A Sparse ADMM-Based Solver for Linear MPC Subject to Terminal Quadratic Constraint

Model predictive control (MPC) typically includes a terminal constraint to guarantee stability of the closed-loop system under nominal conditions. In linear MPC, this constraint is generally taken on a polyhedral set, leading to a quadratic optimization problem. However, the use of an ellipsoidal te...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on control systems technology Vol. 32; no. 6; pp. 2376 - 2384
Main Authors Krupa, Pablo, Jaouani, Rim, Limon, Daniel, Alamo, Teodoro
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Model predictive control (MPC) typically includes a terminal constraint to guarantee stability of the closed-loop system under nominal conditions. In linear MPC, this constraint is generally taken on a polyhedral set, leading to a quadratic optimization problem. However, the use of an ellipsoidal terminal constraint may be desirable, leading to an optimization problem with a quadratic constraint. In this case, the optimization problem can be solved using second-order cone (SOC) programming solvers, since the quadratic constraint can be posed as a SOC constraint, at the expense of adding additional slack variables and possibly compromising the simple structure of the solver ingredients. In this brief, we present a sparse solver for linear MPC subject to a terminal ellipsoidal constraint based on the alternating direction method of multipliers (ADMM) algorithm in which we directly deal with the quadratic constraints without having to resort to the use of a SOC constraint nor the inclusion of additional decision variables. The solver is suitable for its use in embedded systems, since it is sparse, has a small memory footprint, and requires no external libraries. We compare its performance against other approaches from the literature.
AbstractList Model predictive control (MPC) typically includes a terminal constraint to guarantee stability of the closed-loop system under nominal conditions. In linear MPC, this constraint is generally taken on a polyhedral set, leading to a quadratic optimization problem. However, the use of an ellipsoidal terminal constraint may be desirable, leading to an optimization problem with a quadratic constraint. In this case, the optimization problem can be solved using second-order cone (SOC) programming solvers, since the quadratic constraint can be posed as a SOC constraint, at the expense of adding additional slack variables and possibly compromising the simple structure of the solver ingredients. In this brief, we present a sparse solver for linear MPC subject to a terminal ellipsoidal constraint based on the alternating direction method of multipliers (ADMM) algorithm in which we directly deal with the quadratic constraints without having to resort to the use of a SOC constraint nor the inclusion of additional decision variables. The solver is suitable for its use in embedded systems, since it is sparse, has a small memory footprint, and requires no external libraries. We compare its performance against other approaches from the literature.
Author Krupa, Pablo
Limon, Daniel
Jaouani, Rim
Alamo, Teodoro
Author_xml – sequence: 1
  givenname: Pablo
  orcidid: 0000-0002-6238-1166
  surname: Krupa
  fullname: Krupa, Pablo
  email: pablo.krupa@gssi.it
  organization: Gran Sasso Science Institute (GSSI), L'Aquila, Italy
– sequence: 2
  givenname: Rim
  orcidid: 0000-0002-1862-5557
  surname: Jaouani
  fullname: Jaouani, Rim
  email: rjaouani@us.es
  organization: Systems Engineering and Automation, Universidad de Seville, Seville, Spain
– sequence: 3
  givenname: Daniel
  orcidid: 0000-0001-9334-7289
  surname: Limon
  fullname: Limon, Daniel
  email: dml@us.es
  organization: Systems Engineering and Automation, Universidad de Seville, Seville, Spain
– sequence: 4
  givenname: Teodoro
  orcidid: 0000-0002-0623-8146
  surname: Alamo
  fullname: Alamo, Teodoro
  email: talamo@us.es
  organization: Systems Engineering and Automation, Universidad de Seville, Seville, Spain
BookMark eNp9kE1LwzAch4NMcJt-AMFDwHNn3tseZ32FDV9azyFrEujompmkgt_elu0gHjwlh9_z5-GZgUnnOgPAJUYLjFF-UxVltSCIsAWlmUCCnIAp5jxLUCb4ZPgjQRPBqTgDsxC2CGHGSToF70tY7pUPBi7v1uvkVgWjYenaL-OhdR6ums4oD9evBSz7zdbUEUYHK-N3Tada-NYr7VVsali4LkSvmi6eg1Or2mAuju8cfDzcV8VTsnp5fC6Wq6SmNI0J1ilXORWDidVM1xnjiKcsx9Ty3DJba62YSlGe5whrlWqRcSx4Xhu0IUJZOgfXh7t77z57E6Lcut4PVkFSTJDgPM34sEoPq9q7ELyxsm7iYOy60baVGMkxoBwDyjGgPAYcSPyH3Ptmp_z3v8zVgWmMMb_2HBFCGf0BhC575w
CODEN IETTE2
CitedBy_id crossref_primary_10_1109_LCSYS_2024_3523241
crossref_primary_10_1177_09544070241287245
crossref_primary_10_3390_rs17050925
Cites_doi 10.1007/978-0-85729-398-5
10.1080/10556789908805762
10.1137/16M1098103
10.1561/2400000003
10.1016/S0005-1098(02)00174-7
10.1109/TCST.2020.2992959
10.1109/tcst.2024.3386062
10.1109/CACSD.2004.1393890
10.1007/s12532-014-0071-1
10.1561/2200000016
10.23919/ECC.2013.6669862
10.3182/20110828-6-IT-1002.03322
10.1145/3210754
10.1016/0005-1098(96)00063-5
10.1016/S0005-1098(99)00113-2
10.1016/j.automatica.2009.04.007
10.23919/ECC.2018.8550126
10.1016/j.jprocont.2009.11.007
10.1016/j.automatica.2004.08.019
10.1016/S0005-1098(99)00214-9
10.1016/S0005-1098(01)00051-6
10.1007/s12532-020-00179-2
10.1007/s10957-021-01896-x
10.1016/j.ifacol.2020.12.073
10.1016/j.jprocont.2022.01.006
10.1137/1.9781611970777
10.1137/20M1366307
10.1109/TCST.2021.3128824
10.1109/TAC.2022.3220555
10.1016/j.automatica.2010.05.007
10.1137/040613305
10.1007/978-0-85729-941-3
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
L7M
DOI 10.1109/TCST.2024.3386062
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Engineering Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0865
EndPage 2384
ExternalDocumentID 10_1109_TCST_2024_3386062
10502234
Genre orig-research
GrantInformation_xml – fundername: MURPRO3 project on Software Quality and the MUR-PRIN project DREAM (20228FT78M)
– fundername: grant PID2022-141159OB-I00
– fundername: MCIN/AEI/10.13039/501100011033 and by the “European Union NextGenerationEU/PRTR”
– fundername: MCIN/AEI/10.13039/501100011033 and by ERDF/EU, and by grant PDC2021-121120-C21
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACBEA
ACGFO
ACGFS
ACIWK
ACKIV
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
7SP
7TB
8FD
FR3
L7M
ID FETCH-LOGICAL-c337t-1d75a936014fd4dc8450574913f59f4fcdda4a7099901da7d6851659ce0b26af3
IEDL.DBID RIE
ISSN 1063-6536
IngestDate Mon Jun 30 10:16:58 EDT 2025
Thu Apr 24 23:10:13 EDT 2025
Tue Jul 01 02:36:07 EDT 2025
Wed Aug 27 02:17:47 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-1d75a936014fd4dc8450574913f59f4fcdda4a7099901da7d6851659ce0b26af3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1862-5557
0000-0002-6238-1166
0000-0002-0623-8146
0000-0001-9334-7289
OpenAccessLink https://doi.org/10.1109/TCST.2024.3386062
PQID 3120655785
PQPubID 85425
PageCount 9
ParticipantIDs proquest_journals_3120655785
crossref_citationtrail_10_1109_TCST_2024_3386062
ieee_primary_10502234
crossref_primary_10_1109_TCST_2024_3386062
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on control systems technology
PublicationTitleAbbrev TCST
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
Camacho (ref1) 2007
ref14
ref31
ref30
ref11
ref33
ref10
ref32
Frison (ref36) 2021
ref2
ref16
ref38
ref19
ref18
Boyd (ref41) 2009
Krupa (ref21) 2021
Kerrigan (ref3) 2001
Chen (ref29); 4
Krupa (ref24) 2020
ref23
ref26
ref25
ref20
ref22
ref28
ref27
ref8
ref7
ref9
Torrisi (ref39) 2017
ref6
ref5
ref40
Bauschke (ref17) 1996
Rawlings (ref4) 2017
References_xml – volume-title: Model Predictive Control
  year: 2007
  ident: ref1
  doi: 10.1007/978-0-85729-398-5
– year: 1996
  ident: ref17
  article-title: Projection algorithms and monotone operators
– year: 2021
  ident: ref36
  article-title: Introducing the quadratically-constrained quadratic programming framework in HPIPM
  publication-title: arXiv:2112.11872
– ident: ref33
  doi: 10.1080/10556789908805762
– ident: ref40
  doi: 10.1137/16M1098103
– volume-title: FalcOpt: First-Order Algorithm Via Linearization of Constraints for OPTimization
  year: 2017
  ident: ref39
– ident: ref27
  doi: 10.1561/2400000003
– ident: ref11
  doi: 10.1016/S0005-1098(02)00174-7
– ident: ref19
  doi: 10.1109/TCST.2020.2992959
– ident: ref31
  doi: 10.1109/tcst.2024.3386062
– year: 2001
  ident: ref3
  article-title: Robust constraint satisfaction: Invariant sets and predictive control
– volume: 4
  start-page: 3067
  volume-title: Proc. Amer. Control Conf.
  ident: ref29
  article-title: Optimisation of attraction domains of nonlinear MPC via LMI methods
– ident: ref32
  doi: 10.1109/CACSD.2004.1393890
– ident: ref9
  doi: 10.1007/s12532-014-0071-1
– volume-title: SPCIES: Suite of Predictive Controllers for Industrial Embedded Systems
  year: 2020
  ident: ref24
– ident: ref16
  doi: 10.1561/2200000016
– year: 2021
  ident: ref21
  article-title: Implementation of MPC in embedded systems using first order methods
– ident: ref38
  doi: 10.23919/ECC.2013.6669862
– volume-title: Model Predictive Control: Theory, Computation, and Design
  year: 2017
  ident: ref4
– ident: ref28
  doi: 10.3182/20110828-6-IT-1002.03322
– ident: ref37
  doi: 10.1145/3210754
– volume-title: Convex Optimization
  year: 2009
  ident: ref41
– ident: ref13
  doi: 10.1016/0005-1098(96)00063-5
– ident: ref7
  doi: 10.1016/S0005-1098(99)00113-2
– ident: ref23
  doi: 10.1016/j.automatica.2009.04.007
– ident: ref20
  doi: 10.23919/ECC.2018.8550126
– ident: ref25
  doi: 10.1016/j.jprocont.2009.11.007
– ident: ref26
  doi: 10.1016/j.automatica.2004.08.019
– ident: ref2
  doi: 10.1016/S0005-1098(99)00214-9
– ident: ref5
  doi: 10.1016/S0005-1098(01)00051-6
– ident: ref8
  doi: 10.1007/s12532-020-00179-2
– ident: ref15
  doi: 10.1007/s10957-021-01896-x
– ident: ref35
  doi: 10.1016/j.ifacol.2020.12.073
– ident: ref10
  doi: 10.1016/j.jprocont.2022.01.006
– ident: ref12
  doi: 10.1137/1.9781611970777
– ident: ref14
  doi: 10.1137/20M1366307
– ident: ref22
  doi: 10.1109/TCST.2021.3128824
– ident: ref34
  doi: 10.1109/TAC.2022.3220555
– ident: ref6
  doi: 10.1016/j.automatica.2010.05.007
– ident: ref18
  doi: 10.1137/040613305
– ident: ref30
  doi: 10.1007/978-0-85729-941-3
SSID ssj0014527
Score 2.4662507
Snippet Model predictive control (MPC) typically includes a terminal constraint to guarantee stability of the closed-loop system under nominal conditions. In linear...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2376
SubjectTerms Algorithms
Artificial intelligence
Closed loops
Complexity theory
Convex functions
Ellipsoids
Embedded optimization
Embedded systems
Feedback control
model predictive control (MPC)
Optimization
Predictive control
Programming
quadratic constraints
second-order cone (SOC) programming
Slack variables
Solvers
Terminal constraints
Vectors
Title A Sparse ADMM-Based Solver for Linear MPC Subject to Terminal Quadratic Constraint
URI https://ieeexplore.ieee.org/document/10502234
https://www.proquest.com/docview/3120655785
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG-Ekx78xDhF04Mnk-K2vnXsiCghJiMqI-G2bG13kQDRcfGv97UbBDUabzu0XdP32vf7te-DkOsoLCAoXGBh1BUMuJDMxDuyPAch0aR5OjMX-vFIDCfwOA2mdbC6jYXRWlvnM90xn_YtXy3kylyV4Q4P0ORwaJAGMrcqWGvzZABVfVakOJwJ-ybp1Ak1b5P-OEEq6EMHCRkidv-LEbJVVX4cxda-DA7IaD2zyq3ktbMq8478-Ja08d9TPyT7NdKkvUo1jsiOnh-Tva38gyfkpUfHS2S2mvbu45jdoUVTdLwwztIUwSxFooobgcZPfYoHjLmxoeWCJpX_zIw-rzJlFEhSU_bTFpsoW2QyeEj6Q1YXWWCS87BkngqDLOLIy6BQoGQXDGWByONFEBVQSKUyyEIDJF1PZaESiNFEEEnt5r7ICn5KmvPFXJ8RyhUeEGFXiBw4RLnOA80DnnH8A6qDDw5x16ueyjoDuZnbLLVMxI1SI6jUCCqtBeWQm02XZZV-46_GLbPwWw2rNXdIey3btN6h7yn3fERfJtXP-S_dLsiuGb0KPGyTZvm20peIQMr8ymreJ1mk0ts
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9swFH8a7DA4wNhAFMrwgdMkd0n87DTHUkDlIxWsQeIWJbZzAbUI0gt_Pc9OWsGmTdx8sGXL79nv97PfB8BRElcoqwB5nPQVR6E0d_GOvCxRaTJpoS3cg346VqNbvLiTd22wuo-FsdZ65zPbc03_l29meu6eyuiESzI5AlfgMxl-GTbhWstPA2wqtBLJEVz5X8lOm1LzVzacZEQGI-wRJSPMHr0zQ76uyl-XsbcwZ5swXqytcSy5783rsqdf_kjb-OHFf4WNFmuyQaMcW_DJTr_B-psMhN_h94BNHonbWjY4SVN-TDbNsMnMuUszgrOMqCodBZZeDxldMe7NhtUzljUeNA_sZl4Yp0KaucKfvtxEvQ23Z6fZcMTbMgtcCxHXPDSxLBJBzAwrg0b30ZEWTEJRyaTCShtTYBE7KBmEpoiNIpSmZKJtUEaqqMQOrE5nU7sLTBi6IuK-UiUKTEpbSiukKATNQAoRYQeCxa7nus1B7tb2kHsuEiS5E1TuBJW3gurAz-WQxyYBx_86b7uNf9Ox2fMOdBeyzdsz-pyLMCL85ZL97P1j2CF8GWXpVX51Pr7chzU3UxOG2IXV-mluDwiP1OUPr4WviDnWJA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Sparse+ADMM-Based+Solver+for+Linear+MPC+Subject+to+Terminal+Quadratic+Constraint&rft.jtitle=IEEE+transactions+on+control+systems+technology&rft.au=Krupa%2C+Pablo&rft.au=Jaouani%2C+Rim&rft.au=Limon%2C+Daniel&rft.au=Alamo%2C+Teodoro&rft.date=2024-11-01&rft.issn=1063-6536&rft.eissn=1558-0865&rft.volume=32&rft.issue=6&rft.spage=2376&rft.epage=2384&rft_id=info:doi/10.1109%2FTCST.2024.3386062&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCST_2024_3386062
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6536&client=summon