A numerical method using Legendre polynomials for solving two-point interface problems
This paper presents a novel numerical algorithm that integrates reproducing kernel functions with Legendre polynomials to effectively address multiple interface problems. We create a new set of bases within the reproducing kernel space, introduce a linear operator, and utilize its properties to deri...
Saved in:
Published in | AIMS mathematics Vol. 10; no. 4; pp. 7891 - 7905 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2473-6988 2473-6988 |
DOI | 10.3934/math.2025362 |
Cover
Abstract | This paper presents a novel numerical algorithm that integrates reproducing kernel functions with Legendre polynomials to effectively address multiple interface problems. We create a new set of bases within the reproducing kernel space, introduce a linear operator, and utilize its properties to derive an equivalent operator equation. The model equation is then transformed into a matrix equation, enhancing the solution process for complex interface issues. Comparative numerical examples demonstrate the superior accuracy of our method over conventional approaches. Furthermore, the solution's existence and uniqueness are validated, ensuring the algorithm's reliability and effectiveness. |
---|---|
AbstractList | This paper presents a novel numerical algorithm that integrates reproducing kernel functions with Legendre polynomials to effectively address multiple interface problems. We create a new set of bases within the reproducing kernel space, introduce a linear operator, and utilize its properties to derive an equivalent operator equation. The model equation is then transformed into a matrix equation, enhancing the solution process for complex interface issues. Comparative numerical examples demonstrate the superior accuracy of our method over conventional approaches. Furthermore, the solution's existence and uniqueness are validated, ensuring the algorithm's reliability and effectiveness. |
Author | Wu, Min Zhou, Jiali Guan, Chaoyue Niu, Jing |
Author_xml | – sequence: 1 givenname: Min surname: Wu fullname: Wu, Min – sequence: 2 givenname: Jiali surname: Zhou fullname: Zhou, Jiali – sequence: 3 givenname: Chaoyue surname: Guan fullname: Guan, Chaoyue – sequence: 4 givenname: Jing surname: Niu fullname: Niu, Jing |
BookMark | eNpNkMtqwzAQRUVJoWmaXT9AH1Cnsh62ZxlCH4FAN6FbIVujxMG2guS05O9rN6F0MdzhcjiLe08mne-QkMeULQQI-dyafr_gjCuR8Rsy5TIXSQZFMfn335F5jAfGGE-55Lmcks8l7U4throyDW2x33tLT7HudnSDO-xsQHr0zbnzbW2aSJ0PNPrmawT6b58cfd31dDgMzlQDG3zZYBsfyK0beJxfc0a2ry_b1Xuy-Xhbr5abpBIi7xNeFOBAOChQZXnplGOAEhgHlWIhVMmqiklVZtwWxkkEN6aAEhhzxooZWV-01puDPoa6NeGsvan1b-HDTpvQ11WD2uQlWqEwFTaTEhQwCZByY8vUcaPU4Hq6uKrgYwzo_nwp0-PCelxYXxcWP08Pcbo |
Cites_doi | 10.1016/j.apnum.2023.07.021 10.1006/jcom.2001.0586 10.1016/j.aml.2021.107751 10.1016/j.aml.2022.108503 10.1080/00207160802610843 10.1137/0731054 10.1016/j.cnsns.2025.108632 10.1016/S0885-064X(03)00033-5 10.1016/S0378-4754(99)00009-9 10.1137/S1064827599353877 10.1016/0021-9991(80)90085-6 10.1016/S0021-9991(02)00028-1 10.1016/0021-9991(83)90008-6 10.1051/m2an/2023047 10.1016/0041-5553(71)90134-0 10.1016/j.cma.2014.09.036 10.1016/j.apnum.2022.05.003 10.1016/j.apnum.2020.12.015 10.1002/num.22965 10.1016/j.sigpro.2005.05.013 10.3934/dcdsb.2007.7.807 10.1016/j.aml.2021.107525 10.1080/13926292.2016.1205195 10.1016/j.aml.2019.106117 10.1016/0165-1684(95)00142-5 10.1016/B978-008044046-0.50428-0 10.1016/0021-9991(77)90100-0 |
ContentType | Journal Article |
CorporateAuthor | School of Mathematical Sciences, Zhejiang University of Technology, 310023 Hangzhou Zhejianag, China School of Science, Zhejiang University of Science and Technology, 310023 Hangzhou Zhejianag, China School of Mathematical Science, Harbin Normal University, 150025 Harbin Heilongjiang, China |
CorporateAuthor_xml | – name: School of Mathematical Science, Harbin Normal University, 150025 Harbin Heilongjiang, China – name: School of Science, Zhejiang University of Science and Technology, 310023 Hangzhou Zhejianag, China – name: School of Mathematical Sciences, Zhejiang University of Technology, 310023 Hangzhou Zhejianag, China |
DBID | AAYXX CITATION DOA |
DOI | 10.3934/math.2025362 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ (Directory of Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 7905 |
ExternalDocumentID | oai_doaj_org_article_a7bed35e13d644959049912adb1f2a55 10_3934_math_2025362 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
ID | FETCH-LOGICAL-c337t-2889f93f98e567bf5f09e4902951e835b0cc045b62d8af4e9fd8af39b900fad3 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Mon Sep 01 19:40:12 EDT 2025 Tue Aug 05 12:12:16 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c337t-2889f93f98e567bf5f09e4902951e835b0cc045b62d8af4e9fd8af39b900fad3 |
OpenAccessLink | https://doaj.org/article/a7bed35e13d644959049912adb1f2a55 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a7bed35e13d644959049912adb1f2a55 crossref_primary_10_3934_math_2025362 |
PublicationCentury | 2000 |
PublicationDate | 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2025 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/math.2025362-4 key-10.3934/math.2025362-5 key-10.3934/math.2025362-2 key-10.3934/math.2025362-3 key-10.3934/math.2025362-1 key-10.3934/math.2025362-29 key-10.3934/math.2025362-28 key-10.3934/math.2025362-8 key-10.3934/math.2025362-27 key-10.3934/math.2025362-9 key-10.3934/math.2025362-26 key-10.3934/math.2025362-6 key-10.3934/math.2025362-25 key-10.3934/math.2025362-7 key-10.3934/math.2025362-24 key-10.3934/math.2025362-12 key-10.3934/math.2025362-11 key-10.3934/math.2025362-10 key-10.3934/math.2025362-31 key-10.3934/math.2025362-30 key-10.3934/math.2025362-19 key-10.3934/math.2025362-18 key-10.3934/math.2025362-17 key-10.3934/math.2025362-16 key-10.3934/math.2025362-15 key-10.3934/math.2025362-14 key-10.3934/math.2025362-13 key-10.3934/math.2025362-23 key-10.3934/math.2025362-22 key-10.3934/math.2025362-21 key-10.3934/math.2025362-20 |
References_xml | – ident: key-10.3934/math.2025362-8 doi: 10.1016/j.apnum.2023.07.021 – ident: key-10.3934/math.2025362-24 doi: 10.1006/jcom.2001.0586 – ident: key-10.3934/math.2025362-27 doi: 10.1016/j.aml.2021.107751 – ident: key-10.3934/math.2025362-9 doi: 10.1016/j.aml.2022.108503 – ident: key-10.3934/math.2025362-26 doi: 10.1080/00207160802610843 – ident: key-10.3934/math.2025362-4 doi: 10.1137/0731054 – ident: key-10.3934/math.2025362-18 doi: 10.1016/j.cnsns.2025.108632 – ident: key-10.3934/math.2025362-25 doi: 10.1016/S0885-064X(03)00033-5 – ident: key-10.3934/math.2025362-23 doi: 10.1016/S0378-4754(99)00009-9 – ident: key-10.3934/math.2025362-30 doi: 10.1137/S1064827599353877 – ident: key-10.3934/math.2025362-2 doi: 10.1016/0021-9991(80)90085-6 – ident: key-10.3934/math.2025362-5 doi: 10.1016/S0021-9991(02)00028-1 – ident: key-10.3934/math.2025362-7 doi: 10.1016/0021-9991(83)90008-6 – ident: key-10.3934/math.2025362-14 – ident: key-10.3934/math.2025362-16 doi: 10.1051/m2an/2023047 – ident: key-10.3934/math.2025362-6 doi: 10.1016/0041-5553(71)90134-0 – ident: key-10.3934/math.2025362-13 doi: 10.1016/j.cma.2014.09.036 – ident: key-10.3934/math.2025362-29 – ident: key-10.3934/math.2025362-17 doi: 10.1016/j.apnum.2022.05.003 – ident: key-10.3934/math.2025362-28 doi: 10.1016/j.apnum.2020.12.015 – ident: key-10.3934/math.2025362-12 doi: 10.1002/num.22965 – ident: key-10.3934/math.2025362-22 doi: 10.1016/j.sigpro.2005.05.013 – ident: key-10.3934/math.2025362-10 doi: 10.3934/dcdsb.2007.7.807 – ident: key-10.3934/math.2025362-15 – ident: key-10.3934/math.2025362-20 doi: 10.1016/j.aml.2021.107525 – ident: key-10.3934/math.2025362-31 doi: 10.1080/13926292.2016.1205195 – ident: key-10.3934/math.2025362-11 – ident: key-10.3934/math.2025362-19 doi: 10.1016/j.aml.2019.106117 – ident: key-10.3934/math.2025362-21 doi: 10.1016/0165-1684(95)00142-5 – ident: key-10.3934/math.2025362-3 doi: 10.1016/B978-008044046-0.50428-0 – ident: key-10.3934/math.2025362-1 doi: 10.1016/0021-9991(77)90100-0 |
SSID | ssj0002124274 |
Score | 2.2779016 |
Snippet | This paper presents a novel numerical algorithm that integrates reproducing kernel functions with Legendre polynomials to effectively address multiple... |
SourceID | doaj crossref |
SourceType | Open Website Index Database |
StartPage | 7891 |
SubjectTerms | legendre polynomials linear operator multiple interface problems reproducing kernel method |
Title | A numerical method using Legendre polynomials for solving two-point interface problems |
URI | https://doaj.org/article/a7bed35e13d644959049912adb1f2a55 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJz2IT6wv9qDH0M0-kuyxiqWI9VSlt7Cb7IpQktKmSP-9M9lY6smLp0BYwvLNsPPNzuQbQu64kN7rxEWJSz2WGVmkPU8jJoSRxhdCtFNLJq_J-E0-z9RsZ9QX9oQFeeAA3MCk1pVCuViUELq10sjRY25KG3tuVKteyjTbSabwDIYDWUK-FTrdhRZyAPwPaw9ciYT_ikE7Uv1tTBkdkcOODNJh2MQx2XPVCTmYbJVUV6fkfUirdaiqzGkY90yxV_2DvkC-j92IdFHPN_hzMTgSBQpKwZvwloA2X3W0qD-rhqImxNKbAtaG-TGrMzIdPU0fx1E3CyECuNIm4lmmvRZeZ04lqfXKM-2kZhwYkgMWZVlRADuzCS8z46XTHp9CW82YN6U4J72qrtwFoSkwGCNxijeT0lilS6NsZmIUFst8avrk_gecfBEUL3LIFBDEHEHMOxD75AGR265Bner2BVgv76yX_2W9y__4yBXZxz2Fi5Fr0muWa3cDVKGxt61XfAPmEbzV |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+numerical+method+using+Legendre+polynomials+for+solving+two-point+interface+problems&rft.jtitle=AIMS+mathematics&rft.au=Min+Wu&rft.au=Jiali+Zhou&rft.au=Chaoyue+Guan&rft.au=Jing+Niu&rft.date=2025-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=10&rft.issue=4&rft.spage=7891&rft.epage=7905&rft_id=info:doi/10.3934%2Fmath.2025362&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a7bed35e13d644959049912adb1f2a55 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |