Uniform global attractors for non-isothermal viscous and non-viscous Cahn–Hilliard equations with dynamic boundary conditions

We consider a model of non-isothermal phase separation taking place in a confined container. The order parameter ϕ is governed by a viscous or non-viscous Cahn–Hilliard type equation which is coupled with a heat equation for the temperature θ . The former is subject to a non-linear dynamic boundary...

Full description

Saved in:
Bibliographic Details
Published inNonlinear analysis: real world applications Vol. 10; no. 3; pp. 1738 - 1766
Main Authors Gal, Ciprian G., Miranville, Alain
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2009
Subjects
Online AccessGet full text
ISSN1468-1218
1878-5719
DOI10.1016/j.nonrwa.2008.02.013

Cover

Loading…
Abstract We consider a model of non-isothermal phase separation taking place in a confined container. The order parameter ϕ is governed by a viscous or non-viscous Cahn–Hilliard type equation which is coupled with a heat equation for the temperature θ . The former is subject to a non-linear dynamic boundary condition recently proposed by physicists to account for interactions with the walls, while the latter is endowed with a standard (Dirichlet, Neumann or Robin) boundary condition. We indicate by α the viscosity coefficient, by ε a (small) relaxation parameter multiplying ∂ t θ in the heat equation and by δ a small latent heat coefficient (satisfying δ ≤ λ α , λ > 0 ) multiplying Δ θ in the Cahn–Hilliard equation and ∂ t ϕ in the heat equation. We analyze the asymptotic behavior of the solutions within the theory of infinite-dimensional dynamical systems. We first prove that the model generates a strongly continuous semigroup on a suitable phase space Y K α (depending on the choice of the boundary conditions) which possesses the global attractor A ε , δ , α . Our main results allow us to show that a proper lifting A 0 , 0 , α , α > 0 , of the global attractor of the well-known viscous Cahn–Hilliard equation (that is, the system corresponding to ( ε , δ ) = ( 0 , 0 ) ) is upper semicontinuous at ( 0 , 0 ) with respect to the family { A ε , δ , α } ε , δ , α > 0 . We also establish that the global attractor A 0 , 0 , 0 of the non-viscous Cahn–Hilliard equation (corresponding to ( ε , α ) = ( 0 , 0 ) ) is upper semicontinuous at ( 0 , 0 ) with respect to the same family of global attractors. Finally, the existence of exponential attractors M ε , δ , α is also obtained in the cases ε ≠ 0 , δ ≠ 0 , α ≠ 0 , ( 0 , δ , α ) , δ ≠ 0 , α ≠ 0 and ( ε , δ , α ) = ( 0 , 0 , α ) , α ≥ 0 , respectively. This allows us to infer that, for each ( ε , δ , α ) ∈ [ 0 , ε 0 ] × [ 0 , δ 0 ] × [ 0 , α 0 ] , A ε , δ , α has finite fractal dimension and this dimension is bounded, uniformly with respect to ε , δ and α .
AbstractList We consider a model of non-isothermal phase separation taking place in a confined container. The order parameter is governed by a viscous or non-viscous Cahn-Hilliard type equation which is coupled with a heat equation for the temperature c. The former is subject to a non-linear dynamic boundary condition recently proposed by physicists to account for interactions with the walls, while the latter is endowed with a standard (Dirichlet, Neumann or Robin) boundary condition. We indicate by a the viscosity coefficient, by e a (small) relaxation parameter multiplying {partial differential}tc in the heat equation and by d a small latent heat coefficient (satisfying d < =la, l > 0) multiplying c in the Cahn-Hilliard equation and {partial differential}t in the heat equation. We analyze the asymptotic behavior of the solutions within the theory of infinite-dimensional dynamical systems. We first prove that the model generates a strongly continuous semigroup on a suitable phase space (depending on the choice of the boundary conditions) which possesses the global attractor . Our main results allow us to show that a proper lifting , of the global attractor of the well-known viscous Cahn-Hilliard equation (that is, the system corresponding to (e,d)=(0,0)) is upper semicontinuous at (0,0) with respect to the family . We also establish that the global attractor of the non-viscous Cahn-Hilliard equation (corresponding to (e,a)=(0,0)) is upper semicontinuous at (0,0) with respect to the same family of global attractors. Finally, the existence of exponential attractors is also obtained in the cases e not = 0,d not = 0, a not = 0, (0,d,a),d not = 0, a not = 0 and (e,d,a)=(0,0,a),a > =0, respectively. This allows us to infer that, for each has finite fractal dimension and this dimension is bounded, uniformly with respect to and a.
We consider a model of non-isothermal phase separation taking place in a confined container. The order parameter ϕ is governed by a viscous or non-viscous Cahn–Hilliard type equation which is coupled with a heat equation for the temperature θ . The former is subject to a non-linear dynamic boundary condition recently proposed by physicists to account for interactions with the walls, while the latter is endowed with a standard (Dirichlet, Neumann or Robin) boundary condition. We indicate by α the viscosity coefficient, by ε a (small) relaxation parameter multiplying ∂ t θ in the heat equation and by δ a small latent heat coefficient (satisfying δ ≤ λ α , λ > 0 ) multiplying Δ θ in the Cahn–Hilliard equation and ∂ t ϕ in the heat equation. We analyze the asymptotic behavior of the solutions within the theory of infinite-dimensional dynamical systems. We first prove that the model generates a strongly continuous semigroup on a suitable phase space Y K α (depending on the choice of the boundary conditions) which possesses the global attractor A ε , δ , α . Our main results allow us to show that a proper lifting A 0 , 0 , α , α > 0 , of the global attractor of the well-known viscous Cahn–Hilliard equation (that is, the system corresponding to ( ε , δ ) = ( 0 , 0 ) ) is upper semicontinuous at ( 0 , 0 ) with respect to the family { A ε , δ , α } ε , δ , α > 0 . We also establish that the global attractor A 0 , 0 , 0 of the non-viscous Cahn–Hilliard equation (corresponding to ( ε , α ) = ( 0 , 0 ) ) is upper semicontinuous at ( 0 , 0 ) with respect to the same family of global attractors. Finally, the existence of exponential attractors M ε , δ , α is also obtained in the cases ε ≠ 0 , δ ≠ 0 , α ≠ 0 , ( 0 , δ , α ) , δ ≠ 0 , α ≠ 0 and ( ε , δ , α ) = ( 0 , 0 , α ) , α ≥ 0 , respectively. This allows us to infer that, for each ( ε , δ , α ) ∈ [ 0 , ε 0 ] × [ 0 , δ 0 ] × [ 0 , α 0 ] , A ε , δ , α has finite fractal dimension and this dimension is bounded, uniformly with respect to ε , δ and α .
Author Gal, Ciprian G.
Miranville, Alain
Author_xml – sequence: 1
  givenname: Ciprian G.
  surname: Gal
  fullname: Gal, Ciprian G.
  email: ciprian@math.missouri.edu
  organization: Department of Mathematics, University of Missouri, 202 Mathematical Sciences Bldg, Columbia, MO, 65211, USA
– sequence: 2
  givenname: Alain
  surname: Miranville
  fullname: Miranville, Alain
  email: Alain.Miranville@math.univ-poitiers.fr
  organization: Laboratoire de Mathématiques et Applications, Université de Poitiers, Boulevard Marie et Pierre Curie - Téléport 2, 86962 Chasseneuil Futuroscope Cedex, France
BookMark eNqFkL1OHDEUhS20SGGBN0jhKt0M_psZTwoktIKAhJQGasvjH9arGZu1vaCtknfgDfMkmF1oUkBl-95zjny-OZj54A0A3zGqMcLt2aoug_gsa4IQrxGpEaYH4AjzjldNh_tZubOWV5hg_g3MU1ohhDtM8RH4c--dDXGCD2MY5AhlzlGqHGKCZQxLbuVSyEsTp7J9ckmFTYLS693q472QS__v78u1G0cno4ZmvZHZBZ_gs8tLqLdeTk7BIWy8lnELVfDa7QQn4NDKMZnT9_MY3F9d3i2uq9vfv24WF7eVorTLFRlapRsmKUIMMUw0oj0eMDeN7RtGOkYGLZllTCtmjTINt9aillqObC-5pcfgxz73MYb1xqQspvJ3M47Sm9JA0JbxviG0CH_uhSqGlKKxQrm8K1PAuFFgJN6Yi5XYMxdvzAUiojAvZvaf-TG6qTT-yna-t5lC4MmZKJJyxiujXTQqCx3c5wGvN5ylGA
CitedBy_id crossref_primary_10_1016_j_jfa_2013_10_017
crossref_primary_10_1007_s12044_013_0146_3
crossref_primary_10_1016_j_jde_2013_04_007
crossref_primary_10_1016_j_jmaa_2016_05_054
crossref_primary_10_3934_dcdsb_2013_18_1581
crossref_primary_10_1016_j_nonrwa_2022_103689
crossref_primary_10_3934_cpaa_2018035
crossref_primary_10_1016_j_na_2009_11_043
crossref_primary_10_1007_s00009_021_01874_7
crossref_primary_10_1007_s10114_017_7245_5
crossref_primary_10_1016_j_na_2016_04_014
crossref_primary_10_1016_j_nonrwa_2016_11_002
crossref_primary_10_1007_s00332_011_9109_y
crossref_primary_10_1093_imanum_drab045
crossref_primary_10_3390_fractalfract6090505
crossref_primary_10_3934_cpaa_2014_13_1855
crossref_primary_10_1155_2017_5196513
crossref_primary_10_1002_mma_1432
crossref_primary_10_1137_19M1286839
crossref_primary_10_3390_sym16060665
crossref_primary_10_3934_era_2022143
crossref_primary_10_1007_s11854_023_0306_z
crossref_primary_10_1007_s00033_013_0395_0
crossref_primary_10_1007_s41808_020_00072_y
crossref_primary_10_1007_s00205_019_01356_x
crossref_primary_10_1016_j_nonrwa_2014_05_003
crossref_primary_10_1007_s00032_011_0165_4
crossref_primary_10_3934_Math_2017_2_479
Cites_doi 10.1080/00036819108840173
10.1016/S0010-4655(00)00159-4
10.1016/0362-546X(94)90255-0
10.1016/S0764-4442(00)00259-7
10.1016/0893-9659(91)90076-8
10.57262/ade/1355867704
10.1006/jdeq.1995.1056
10.1007/BF01049391
10.1007/s10231-005-0175-3
10.57262/ade/1355926869
10.1016/j.jde.2007.05.003
10.1002/mana.200310186
10.1007/BF00254827
10.1007/BF00251803
10.1016/0001-6160(79)90196-2
10.5209/rev_REMA.2002.v15.n1.16964
10.1017/S0308210500030663
10.1103/PhysRevLett.79.893
10.1002/mana.200410431
10.1006/jdeq.1999.3753
10.1209/epl/i1998-00550-y
10.1002/mma.590
10.4171/ZAA/1277
10.1016/j.jde.2004.05.004
10.3934/cpaa.2005.4.683
10.1063/1.1744102
10.1093/imamat/44.1.77
10.1216/jiea/1181074968
10.1090/conm/306/05251
ContentType Journal Article
Copyright 2008 Elsevier Ltd
Copyright_xml – notice: 2008 Elsevier Ltd
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.nonrwa.2008.02.013
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1878-5719
EndPage 1766
ExternalDocumentID 10_1016_j_nonrwa_2008_02_013
S1468121808000564
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
29N
4.4
457
4G.
5VS
6OB
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
J9A
JJJVA
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSW
SSZ
T5K
XPP
YQT
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
7SC
7TB
8FD
EFKBS
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c337t-2b6cd54a30040412d0391b18e5f9542742bda4f44dc4fece58fff063f80f9a8f3
IEDL.DBID .~1
ISSN 1468-1218
IngestDate Fri Sep 05 00:44:48 EDT 2025
Tue Jul 01 01:04:47 EDT 2025
Thu Apr 24 22:58:50 EDT 2025
Fri Feb 23 02:20:03 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Exponential attractors
Dynamic boundary conditions
Non-isothermal Cahn–Hilliard equations
Viscous Cahn–Hilliard equation
Global attractors
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-2b6cd54a30040412d0391b18e5f9542742bda4f44dc4fece58fff063f80f9a8f3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 36489523
PQPubID 23500
PageCount 29
ParticipantIDs proquest_miscellaneous_36489523
crossref_citationtrail_10_1016_j_nonrwa_2008_02_013
crossref_primary_10_1016_j_nonrwa_2008_02_013
elsevier_sciencedirect_doi_10_1016_j_nonrwa_2008_02_013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-06-01
PublicationDateYYYYMMDD 2009-06-01
PublicationDate_xml – month: 06
  year: 2009
  text: 2009-06-01
  day: 01
PublicationDecade 2000
PublicationTitle Nonlinear analysis: real world applications
PublicationYear 2009
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Prüss, Wilke (b41) 2006; vol. 168
Caginalp (b8) 1986; 92
Caginalp (b9) 1990; 44
Brokate, Sprekels (b6) 1996
Fischer, Maass, Dieterich (b19) 1997; 79
Kenzler, Eurich, Maass, Rinn, Schropp, Bohl, Dieterich (b31) 2001; 133
Brochet, Hilhorst (b5) 1991; 4
C.G. Gal, M. Grasselli, A. Miranville, Exponential attractors for singularly perturbed phase-field equations with dynamic boundary conditions, NoDEA Nonlinear Differential Equations Appl. (in press)
Elliott, Zheng (b18) 1986; 96
Cahn, Hilliard (b7) 1958; 28
C.G. Gal, M. Grasselli, The non-isothermal Allen-Cahn equation with dynamic boundary conditions, Discrete Contin. Dynam. Syst. A (in press)
Novick-Cohen (b39) 1988
Zheng (b48) 1986; 3
Grasselli, Petzeltová, Schimperna (b27) 2007; 239
Zhang (b47) 2005; 4
Grasselli, Petzeltová, Schimperna (b26) 2006; 25
Miranville, Zelik (b36) 2005; 28
Cherfils, Miranville (b10) 2007; 17
Kalantarov (b29) 1991; 188
Laurençot (b33) 1996; 126
Gatti, Miranville (b24) 2006; vol. 251
Kapustyan (b30) 1999; 51
Zheng (b50) 2004
Bates, Zheng (b3) 1992; 4
Ladyzenskaya, Solonnikov, Uraltseva (b34) 1967
Prüss, Racke, Zheng (b40) 2006; 185
Elliott, Zheng (b17) 1990; vol. 95
Sato, Aiki (b43) 2001; 5
Novick-Cohen (b38) 1998; 8
Colli, Laurençot (b13) 1998; 5
Schimperna (b44) 2000; 164
Goldstein (b25) 2006; 11
Racke, Zheng (b42) 2003; 8
Jiménez-Casas, Rodríguez-Bernal (b28) 2002; 15
Brochet, Chen, Hilhorst (b4) 1993; 49
Colli, Gilardi, Grasselli, Schimperna (b12) 2001; 58
Efendiev, Miranville, Zelik (b16) 2004; 272
McFadden (b35) 2002; 306
Allen, Cahn (b1) 1979; 27
Wu, Zheng (b46) 2004; 204
Kenmochi, Niezgódka, Pawłow (b32) 1995; 117
Miranville, Zelik (b37) 2002; 63
Zheng (b49) 1995; vol. 76
C.G. Gal, Well-posedness and long time behavior of the non-isothermal viscous Cahn–Hilliard equation with dynamic boundary conditions, Dynam. Partial Differential Equations (in press)
Temam (b45) 1997
Aizicovici, Petzeltová (b2) 2003; 15
Fischer, Maass, Dieterich (b20) 1998; 42
Chill, Fašangová, Prüss (b11) 2006; 13
Damlamian, Kenmochi, Sato (b14) 1994; 23
Efendiev, Miranville, Zelik (b15) 2000; 330
Efendiev (10.1016/j.nonrwa.2008.02.013_b15) 2000; 330
Novick-Cohen (10.1016/j.nonrwa.2008.02.013_b38) 1998; 8
Wu (10.1016/j.nonrwa.2008.02.013_b46) 2004; 204
Colli (10.1016/j.nonrwa.2008.02.013_b12) 2001; 58
Cherfils (10.1016/j.nonrwa.2008.02.013_b10) 2007; 17
Allen (10.1016/j.nonrwa.2008.02.013_b1) 1979; 27
McFadden (10.1016/j.nonrwa.2008.02.013_b35) 2002; 306
Schimperna (10.1016/j.nonrwa.2008.02.013_b44) 2000; 164
Zhang (10.1016/j.nonrwa.2008.02.013_b47) 2005; 4
Kapustyan (10.1016/j.nonrwa.2008.02.013_b30) 1999; 51
Kenzler (10.1016/j.nonrwa.2008.02.013_b31) 2001; 133
Bates (10.1016/j.nonrwa.2008.02.013_b3) 1992; 4
Fischer (10.1016/j.nonrwa.2008.02.013_b19) 1997; 79
Grasselli (10.1016/j.nonrwa.2008.02.013_b27) 2007; 239
Grasselli (10.1016/j.nonrwa.2008.02.013_b26) 2006; 25
Sato (10.1016/j.nonrwa.2008.02.013_b43) 2001; 5
Colli (10.1016/j.nonrwa.2008.02.013_b13) 1998; 5
Caginalp (10.1016/j.nonrwa.2008.02.013_b8) 1986; 92
Brochet (10.1016/j.nonrwa.2008.02.013_b4) 1993; 49
Zheng (10.1016/j.nonrwa.2008.02.013_b50) 2004
Caginalp (10.1016/j.nonrwa.2008.02.013_b9) 1990; 44
Brochet (10.1016/j.nonrwa.2008.02.013_b5) 1991; 4
Fischer (10.1016/j.nonrwa.2008.02.013_b20) 1998; 42
Ladyzenskaya (10.1016/j.nonrwa.2008.02.013_b34) 1967
Laurençot (10.1016/j.nonrwa.2008.02.013_b33) 1996; 126
Brokate (10.1016/j.nonrwa.2008.02.013_b6) 1996
Kenmochi (10.1016/j.nonrwa.2008.02.013_b32) 1995; 117
Gatti (10.1016/j.nonrwa.2008.02.013_b24) 2006; vol. 251
Zheng (10.1016/j.nonrwa.2008.02.013_b49) 1995; vol. 76
Prüss (10.1016/j.nonrwa.2008.02.013_b40) 2006; 185
Temam (10.1016/j.nonrwa.2008.02.013_b45) 1997
Chill (10.1016/j.nonrwa.2008.02.013_b11) 2006; 13
Damlamian (10.1016/j.nonrwa.2008.02.013_b14) 1994; 23
Goldstein (10.1016/j.nonrwa.2008.02.013_b25) 2006; 11
Jiménez-Casas (10.1016/j.nonrwa.2008.02.013_b28) 2002; 15
10.1016/j.nonrwa.2008.02.013_b21
Aizicovici (10.1016/j.nonrwa.2008.02.013_b2) 2003; 15
10.1016/j.nonrwa.2008.02.013_b23
10.1016/j.nonrwa.2008.02.013_b22
Racke (10.1016/j.nonrwa.2008.02.013_b42) 2003; 8
Prüss (10.1016/j.nonrwa.2008.02.013_b41) 2006; vol. 168
Efendiev (10.1016/j.nonrwa.2008.02.013_b16) 2004; 272
Miranville (10.1016/j.nonrwa.2008.02.013_b37) 2002; 63
Cahn (10.1016/j.nonrwa.2008.02.013_b7) 1958; 28
Elliott (10.1016/j.nonrwa.2008.02.013_b18) 1986; 96
Zheng (10.1016/j.nonrwa.2008.02.013_b48) 1986; 3
Kalantarov (10.1016/j.nonrwa.2008.02.013_b29) 1991; 188
Novick-Cohen (10.1016/j.nonrwa.2008.02.013_b39) 1988
Elliott (10.1016/j.nonrwa.2008.02.013_b17) 1990; vol. 95
Miranville (10.1016/j.nonrwa.2008.02.013_b36) 2005; 28
References_xml – reference: C.G. Gal, M. Grasselli, A. Miranville, Exponential attractors for singularly perturbed phase-field equations with dynamic boundary conditions, NoDEA Nonlinear Differential Equations Appl. (in press)
– volume: vol. 76
  year: 1995
  ident: b49
  article-title: Nonlinear parabolic equations and hyperbolic-parabolic coupled systems
  publication-title: Pitman Monographs Surv. Pure Appl. Math.
– volume: 11
  start-page: 457
  year: 2006
  end-page: 480
  ident: b25
  article-title: Derivation and physical interpretation of general boundary conditions
  publication-title: Adv. Differential Equations
– volume: 51
  start-page: 1006
  year: 1999
  end-page: 1009
  ident: b30
  article-title: An attractor of a semiflow generated by a system of phase-field equations without uniqueness of the solution
  publication-title: Ukraïn. Mat. Zh.
– volume: 3
  start-page: 165
  year: 1986
  end-page: 184
  ident: b48
  article-title: Asymptotic behavior of solutions to the Cahn–Hilliard equations
  publication-title: Appl. Anal.
– volume: 17
  start-page: 107
  year: 2007
  end-page: 129
  ident: b10
  article-title: Some remarks on the asymptotic behavior of the Caginalp system with singular potentials
  publication-title: Adv. Math. Sci. Appl.
– volume: vol. 95
  start-page: 46
  year: 1990
  end-page: 58
  ident: b17
  article-title: Global existence and stability of solutions to the phase-field equations
  publication-title: Free Boundary Problems
– volume: 8
  start-page: 965
  year: 1998
  end-page: 985
  ident: b38
  article-title: The Cahn–Hilliard equation: Mathematical and modeling perspectives
  publication-title: Adv. Math. Sci. Appl.
– volume: 13
  start-page: 1448
  year: 2006
  end-page: 1462
  ident: b11
  article-title: Convergence to steady states of solutions of the Cahn–Hilliard and Caginalp equations with dynamic boundary conditions
  publication-title: Math. Nachr.
– volume: 185
  start-page: 627
  year: 2006
  end-page: 648
  ident: b40
  article-title: Maximal regularity and asymptotic behavior of solutions for the Cahn–Hilliard equation with dynamic boundary conditions
  publication-title: Ann. Mat. Pura Appl.
– volume: 28
  start-page: 709
  year: 2005
  end-page: 735
  ident: b36
  article-title: Exponential attractors for the Cahn–Hilliard equation with dynamic boundary conditions
  publication-title: Math. Models Appl. Sci.
– volume: 79
  start-page: 893
  year: 1997
  end-page: 896
  ident: b19
  article-title: Novel surface modes of spinodal decomposition
  publication-title: Phys. Rev. Lett.
– volume: 5
  start-page: 459
  year: 1998
  end-page: 476
  ident: b13
  article-title: Uniqueness of weak solutions to the phase-field model with memory
  publication-title: J. Math. Sci. Univ. Tokyo
– volume: 272
  start-page: 11
  year: 2004
  end-page: 31
  ident: b16
  article-title: Exponential attractors for a singularly perturbed Cahn–Hilliard system
  publication-title: Math. Nachr.
– volume: 4
  start-page: 683
  year: 2005
  end-page: 693
  ident: b47
  article-title: Asymptotic behavior of solutions to the phase-field equations with Neumann boundary conditions
  publication-title: Commun. Pure Appl. Anal.
– volume: 15
  start-page: 213
  year: 2002
  end-page: 248
  ident: b28
  article-title: Asymptotic behaviour for a phase field model in higher order Sobolev spaces
  publication-title: Rev. Mat. Complut.
– volume: 92
  start-page: 205
  year: 1986
  end-page: 245
  ident: b8
  article-title: An analysis of a phase field model of a free boundary
  publication-title: Arch. Ration. Mech. Anal.
– reference: C.G. Gal, Well-posedness and long time behavior of the non-isothermal viscous Cahn–Hilliard equation with dynamic boundary conditions, Dynam. Partial Differential Equations (in press)
– volume: 5
  start-page: 215
  year: 2001
  end-page: 234
  ident: b43
  article-title: Phase field equations with constraints under nonlinear dynamic boundary conditions
  publication-title: Commun. Appl. Anal.
– volume: 239
  start-page: 38
  year: 2007
  end-page: 60
  ident: b27
  article-title: Asymptotic behaviour of a nonisothermal viscous Cahn–Hilliard equation with inertial term
  publication-title: J. Differential Equations
– volume: 28
  start-page: 258
  year: 1958
  end-page: 367
  ident: b7
  article-title: Free energy of a nonuniform system
  publication-title: J. Chem. Phys.
– volume: 8
  start-page: 83
  year: 2003
  end-page: 110
  ident: b42
  article-title: The Cahn–Hilliard equation with dynamical boundary conditions
  publication-title: Adv. Differential Equations
– volume: 4
  start-page: 375
  year: 1992
  end-page: 397
  ident: b3
  article-title: Inertial manifolds and inertial sets for the phase-field equations
  publication-title: J. Dynam. Differential Equations
– volume: 204
  start-page: 511
  year: 2004
  end-page: 531
  ident: b46
  article-title: Convergence to equilibrium for the Cahn–Hilliard equation with dynamic boundary conditions
  publication-title: J. Differential Equations
– volume: 330
  start-page: 713
  year: 2000
  end-page: 718
  ident: b15
  article-title: Exponential attractors for a nonlinear reaction-diffusion system in
  publication-title: C. R. Math. Acad. Sci. Paris
– volume: 63
  start-page: 1
  year: 2002
  end-page: 28
  ident: b37
  article-title: Robust exponential attractors for singularly perturbed phase-field type equations
  publication-title: Electron. J. Differential Equations
– volume: vol. 251
  start-page: 149
  year: 2006
  end-page: 170
  ident: b24
  article-title: Asymptotic behavior of a phase-field system with dynamic boundary conditions
  publication-title: Differential Equations, Inverse and Direct Problems
– volume: 42
  start-page: 49
  year: 1998
  end-page: 54
  ident: b20
  article-title: Diverging time and length scales of spinodal decomposition modes in thin flows
  publication-title: Europhys. Lett.
– volume: 23
  start-page: 115
  year: 1994
  end-page: 142
  ident: b14
  article-title: Subdifferential operator approach to a class of nonlinear systems for Stefan problems with phase relaxation
  publication-title: Nonlinear Anal.
– volume: 25
  start-page: 51
  year: 2006
  end-page: 72
  ident: b26
  article-title: Long time behavior of solutions to the Caginalp system with singular potential
  publication-title: Z. Anal. Anwendungen
– volume: 164
  start-page: 395
  year: 2000
  end-page: 430
  ident: b44
  article-title: Abstract approach to evolution equations of phase field type and applications
  publication-title: J. Differential Equations
– year: 1988
  ident: b39
  article-title: On the viscous Cahn–Hilliard equation
  publication-title: Material Instabilities in Continuum Mechanics (Edinburgh, 1985–1986)
– volume: 133
  start-page: 139
  year: 2001
  end-page: 157
  ident: b31
  article-title: Phase separation in confined geometries: Solving the Cahn–Hilliard equation with generic boundary conditions
  publication-title: Comput. Phys. Comm.
– volume: 306
  start-page: 107
  year: 2002
  end-page: 145
  ident: b35
  article-title: Phase-field models of solidification
  publication-title: Contemp. Math.
– volume: 27
  start-page: 1085
  year: 1979
  end-page: 1095
  ident: b1
  article-title: A microscopic theory for the antiphase boundary motion and its application to antiphase domain coarsening
  publication-title: Acta Metallurgica
– year: 2004
  ident: b50
  article-title: Nonlinear Evolution Equations
– volume: 15
  start-page: 217
  year: 2003
  end-page: 240
  ident: b2
  article-title: Asymptotic behaviour of solutions of a conserved phase-field system with memory
  publication-title: J. Integral Equations Appl.
– volume: 49
  start-page: 197
  year: 1993
  end-page: 212
  ident: b4
  article-title: Finite dimensional exponential attractor for the phase-field model
  publication-title: Appl. Anal.
– volume: vol. 168
  start-page: 209
  year: 2006
  end-page: 236
  ident: b41
  article-title: Maximal
  publication-title: Partial Differential Equations and Functional Analysis
– year: 1997
  ident: b45
  article-title: Infinite-Dimensional Dynamical Systems in Mechanics and Physics
– reference: C.G. Gal, M. Grasselli, The non-isothermal Allen-Cahn equation with dynamic boundary conditions, Discrete Contin. Dynam. Syst. A (in press)
– volume: 4
  start-page: 59
  year: 1991
  end-page: 62
  ident: b5
  article-title: Universal attractor and inertial sets for the phase-field model
  publication-title: Appl. Math. Lett.
– volume: 44
  start-page: 77
  year: 1990
  end-page: 94
  ident: b9
  article-title: The dynamics of a conserved phase-field system: Stefan-like, Hele-Shaw, and Cahn–Hilliard models as asymptotic limits
  publication-title: IMA J. Appl. Math.
– volume: 58
  start-page: 159
  year: 2001
  end-page: 170
  ident: b12
  article-title: Global existence for the conserved phase field model with memory and quadratic nonlinearity
  publication-title: Port. Math.
– year: 1996
  ident: b6
  article-title: Hysteresis and Phase Transitions
– volume: 188
  year: 1991
  ident: b29
  article-title: On the minimal global attractor of a system of phase field equations
  publication-title: Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)
– volume: 117
  start-page: 320
  year: 1995
  end-page: 356
  ident: b32
  article-title: Subdifferential operator approach to the Cahn–Hilliard equations with constraint
  publication-title: J. Differential Equations
– year: 1967
  ident: b34
  article-title: Linear and Quasilinear Equations of Parabolic Type
– volume: 96
  start-page: 339
  year: 1986
  end-page: 357
  ident: b18
  article-title: On the Cahn–Hilliard equation
  publication-title: Arch. Ration. Mech. Anal.
– volume: 126
  start-page: 167
  year: 1996
  end-page: 185
  ident: b33
  article-title: Long-time behaviour for a model of phase-field type
  publication-title: Proc. Roy. Soc. Edinburgh Sect. A
– ident: 10.1016/j.nonrwa.2008.02.013_b22
– volume: vol. 168
  start-page: 209
  year: 2006
  ident: 10.1016/j.nonrwa.2008.02.013_b41
  article-title: Maximal Lp regularity for the Cahn–Hilliard equation with non-constant temperature and dynamic boundary conditions
– volume: 3
  start-page: 165
  year: 1986
  ident: 10.1016/j.nonrwa.2008.02.013_b48
  article-title: Asymptotic behavior of solutions to the Cahn–Hilliard equations
  publication-title: Appl. Anal.
– year: 2004
  ident: 10.1016/j.nonrwa.2008.02.013_b50
– volume: 49
  start-page: 197
  year: 1993
  ident: 10.1016/j.nonrwa.2008.02.013_b4
  article-title: Finite dimensional exponential attractor for the phase-field model
  publication-title: Appl. Anal.
  doi: 10.1080/00036819108840173
– year: 1996
  ident: 10.1016/j.nonrwa.2008.02.013_b6
– volume: 133
  start-page: 139
  year: 2001
  ident: 10.1016/j.nonrwa.2008.02.013_b31
  article-title: Phase separation in confined geometries: Solving the Cahn–Hilliard equation with generic boundary conditions
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/S0010-4655(00)00159-4
– volume: 58
  start-page: 159
  year: 2001
  ident: 10.1016/j.nonrwa.2008.02.013_b12
  article-title: Global existence for the conserved phase field model with memory and quadratic nonlinearity
  publication-title: Port. Math.
– volume: 23
  start-page: 115
  year: 1994
  ident: 10.1016/j.nonrwa.2008.02.013_b14
  article-title: Subdifferential operator approach to a class of nonlinear systems for Stefan problems with phase relaxation
  publication-title: Nonlinear Anal.
  doi: 10.1016/0362-546X(94)90255-0
– volume: 330
  start-page: 713
  year: 2000
  ident: 10.1016/j.nonrwa.2008.02.013_b15
  article-title: Exponential attractors for a nonlinear reaction-diffusion system in R3
  publication-title: C. R. Math. Acad. Sci. Paris
  doi: 10.1016/S0764-4442(00)00259-7
– volume: 51
  start-page: 1006
  year: 1999
  ident: 10.1016/j.nonrwa.2008.02.013_b30
  article-title: An attractor of a semiflow generated by a system of phase-field equations without uniqueness of the solution
  publication-title: Ukraïn. Mat. Zh.
– volume: 4
  start-page: 59
  year: 1991
  ident: 10.1016/j.nonrwa.2008.02.013_b5
  article-title: Universal attractor and inertial sets for the phase-field model
  publication-title: Appl. Math. Lett.
  doi: 10.1016/0893-9659(91)90076-8
– volume: 11
  start-page: 457
  year: 2006
  ident: 10.1016/j.nonrwa.2008.02.013_b25
  article-title: Derivation and physical interpretation of general boundary conditions
  publication-title: Adv. Differential Equations
  doi: 10.57262/ade/1355867704
– volume: 117
  start-page: 320
  year: 1995
  ident: 10.1016/j.nonrwa.2008.02.013_b32
  article-title: Subdifferential operator approach to the Cahn–Hilliard equations with constraint
  publication-title: J. Differential Equations
  doi: 10.1006/jdeq.1995.1056
– ident: 10.1016/j.nonrwa.2008.02.013_b23
– year: 1988
  ident: 10.1016/j.nonrwa.2008.02.013_b39
  article-title: On the viscous Cahn–Hilliard equation
– volume: 5
  start-page: 215
  year: 2001
  ident: 10.1016/j.nonrwa.2008.02.013_b43
  article-title: Phase field equations with constraints under nonlinear dynamic boundary conditions
  publication-title: Commun. Appl. Anal.
– volume: 4
  start-page: 375
  year: 1992
  ident: 10.1016/j.nonrwa.2008.02.013_b3
  article-title: Inertial manifolds and inertial sets for the phase-field equations
  publication-title: J. Dynam. Differential Equations
  doi: 10.1007/BF01049391
– volume: 185
  start-page: 627
  issue: 4
  year: 2006
  ident: 10.1016/j.nonrwa.2008.02.013_b40
  article-title: Maximal regularity and asymptotic behavior of solutions for the Cahn–Hilliard equation with dynamic boundary conditions
  publication-title: Ann. Mat. Pura Appl.
  doi: 10.1007/s10231-005-0175-3
– volume: vol. 76
  year: 1995
  ident: 10.1016/j.nonrwa.2008.02.013_b49
  article-title: Nonlinear parabolic equations and hyperbolic-parabolic coupled systems
– volume: vol. 251
  start-page: 149
  year: 2006
  ident: 10.1016/j.nonrwa.2008.02.013_b24
  article-title: Asymptotic behavior of a phase-field system with dynamic boundary conditions
– volume: vol. 95
  start-page: 46
  year: 1990
  ident: 10.1016/j.nonrwa.2008.02.013_b17
  article-title: Global existence and stability of solutions to the phase-field equations
– volume: 8
  start-page: 83
  year: 2003
  ident: 10.1016/j.nonrwa.2008.02.013_b42
  article-title: The Cahn–Hilliard equation with dynamical boundary conditions
  publication-title: Adv. Differential Equations
  doi: 10.57262/ade/1355926869
– volume: 239
  start-page: 38
  year: 2007
  ident: 10.1016/j.nonrwa.2008.02.013_b27
  article-title: Asymptotic behaviour of a nonisothermal viscous Cahn–Hilliard equation with inertial term
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2007.05.003
– volume: 272
  start-page: 11
  year: 2004
  ident: 10.1016/j.nonrwa.2008.02.013_b16
  article-title: Exponential attractors for a singularly perturbed Cahn–Hilliard system
  publication-title: Math. Nachr.
  doi: 10.1002/mana.200310186
– volume: 92
  start-page: 205
  year: 1986
  ident: 10.1016/j.nonrwa.2008.02.013_b8
  article-title: An analysis of a phase field model of a free boundary
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF00254827
– volume: 96
  start-page: 339
  year: 1986
  ident: 10.1016/j.nonrwa.2008.02.013_b18
  article-title: On the Cahn–Hilliard equation
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF00251803
– volume: 27
  start-page: 1085
  year: 1979
  ident: 10.1016/j.nonrwa.2008.02.013_b1
  article-title: A microscopic theory for the antiphase boundary motion and its application to antiphase domain coarsening
  publication-title: Acta Metallurgica
  doi: 10.1016/0001-6160(79)90196-2
– volume: 63
  start-page: 1
  year: 2002
  ident: 10.1016/j.nonrwa.2008.02.013_b37
  article-title: Robust exponential attractors for singularly perturbed phase-field type equations
  publication-title: Electron. J. Differential Equations
– volume: 15
  start-page: 213
  year: 2002
  ident: 10.1016/j.nonrwa.2008.02.013_b28
  article-title: Asymptotic behaviour for a phase field model in higher order Sobolev spaces
  publication-title: Rev. Mat. Complut.
  doi: 10.5209/rev_REMA.2002.v15.n1.16964
– volume: 126
  start-page: 167
  year: 1996
  ident: 10.1016/j.nonrwa.2008.02.013_b33
  article-title: Long-time behaviour for a model of phase-field type
  publication-title: Proc. Roy. Soc. Edinburgh Sect. A
  doi: 10.1017/S0308210500030663
– year: 1967
  ident: 10.1016/j.nonrwa.2008.02.013_b34
– volume: 79
  start-page: 893
  year: 1997
  ident: 10.1016/j.nonrwa.2008.02.013_b19
  article-title: Novel surface modes of spinodal decomposition
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.79.893
– volume: 17
  start-page: 107
  year: 2007
  ident: 10.1016/j.nonrwa.2008.02.013_b10
  article-title: Some remarks on the asymptotic behavior of the Caginalp system with singular potentials
  publication-title: Adv. Math. Sci. Appl.
– volume: 13
  start-page: 1448
  year: 2006
  ident: 10.1016/j.nonrwa.2008.02.013_b11
  article-title: Convergence to steady states of solutions of the Cahn–Hilliard and Caginalp equations with dynamic boundary conditions
  publication-title: Math. Nachr.
  doi: 10.1002/mana.200410431
– volume: 188
  year: 1991
  ident: 10.1016/j.nonrwa.2008.02.013_b29
  article-title: On the minimal global attractor of a system of phase field equations
  publication-title: Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)
– volume: 164
  start-page: 395
  year: 2000
  ident: 10.1016/j.nonrwa.2008.02.013_b44
  article-title: Abstract approach to evolution equations of phase field type and applications
  publication-title: J. Differential Equations
  doi: 10.1006/jdeq.1999.3753
– year: 1997
  ident: 10.1016/j.nonrwa.2008.02.013_b45
– volume: 42
  start-page: 49
  year: 1998
  ident: 10.1016/j.nonrwa.2008.02.013_b20
  article-title: Diverging time and length scales of spinodal decomposition modes in thin flows
  publication-title: Europhys. Lett.
  doi: 10.1209/epl/i1998-00550-y
– volume: 28
  start-page: 709
  year: 2005
  ident: 10.1016/j.nonrwa.2008.02.013_b36
  article-title: Exponential attractors for the Cahn–Hilliard equation with dynamic boundary conditions
  publication-title: Math. Models Appl. Sci.
  doi: 10.1002/mma.590
– volume: 5
  start-page: 459
  year: 1998
  ident: 10.1016/j.nonrwa.2008.02.013_b13
  article-title: Uniqueness of weak solutions to the phase-field model with memory
  publication-title: J. Math. Sci. Univ. Tokyo
– volume: 25
  start-page: 51
  year: 2006
  ident: 10.1016/j.nonrwa.2008.02.013_b26
  article-title: Long time behavior of solutions to the Caginalp system with singular potential
  publication-title: Z. Anal. Anwendungen
  doi: 10.4171/ZAA/1277
– volume: 204
  start-page: 511
  year: 2004
  ident: 10.1016/j.nonrwa.2008.02.013_b46
  article-title: Convergence to equilibrium for the Cahn–Hilliard equation with dynamic boundary conditions
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2004.05.004
– volume: 4
  start-page: 683
  year: 2005
  ident: 10.1016/j.nonrwa.2008.02.013_b47
  article-title: Asymptotic behavior of solutions to the phase-field equations with Neumann boundary conditions
  publication-title: Commun. Pure Appl. Anal.
  doi: 10.3934/cpaa.2005.4.683
– ident: 10.1016/j.nonrwa.2008.02.013_b21
– volume: 28
  start-page: 258
  year: 1958
  ident: 10.1016/j.nonrwa.2008.02.013_b7
  article-title: Free energy of a nonuniform system
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1744102
– volume: 44
  start-page: 77
  year: 1990
  ident: 10.1016/j.nonrwa.2008.02.013_b9
  article-title: The dynamics of a conserved phase-field system: Stefan-like, Hele-Shaw, and Cahn–Hilliard models as asymptotic limits
  publication-title: IMA J. Appl. Math.
  doi: 10.1093/imamat/44.1.77
– volume: 15
  start-page: 217
  year: 2003
  ident: 10.1016/j.nonrwa.2008.02.013_b2
  article-title: Asymptotic behaviour of solutions of a conserved phase-field system with memory
  publication-title: J. Integral Equations Appl.
  doi: 10.1216/jiea/1181074968
– volume: 306
  start-page: 107
  year: 2002
  ident: 10.1016/j.nonrwa.2008.02.013_b35
  article-title: Phase-field models of solidification
  publication-title: Contemp. Math.
  doi: 10.1090/conm/306/05251
– volume: 8
  start-page: 965
  year: 1998
  ident: 10.1016/j.nonrwa.2008.02.013_b38
  article-title: The Cahn–Hilliard equation: Mathematical and modeling perspectives
  publication-title: Adv. Math. Sci. Appl.
SSID ssj0017131
Score 2.0725186
Snippet We consider a model of non-isothermal phase separation taking place in a confined container. The order parameter ϕ is governed by a viscous or non-viscous...
We consider a model of non-isothermal phase separation taking place in a confined container. The order parameter is governed by a viscous or non-viscous...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1738
SubjectTerms Dynamic boundary conditions
Exponential attractors
Global attractors
Non-isothermal Cahn–Hilliard equations
Viscous Cahn–Hilliard equation
Title Uniform global attractors for non-isothermal viscous and non-viscous Cahn–Hilliard equations with dynamic boundary conditions
URI https://dx.doi.org/10.1016/j.nonrwa.2008.02.013
https://www.proquest.com/docview/36489523
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXvQgPvFZ9-B126S7adKjFEt9FVEL3sI-saJF06h4Uf-D_9Bf4kw2KSiI4ClkH2HZ2cxrZ74hZK-jowBYr2ROJYYJERiWSMWZjLgA_cQmyqJD_3TQ7g_F0VV0VSPdKhcGwypL3u95esGty5ZmuZvN-9GoeYFJQyFIKNR5QIwjJqgQMZ71xus0zCMEIyysMoxwdJU-V8R4gYWdPcsyorLVCEL-m3j6wagL6dNbJAul2kj3_cqWSM2Ol8n86RRzdbJC3kB9RA2UeowPKvM888V0KDRTWAQbTYp8qzvofRpNNBj9VI5N0VW9d-X1-PP9o1-4YTJD7YPHAp9Q9NhS4wvYU1VUY8peKJjTxkd9rZJh7-Cy22dleQWmOY9z1lJtbSIhEXMLUbcMgsWrMLGR60QCr3CVkcIJYbRwVtsocc6BRuOSwHVk4vgamYEF2nVChYZp1rZVIMFgjA0onUYrYWPLnY5kvEF4taupLrHHsQTGbVoFmd2knhZlWcxWCrTYIGw6695jb_wxPq4Iln47QymIhz9m7lb0TeH3wjsTObaw6ylvi6QDxvrmv7-9Reb8DRR6brbJTJ492h1QZHJVL05qnczud89PzvB5eNwffAEOh_qw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVYDsABsYodH7i6TWq7SY-oAhVoewGk3iyvogiqkgYQF-Af-EO-hHGcVAIJIXGMY0eW7cy8Gc-8QeiopXkEolcSp1JDGIsMSaWiRHLKAJ_YVFnv0O_1m51rdj7ggxnUrnJhfFhlKfuDTC-kddlSL1ezPh4O65c-aSgGDeUxD6hxNovmGaeJj-urvU7jPGKwwuIqxch3r_LniiAvMLGzZ1mGVDZqUUx_008_JHWhfk5X0HKJG_FxmNoqmrGjNbTUm5KuTtbRG-BHD0FxIPnAMs-zUE0HQzOGSZDhpEi4uoe3T8OJBqsfy5EpXlXPbXkz-nz_6BR-mMxg-xDIwCfYu2yxCRXssSrKMWUvGOxpE8K-NtD16clVu0PK-gpEU5rkpKGa2nAmPemWp90yni1exanlrsWZv8NVRjLHmNHMWW156pwDSOPSyLVk6ugmmoMJ2i2EmYZh1jZVJMFiTAygTqMVs4mlTnOZbCNararQJfm4r4FxJ6oos1sR9qKsi9kQsBfbiExHjQP5xh_9k2rDxLdDJEA__DHysNpfAf-XvzSRIwurLmiTpS2w1nf-_e1DtNC56nVF96x_sYsWw3WUd-Psobk8e7T7gGpydVCc2i_0yvqu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uniform+global+attractors+for+non-isothermal+viscous+and+non-viscous+Cahn-Hilliard+equations+with+dynamic+boundary+conditions&rft.jtitle=Nonlinear+analysis%3A+real+world+applications&rft.au=Gal%2C+Ciprian+G&rft.au=Miranville%2C+Alain&rft.date=2009-06-01&rft.issn=1468-1218&rft.volume=10&rft.issue=3&rft.spage=1738&rft.epage=1766&rft_id=info:doi/10.1016%2Fj.nonrwa.2008.02.013&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1468-1218&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1468-1218&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1468-1218&client=summon