A Sparse ADMM-Based Solver for Linear MPC Subject to Terminal Quadratic Constraint
Model predictive control (MPC) typically includes a terminal constraint to guarantee stability of the closed-loop system under nominal conditions. In linear MPC, this constraint is generally taken on a polyhedral set, leading to a quadratic optimization problem. However, the use of an ellipsoidal te...
Saved in:
Published in | IEEE transactions on control systems technology Vol. 32; no. 6; pp. 2376 - 2384 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.11.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Model predictive control (MPC) typically includes a terminal constraint to guarantee stability of the closed-loop system under nominal conditions. In linear MPC, this constraint is generally taken on a polyhedral set, leading to a quadratic optimization problem. However, the use of an ellipsoidal terminal constraint may be desirable, leading to an optimization problem with a quadratic constraint. In this case, the optimization problem can be solved using second-order cone (SOC) programming solvers, since the quadratic constraint can be posed as a SOC constraint, at the expense of adding additional slack variables and possibly compromising the simple structure of the solver ingredients. In this brief, we present a sparse solver for linear MPC subject to a terminal ellipsoidal constraint based on the alternating direction method of multipliers (ADMM) algorithm in which we directly deal with the quadratic constraints without having to resort to the use of a SOC constraint nor the inclusion of additional decision variables. The solver is suitable for its use in embedded systems, since it is sparse, has a small memory footprint, and requires no external libraries. We compare its performance against other approaches from the literature. |
---|---|
AbstractList | Model predictive control (MPC) typically includes a terminal constraint to guarantee stability of the closed-loop system under nominal conditions. In linear MPC, this constraint is generally taken on a polyhedral set, leading to a quadratic optimization problem. However, the use of an ellipsoidal terminal constraint may be desirable, leading to an optimization problem with a quadratic constraint. In this case, the optimization problem can be solved using second-order cone (SOC) programming solvers, since the quadratic constraint can be posed as a SOC constraint, at the expense of adding additional slack variables and possibly compromising the simple structure of the solver ingredients. In this brief, we present a sparse solver for linear MPC subject to a terminal ellipsoidal constraint based on the alternating direction method of multipliers (ADMM) algorithm in which we directly deal with the quadratic constraints without having to resort to the use of a SOC constraint nor the inclusion of additional decision variables. The solver is suitable for its use in embedded systems, since it is sparse, has a small memory footprint, and requires no external libraries. We compare its performance against other approaches from the literature. |
Author | Krupa, Pablo Limon, Daniel Jaouani, Rim Alamo, Teodoro |
Author_xml | – sequence: 1 givenname: Pablo orcidid: 0000-0002-6238-1166 surname: Krupa fullname: Krupa, Pablo email: pablo.krupa@gssi.it organization: Gran Sasso Science Institute (GSSI), L'Aquila, Italy – sequence: 2 givenname: Rim orcidid: 0000-0002-1862-5557 surname: Jaouani fullname: Jaouani, Rim email: rjaouani@us.es organization: Systems Engineering and Automation, Universidad de Seville, Seville, Spain – sequence: 3 givenname: Daniel orcidid: 0000-0001-9334-7289 surname: Limon fullname: Limon, Daniel email: dml@us.es organization: Systems Engineering and Automation, Universidad de Seville, Seville, Spain – sequence: 4 givenname: Teodoro orcidid: 0000-0002-0623-8146 surname: Alamo fullname: Alamo, Teodoro email: talamo@us.es organization: Systems Engineering and Automation, Universidad de Seville, Seville, Spain |
BookMark | eNp9kE1LwzAch4NMcJt-AMFDwHNn3tseZ32FDV9azyFrEujompmkgt_elu0gHjwlh9_z5-GZgUnnOgPAJUYLjFF-UxVltSCIsAWlmUCCnIAp5jxLUCb4ZPgjQRPBqTgDsxC2CGHGSToF70tY7pUPBi7v1uvkVgWjYenaL-OhdR6ums4oD9evBSz7zdbUEUYHK-N3Tada-NYr7VVsali4LkSvmi6eg1Or2mAuju8cfDzcV8VTsnp5fC6Wq6SmNI0J1ilXORWDidVM1xnjiKcsx9Ty3DJba62YSlGe5whrlWqRcSx4Xhu0IUJZOgfXh7t77z57E6Lcut4PVkFSTJDgPM34sEoPq9q7ELyxsm7iYOy60baVGMkxoBwDyjGgPAYcSPyH3Ptmp_z3v8zVgWmMMb_2HBFCGf0BhC575w |
CODEN | IETTE2 |
CitedBy_id | crossref_primary_10_1109_LCSYS_2024_3523241 crossref_primary_10_1177_09544070241287245 crossref_primary_10_3390_rs17050925 |
Cites_doi | 10.1007/978-0-85729-398-5 10.1080/10556789908805762 10.1137/16M1098103 10.1561/2400000003 10.1016/S0005-1098(02)00174-7 10.1109/TCST.2020.2992959 10.1109/tcst.2024.3386062 10.1109/CACSD.2004.1393890 10.1007/s12532-014-0071-1 10.1561/2200000016 10.23919/ECC.2013.6669862 10.3182/20110828-6-IT-1002.03322 10.1145/3210754 10.1016/0005-1098(96)00063-5 10.1016/S0005-1098(99)00113-2 10.1016/j.automatica.2009.04.007 10.23919/ECC.2018.8550126 10.1016/j.jprocont.2009.11.007 10.1016/j.automatica.2004.08.019 10.1016/S0005-1098(99)00214-9 10.1016/S0005-1098(01)00051-6 10.1007/s12532-020-00179-2 10.1007/s10957-021-01896-x 10.1016/j.ifacol.2020.12.073 10.1016/j.jprocont.2022.01.006 10.1137/1.9781611970777 10.1137/20M1366307 10.1109/TCST.2021.3128824 10.1109/TAC.2022.3220555 10.1016/j.automatica.2010.05.007 10.1137/040613305 10.1007/978-0-85729-941-3 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 L7M |
DOI | 10.1109/TCST.2024.3386062 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Engineering Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-0865 |
EndPage | 2384 |
ExternalDocumentID | 10_1109_TCST_2024_3386062 10502234 |
Genre | orig-research |
GrantInformation_xml | – fundername: MURPRO3 project on Software Quality and the MUR-PRIN project DREAM (20228FT78M) – fundername: grant PID2022-141159OB-I00 – fundername: MCIN/AEI/10.13039/501100011033 and by the “European Union NextGenerationEU/PRTR” – fundername: MCIN/AEI/10.13039/501100011033 and by ERDF/EU, and by grant PDC2021-121120-C21 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACBEA ACGFO ACGFS ACIWK ACKIV AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 VH1 AAYOK AAYXX CITATION RIG 7SP 7TB 8FD FR3 L7M |
ID | FETCH-LOGICAL-c337t-1d75a936014fd4dc8450574913f59f4fcdda4a7099901da7d6851659ce0b26af3 |
IEDL.DBID | RIE |
ISSN | 1063-6536 |
IngestDate | Mon Jun 30 10:16:58 EDT 2025 Thu Apr 24 23:10:13 EDT 2025 Tue Jul 01 02:36:07 EDT 2025 Wed Aug 27 02:17:47 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c337t-1d75a936014fd4dc8450574913f59f4fcdda4a7099901da7d6851659ce0b26af3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1862-5557 0000-0002-6238-1166 0000-0002-0623-8146 0000-0001-9334-7289 |
OpenAccessLink | https://doi.org/10.1109/TCST.2024.3386062 |
PQID | 3120655785 |
PQPubID | 85425 |
PageCount | 9 |
ParticipantIDs | proquest_journals_3120655785 crossref_citationtrail_10_1109_TCST_2024_3386062 ieee_primary_10502234 crossref_primary_10_1109_TCST_2024_3386062 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-11-01 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on control systems technology |
PublicationTitleAbbrev | TCST |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 Camacho (ref1) 2007 ref14 ref31 ref30 ref11 ref33 ref10 ref32 Frison (ref36) 2021 ref2 ref16 ref38 ref19 ref18 Boyd (ref41) 2009 Krupa (ref21) 2021 Kerrigan (ref3) 2001 Chen (ref29); 4 Krupa (ref24) 2020 ref23 ref26 ref25 ref20 ref22 ref28 ref27 ref8 ref7 ref9 Torrisi (ref39) 2017 ref6 ref5 ref40 Bauschke (ref17) 1996 Rawlings (ref4) 2017 |
References_xml | – volume-title: Model Predictive Control year: 2007 ident: ref1 doi: 10.1007/978-0-85729-398-5 – year: 1996 ident: ref17 article-title: Projection algorithms and monotone operators – year: 2021 ident: ref36 article-title: Introducing the quadratically-constrained quadratic programming framework in HPIPM publication-title: arXiv:2112.11872 – ident: ref33 doi: 10.1080/10556789908805762 – ident: ref40 doi: 10.1137/16M1098103 – volume-title: FalcOpt: First-Order Algorithm Via Linearization of Constraints for OPTimization year: 2017 ident: ref39 – ident: ref27 doi: 10.1561/2400000003 – ident: ref11 doi: 10.1016/S0005-1098(02)00174-7 – ident: ref19 doi: 10.1109/TCST.2020.2992959 – ident: ref31 doi: 10.1109/tcst.2024.3386062 – year: 2001 ident: ref3 article-title: Robust constraint satisfaction: Invariant sets and predictive control – volume: 4 start-page: 3067 volume-title: Proc. Amer. Control Conf. ident: ref29 article-title: Optimisation of attraction domains of nonlinear MPC via LMI methods – ident: ref32 doi: 10.1109/CACSD.2004.1393890 – ident: ref9 doi: 10.1007/s12532-014-0071-1 – volume-title: SPCIES: Suite of Predictive Controllers for Industrial Embedded Systems year: 2020 ident: ref24 – ident: ref16 doi: 10.1561/2200000016 – year: 2021 ident: ref21 article-title: Implementation of MPC in embedded systems using first order methods – ident: ref38 doi: 10.23919/ECC.2013.6669862 – volume-title: Model Predictive Control: Theory, Computation, and Design year: 2017 ident: ref4 – ident: ref28 doi: 10.3182/20110828-6-IT-1002.03322 – ident: ref37 doi: 10.1145/3210754 – volume-title: Convex Optimization year: 2009 ident: ref41 – ident: ref13 doi: 10.1016/0005-1098(96)00063-5 – ident: ref7 doi: 10.1016/S0005-1098(99)00113-2 – ident: ref23 doi: 10.1016/j.automatica.2009.04.007 – ident: ref20 doi: 10.23919/ECC.2018.8550126 – ident: ref25 doi: 10.1016/j.jprocont.2009.11.007 – ident: ref26 doi: 10.1016/j.automatica.2004.08.019 – ident: ref2 doi: 10.1016/S0005-1098(99)00214-9 – ident: ref5 doi: 10.1016/S0005-1098(01)00051-6 – ident: ref8 doi: 10.1007/s12532-020-00179-2 – ident: ref15 doi: 10.1007/s10957-021-01896-x – ident: ref35 doi: 10.1016/j.ifacol.2020.12.073 – ident: ref10 doi: 10.1016/j.jprocont.2022.01.006 – ident: ref12 doi: 10.1137/1.9781611970777 – ident: ref14 doi: 10.1137/20M1366307 – ident: ref22 doi: 10.1109/TCST.2021.3128824 – ident: ref34 doi: 10.1109/TAC.2022.3220555 – ident: ref6 doi: 10.1016/j.automatica.2010.05.007 – ident: ref18 doi: 10.1137/040613305 – ident: ref30 doi: 10.1007/978-0-85729-941-3 |
SSID | ssj0014527 |
Score | 2.4662507 |
Snippet | Model predictive control (MPC) typically includes a terminal constraint to guarantee stability of the closed-loop system under nominal conditions. In linear... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2376 |
SubjectTerms | Algorithms Artificial intelligence Closed loops Complexity theory Convex functions Ellipsoids Embedded optimization Embedded systems Feedback control model predictive control (MPC) Optimization Predictive control Programming quadratic constraints second-order cone (SOC) programming Slack variables Solvers Terminal constraints Vectors |
Title | A Sparse ADMM-Based Solver for Linear MPC Subject to Terminal Quadratic Constraint |
URI | https://ieeexplore.ieee.org/document/10502234 https://www.proquest.com/docview/3120655785 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG-Ekx78xDhF04Mnk-K2vnXsiCghJiMqI-G2bG13kQDRcfGv97UbBDUabzu0XdP32vf7te-DkOsoLCAoXGBh1BUMuJDMxDuyPAch0aR5OjMX-vFIDCfwOA2mdbC6jYXRWlvnM90xn_YtXy3kylyV4Q4P0ORwaJAGMrcqWGvzZABVfVakOJwJ-ybp1Ak1b5P-OEEq6EMHCRkidv-LEbJVVX4cxda-DA7IaD2zyq3ktbMq8478-Ja08d9TPyT7NdKkvUo1jsiOnh-Tva38gyfkpUfHS2S2mvbu45jdoUVTdLwwztIUwSxFooobgcZPfYoHjLmxoeWCJpX_zIw-rzJlFEhSU_bTFpsoW2QyeEj6Q1YXWWCS87BkngqDLOLIy6BQoGQXDGWByONFEBVQSKUyyEIDJF1PZaESiNFEEEnt5r7ICn5KmvPFXJ8RyhUeEGFXiBw4RLnOA80DnnH8A6qDDw5x16ueyjoDuZnbLLVMxI1SI6jUCCqtBeWQm02XZZV-46_GLbPwWw2rNXdIey3btN6h7yn3fERfJtXP-S_dLsiuGb0KPGyTZvm20peIQMr8ymreJ1mk0ts |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9swFH8a7DA4wNhAFMrwgdMkd0n87DTHUkDlIxWsQeIWJbZzAbUI0gt_Pc9OWsGmTdx8sGXL79nv97PfB8BRElcoqwB5nPQVR6E0d_GOvCxRaTJpoS3cg346VqNbvLiTd22wuo-FsdZ65zPbc03_l29meu6eyuiESzI5AlfgMxl-GTbhWstPA2wqtBLJEVz5X8lOm1LzVzacZEQGI-wRJSPMHr0zQ76uyl-XsbcwZ5swXqytcSy5783rsqdf_kjb-OHFf4WNFmuyQaMcW_DJTr_B-psMhN_h94BNHonbWjY4SVN-TDbNsMnMuUszgrOMqCodBZZeDxldMe7NhtUzljUeNA_sZl4Yp0KaucKfvtxEvQ23Z6fZcMTbMgtcCxHXPDSxLBJBzAwrg0b30ZEWTEJRyaTCShtTYBE7KBmEpoiNIpSmZKJtUEaqqMQOrE5nU7sLTBi6IuK-UiUKTEpbSiukKATNQAoRYQeCxa7nus1B7tb2kHsuEiS5E1TuBJW3gurAz-WQxyYBx_86b7uNf9Ox2fMOdBeyzdsz-pyLMCL85ZL97P1j2CF8GWXpVX51Pr7chzU3UxOG2IXV-mluDwiP1OUPr4WviDnWJA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Sparse+ADMM-Based+Solver+for+Linear+MPC+Subject+to+Terminal+Quadratic+Constraint&rft.jtitle=IEEE+transactions+on+control+systems+technology&rft.au=Krupa%2C+Pablo&rft.au=Jaouani%2C+Rim&rft.au=Limon%2C+Daniel&rft.au=Alamo%2C+Teodoro&rft.date=2024-11-01&rft.issn=1063-6536&rft.eissn=1558-0865&rft.volume=32&rft.issue=6&rft.spage=2376&rft.epage=2384&rft_id=info:doi/10.1109%2FTCST.2024.3386062&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCST_2024_3386062 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6536&client=summon |