The effect of a prior short-term ageing on mechanical and creep properties of P92 steel

We have investigated the effect of prior short-term ageing on the mechanical and creep properties of tungsten and boron modified 9%Cr ferritic steel (ASTM Grade P92 steel), to provide material data base for the estimation of material degradation due to occurrence of accidental overheating in the ear...

Full description

Saved in:
Bibliographic Details
Published inMaterials characterization Vol. 136; pp. 388 - 397
Main Authors Sklenicka, V., Kucharova, K., Svobodova, M., Kral, P., Kvapilova, M., Dvorak, J.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.02.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We have investigated the effect of prior short-term ageing on the mechanical and creep properties of tungsten and boron modified 9%Cr ferritic steel (ASTM Grade P92 steel), to provide material data base for the estimation of material degradation due to occurrence of accidental overheating in the early stage of service loading. The steel was aged at 650°C for up to 100, 200, 500, 1000, 2000 and 5000h prior to mechanical and creep testing. Changes in the microstructure during ageing had a slight effect on the reduction of room temperature tensile properties. A sudden decrease on impact properties occurred after ageing for 2000h, but the occurred impact energy of about 70J is in accordance with the specified minimum value of 68J at room temperature for the virgin condition. The creep behaviour of P92 steel in the as-received condition and after different isothermal ageing exposures prior to creep was investigated at 600 and 650°C in the power-law creep regime. The initial applied tensile stress ranged from 90 to 200MPa. The results clearly show a detrimental influence of isothermal ageing on creep properties even after a few hundred hours. Based on microstructure analysis, which was done mostly in a qualitative way, a significant decrease in the creep life after ageing resulted from changes of the dislocation substructure and instability of Laves phase and M23C6 particles. •The results of simulated ageing at 650°C allows to estimate degradation of P92 steam pipes due to accidental overheating.•Simulated ageing has only a slight effect on ambient tensile properties and hardness.•A sudden decrease in impact properties occurred after ageing for 2000h. The FATT of about 25°C was determined.•The creep results show a clear detrimental influence of tempering ageing on the creep strength.•No Z-phase precipitation occurred due to the ageing process.
AbstractList Highlights: • The results of simulated ageing at 650°C allows to estimate degradation of P92 steam pipes due to accidental overheating. • Simulated ageing has only a slight effect on ambient tensile properties and hardness. • A sudden decrease in impact properties occurred after ageing for 2000h. The FATT of about 25°C was determined. • The creep results show a clear detrimental influence of tempering ageing on the creep strength. • No Z-phase precipitation occurred due to the ageing process. - Abstract: We have investigated the effect of prior short-term ageing on the mechanical and creep properties of tungsten and boron modified 9%Cr ferritic steel (ASTM Grade P92 steel), to provide material data base for the estimation of material degradation due to occurrence of accidental overheating in the early stage of service loading. The steel was aged at 650 °C for up to 100, 200, 500, 1000, 2000 and 5000 h prior to mechanical and creep testing. Changes in the microstructure during ageing had a slight effect on the reduction of room temperature tensile properties. A sudden decrease on impact properties occurred after ageing for 2000 h, but the occurred impact energy of about 70 J is in accordance with the specified minimum value of 68 J at room temperature for the virgin condition. The creep behaviour of P92 steel in the as-received condition and after different isothermal ageing exposures prior to creep was investigated at 600 and 650 °C in the power-law creep regime. The initial applied tensile stress ranged from 90 to 200 MPa. The results clearly show a detrimental influence of isothermal ageing on creep properties even after a few hundred hours. Based on microstructure analysis, which was done mostly in a qualitative way, a significant decrease in the creep life after ageing resulted from changes of the dislocation substructure and instability of Laves phase and M{sub 23}C{sub 6} particles.
We have investigated the effect of prior short-term ageing on the mechanical and creep properties of tungsten and boron modified 9%Cr ferritic steel (ASTM Grade P92 steel), to provide material data base for the estimation of material degradation due to occurrence of accidental overheating in the early stage of service loading. The steel was aged at 650°C for up to 100, 200, 500, 1000, 2000 and 5000h prior to mechanical and creep testing. Changes in the microstructure during ageing had a slight effect on the reduction of room temperature tensile properties. A sudden decrease on impact properties occurred after ageing for 2000h, but the occurred impact energy of about 70J is in accordance with the specified minimum value of 68J at room temperature for the virgin condition. The creep behaviour of P92 steel in the as-received condition and after different isothermal ageing exposures prior to creep was investigated at 600 and 650°C in the power-law creep regime. The initial applied tensile stress ranged from 90 to 200MPa. The results clearly show a detrimental influence of isothermal ageing on creep properties even after a few hundred hours. Based on microstructure analysis, which was done mostly in a qualitative way, a significant decrease in the creep life after ageing resulted from changes of the dislocation substructure and instability of Laves phase and M23C6 particles. •The results of simulated ageing at 650°C allows to estimate degradation of P92 steam pipes due to accidental overheating.•Simulated ageing has only a slight effect on ambient tensile properties and hardness.•A sudden decrease in impact properties occurred after ageing for 2000h. The FATT of about 25°C was determined.•The creep results show a clear detrimental influence of tempering ageing on the creep strength.•No Z-phase precipitation occurred due to the ageing process.
Author Kucharova, K.
Dvorak, J.
Kvapilova, M.
Svobodova, M.
Sklenicka, V.
Kral, P.
Author_xml – sequence: 1
  givenname: V.
  surname: Sklenicka
  fullname: Sklenicka, V.
  email: sklen@ipm.cz
  organization: Institute of Physics of Materials, Academy of Sciences of the Czech Republic, 616 62 Brno, Czech Republic
– sequence: 2
  givenname: K.
  surname: Kucharova
  fullname: Kucharova, K.
  organization: Institute of Physics of Materials, Academy of Sciences of the Czech Republic, 616 62 Brno, Czech Republic
– sequence: 3
  givenname: M.
  surname: Svobodova
  fullname: Svobodova, M.
  organization: UJP PRAHA, a.s., 15610 Praha – Zbraslav, Czech Republic
– sequence: 4
  givenname: P.
  surname: Kral
  fullname: Kral, P.
  organization: Institute of Physics of Materials, Academy of Sciences of the Czech Republic, 616 62 Brno, Czech Republic
– sequence: 5
  givenname: M.
  surname: Kvapilova
  fullname: Kvapilova, M.
  organization: Institute of Physics of Materials, Academy of Sciences of the Czech Republic, 616 62 Brno, Czech Republic
– sequence: 6
  givenname: J.
  surname: Dvorak
  fullname: Dvorak, J.
  organization: Institute of Physics of Materials, Academy of Sciences of the Czech Republic, 616 62 Brno, Czech Republic
BackLink https://www.osti.gov/biblio/22804913$$D View this record in Osti.gov
BookMark eNqFkE1LAzEQhoNUsFZ_ghDwvOtkk90meBARv0DQg-IxpNnZNqVNShIE_71Z2pOXniaH95l585yTiQ8eCbliUDNg3c263ppsVybWDTBZA6sB5AmZMjnnlWBSTcobhKhaCfyMnKe0BoBOsvmUfH-ukOIwoM00DNTQXXQh0rQKMVcZ45aaJTq_pMHTLZYj3lmzocb31EbEXcmHHcbsMI38h2poyoibC3I6mE3Cy8Ocka-nx8-Hl-rt_fn14f6tspzPc9Woti2tmATT8kXfqoEPvOkkqHkvuRWLwTBrwarOKIaiMULgAljfdkq0aHo-I9f7vSFlp5N1uZS0wfvyId00EoRivKRu9ykbQ0oRB12CJrvgczRuoxno0aRe64NJPZrUwHQxWej2H10kbU38Pcrd7TksAn4cxrEfeou9i2O9PrgjG_4A2OyR1A
CitedBy_id crossref_primary_10_1002_srin_202100311
crossref_primary_10_1016_j_prostr_2023_12_027
crossref_primary_10_2320_matertrans_MT_MF2022035
crossref_primary_10_3390_ma17205092
crossref_primary_10_1016_j_ijpvp_2023_105121
crossref_primary_10_2478_msp_2024_0044
crossref_primary_10_4028_www_scientific_net_SSP_270_162
crossref_primary_10_1016_j_jmapro_2020_08_019
crossref_primary_10_1111_ffe_13051
crossref_primary_10_1007_s11665_024_09872_y
crossref_primary_10_1016_j_msea_2018_11_083
crossref_primary_10_1080_09603409_2020_1740488
crossref_primary_10_1590_1980_5373_mr_2022_0370
crossref_primary_10_3390_ma15103659
crossref_primary_10_1016_j_matchar_2023_112744
crossref_primary_10_1016_j_matchar_2023_112864
crossref_primary_10_1115_1_4053772
crossref_primary_10_1016_j_ijfatigue_2020_105900
crossref_primary_10_1016_j_ijpvp_2020_104133
crossref_primary_10_1007_s43452_022_00408_6
crossref_primary_10_3390_en17122870
crossref_primary_10_1002_adem_201900448
crossref_primary_10_1016_j_matpr_2020_06_125
crossref_primary_10_1007_s11665_019_04167_z
crossref_primary_10_1016_j_matchar_2020_110497
crossref_primary_10_1007_s11665_023_08027_9
crossref_primary_10_1515_htmp_2020_0087
crossref_primary_10_1520_MPC20220071
crossref_primary_10_1002_srin_202400372
crossref_primary_10_1016_j_matchar_2020_110514
crossref_primary_10_1088_2053_1591_abaf3f
crossref_primary_10_1007_s10853_023_08296_8
Cites_doi 10.1016/j.msea.2006.12.151
10.1016/j.engfracmech.2017.02.008
10.1115/PVP2012-78323
10.1016/S1006-706X(17)30127-9
10.1016/S1359-6454(01)00135-5
10.1016/0956-716X(95)00086-B
10.1016/j.actamat.2009.07.010
10.1016/S0921-5093(97)00708-9
10.1016/j.msea.2017.05.122
10.1016/j.msea.2014.07.046
10.4028/www.scientific.net/MSF.654-656.504
10.1016/j.msea.2017.10.025
10.1016/j.msea.2015.05.012
10.1016/j.ijpvp.2007.06.010
10.1179/1878641315Y.0000000003
10.1038/s41598-017-06191-2
10.1016/j.msea.2015.05.068
10.1016/j.msea.2014.04.075
10.1016/j.matchar.2003.09.012
10.1016/j.msea.2006.05.010
10.12693/APhysPolA.128.543
10.1007/s11661-012-1205-6
10.1016/S0022-3115(86)80083-6
10.1016/j.matchar.2016.06.033
10.1016/j.ijpvp.2007.06.003
10.1016/j.intermet.2012.08.016
10.1016/j.matchemphys.2015.07.032
10.1016/j.msea.2010.03.010
10.1007/s40194-017-0424-2
10.3139/146.101651
10.1016/j.jnucmat.2012.07.029
10.1016/S0921-5093(98)00532-2
10.1179/026708300101506993
10.1016/j.actamat.2006.08.046
10.1016/j.actamat.2014.08.008
10.1016/j.msea.2015.07.072
10.1016/0001-6160(88)90253-2
10.1179/1878641315Y.0000000016
10.1016/0022-3115(91)90182-7
10.1016/S0921-5093(00)02002-5
10.1016/j.msea.2008.04.118
10.1016/S1359-6454(97)00176-6
10.1016/j.msea.2012.10.024
10.1016/j.engfailanal.2010.08.020
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright_xml – notice: 2018 Elsevier Inc.
DBID AAYXX
CITATION
OTOTI
DOI 10.1016/j.matchar.2018.01.008
DatabaseName CrossRef
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-4189
EndPage 397
ExternalDocumentID 22804913
10_1016_j_matchar_2018_01_008
S1044580317327043
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABTAH
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HX~
HZ~
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SSM
SSQ
SSZ
T5K
WH7
WUQ
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
AALMO
ABPIF
ABPTK
OTOTI
ID FETCH-LOGICAL-c337t-2955580180a53bd59f3f3268097d83c4bfa1cc0c96a91e42a44eb01d56945ead3
IEDL.DBID .~1
ISSN 1044-5803
IngestDate Fri May 19 00:38:06 EDT 2023
Tue Jul 01 01:35:56 EDT 2025
Thu Apr 24 23:07:27 EDT 2025
Fri Feb 23 02:28:47 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Mechanical properties
Creep life
ASTM Grade P92 steel
Isothermal ageing
Creep testing
Microstructure evolution
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-2955580180a53bd59f3f3268097d83c4bfa1cc0c96a91e42a44eb01d56945ead3
PageCount 10
ParticipantIDs osti_scitechconnect_22804913
crossref_citationtrail_10_1016_j_matchar_2018_01_008
crossref_primary_10_1016_j_matchar_2018_01_008
elsevier_sciencedirect_doi_10_1016_j_matchar_2018_01_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-02-01
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Materials characterization
PublicationYear 2018
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Sklenicka, Kloc (bb0065) 2011
Čadek (bb0230) 1988
Wang, Wang, Li, Wu, Ren, Liu, Liu (bb0125) 2017; 61
Guo, Gong, Jiang, Wang, Zhao (bb0160) 2015; 32
Abe (bb0040) 2001; 319–321
Zieliński, Golański, Soka (bb0170) 2016; 54
Miyahara, Hvang, Shimoide (bb0265) 1995; 32
Abe (bb0295) 2008
Lee, Armaki, Maruyama, Muraki, Asahi (bb0050) 2006; 428
Kim, Jeong, Lim (bb0055) 2008; 483–484
Sklenicka, Kucharova, Svoboda, Kroupa (bb0060) 2010
Sklenicka, Kucharova, Svoboda, Kroupa, Cmakal (bb0135) 2010; 654–656
Yang, Liao, Xiao, Yan, Shan, Yang (bb0180) 2017; 24
Gao, Zhang, Zhang, Li, Qu, Han, Lu, Wu, Lu, Ma (bb0255) 2017; 7
Abe (bb0010) 2014
Sklenicka, Kucharova, Kral, Kvapilova, Dvorak (bb0300) 2017; 55
Hasegawa (bb0015) 2014
Hättestrand, Andrén (bb0090) 2001; 49
Ennis, Zielinska-Lipiec, Wachter, Czyrska-Filemonowitz (bb0205) 1997; 45
Aghajani, Somsen, Eggeler (bb0280) 2009; 57
Jeong, Kim, Kim, Kim (bb0185) 2017; 700
Senior, Noble, Eyre (bb0130) 1988; 36
Panait, Zielinska-Lipiec, Koziel, Czyrska-Filemonowitz, Gourgues-Lorenzon, Bendick (bb0140) 2010; 527
Shibli (bb0005) 2011
Sakthivel, Panneer Selvi, Laha (bb0085) 2015; 640
Yurechko, Schroer, Skrypnik, Wedemeyer, Konys (bb0220) 2013; 432
Sakthivel, Panneer Selvi, Parameswaran, Laha (bb0175) 2016; 33
Paretkar, Nandagopal, Mathew (bb0115) 2015; 132–133
Sklenicka, Kucharova, Svobodova, Kvapilova, Kral, Horvath (bb0120) 2016; 119
Sklenicka, Kucharova, Svoboda, Kroupa, Kloc, Cmakal (bb0145) 2010
Kostka, Tak, Hellmig, Estrin, Eggeler (bb0275) 2007
Kral, Dvorak, Kvapilova, Kucharova, Sklenicka, Svobodova, Cmakal (bb0165) 2015; 128
Kimura, Sawada, Kushima, Kubo (bb0215) 2008; 99
Wang, Xu, Yu, Hu, Liu, Ren (bb0270) 2015; 163
Wang, Pan, Liu, Zeng, Tao (bb0105) 2011; 18
Hosoi, Wade, Kunimitsu, Urita (bb0190) 1986; 141–143
Sklenicka, Kucharova, Kudrman, Svoboda, Kloc (bb0045) 2005; 43
Liu, Fors, Golpayegani, Andren, Wahnström (bb0290) 2012; 43
Khayatzadeh, Tanner, Truman, Flewitt, Smith (bb0100) 2017; 708
Abe (bb0025) 2017
Khaytzadeh, Tanner, Truman, Flewitt, Smith (bb0225) 2017; 175
Fedorova, Belyakov, Kozlov, Skorobogatykh, Shenkova, Kaibyshev (bb0260) 2014; A615
Ennis, Zielinska-Lipiec, Czyrska-Filemonowitz (bb0035) 2000; 16
Orlová, Buršík, Kuchařová, Sklenička (bb0235) 1998; 245
Zhong, Wang, Yang, Li, Sha, Wang, Shan, Yang (bb0200) 2015; 639
Dimmler, Weinert, Cerjak (bb0210) 2008; 85
Hald (bb0020) 2017
K. Kimura, Y. Takahashi, Evaluation of long-term creep strength of ASME Grades 91, 92 and 122 type steels, in: Proc. of ASME 2012 Pressure Vessel and Piping Conference, July 15–19, 2012, Toronto, PVP2012–78323.
Prat, Garcia, Rojas, Sauthoff, Inden (bb0110) 2013; 32
Kunimitsu, You, Kasuya, Sasaki, Hosoi (bb0195) 1991; 179–181
Gu, West, Thompson, Parker (bb0075) 2013
Isik, Kostka, Eggeler (bb0245) 2014; 81
Guo, Gong, Jiang, Rong (bb0150) 2013; 564
Sklenicka, Kucharova, Kral, Svobodova, Cmakal (bb0080) 2015; 644
Hättestrand, Schwind, Andren (bb0285) 1989; 250
Abe (bb0240) 2009; 510–511
Hald (bb0095) 2008; 85
Sklenicka, Kucharova, Svoboda, Kloc, Bursik, Kroupa (bb0030) 2003; 51
Zhou, Liu, Liu, Nig (bb0250) 2014; 608
Zieliński, Golański, Zielińska-Lipiec, Jasak, Kolan (bb0155) 2014
Orlová (10.1016/j.matchar.2018.01.008_bb0235) 1998; 245
Wang (10.1016/j.matchar.2018.01.008_bb0105) 2011; 18
Guo (10.1016/j.matchar.2018.01.008_bb0150) 2013; 564
Wang (10.1016/j.matchar.2018.01.008_bb0270) 2015; 163
Prat (10.1016/j.matchar.2018.01.008_bb0110) 2013; 32
Yang (10.1016/j.matchar.2018.01.008_bb0180) 2017; 24
Senior (10.1016/j.matchar.2018.01.008_bb0130) 1988; 36
Kostka (10.1016/j.matchar.2018.01.008_bb0275) 2007
Dimmler (10.1016/j.matchar.2018.01.008_bb0210) 2008; 85
Hald (10.1016/j.matchar.2018.01.008_bb0095) 2008; 85
Sklenicka (10.1016/j.matchar.2018.01.008_bb0120) 2016; 119
Sklenicka (10.1016/j.matchar.2018.01.008_bb0135) 2010; 654–656
Jeong (10.1016/j.matchar.2018.01.008_bb0185) 2017; 700
Sklenicka (10.1016/j.matchar.2018.01.008_bb0060) 2010
10.1016/j.matchar.2018.01.008_bb0070
Sklenicka (10.1016/j.matchar.2018.01.008_bb0145) 2010
Zieliński (10.1016/j.matchar.2018.01.008_bb0155) 2014
Wang (10.1016/j.matchar.2018.01.008_bb0125) 2017; 61
Ennis (10.1016/j.matchar.2018.01.008_bb0205) 1997; 45
Gu (10.1016/j.matchar.2018.01.008_bb0075) 2013
Sklenicka (10.1016/j.matchar.2018.01.008_bb0030) 2003; 51
Sakthivel (10.1016/j.matchar.2018.01.008_bb0085) 2015; 640
Abe (10.1016/j.matchar.2018.01.008_bb0010) 2014
Shibli (10.1016/j.matchar.2018.01.008_bb0005) 2011
Hasegawa (10.1016/j.matchar.2018.01.008_bb0015) 2014
Abe (10.1016/j.matchar.2018.01.008_bb0025) 2017
Miyahara (10.1016/j.matchar.2018.01.008_bb0265) 1995; 32
Gao (10.1016/j.matchar.2018.01.008_bb0255) 2017; 7
Ennis (10.1016/j.matchar.2018.01.008_bb0035) 2000; 16
Zhou (10.1016/j.matchar.2018.01.008_bb0250) 2014; 608
Kim (10.1016/j.matchar.2018.01.008_bb0055) 2008; 483–484
Hosoi (10.1016/j.matchar.2018.01.008_bb0190) 1986; 141–143
Paretkar (10.1016/j.matchar.2018.01.008_bb0115) 2015; 132–133
Liu (10.1016/j.matchar.2018.01.008_bb0290) 2012; 43
Hald (10.1016/j.matchar.2018.01.008_bb0020) 2017
Abe (10.1016/j.matchar.2018.01.008_bb0040) 2001; 319–321
Kral (10.1016/j.matchar.2018.01.008_bb0165) 2015; 128
Yurechko (10.1016/j.matchar.2018.01.008_bb0220) 2013; 432
Aghajani (10.1016/j.matchar.2018.01.008_bb0280) 2009; 57
Khayatzadeh (10.1016/j.matchar.2018.01.008_bb0100) 2017; 708
Panait (10.1016/j.matchar.2018.01.008_bb0140) 2010; 527
Sklenicka (10.1016/j.matchar.2018.01.008_bb0065) 2011
Sklenicka (10.1016/j.matchar.2018.01.008_bb0300) 2017; 55
Hättestrand (10.1016/j.matchar.2018.01.008_bb0090) 2001; 49
Abe (10.1016/j.matchar.2018.01.008_bb0240) 2009; 510–511
Sklenicka (10.1016/j.matchar.2018.01.008_bb0080) 2015; 644
Lee (10.1016/j.matchar.2018.01.008_bb0050) 2006; 428
Zieliński (10.1016/j.matchar.2018.01.008_bb0170) 2016; 54
Hättestrand (10.1016/j.matchar.2018.01.008_bb0285) 1989; 250
Guo (10.1016/j.matchar.2018.01.008_bb0160) 2015; 32
Čadek (10.1016/j.matchar.2018.01.008_bb0230) 1988
Abe (10.1016/j.matchar.2018.01.008_bb0295) 2008
Fedorova (10.1016/j.matchar.2018.01.008_bb0260) 2014; A615
Kimura (10.1016/j.matchar.2018.01.008_bb0215) 2008; 99
Zhong (10.1016/j.matchar.2018.01.008_bb0200) 2015; 639
Kunimitsu (10.1016/j.matchar.2018.01.008_bb0195) 1991; 179–181
Khaytzadeh (10.1016/j.matchar.2018.01.008_bb0225) 2017; 175
Isik (10.1016/j.matchar.2018.01.008_bb0245) 2014; 81
Sklenicka (10.1016/j.matchar.2018.01.008_bb0045) 2005; 43
Sakthivel (10.1016/j.matchar.2018.01.008_bb0175) 2016; 33
References_xml – volume: 33
  start-page: 33
  year: 2016
  end-page: 43
  ident: bb0175
  article-title: Creep deformation and rupture behaviour of thermal aged P92 steel
  publication-title: Mater. High Temp.
– reference: K. Kimura, Y. Takahashi, Evaluation of long-term creep strength of ASME Grades 91, 92 and 122 type steels, in: Proc. of ASME 2012 Pressure Vessel and Piping Conference, July 15–19, 2012, Toronto, PVP2012–78323.
– start-page: 131
  year: 2014
  end-page: 140
  ident: bb0155
  article-title: Influence of ageing process on microstructure and mechanical properties of 9%Cr cast steel
  publication-title: Proc. 10th Liege Conference: Materials for Advanced Power Engineering
– volume: 32
  start-page: 362
  year: 2013
  end-page: 372
  ident: bb0110
  article-title: The role of Laves phase on microstructure evolution and creep strength of novel 9%Cr heat resistant steels
  publication-title: Intermetallics
– volume: 45
  start-page: 4901
  year: 1997
  end-page: 4907
  ident: bb0205
  article-title: Microstructural stability and creep rupture strength of the martensitic steel P92 for advanced power plant
  publication-title: Acta Mater.
– volume: 81
  start-page: 230
  year: 2014
  end-page: 240
  ident: bb0245
  article-title: On the nucleation of Laves phase particles during high-temperature exposure and creep of tempered martensite ferritic steels
  publication-title: Acta Mater.
– volume: 128
  start-page: 543
  year: 2015
  end-page: 547
  ident: bb0165
  article-title: Influence of long-term annealing and hot bending on creep of P92 pipe
  publication-title: Acta Phys. Pol. A
– volume: 54
  start-page: 61
  year: 2016
  end-page: 70
  ident: bb0170
  article-title: Assessment of microstructure stability and mechanical properties of X10CrWMoVNb9-2 (P92) steel after long-term ageing for high temperature applications
  publication-title: Kov. Mater.
– start-page: 77
  year: 2017
  end-page: 97
  ident: bb0020
  article-title: High-alloyed martensitic steel grades for boilers in ultra-supercritical power plants
  publication-title: Materials for Ultra-supercritical and Advanced Ultra-supercritical Power Plants
– start-page: 596
  year: 2013
  end-page: 614
  ident: bb0075
  article-title: Investigation of creep damage and cavitation mechanism in P92 steels
  publication-title: Proc. of 7th Int. Conference on Advances in Materials Technology for Fossil Plants
– volume: 57
  start-page: 5093
  year: 2009
  end-page: 5106
  ident: bb0280
  article-title: On the effect of long-term creep on the microstructure of a 12% chromium tempered ferritic steel
  publication-title: Acta Mater.
– volume: 245
  start-page: 39
  year: 1998
  end-page: 48
  ident: bb0235
  article-title: Microstructural development during high temperature creep of 9%Cr steel
  publication-title: Mater. Sci. Eng. A
– volume: 16
  start-page: 1226
  year: 2000
  end-page: 1232
  ident: bb0035
  article-title: Influence of heat treatments on microstructure parameters and mechanical properties of P92 steel
  publication-title: Mater. Sci. Technol.
– volume: 510–511
  start-page: 64
  year: 2009
  end-page: 69
  ident: bb0240
  article-title: Analysis of creep rates of tempered martensitic 9%Cr steel based on microstructure evolution
  publication-title: Mater. Sci. Eng. A
– volume: 61
  start-page: 231
  year: 2017
  end-page: 239
  ident: bb0125
  article-title: Laves phase precipitation behavior in the simulated fine-grained heat-affected zone of creep strength enhanced ferritic steel P92 and its role in creep void nucleation and growth
  publication-title: Weld. World
– year: 1988
  ident: bb0230
  article-title: Creep in Metallic Materials
– volume: 18
  start-page: 186
  year: 2011
  end-page: 191
  ident: bb0105
  article-title: Creep rupture behavior of P92 steel weldment
  publication-title: Eng. Fail. Anal.
– volume: 99
  start-page: 395
  year: 2008
  end-page: 401
  ident: bb0215
  article-title: Effect of stress on creep deformation property of ASME Grade P92/T92 steels
  publication-title: Int. J. Mater. Res.
– volume: 24
  start-page: 858
  year: 2017
  end-page: 864
  ident: bb0180
  article-title: Ripening behavior of M
  publication-title: J. Iron Steel Res. Int.
– volume: 179–181
  start-page: 689
  year: 1991
  end-page: 692
  ident: bb0195
  article-title: Effect of thermo-mechanical treatment on toughness of 9Cr-W ferritic-martensitic steels during aging
  publication-title: J. Nucl. Mater.
– volume: 639
  start-page: 252
  year: 2015
  end-page: 258
  ident: bb0200
  article-title: Relation between Laves phase and the impact brittleness of P92 steel reevaluated
  publication-title: Mater. Sci. Eng. A
– start-page: 516
  year: 2010
  end-page: 529
  ident: bb0060
  article-title: Creep behaviour of advanced power plant steels after long-term isothermal ageing
  publication-title: Advances in Materials Technology for Fossil Power Plants
– volume: 163
  start-page: 219
  year: 2015
  end-page: 228
  ident: bb0270
  article-title: Laves-phase evolution during aging in 9Cr-1.8W-0.5Mo-VNb steel for USC power plant
  publication-title: Mater. Chem. Phys.
– volume: 483–484
  start-page: 544
  year: 2008
  end-page: 546
  ident: bb0055
  article-title: Creep behavior and microstructural damage of martensitic P92 steel weldment
  publication-title: Mater. Sci. Eng. A
– volume: 85
  start-page: 55
  year: 2008
  end-page: 62
  ident: bb0210
  article-title: Extrapolation of short-term creep rupture data – the potential risk of over-estimation
  publication-title: Int. J. Press. Vessel. Pip.
– volume: 428
  start-page: 270
  year: 2006
  end-page: 275
  ident: bb0050
  article-title: Causes of breakdown of creep strength in 9Cr-1.8W-0.5Mo-VNb steel
  publication-title: Mater. Sci. Eng. A
– volume: 85
  start-page: 30
  year: 2008
  end-page: 37
  ident: bb0095
  article-title: Microstructure and long-term creep properties of 9–12%Cr steels
  publication-title: Int. J. Press. Vessel. Pip.
– start-page: 52
  year: 2014
  end-page: 86
  ident: bb0015
  article-title: Grade 92 creep-strength-enhanced ferritic steel
  publication-title: Coal Power Plant Materials and Life Assessment. Development and Applications
– start-page: 1010
  year: 2010
  end-page: 1019
  ident: bb0145
  article-title: Modelling of degradation processes in creep-resistant steels throughout accelerated creep tests after long-term isothermal ageing
  publication-title: Proc. 9th Liege Conference on Materials for Advanced Power Engineering
– volume: 141–143
  start-page: 461
  year: 1986
  end-page: 467
  ident: bb0190
  article-title: Precipitation behavior of Laves phase and its effect on toughness of 9Cr-2Mo ferritic-martensitic steel
  publication-title: J. Nucl. Mater.
– volume: 7
  start-page: 5859
  year: 2017
  ident: bb0255
  article-title: Precipitates and particles coarsening of 9Cr-1.7W-0.4Mo-Co ferritic heat-resistant steel after isothermal aging
  publication-title: Sci. Report.
– volume: 55
  start-page: 69
  year: 2017
  end-page: 80
  ident: bb0300
  article-title: Applicability of empirical formulas and fractography for assessment of creep life and creep fracture modes of tempered martensitic 9%Cr steel
  publication-title: Kov. Mater.
– volume: 119
  start-page: 1
  year: 2016
  end-page: 12
  ident: bb0120
  article-title: Creep properties in similar weld joint of a thick-walled P92 steel pipe
  publication-title: Mater. Charact.
– volume: 432
  start-page: 78
  year: 2013
  end-page: 86
  ident: bb0220
  article-title: Creep-to-rupture of the steel P92 at 650
  publication-title: J. Nucl. Mater.
– start-page: 3
  year: 2014
  end-page: 51
  ident: bb0010
  article-title: Grade 91 heat-resistant martensitic steel
  publication-title: Coal Power Plant Materials and Life Assessment. Developments and Applications
– volume: 132–133
  start-page: 97
  year: 2015
  end-page: 105
  ident: bb0115
  article-title: Effect of normalizing and tempering temperatures on microstructure and mechanical properties of P92 steel
  publication-title: Int. J. Press. Vessel. Pip.
– volume: 527
  start-page: 4062
  year: 2010
  end-page: 4069
  ident: bb0140
  article-title: Evolution of dislocation density, size of subgrains and MX-type precipitates in a P91 steel during creep and during thermal ageing at 600
  publication-title: Mater. Sci. Eng. A
– volume: 175
  start-page: 57
  year: 2017
  end-page: 71
  ident: bb0225
  article-title: Creep deformation and stress relaxation of a martensitic P92 steel at 650
  publication-title: Eng. Fract. Mech.
– start-page: 272
  year: 2011
  end-page: 303
  ident: bb0005
  article-title: Boiler steels, damage mechanisms, inspection and life assessment
  publication-title: Power Plant Life Management and Performance Improvement
– volume: 700
  start-page: 701
  year: 2017
  end-page: 706
  ident: bb0185
  article-title: Influence of B and N on the microstructural characteristics and high-temperature strength on 9Cr-2W steel during an aging treatment
  publication-title: Mater. Sci. Eng. A
– volume: 608
  start-page: 46
  year: 2014
  end-page: 52
  ident: bb0250
  article-title: Evolution of creep damagein a modified ferritic heat-resistant steel with excellent short-term creep performance and its oxide layer characteristics
  publication-title: Mater. Sci. Eng. A
– start-page: 539
  year: 2007
  end-page: 550
  ident: bb0275
  article-title: On the contribution of carbides and micrograin boundary to the creep strength of tempered martensite ferritic steels
  publication-title: Acta Mater.
– volume: A615
  start-page: 153
  year: 2014
  end-page: 163
  ident: bb0260
  article-title: Laves-phase precipitates in a low-carbon 9%Cr martensitic steel during aging and creep at 923
  publication-title: Mater. Sci. Eng.
– volume: 43
  start-page: 4053
  year: 2012
  end-page: 4062
  ident: bb0290
  article-title: Effect of boron on carbide coarsening at 873
  publication-title: Metall. Mater. Trans. A
– volume: 49
  start-page: 2123
  year: 2001
  end-page: 2128
  ident: bb0090
  article-title: Influence of strain in precipitation reactions during creep of an advanced 9%Cr chromium steel
  publication-title: Acta Mater.
– volume: 250
  start-page: 27
  year: 1989
  end-page: 36
  ident: bb0285
  article-title: Microanalysis of two creep resistant 9–12%Cr steel
  publication-title: Mater. Sci. Eng. A
– volume: 43
  start-page: 20
  year: 2005
  end-page: 32
  ident: bb0045
  article-title: Microstructure stability and creep behaviour of advanced high chromium ferritic steels
  publication-title: Kov. Mater.
– volume: 654–656
  start-page: 504
  year: 2010
  end-page: 507
  ident: bb0135
  article-title: Creep behaviour and microstructural changes of advanced creep resistant steels after long-term isothermal ageing
  publication-title: Mater. Sci. Forum
– volume: 564
  start-page: 199
  year: 2013
  end-page: 205
  ident: bb0150
  article-title: The influence of long-term aging on microstructures and static mechanical properties of P92 steel at room temperature
  publication-title: Mater. Sci. Eng. A
– volume: 32
  start-page: 566
  year: 2015
  end-page: 574
  ident: bb0160
  article-title: Microstructure and high-temperature mechanical properties in 9Cr-0.5Mo-1.8WVNb after aging at 650 degrees C
  publication-title: Mater. High Temp.
– volume: 36
  start-page: 1855
  year: 1988
  end-page: 1862
  ident: bb0130
  article-title: The effect of ageing on the ductility of 9Cr-1Mo steel
  publication-title: Acta Metall.
– volume: 32
  start-page: 1917
  year: 1995
  end-page: 1921
  ident: bb0265
  article-title: Aging phenomena before the precipitation of the bulky Laves phase in Fe-10%Cr ferritic alloys
  publication-title: Scr. Metall. Mater.
– volume: 51
  start-page: 35
  year: 2003
  end-page: 48
  ident: bb0030
  article-title: Long-term creep behaviour of 9–12%Cr power plant steels
  publication-title: Mater. Charact.
– volume: 640
  start-page: 61
  year: 2015
  end-page: 71
  ident: bb0085
  article-title: An assessment of creep deformation and rupture behavior of 9Cr-1.8W-0.5Mo-VNb (ASME Grade92 steel)
  publication-title: Mater. Sci. Eng. A
– start-page: 180
  year: 2011
  end-page: 221
  ident: bb0065
  article-title: Creep in boiler materials: mechanisms, measurement and modelling
  publication-title: Power Plant Life Management and Performance Improvement
– start-page: 279
  year: 2008
  end-page: 328
  ident: bb0295
  article-title: Strengthening mechanisms in steel for creep and creep rupture
  publication-title: Creep-resistant Steels
– volume: 644
  start-page: 297
  year: 2015
  end-page: 309
  ident: bb0080
  article-title: The effect of hot bending and thermal ageing on creep and microstructural evolution in thick-walled P92 steel pipe
  publication-title: Mater. Sci. Eng. A
– volume: 319–321
  start-page: 770
  year: 2001
  end-page: 773
  ident: bb0040
  article-title: Creep rates and strengthening mechanisms in tungsten-strengthened Cr steel
  publication-title: Mater. Sci. Eng. A
– volume: 708
  start-page: 544
  year: 2017
  end-page: 555
  ident: bb0100
  article-title: Influence of thermal ageing on the creep behaviour of a P92 martensitic steel
  publication-title: Mater. Sci. Eng. A
– start-page: 323
  year: 2017
  end-page: 374
  ident: bb0025
  article-title: New martensitic steels
  publication-title: Materials for Ultra-supercritical and Advanced Power Plants
– volume: 483–484
  start-page: 544
  year: 2008
  ident: 10.1016/j.matchar.2018.01.008_bb0055
  article-title: Creep behavior and microstructural damage of martensitic P92 steel weldment
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2006.12.151
– volume: 54
  start-page: 61
  year: 2016
  ident: 10.1016/j.matchar.2018.01.008_bb0170
  article-title: Assessment of microstructure stability and mechanical properties of X10CrWMoVNb9-2 (P92) steel after long-term ageing for high temperature applications
  publication-title: Kov. Mater.
– start-page: 3
  year: 2014
  ident: 10.1016/j.matchar.2018.01.008_bb0010
  article-title: Grade 91 heat-resistant martensitic steel
– volume: 175
  start-page: 57
  year: 2017
  ident: 10.1016/j.matchar.2018.01.008_bb0225
  article-title: Creep deformation and stress relaxation of a martensitic P92 steel at 650°C
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2017.02.008
– ident: 10.1016/j.matchar.2018.01.008_bb0070
  doi: 10.1115/PVP2012-78323
– start-page: 516
  year: 2010
  ident: 10.1016/j.matchar.2018.01.008_bb0060
  article-title: Creep behaviour of advanced power plant steels after long-term isothermal ageing
– volume: 24
  start-page: 858
  year: 2017
  ident: 10.1016/j.matchar.2018.01.008_bb0180
  article-title: Ripening behavior of M23C6 carbides in P92 steel during aging at 800°C
  publication-title: J. Iron Steel Res. Int.
  doi: 10.1016/S1006-706X(17)30127-9
– start-page: 596
  year: 2013
  ident: 10.1016/j.matchar.2018.01.008_bb0075
  article-title: Investigation of creep damage and cavitation mechanism in P92 steels
– volume: 49
  start-page: 2123
  year: 2001
  ident: 10.1016/j.matchar.2018.01.008_bb0090
  article-title: Influence of strain in precipitation reactions during creep of an advanced 9%Cr chromium steel
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(01)00135-5
– start-page: 1010
  year: 2010
  ident: 10.1016/j.matchar.2018.01.008_bb0145
  article-title: Modelling of degradation processes in creep-resistant steels throughout accelerated creep tests after long-term isothermal ageing
– volume: 32
  start-page: 1917
  year: 1995
  ident: 10.1016/j.matchar.2018.01.008_bb0265
  article-title: Aging phenomena before the precipitation of the bulky Laves phase in Fe-10%Cr ferritic alloys
  publication-title: Scr. Metall. Mater.
  doi: 10.1016/0956-716X(95)00086-B
– start-page: 77
  year: 2017
  ident: 10.1016/j.matchar.2018.01.008_bb0020
  article-title: High-alloyed martensitic steel grades for boilers in ultra-supercritical power plants
– volume: 57
  start-page: 5093
  year: 2009
  ident: 10.1016/j.matchar.2018.01.008_bb0280
  article-title: On the effect of long-term creep on the microstructure of a 12% chromium tempered ferritic steel
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2009.07.010
– volume: 245
  start-page: 39
  year: 1998
  ident: 10.1016/j.matchar.2018.01.008_bb0235
  article-title: Microstructural development during high temperature creep of 9%Cr steel
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/S0921-5093(97)00708-9
– volume: 700
  start-page: 701
  year: 2017
  ident: 10.1016/j.matchar.2018.01.008_bb0185
  article-title: Influence of B and N on the microstructural characteristics and high-temperature strength on 9Cr-2W steel during an aging treatment
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2017.05.122
– volume: A615
  start-page: 153
  year: 2014
  ident: 10.1016/j.matchar.2018.01.008_bb0260
  article-title: Laves-phase precipitates in a low-carbon 9%Cr martensitic steel during aging and creep at 923K
  publication-title: Mater. Sci. Eng.
  doi: 10.1016/j.msea.2014.07.046
– volume: 654–656
  start-page: 504
  year: 2010
  ident: 10.1016/j.matchar.2018.01.008_bb0135
  article-title: Creep behaviour and microstructural changes of advanced creep resistant steels after long-term isothermal ageing
  publication-title: Mater. Sci. Forum
  doi: 10.4028/www.scientific.net/MSF.654-656.504
– start-page: 180
  year: 2011
  ident: 10.1016/j.matchar.2018.01.008_bb0065
  article-title: Creep in boiler materials: mechanisms, measurement and modelling
– volume: 708
  start-page: 544
  year: 2017
  ident: 10.1016/j.matchar.2018.01.008_bb0100
  article-title: Influence of thermal ageing on the creep behaviour of a P92 martensitic steel
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2017.10.025
– volume: 639
  start-page: 252
  year: 2015
  ident: 10.1016/j.matchar.2018.01.008_bb0200
  article-title: Relation between Laves phase and the impact brittleness of P92 steel reevaluated
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2015.05.012
– volume: 85
  start-page: 30
  year: 2008
  ident: 10.1016/j.matchar.2018.01.008_bb0095
  article-title: Microstructure and long-term creep properties of 9–12%Cr steels
  publication-title: Int. J. Press. Vessel. Pip.
  doi: 10.1016/j.ijpvp.2007.06.010
– volume: 32
  start-page: 566
  year: 2015
  ident: 10.1016/j.matchar.2018.01.008_bb0160
  article-title: Microstructure and high-temperature mechanical properties in 9Cr-0.5Mo-1.8WVNb after aging at 650 degrees C
  publication-title: Mater. High Temp.
  doi: 10.1179/1878641315Y.0000000003
– volume: 7
  start-page: 5859
  year: 2017
  ident: 10.1016/j.matchar.2018.01.008_bb0255
  article-title: Precipitates and particles coarsening of 9Cr-1.7W-0.4Mo-Co ferritic heat-resistant steel after isothermal aging
  publication-title: Sci. Report.
  doi: 10.1038/s41598-017-06191-2
– volume: 640
  start-page: 61
  year: 2015
  ident: 10.1016/j.matchar.2018.01.008_bb0085
  article-title: An assessment of creep deformation and rupture behavior of 9Cr-1.8W-0.5Mo-VNb (ASME Grade92 steel)
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2015.05.068
– volume: 608
  start-page: 46
  year: 2014
  ident: 10.1016/j.matchar.2018.01.008_bb0250
  article-title: Evolution of creep damagein a modified ferritic heat-resistant steel with excellent short-term creep performance and its oxide layer characteristics
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2014.04.075
– volume: 51
  start-page: 35
  year: 2003
  ident: 10.1016/j.matchar.2018.01.008_bb0030
  article-title: Long-term creep behaviour of 9–12%Cr power plant steels
  publication-title: Mater. Charact.
  doi: 10.1016/j.matchar.2003.09.012
– volume: 428
  start-page: 270
  year: 2006
  ident: 10.1016/j.matchar.2018.01.008_bb0050
  article-title: Causes of breakdown of creep strength in 9Cr-1.8W-0.5Mo-VNb steel
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2006.05.010
– volume: 128
  start-page: 543
  year: 2015
  ident: 10.1016/j.matchar.2018.01.008_bb0165
  article-title: Influence of long-term annealing and hot bending on creep of P92 pipe
  publication-title: Acta Phys. Pol. A
  doi: 10.12693/APhysPolA.128.543
– volume: 43
  start-page: 4053
  year: 2012
  ident: 10.1016/j.matchar.2018.01.008_bb0290
  article-title: Effect of boron on carbide coarsening at 873K (600°C) in 9 to 12%Cr steels
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-012-1205-6
– volume: 141–143
  start-page: 461
  year: 1986
  ident: 10.1016/j.matchar.2018.01.008_bb0190
  article-title: Precipitation behavior of Laves phase and its effect on toughness of 9Cr-2Mo ferritic-martensitic steel
  publication-title: J. Nucl. Mater.
  doi: 10.1016/S0022-3115(86)80083-6
– start-page: 272
  year: 2011
  ident: 10.1016/j.matchar.2018.01.008_bb0005
  article-title: Boiler steels, damage mechanisms, inspection and life assessment
– volume: 119
  start-page: 1
  year: 2016
  ident: 10.1016/j.matchar.2018.01.008_bb0120
  article-title: Creep properties in similar weld joint of a thick-walled P92 steel pipe
  publication-title: Mater. Charact.
  doi: 10.1016/j.matchar.2016.06.033
– volume: 43
  start-page: 20
  year: 2005
  ident: 10.1016/j.matchar.2018.01.008_bb0045
  article-title: Microstructure stability and creep behaviour of advanced high chromium ferritic steels
  publication-title: Kov. Mater.
– volume: 85
  start-page: 55
  year: 2008
  ident: 10.1016/j.matchar.2018.01.008_bb0210
  article-title: Extrapolation of short-term creep rupture data – the potential risk of over-estimation
  publication-title: Int. J. Press. Vessel. Pip.
  doi: 10.1016/j.ijpvp.2007.06.003
– volume: 32
  start-page: 362
  year: 2013
  ident: 10.1016/j.matchar.2018.01.008_bb0110
  article-title: The role of Laves phase on microstructure evolution and creep strength of novel 9%Cr heat resistant steels
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2012.08.016
– volume: 163
  start-page: 219
  year: 2015
  ident: 10.1016/j.matchar.2018.01.008_bb0270
  article-title: Laves-phase evolution during aging in 9Cr-1.8W-0.5Mo-VNb steel for USC power plant
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2015.07.032
– start-page: 52
  year: 2014
  ident: 10.1016/j.matchar.2018.01.008_bb0015
  article-title: Grade 92 creep-strength-enhanced ferritic steel
– start-page: 279
  year: 2008
  ident: 10.1016/j.matchar.2018.01.008_bb0295
  article-title: Strengthening mechanisms in steel for creep and creep rupture
– volume: 527
  start-page: 4062
  year: 2010
  ident: 10.1016/j.matchar.2018.01.008_bb0140
  article-title: Evolution of dislocation density, size of subgrains and MX-type precipitates in a P91 steel during creep and during thermal ageing at 600°C for more than 100.000h
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2010.03.010
– volume: 61
  start-page: 231
  year: 2017
  ident: 10.1016/j.matchar.2018.01.008_bb0125
  article-title: Laves phase precipitation behavior in the simulated fine-grained heat-affected zone of creep strength enhanced ferritic steel P92 and its role in creep void nucleation and growth
  publication-title: Weld. World
  doi: 10.1007/s40194-017-0424-2
– volume: 99
  start-page: 395
  year: 2008
  ident: 10.1016/j.matchar.2018.01.008_bb0215
  article-title: Effect of stress on creep deformation property of ASME Grade P92/T92 steels
  publication-title: Int. J. Mater. Res.
  doi: 10.3139/146.101651
– volume: 432
  start-page: 78
  year: 2013
  ident: 10.1016/j.matchar.2018.01.008_bb0220
  article-title: Creep-to-rupture of the steel P92 at 650°C in oxygen-controlled stagnant leas in comparison to air
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2012.07.029
– start-page: 323
  year: 2017
  ident: 10.1016/j.matchar.2018.01.008_bb0025
  article-title: New martensitic steels
– volume: 250
  start-page: 27
  year: 1989
  ident: 10.1016/j.matchar.2018.01.008_bb0285
  article-title: Microanalysis of two creep resistant 9–12%Cr steel
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/S0921-5093(98)00532-2
– volume: 16
  start-page: 1226
  year: 2000
  ident: 10.1016/j.matchar.2018.01.008_bb0035
  article-title: Influence of heat treatments on microstructure parameters and mechanical properties of P92 steel
  publication-title: Mater. Sci. Technol.
  doi: 10.1179/026708300101506993
– start-page: 539
  year: 2007
  ident: 10.1016/j.matchar.2018.01.008_bb0275
  article-title: On the contribution of carbides and micrograin boundary to the creep strength of tempered martensite ferritic steels
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2006.08.046
– volume: 81
  start-page: 230
  year: 2014
  ident: 10.1016/j.matchar.2018.01.008_bb0245
  article-title: On the nucleation of Laves phase particles during high-temperature exposure and creep of tempered martensite ferritic steels
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2014.08.008
– volume: 644
  start-page: 297
  year: 2015
  ident: 10.1016/j.matchar.2018.01.008_bb0080
  article-title: The effect of hot bending and thermal ageing on creep and microstructural evolution in thick-walled P92 steel pipe
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2015.07.072
– volume: 36
  start-page: 1855
  year: 1988
  ident: 10.1016/j.matchar.2018.01.008_bb0130
  article-title: The effect of ageing on the ductility of 9Cr-1Mo steel
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(88)90253-2
– volume: 33
  start-page: 33
  year: 2016
  ident: 10.1016/j.matchar.2018.01.008_bb0175
  article-title: Creep deformation and rupture behaviour of thermal aged P92 steel
  publication-title: Mater. High Temp.
  doi: 10.1179/1878641315Y.0000000016
– volume: 179–181
  start-page: 689
  year: 1991
  ident: 10.1016/j.matchar.2018.01.008_bb0195
  article-title: Effect of thermo-mechanical treatment on toughness of 9Cr-W ferritic-martensitic steels during aging
  publication-title: J. Nucl. Mater.
  doi: 10.1016/0022-3115(91)90182-7
– start-page: 131
  year: 2014
  ident: 10.1016/j.matchar.2018.01.008_bb0155
  article-title: Influence of ageing process on microstructure and mechanical properties of 9%Cr cast steel
– volume: 55
  start-page: 69
  year: 2017
  ident: 10.1016/j.matchar.2018.01.008_bb0300
  article-title: Applicability of empirical formulas and fractography for assessment of creep life and creep fracture modes of tempered martensitic 9%Cr steel
  publication-title: Kov. Mater.
– volume: 319–321
  start-page: 770
  year: 2001
  ident: 10.1016/j.matchar.2018.01.008_bb0040
  article-title: Creep rates and strengthening mechanisms in tungsten-strengthened Cr steel
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/S0921-5093(00)02002-5
– year: 1988
  ident: 10.1016/j.matchar.2018.01.008_bb0230
– volume: 510–511
  start-page: 64
  year: 2009
  ident: 10.1016/j.matchar.2018.01.008_bb0240
  article-title: Analysis of creep rates of tempered martensitic 9%Cr steel based on microstructure evolution
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2008.04.118
– volume: 45
  start-page: 4901
  year: 1997
  ident: 10.1016/j.matchar.2018.01.008_bb0205
  article-title: Microstructural stability and creep rupture strength of the martensitic steel P92 for advanced power plant
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(97)00176-6
– volume: 132–133
  start-page: 97
  year: 2015
  ident: 10.1016/j.matchar.2018.01.008_bb0115
  article-title: Effect of normalizing and tempering temperatures on microstructure and mechanical properties of P92 steel
  publication-title: Int. J. Press. Vessel. Pip.
– volume: 564
  start-page: 199
  year: 2013
  ident: 10.1016/j.matchar.2018.01.008_bb0150
  article-title: The influence of long-term aging on microstructures and static mechanical properties of P92 steel at room temperature
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2012.10.024
– volume: 18
  start-page: 186
  year: 2011
  ident: 10.1016/j.matchar.2018.01.008_bb0105
  article-title: Creep rupture behavior of P92 steel weldment
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2010.08.020
SSID ssj0006817
Score 2.3507738
Snippet We have investigated the effect of prior short-term ageing on the mechanical and creep properties of tungsten and boron modified 9%Cr ferritic steel (ASTM...
Highlights: • The results of simulated ageing at 650°C allows to estimate degradation of P92 steam pipes due to accidental overheating. • Simulated ageing has...
SourceID osti
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 388
SubjectTerms ASTM Grade P92 steel
COMPUTERIZED SIMULATION
Creep life
Creep testing
DISLOCATIONS
FERRITIC STEELS
HARDNESS
Isothermal ageing
LAVES PHASES
MATERIALS SCIENCE
Mechanical properties
MICROSTRUCTURE
Microstructure evolution
STRESSES
TENSILE PROPERTIES
Title The effect of a prior short-term ageing on mechanical and creep properties of P92 steel
URI https://dx.doi.org/10.1016/j.matchar.2018.01.008
https://www.osti.gov/biblio/22804913
Volume 136
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEF1KPagH0apYrWUPXtMm2U2yeyzFUhWKoMXeQnazwZaahLZe_e3O5MNWEAoeE3aWMDOZfSFv3hByp0wCMFkKy1eQwRz5jVLpxNL4y8bXCi4KtsXEH0_548ybNciw7oVBWmVV-8uaXlTr6k6_8mY_n8_7L_AhwT0BSRkwN7A5Kn5yHmCW9762NA9fFFN3cbGFq7ddPP1FD0AhNjchw0sU6p04ZfLv86mZwSu3c_SMTslJhRnpoHysM9IwaYscDutRbS1yvKMqeE7eIPS05GnQLKERzVfzbEXX74C0LazEFGoIrKRZSj8Mdv5ioGiUxhQgpMlhfZYj3dqs0f5ZuhRSwSwvyHR0_zocW9X8BEszFmwsV6KYFyp0RR5TsScTlgBaE7YMYsE0V0nkaG1r6UfSMdyNODfKdmLPl9yDDGOXpJlmqbki1Hdi1yjYzUeBPxFFigMUMnYcO4FmJmkTXnst1JW4OM64WIY1i2wRVs4O0dmh7YTg7Dbp_ZjlpbrGPgNRhyT8lSYhnAD7TDsYQjRDeVyNPCKwQzkgLh12_f-db8gRXpVc7g5pblaf5hagykZ1i1zskoPBw9N48g1o7ucl
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgHIADggHiTQ5cu7VN-sgRTaDxFBKb2C1q0lQMQVuNceW3Y_fBQ0JC4tjWjirbcVz182eAE20zLJNl7IQaI1gQvlFqkzmGftmERuNFhba4DYdjcTkJJgswaHthCFbZ5P46p1fZurnTb6zZL6fT_j1-SIggxqCMuB-5gi_CksDtS2MMeu9fOI8wrsbukrRD4l9tPP2nHlaF1N1EEK-4ou-kMZO_H1CdAvfct7PnfB3WmqKRndbvtQELNu_C8qCd1daF1W-0gpvwgL5nNVCDFRlLWDmbFjP2-oiltkOpmGESQUlW5OzFUusveYolecqwhrQlyhcl4a3tK-nfSZ9hLNjnLRifn40GQ6cZoOAYzqO540ti8yKKriTgOg1kxjMs12JXRmnMjdBZ4hnjGhkm0rPCT4Sw2vXSIJQiwBDj29DJi9zuAAu91LcaVwuJ4S9OEi2wFrJumnqR4TbbBdFaTZmGXZyGXDyrFkb2pBpjKzK2cj2Fxt6F3qdaWdNr_KUQty5RP-JE4RHwl-oBuZDUiB_XEJAI9YgPSEiP7_1_5WNYHo5urtX1xe3VPqzQkxrYfQCd-ezNHmLdMtdHVVx-AMJU6LM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effect+of+a+prior+short-term+ageing+on+mechanical+and+creep+properties+of+P92+steel&rft.jtitle=Materials+characterization&rft.au=Sklenicka%2C+V.&rft.au=CEITEC+%E2%80%93+Institute+of+Physics+of+Materials%2C+Academy+of+Sciences+of+the+Czech+Republic%2C+616+62+Brno&rft.au=Kucharova%2C+K.&rft.au=Svobodova%2C+M.&rft.date=2018-02-01&rft.issn=1044-5803&rft.eissn=1873-4189&rft.volume=136&rft_id=info:doi/10.1016%2FJ.MATCHAR.2018.01.008&rft.externalDocID=22804913
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1044-5803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1044-5803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1044-5803&client=summon