A numerical method using Legendre polynomials for solving two-point interface problems

This paper presents a novel numerical algorithm that integrates reproducing kernel functions with Legendre polynomials to effectively address multiple interface problems. We create a new set of bases within the reproducing kernel space, introduce a linear operator, and utilize its properties to deri...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 10; no. 4; pp. 7891 - 7905
Main Authors Wu, Min, Zhou, Jiali, Guan, Chaoyue, Niu, Jing
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2025
Subjects
Online AccessGet full text
ISSN2473-6988
2473-6988
DOI10.3934/math.2025362

Cover

Abstract This paper presents a novel numerical algorithm that integrates reproducing kernel functions with Legendre polynomials to effectively address multiple interface problems. We create a new set of bases within the reproducing kernel space, introduce a linear operator, and utilize its properties to derive an equivalent operator equation. The model equation is then transformed into a matrix equation, enhancing the solution process for complex interface issues. Comparative numerical examples demonstrate the superior accuracy of our method over conventional approaches. Furthermore, the solution's existence and uniqueness are validated, ensuring the algorithm's reliability and effectiveness.
AbstractList This paper presents a novel numerical algorithm that integrates reproducing kernel functions with Legendre polynomials to effectively address multiple interface problems. We create a new set of bases within the reproducing kernel space, introduce a linear operator, and utilize its properties to derive an equivalent operator equation. The model equation is then transformed into a matrix equation, enhancing the solution process for complex interface issues. Comparative numerical examples demonstrate the superior accuracy of our method over conventional approaches. Furthermore, the solution's existence and uniqueness are validated, ensuring the algorithm's reliability and effectiveness.
Author Wu, Min
Zhou, Jiali
Guan, Chaoyue
Niu, Jing
Author_xml – sequence: 1
  givenname: Min
  surname: Wu
  fullname: Wu, Min
– sequence: 2
  givenname: Jiali
  surname: Zhou
  fullname: Zhou, Jiali
– sequence: 3
  givenname: Chaoyue
  surname: Guan
  fullname: Guan, Chaoyue
– sequence: 4
  givenname: Jing
  surname: Niu
  fullname: Niu, Jing
BookMark eNpNkMtqwzAQRUVJoWmaXT9AH1Cnsh62ZxlCH4FAN6FbIVujxMG2guS05O9rN6F0MdzhcjiLe08mne-QkMeULQQI-dyafr_gjCuR8Rsy5TIXSQZFMfn335F5jAfGGE-55Lmcks8l7U4throyDW2x33tLT7HudnSDO-xsQHr0zbnzbW2aSJ0PNPrmawT6b58cfd31dDgMzlQDG3zZYBsfyK0beJxfc0a2ry_b1Xuy-Xhbr5abpBIi7xNeFOBAOChQZXnplGOAEhgHlWIhVMmqiklVZtwWxkkEN6aAEhhzxooZWV-01puDPoa6NeGsvan1b-HDTpvQ11WD2uQlWqEwFTaTEhQwCZByY8vUcaPU4Hq6uKrgYwzo_nwp0-PCelxYXxcWP08Pcbo
Cites_doi 10.1016/j.apnum.2023.07.021
10.1006/jcom.2001.0586
10.1016/j.aml.2021.107751
10.1016/j.aml.2022.108503
10.1080/00207160802610843
10.1137/0731054
10.1016/j.cnsns.2025.108632
10.1016/S0885-064X(03)00033-5
10.1016/S0378-4754(99)00009-9
10.1137/S1064827599353877
10.1016/0021-9991(80)90085-6
10.1016/S0021-9991(02)00028-1
10.1016/0021-9991(83)90008-6
10.1051/m2an/2023047
10.1016/0041-5553(71)90134-0
10.1016/j.cma.2014.09.036
10.1016/j.apnum.2022.05.003
10.1016/j.apnum.2020.12.015
10.1002/num.22965
10.1016/j.sigpro.2005.05.013
10.3934/dcdsb.2007.7.807
10.1016/j.aml.2021.107525
10.1080/13926292.2016.1205195
10.1016/j.aml.2019.106117
10.1016/0165-1684(95)00142-5
10.1016/B978-008044046-0.50428-0
10.1016/0021-9991(77)90100-0
ContentType Journal Article
CorporateAuthor School of Mathematical Sciences, Zhejiang University of Technology, 310023 Hangzhou Zhejianag, China
School of Science, Zhejiang University of Science and Technology, 310023 Hangzhou Zhejianag, China
School of Mathematical Science, Harbin Normal University, 150025 Harbin Heilongjiang, China
CorporateAuthor_xml – name: School of Mathematical Science, Harbin Normal University, 150025 Harbin Heilongjiang, China
– name: School of Science, Zhejiang University of Science and Technology, 310023 Hangzhou Zhejianag, China
– name: School of Mathematical Sciences, Zhejiang University of Technology, 310023 Hangzhou Zhejianag, China
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2025362
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 7905
ExternalDocumentID oai_doaj_org_article_a7bed35e13d644959049912adb1f2a55
10_3934_math_2025362
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c337t-2889f93f98e567bf5f09e4902951e835b0cc045b62d8af4e9fd8af39b900fad3
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Mon Sep 01 19:40:12 EDT 2025
Tue Aug 05 12:12:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-2889f93f98e567bf5f09e4902951e835b0cc045b62d8af4e9fd8af39b900fad3
OpenAccessLink https://doaj.org/article/a7bed35e13d644959049912adb1f2a55
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_a7bed35e13d644959049912adb1f2a55
crossref_primary_10_3934_math_2025362
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2025
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2025362-4
key-10.3934/math.2025362-5
key-10.3934/math.2025362-2
key-10.3934/math.2025362-3
key-10.3934/math.2025362-1
key-10.3934/math.2025362-29
key-10.3934/math.2025362-28
key-10.3934/math.2025362-8
key-10.3934/math.2025362-27
key-10.3934/math.2025362-9
key-10.3934/math.2025362-26
key-10.3934/math.2025362-6
key-10.3934/math.2025362-25
key-10.3934/math.2025362-7
key-10.3934/math.2025362-24
key-10.3934/math.2025362-12
key-10.3934/math.2025362-11
key-10.3934/math.2025362-10
key-10.3934/math.2025362-31
key-10.3934/math.2025362-30
key-10.3934/math.2025362-19
key-10.3934/math.2025362-18
key-10.3934/math.2025362-17
key-10.3934/math.2025362-16
key-10.3934/math.2025362-15
key-10.3934/math.2025362-14
key-10.3934/math.2025362-13
key-10.3934/math.2025362-23
key-10.3934/math.2025362-22
key-10.3934/math.2025362-21
key-10.3934/math.2025362-20
References_xml – ident: key-10.3934/math.2025362-8
  doi: 10.1016/j.apnum.2023.07.021
– ident: key-10.3934/math.2025362-24
  doi: 10.1006/jcom.2001.0586
– ident: key-10.3934/math.2025362-27
  doi: 10.1016/j.aml.2021.107751
– ident: key-10.3934/math.2025362-9
  doi: 10.1016/j.aml.2022.108503
– ident: key-10.3934/math.2025362-26
  doi: 10.1080/00207160802610843
– ident: key-10.3934/math.2025362-4
  doi: 10.1137/0731054
– ident: key-10.3934/math.2025362-18
  doi: 10.1016/j.cnsns.2025.108632
– ident: key-10.3934/math.2025362-25
  doi: 10.1016/S0885-064X(03)00033-5
– ident: key-10.3934/math.2025362-23
  doi: 10.1016/S0378-4754(99)00009-9
– ident: key-10.3934/math.2025362-30
  doi: 10.1137/S1064827599353877
– ident: key-10.3934/math.2025362-2
  doi: 10.1016/0021-9991(80)90085-6
– ident: key-10.3934/math.2025362-5
  doi: 10.1016/S0021-9991(02)00028-1
– ident: key-10.3934/math.2025362-7
  doi: 10.1016/0021-9991(83)90008-6
– ident: key-10.3934/math.2025362-14
– ident: key-10.3934/math.2025362-16
  doi: 10.1051/m2an/2023047
– ident: key-10.3934/math.2025362-6
  doi: 10.1016/0041-5553(71)90134-0
– ident: key-10.3934/math.2025362-13
  doi: 10.1016/j.cma.2014.09.036
– ident: key-10.3934/math.2025362-29
– ident: key-10.3934/math.2025362-17
  doi: 10.1016/j.apnum.2022.05.003
– ident: key-10.3934/math.2025362-28
  doi: 10.1016/j.apnum.2020.12.015
– ident: key-10.3934/math.2025362-12
  doi: 10.1002/num.22965
– ident: key-10.3934/math.2025362-22
  doi: 10.1016/j.sigpro.2005.05.013
– ident: key-10.3934/math.2025362-10
  doi: 10.3934/dcdsb.2007.7.807
– ident: key-10.3934/math.2025362-15
– ident: key-10.3934/math.2025362-20
  doi: 10.1016/j.aml.2021.107525
– ident: key-10.3934/math.2025362-31
  doi: 10.1080/13926292.2016.1205195
– ident: key-10.3934/math.2025362-11
– ident: key-10.3934/math.2025362-19
  doi: 10.1016/j.aml.2019.106117
– ident: key-10.3934/math.2025362-21
  doi: 10.1016/0165-1684(95)00142-5
– ident: key-10.3934/math.2025362-3
  doi: 10.1016/B978-008044046-0.50428-0
– ident: key-10.3934/math.2025362-1
  doi: 10.1016/0021-9991(77)90100-0
SSID ssj0002124274
Score 2.2779016
Snippet This paper presents a novel numerical algorithm that integrates reproducing kernel functions with Legendre polynomials to effectively address multiple...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 7891
SubjectTerms legendre polynomials
linear operator
multiple interface problems
reproducing kernel method
Title A numerical method using Legendre polynomials for solving two-point interface problems
URI https://doaj.org/article/a7bed35e13d644959049912adb1f2a55
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJz2IT6wv9qDH0M0-kuyxiqWI9VSlt7Cb7IpQktKmSP-9M9lY6smLp0BYwvLNsPPNzuQbQu64kN7rxEWJSz2WGVmkPU8jJoSRxhdCtFNLJq_J-E0-z9RsZ9QX9oQFeeAA3MCk1pVCuViUELq10sjRY25KG3tuVKteyjTbSabwDIYDWUK-FTrdhRZyAPwPaw9ciYT_ikE7Uv1tTBkdkcOODNJh2MQx2XPVCTmYbJVUV6fkfUirdaiqzGkY90yxV_2DvkC-j92IdFHPN_hzMTgSBQpKwZvwloA2X3W0qD-rhqImxNKbAtaG-TGrMzIdPU0fx1E3CyECuNIm4lmmvRZeZ04lqfXKM-2kZhwYkgMWZVlRADuzCS8z46XTHp9CW82YN6U4J72qrtwFoSkwGCNxijeT0lilS6NsZmIUFst8avrk_gecfBEUL3LIFBDEHEHMOxD75AGR265Bner2BVgv76yX_2W9y__4yBXZxz2Fi5Fr0muWa3cDVKGxt61XfAPmEbzV
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+numerical+method+using+Legendre+polynomials+for+solving+two-point+interface+problems&rft.jtitle=AIMS+mathematics&rft.au=Min+Wu&rft.au=Jiali+Zhou&rft.au=Chaoyue+Guan&rft.au=Jing+Niu&rft.date=2025-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=10&rft.issue=4&rft.spage=7891&rft.epage=7905&rft_id=info:doi/10.3934%2Fmath.2025362&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a7bed35e13d644959049912adb1f2a55
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon