26) 2006; 25 Miranville, Zelik (b36) 2005; 28 Cherfils, Miranville (b10) 2007; 17 Kalantarov (b29) 1991; 188 Laurençot (b33) 1996; 126 Gatti, Miranville (b24) 2006; vol. 251 Kapustyan (b30) 1999; 51 Zheng (b50) 2004 Bates, Zheng (b3) 1992; 4 Ladyzenskaya, Solonnikov, Uraltseva (b34) 1967 Prüss, Racke, Zheng (b40) 2006; 185 Elliott, Zheng (b17) 1990; vol. 95 Sato, Aiki (b43) 2001; 5 Novick-Cohen (b38) 1998; 8 Colli, Laurençot (b13) 1998; 5 Schimperna (b44) 2000; 164 Goldstein (b25) 2006; 11 Racke, Zheng (b42) 2003; 8 Jiménez-Casas, Rodríguez-Bernal (b28) 2002; 15 Brochet, Chen, Hilhorst (b4) 1993; 49 Colli, Gilardi, Grasselli, Schimperna (b12) 2001; 58 Efendiev, Miranville, Zelik (b16) 2004; 272 McFadden (b35) 2002; 306 Allen, Cahn (b1) 1979; 27 Wu, Zheng (b46) 2004; 204 Kenmochi, Niezgódka, Pawłow (b32) 1995; 117 Miranville, Zelik (b37) 2002; 63 Zheng (b49) 1995; vol. 76 C.G. Gal, Well-posedness and long time behavior of the non-isothermal viscous Cahn–Hilliard equation with dynamic boundary conditions, Dynam. Partial Differential Equations (in press) Temam (b45) 1997 Aizicovici, Petzeltová (b2) 2003; 15 Fischer, Maass, Dieterich (b20) 1998; 42 Chill, Fašangová, Prüss (b11) 2006; 13 Damlamian, Kenmochi, Sato (b14) 1994; 23 Efendiev, Miranville, Zelik (b15) 2000; 330 Efendiev (10.1016/j.nonrwa.2008.02.013_b15) 2000; 330 Novick-Cohen (10.1016/j.nonrwa.2008.02.013_b38) 1998; 8 Wu (10.1016/j.nonrwa.2008.02.013_b46) 2004; 204 Colli (10.1016/j.nonrwa.2008.02.013_b12) 2001; 58 Cherfils (10.1016/j.nonrwa.2008.02.013_b10) 2007; 17 Allen (10.1016/j.nonrwa.2008.02.013_b1) 1979; 27 McFadden (10.1016/j.nonrwa.2008.02.013_b35) 2002; 306 Schimperna (10.1016/j.nonrwa.2008.02.013_b44) 2000; 164 Zhang (10.1016/j.nonrwa.2008.02.013_b47) 2005; 4 Kapustyan (10.1016/j.nonrwa.2008.02.013_b30) 1999; 51 Kenzler (10.1016/j.nonrwa.2008.02.013_b31) 2001; 133 Bates (10.1016/j.nonrwa.2008.02.013_b3) 1992; 4 Fischer (10.1016/j.nonrwa.2008.02.013_b19) 1997; 79 Grasselli (10.1016/j.nonrwa.2008.02.013_b27) 2007; 239 Grasselli (10.1016/j.nonrwa.2008.02.013_b26) 2006; 25 Sato (10.1016/j.nonrwa.2008.02.013_b43) 2001; 5 Colli (10.1016/j.nonrwa.2008.02.013_b13) 1998; 5 Caginalp (10.1016/j.nonrwa.2008.02.013_b8) 1986; 92 Brochet (10.1016/j.nonrwa.2008.02.013_b4) 1993; 49 Zheng (10.1016/j.nonrwa.2008.02.013_b50) 2004 Caginalp (10.1016/j.nonrwa.2008.02.013_b9) 1990; 44 Brochet (10.1016/j.nonrwa.2008.02.013_b5) 1991; 4 Fischer (10.1016/j.nonrwa.2008.02.013_b20) 1998; 42 Ladyzenskaya (10.1016/j.nonrwa.2008.02.013_b34) 1967 Laurençot (10.1016/j.nonrwa.2008.02.013_b33) 1996; 126 Brokate (10.1016/j.nonrwa.2008.02.013_b6) 1996 Kenmochi (10.1016/j.nonrwa.2008.02.013_b32) 1995; 117 Gatti (10.1016/j.nonrwa.2008.02.013_b24) 2006; vol. 251 Zheng (10.1016/j.nonrwa.2008.02.013_b49) 1995; vol. 76 Prüss (10.1016/j.nonrwa.2008.02.013_b40) 2006; 185 Temam (10.1016/j.nonrwa.2008.02.013_b45) 1997 Chill (10.1016/j.nonrwa.2008.02.013_b11) 2006; 13 Damlamian (10.1016/j.nonrwa.2008.02.013_b14) 1994; 23 Goldstein (10.1016/j.nonrwa.2008.02.013_b25) 2006; 11 Jiménez-Casas (10.1016/j.nonrwa.2008.02.013_b28) 2002; 15 10.1016/j.nonrwa.2008.02.013_b21 Aizicovici (10.1016/j.nonrwa.2008.02.013_b2) 2003; 15 10.1016/j.nonrwa.2008.02.013_b23 10.1016/j.nonrwa.2008.02.013_b22 Racke (10.1016/j.nonrwa.2008.02.013_b42) 2003; 8 Prüss (10.1016/j.nonrwa.2008.02.013_b41) 2006; vol. 168 Efendiev (10.1016/j.nonrwa.2008.02.013_b16) 2004; 272 Miranville (10.1016/j.nonrwa.2008.02.013_b37) 2002; 63 Cahn (10.1016/j.nonrwa.2008.02.013_b7) 1958; 28 Elliott (10.1016/j.nonrwa.2008.02.013_b18) 1986; 96 Zheng (10.1016/j.nonrwa.2008.02.013_b48) 1986; 3 Kalantarov (10.1016/j.nonrwa.2008.02.013_b29) 1991; 188 Novick-Cohen (10.1016/j.nonrwa.2008.02.013_b39) 1988 Elliott (10.1016/j.nonrwa.2008.02.013_b17) 1990; vol. 95 Miranville (10.1016/j.nonrwa.2008.02.013_b36) 2005; 28 |
References_xml | – reference: C.G. Gal, M. Grasselli, A. Miranville, Exponential attractors for singularly perturbed phase-field equations with dynamic boundary conditions, NoDEA Nonlinear Differential Equations Appl. (in press) – volume: vol. 76 year: 1995 ident: b49 article-title: Nonlinear parabolic equations and hyperbolic-parabolic coupled systems publication-title: Pitman Monographs Surv. Pure Appl. Math. – volume: 11 start-page: 457 year: 2006 end-page: 480 ident: b25 article-title: Derivation and physical interpretation of general boundary conditions publication-title: Adv. Differential Equations – volume: 51 start-page: 1006 year: 1999 end-page: 1009 ident: b30 article-title: An attractor of a semiflow generated by a system of phase-field equations without uniqueness of the solution publication-title: Ukraïn. Mat. Zh. – volume: 3 start-page: 165 year: 1986 end-page: 184 ident: b48 article-title: Asymptotic behavior of solutions to the Cahn–Hilliard equations publication-title: Appl. Anal. – volume: 17 start-page: 107 year: 2007 end-page: 129 ident: b10 article-title: Some remarks on the asymptotic behavior of the Caginalp system with singular potentials publication-title: Adv. Math. Sci. Appl. – volume: vol. 95 start-page: 46 year: 1990 end-page: 58 ident: b17 article-title: Global existence and stability of solutions to the phase-field equations publication-title: Free Boundary Problems – volume: 8 start-page: 965 year: 1998 end-page: 985 ident: b38 article-title: The Cahn–Hilliard equation: Mathematical and modeling perspectives publication-title: Adv. Math. Sci. Appl. – volume: 13 start-page: 1448 year: 2006 end-page: 1462 ident: b11 article-title: Convergence to steady states of solutions of the Cahn–Hilliard and Caginalp equations with dynamic boundary conditions publication-title: Math. Nachr. – volume: 185 start-page: 627 year: 2006 end-page: 648 ident: b40 article-title: Maximal regularity and asymptotic behavior of solutions for the Cahn–Hilliard equation with dynamic boundary conditions publication-title: Ann. Mat. Pura Appl. – volume: 28 start-page: 709 year: 2005 end-page: 735 ident: b36 article-title: Exponential attractors for the Cahn–Hilliard equation with dynamic boundary conditions publication-title: Math. Models Appl. Sci. – volume: 79 start-page: 893 year: 1997 end-page: 896 ident: b19 article-title: Novel surface modes of spinodal decomposition publication-title: Phys. Rev. Lett. – volume: 5 start-page: 459 year: 1998 end-page: 476 ident: b13 article-title: Uniqueness of weak solutions to the phase-field model with memory publication-title: J. Math. Sci. Univ. Tokyo – volume: 272 start-page: 11 year: 2004 end-page: 31 ident: b16 article-title: Exponential attractors for a singularly perturbed Cahn–Hilliard system publication-title: Math. Nachr. – volume: 4 start-page: 683 year: 2005 end-page: 693 ident: b47 article-title: Asymptotic behavior of solutions to the phase-field equations with Neumann boundary conditions publication-title: Commun. Pure Appl. Anal. – volume: 15 start-page: 213 year: 2002 end-page: 248 ident: b28 article-title: Asymptotic behaviour for a phase field model in higher order Sobolev spaces publication-title: Rev. Mat. Complut. – volume: 92 start-page: 205 year: 1986 end-page: 245 ident: b8 article-title: An analysis of a phase field model of a free boundary publication-title: Arch. Ration. Mech. Anal. – reference: C.G. Gal, Well-posedness and long time behavior of the non-isothermal viscous Cahn–Hilliard equation with dynamic boundary conditions, Dynam. Partial Differential Equations (in press) – volume: 5 start-page: 215 year: 2001 end-page: 234 ident: b43 article-title: Phase field equations with constraints under nonlinear dynamic boundary conditions publication-title: Commun. Appl. Anal. – volume: 239 start-page: 38 year: 2007 end-page: 60 ident: b27 article-title: Asymptotic behaviour of a nonisothermal viscous Cahn–Hilliard equation with inertial term publication-title: J. Differential Equations – volume: 28 start-page: 258 year: 1958 end-page: 367 ident: b7 article-title: Free energy of a nonuniform system publication-title: J. Chem. Phys. – volume: 8 start-page: 83 year: 2003 end-page: 110 ident: b42 article-title: The Cahn–Hilliard equation with dynamical boundary conditions publication-title: Adv. Differential Equations – volume: 4 start-page: 375 year: 1992 end-page: 397 ident: b3 article-title: Inertial manifolds and inertial sets for the phase-field equations publication-title: J. Dynam. Differential Equations – volume: 204 start-page: 511 year: 2004 end-page: 531 ident: b46 article-title: Convergence to equilibrium for the Cahn–Hilliard equation with dynamic boundary conditions publication-title: J. Differential Equations – volume: 330 start-page: 713 year: 2000 end-page: 718 ident: b15 article-title: Exponential attractors for a nonlinear reaction-diffusion system in publication-title: C. R. Math. Acad. Sci. Paris – volume: 63 start-page: 1 year: 2002 end-page: 28 ident: b37 article-title: Robust exponential attractors for singularly perturbed phase-field type equations publication-title: Electron. J. Differential Equations – volume: vol. 251 start-page: 149 year: 2006 end-page: 170 ident: b24 article-title: Asymptotic behavior of a phase-field system with dynamic boundary conditions publication-title: Differential Equations, Inverse and Direct Problems – volume: 42 start-page: 49 year: 1998 end-page: 54 ident: b20 article-title: Diverging time and length scales of spinodal decomposition modes in thin flows publication-title: Europhys. Lett. – volume: 23 start-page: 115 year: 1994 end-page: 142 ident: b14 article-title: Subdifferential operator approach to a class of nonlinear systems for Stefan problems with phase relaxation publication-title: Nonlinear Anal. – volume: 25 start-page: 51 year: 2006 end-page: 72 ident: b26 article-title: Long time behavior of solutions to the Caginalp system with singular potential publication-title: Z. Anal. Anwendungen – volume: 164 start-page: 395 year: 2000 end-page: 430 ident: b44 article-title: Abstract approach to evolution equations of phase field type and applications publication-title: J. Differential Equations – year: 1988 ident: b39 article-title: On the viscous Cahn–Hilliard equation publication-title: Material Instabilities in Continuum Mechanics (Edinburgh, 1985–1986) – volume: 133 start-page: 139 year: 2001 end-page: 157 ident: b31 article-title: Phase separation in confined geometries: Solving the Cahn–Hilliard equation with generic boundary conditions publication-title: Comput. Phys. Comm. – volume: 306 start-page: 107 year: 2002 end-page: 145 ident: b35 article-title: Phase-field models of solidification publication-title: Contemp. Math. – volume: 27 start-page: 1085 year: 1979 end-page: 1095 ident: b1 article-title: A microscopic theory for the antiphase boundary motion and its application to antiphase domain coarsening publication-title: Acta Metallurgica – year: 2004 ident: b50 article-title: Nonlinear Evolution Equations – volume: 15 start-page: 217 year: 2003 end-page: 240 ident: b2 article-title: Asymptotic behaviour of solutions of a conserved phase-field system with memory publication-title: J. Integral Equations Appl. – volume: 49 start-page: 197 year: 1993 end-page: 212 ident: b4 article-title: Finite dimensional exponential attractor for the phase-field model publication-title: Appl. Anal. – volume: vol. 168 start-page: 209 year: 2006 end-page: 236 ident: b41 article-title: Maximal publication-title: Partial Differential Equations and Functional Analysis – year: 1997 ident: b45 article-title: Infinite-Dimensional Dynamical Systems in Mechanics and Physics – reference: C.G. Gal, M. Grasselli, The non-isothermal Allen-Cahn equation with dynamic boundary conditions, Discrete Contin. Dynam. Syst. A (in press) – volume: 4 start-page: 59 year: 1991 end-page: 62 ident: b5 article-title: Universal attractor and inertial sets for the phase-field model publication-title: Appl. Math. Lett. – volume: 44 start-page: 77 year: 1990 end-page: 94 ident: b9 article-title: The dynamics of a conserved phase-field system: Stefan-like, Hele-Shaw, and Cahn–Hilliard models as asymptotic limits publication-title: IMA J. Appl. Math. – volume: 58 start-page: 159 year: 2001 end-page: 170 ident: b12 article-title: Global existence for the conserved phase field model with memory and quadratic nonlinearity publication-title: Port. Math. – year: 1996 ident: b6 article-title: Hysteresis and Phase Transitions – volume: 188 year: 1991 ident: b29 article-title: On the minimal global attractor of a system of phase field equations publication-title: Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) – volume: 117 start-page: 320 year: 1995 end-page: 356 ident: b32 article-title: Subdifferential operator approach to the Cahn–Hilliard equations with constraint publication-title: J. Differential Equations – year: 1967 ident: b34 article-title: Linear and Quasilinear Equations of Parabolic Type – volume: 96 start-page: 339 year: 1986 end-page: 357 ident: b18 article-title: On the Cahn–Hilliard equation publication-title: Arch. Ration. Mech. Anal. – volume: 126 start-page: 167 year: 1996 end-page: 185 ident: b33 article-title: Long-time behaviour for a model of phase-field type publication-title: Proc. Roy. Soc. Edinburgh Sect. A – ident: 10.1016/j.nonrwa.2008.02.013_b22 – volume: vol. 168 start-page: 209 year: 2006 ident: 10.1016/j.nonrwa.2008.02.013_b41 article-title: Maximal Lp regularity for the Cahn–Hilliard equation with non-constant temperature and dynamic boundary conditions – volume: 3 start-page: 165 year: 1986 ident: 10.1016/j.nonrwa.2008.02.013_b48 article-title: Asymptotic behavior of solutions to the Cahn–Hilliard equations publication-title: Appl. Anal. – year: 2004 ident: 10.1016/j.nonrwa.2008.02.013_b50 – volume: 49 start-page: 197 year: 1993 ident: 10.1016/j.nonrwa.2008.02.013_b4 article-title: Finite dimensional exponential attractor for the phase-field model publication-title: Appl. Anal. doi: 10.1080/00036819108840173 – year: 1996 ident: 10.1016/j.nonrwa.2008.02.013_b6 – volume: 133 start-page: 139 year: 2001 ident: 10.1016/j.nonrwa.2008.02.013_b31 article-title: Phase separation in confined geometries: Solving the Cahn–Hilliard equation with generic boundary conditions publication-title: Comput. Phys. Comm. doi: 10.1016/S0010-4655(00)00159-4 – volume: 58 start-page: 159 year: 2001 ident: 10.1016/j.nonrwa.2008.02.013_b12 article-title: Global existence for the conserved phase field model with memory and quadratic nonlinearity publication-title: Port. Math. – volume: 23 start-page: 115 year: 1994 ident: 10.1016/j.nonrwa.2008.02.013_b14 article-title: Subdifferential operator approach to a class of nonlinear systems for Stefan problems with phase relaxation publication-title: Nonlinear Anal. doi: 10.1016/0362-546X(94)90255-0 – volume: 330 start-page: 713 year: 2000 ident: 10.1016/j.nonrwa.2008.02.013_b15 article-title: Exponential attractors for a nonlinear reaction-diffusion system in R3 publication-title: C. R. Math. Acad. Sci. Paris doi: 10.1016/S0764-4442(00)00259-7 – volume: 51 start-page: 1006 year: 1999 ident: 10.1016/j.nonrwa.2008.02.013_b30 article-title: An attractor of a semiflow generated by a system of phase-field equations without uniqueness of the solution publication-title: Ukraïn. Mat. Zh. – volume: 4 start-page: 59 year: 1991 ident: 10.1016/j.nonrwa.2008.02.013_b5 article-title: Universal attractor and inertial sets for the phase-field model publication-title: Appl. Math. Lett. doi: 10.1016/0893-9659(91)90076-8 – volume: 11 start-page: 457 year: 2006 ident: 10.1016/j.nonrwa.2008.02.013_b25 article-title: Derivation and physical interpretation of general boundary conditions publication-title: Adv. Differential Equations doi: 10.57262/ade/1355867704 – volume: 117 start-page: 320 year: 1995 ident: 10.1016/j.nonrwa.2008.02.013_b32 article-title: Subdifferential operator approach to the Cahn–Hilliard equations with constraint publication-title: J. Differential Equations doi: 10.1006/jdeq.1995.1056 – ident: 10.1016/j.nonrwa.2008.02.013_b23 – year: 1988 ident: 10.1016/j.nonrwa.2008.02.013_b39 article-title: On the viscous Cahn–Hilliard equation – volume: 5 start-page: 215 year: 2001 ident: 10.1016/j.nonrwa.2008.02.013_b43 article-title: Phase field equations with constraints under nonlinear dynamic boundary conditions publication-title: Commun. Appl. Anal. – volume: 4 start-page: 375 year: 1992 ident: 10.1016/j.nonrwa.2008.02.013_b3 article-title: Inertial manifolds and inertial sets for the phase-field equations publication-title: J. Dynam. Differential Equations doi: 10.1007/BF01049391 – volume: 185 start-page: 627 issue: 4 year: 2006 ident: 10.1016/j.nonrwa.2008.02.013_b40 article-title: Maximal regularity and asymptotic behavior of solutions for the Cahn–Hilliard equation with dynamic boundary conditions publication-title: Ann. Mat. Pura Appl. doi: 10.1007/s10231-005-0175-3 – volume: vol. 76 year: 1995 ident: 10.1016/j.nonrwa.2008.02.013_b49 article-title: Nonlinear parabolic equations and hyperbolic-parabolic coupled systems – volume: vol. 251 start-page: 149 year: 2006 ident: 10.1016/j.nonrwa.2008.02.013_b24 article-title: Asymptotic behavior of a phase-field system with dynamic boundary conditions – volume: vol. 95 start-page: 46 year: 1990 ident: 10.1016/j.nonrwa.2008.02.013_b17 article-title: Global existence and stability of solutions to the phase-field equations – volume: 8 start-page: 83 year: 2003 ident: 10.1016/j.nonrwa.2008.02.013_b42 article-title: The Cahn–Hilliard equation with dynamical boundary conditions publication-title: Adv. Differential Equations doi: 10.57262/ade/1355926869 – volume: 239 start-page: 38 year: 2007 ident: 10.1016/j.nonrwa.2008.02.013_b27 article-title: Asymptotic behaviour of a nonisothermal viscous Cahn–Hilliard equation with inertial term publication-title: J. Differential Equations doi: 10.1016/j.jde.2007.05.003 – volume: 272 start-page: 11 year: 2004 ident: 10.1016/j.nonrwa.2008.02.013_b16 article-title: Exponential attractors for a singularly perturbed Cahn–Hilliard system publication-title: Math. Nachr. doi: 10.1002/mana.200310186 – volume: 92 start-page: 205 year: 1986 ident: 10.1016/j.nonrwa.2008.02.013_b8 article-title: An analysis of a phase field model of a free boundary publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/BF00254827 – volume: 96 start-page: 339 year: 1986 ident: 10.1016/j.nonrwa.2008.02.013_b18 article-title: On the Cahn–Hilliard equation publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/BF00251803 – volume: 27 start-page: 1085 year: 1979 ident: 10.1016/j.nonrwa.2008.02.013_b1 article-title: A microscopic theory for the antiphase boundary motion and its application to antiphase domain coarsening publication-title: Acta Metallurgica doi: 10.1016/0001-6160(79)90196-2 – volume: 63 start-page: 1 year: 2002 ident: 10.1016/j.nonrwa.2008.02.013_b37 article-title: Robust exponential attractors for singularly perturbed phase-field type equations publication-title: Electron. J. Differential Equations – volume: 15 start-page: 213 year: 2002 ident: 10.1016/j.nonrwa.2008.02.013_b28 article-title: Asymptotic behaviour for a phase field model in higher order Sobolev spaces publication-title: Rev. Mat. Complut. doi: 10.5209/rev_REMA.2002.v15.n1.16964 – volume: 126 start-page: 167 year: 1996 ident: 10.1016/j.nonrwa.2008.02.013_b33 article-title: Long-time behaviour for a model of phase-field type publication-title: Proc. Roy. Soc. Edinburgh Sect. A doi: 10.1017/S0308210500030663 – year: 1967 ident: 10.1016/j.nonrwa.2008.02.013_b34 – volume: 79 start-page: 893 year: 1997 ident: 10.1016/j.nonrwa.2008.02.013_b19 article-title: Novel surface modes of spinodal decomposition publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.79.893 – volume: 17 start-page: 107 year: 2007 ident: 10.1016/j.nonrwa.2008.02.013_b10 article-title: Some remarks on the asymptotic behavior of the Caginalp system with singular potentials publication-title: Adv. Math. Sci. Appl. – volume: 13 start-page: 1448 year: 2006 ident: 10.1016/j.nonrwa.2008.02.013_b11 article-title: Convergence to steady states of solutions of the Cahn–Hilliard and Caginalp equations with dynamic boundary conditions publication-title: Math. Nachr. doi: 10.1002/mana.200410431 – volume: 188 year: 1991 ident: 10.1016/j.nonrwa.2008.02.013_b29 article-title: On the minimal global attractor of a system of phase field equations publication-title: Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) – volume: 164 start-page: 395 year: 2000 ident: 10.1016/j.nonrwa.2008.02.013_b44 article-title: Abstract approach to evolution equations of phase field type and applications publication-title: J. Differential Equations doi: 10.1006/jdeq.1999.3753 – year: 1997 ident: 10.1016/j.nonrwa.2008.02.013_b45 – volume: 42 start-page: 49 year: 1998 ident: 10.1016/j.nonrwa.2008.02.013_b20 article-title: Diverging time and length scales of spinodal decomposition modes in thin flows publication-title: Europhys. Lett. doi: 10.1209/epl/i1998-00550-y – volume: 28 start-page: 709 year: 2005 ident: 10.1016/j.nonrwa.2008.02.013_b36 article-title: Exponential attractors for the Cahn–Hilliard equation with dynamic boundary conditions publication-title: Math. Models Appl. Sci. doi: 10.1002/mma.590 – volume: 5 start-page: 459 year: 1998 ident: 10.1016/j.nonrwa.2008.02.013_b13 article-title: Uniqueness of weak solutions to the phase-field model with memory publication-title: J. Math. Sci. Univ. Tokyo – volume: 25 start-page: 51 year: 2006 ident: 10.1016/j.nonrwa.2008.02.013_b26 article-title: Long time behavior of solutions to the Caginalp system with singular potential publication-title: Z. Anal. Anwendungen doi: 10.4171/ZAA/1277 – volume: 204 start-page: 511 year: 2004 ident: 10.1016/j.nonrwa.2008.02.013_b46 article-title: Convergence to equilibrium for the Cahn–Hilliard equation with dynamic boundary conditions publication-title: J. Differential Equations doi: 10.1016/j.jde.2004.05.004 – volume: 4 start-page: 683 year: 2005 ident: 10.1016/j.nonrwa.2008.02.013_b47 article-title: Asymptotic behavior of solutions to the phase-field equations with Neumann boundary conditions publication-title: Commun. Pure Appl. Anal. doi: 10.3934/cpaa.2005.4.683 – ident: 10.1016/j.nonrwa.2008.02.013_b21 – volume: 28 start-page: 258 year: 1958 ident: 10.1016/j.nonrwa.2008.02.013_b7 article-title: Free energy of a nonuniform system publication-title: J. Chem. Phys. doi: 10.1063/1.1744102 – volume: 44 start-page: 77 year: 1990 ident: 10.1016/j.nonrwa.2008.02.013_b9 article-title: The dynamics of a conserved phase-field system: Stefan-like, Hele-Shaw, and Cahn–Hilliard models as asymptotic limits publication-title: IMA J. Appl. Math. doi: 10.1093/imamat/44.1.77 – volume: 15 start-page: 217 year: 2003 ident: 10.1016/j.nonrwa.2008.02.013_b2 article-title: Asymptotic behaviour of solutions of a conserved phase-field system with memory publication-title: J. Integral Equations Appl. doi: 10.1216/jiea/1181074968 – volume: 306 start-page: 107 year: 2002 ident: 10.1016/j.nonrwa.2008.02.013_b35 article-title: Phase-field models of solidification publication-title: Contemp. Math. doi: 10.1090/conm/306/05251 – volume: 8 start-page: 965 year: 1998 ident: 10.1016/j.nonrwa.2008.02.013_b38 article-title: The Cahn–Hilliard equation: Mathematical and modeling perspectives publication-title: Adv. Math. Sci. Appl. |
SSID | ssj0017131 |
Score | 2.0725186 |
Snippet | We consider a model of non-isothermal phase separation taking place in a confined container. The order parameter
ϕ
is governed by a viscous or non-viscous... We consider a model of non-isothermal phase separation taking place in a confined container. The order parameter is governed by a viscous or non-viscous... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1738 |
SubjectTerms | Dynamic boundary conditions Exponential attractors Global attractors Non-isothermal Cahn–Hilliard equations Viscous Cahn–Hilliard equation |
Title | Uniform global attractors for non-isothermal viscous and non-viscous Cahn–Hilliard equations with dynamic boundary conditions |
URI | https://dx.doi.org/10.1016/j.nonrwa.2008.02.013 https://www.proquest.com/docview/36489523 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXvQgPvFZ9-B126S7adKjFEt9FVEL3sI-saJF06h4Uf-D_9Bf4kw2KSiI4ClkH2HZ2cxrZ74hZK-jowBYr2ROJYYJERiWSMWZjLgA_cQmyqJD_3TQ7g_F0VV0VSPdKhcGwypL3u95esGty5ZmuZvN-9GoeYFJQyFIKNR5QIwjJqgQMZ71xus0zCMEIyysMoxwdJU-V8R4gYWdPcsyorLVCEL-m3j6wagL6dNbJAul2kj3_cqWSM2Ol8n86RRzdbJC3kB9RA2UeowPKvM888V0KDRTWAQbTYp8qzvofRpNNBj9VI5N0VW9d-X1-PP9o1-4YTJD7YPHAp9Q9NhS4wvYU1VUY8peKJjTxkd9rZJh7-Cy22dleQWmOY9z1lJtbSIhEXMLUbcMgsWrMLGR60QCr3CVkcIJYbRwVtsocc6BRuOSwHVk4vgamYEF2nVChYZp1rZVIMFgjA0onUYrYWPLnY5kvEF4taupLrHHsQTGbVoFmd2knhZlWcxWCrTYIGw6695jb_wxPq4Iln47QymIhz9m7lb0TeH3wjsTObaw6ylvi6QDxvrmv7-9Reb8DRR6brbJTJ492h1QZHJVL05qnczud89PzvB5eNwffAEOh_qw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVYDsABsYodH7i6TWq7SY-oAhVoewGk3iyvogiqkgYQF-Af-EO-hHGcVAIJIXGMY0eW7cy8Gc-8QeiopXkEolcSp1JDGIsMSaWiRHLKAJ_YVFnv0O_1m51rdj7ggxnUrnJhfFhlKfuDTC-kddlSL1ezPh4O65c-aSgGDeUxD6hxNovmGaeJj-urvU7jPGKwwuIqxch3r_LniiAvMLGzZ1mGVDZqUUx_008_JHWhfk5X0HKJG_FxmNoqmrGjNbTUm5KuTtbRG-BHD0FxIPnAMs-zUE0HQzOGSZDhpEi4uoe3T8OJBqsfy5EpXlXPbXkz-nz_6BR-mMxg-xDIwCfYu2yxCRXssSrKMWUvGOxpE8K-NtD16clVu0PK-gpEU5rkpKGa2nAmPemWp90yni1exanlrsWZv8NVRjLHmNHMWW156pwDSOPSyLVk6ugmmoMJ2i2EmYZh1jZVJMFiTAygTqMVs4mlTnOZbCNararQJfm4r4FxJ6oos1sR9qKsi9kQsBfbiExHjQP5xh_9k2rDxLdDJEA__DHysNpfAf-XvzSRIwurLmiTpS2w1nf-_e1DtNC56nVF96x_sYsWw3WUd-Psobk8e7T7gGpydVCc2i_0yvqu |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uniform+global+attractors+for+non-isothermal+viscous+and+non-viscous+Cahn-Hilliard+equations+with+dynamic+boundary+conditions&rft.jtitle=Nonlinear+analysis%3A+real+world+applications&rft.au=Gal%2C+Ciprian+G&rft.au=Miranville%2C+Alain&rft.date=2009-06-01&rft.issn=1468-1218&rft.volume=10&rft.issue=3&rft.spage=1738&rft.epage=1766&rft_id=info:doi/10.1016%2Fj.nonrwa.2008.02.013&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1468-1218&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1468-1218&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1468-1218&client=summon |